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PREFACE

This report was prepared by Paul V. Sellmann, Geologist, Geotechnical
Research Branch, Experimental Engineering Division, U.S. Army Cold
Regions Research and Engineering Laboratory. It was prepared for the
U.S. Geological Survey, Office of Marine Geology to provide part of the
guidance for evaluating the stability of offshore structures in polar
waters.

Technical review of the report was performed by Dr. Malcolm Mellor
and Edwin Chamberlain of CRREL.
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REGIONAL DISTRIBUTION AND PROPERTIES OF BOTTOM SEDIMENTS

This topic was covered comprehensively in the recent Beaufort/
Chukchi Sea Interim Synthesis Report (OCSEAP, 1978), with emphasis
placed on the U.S. Beaufort Sea. Most oceanographic data on bottom
sediments deal with observations very near the bed and only limited data
exist from deeper drill holes. Both indicate great variability in
sediment type and properties. As a result most development activities
will have to include detailed site-specific studies. The material that
follows is from the OCSEAP synthesis report and is presented verbatim.

It is followed by a short discussion that qualifies some of the statements
made in the synthesis report. This discussion derives primarily from
new information obtained during the recent USGS Conservation Division
program (USGS Contract Report, 1979) on the extensive distribution of
fine-grained sediment at depth on the Beaufort Sea shelf, which will
influence activities such as island construction.

Some sediment property data from the Prudhoe Bay area, for sediments
that are not ice-bonded, are also included (from Sellmann and Chamberlain,
1979).

Bottom Sediment Distribution and Character (from OCSEAP, 1978)

The bottom sediments are reasonably well mapped
between Point Barrow and Canada, except on the inner
shelf west of Cape Halkett and east of the Canning
River (Figure [1])(Barnes and Reimnitz, 1976; Naidu and
Mowatt, 1974). The sediment character of the Chukchi
Sea floor is fairly well known, primarily from the work
of Creager and McManus (1967). Extreme diversity even
over short distances is perhaps the most distinctive
characterictic of arctic shelf sediments.

The sediments consist chiefly of poorly sorted

silty clays and sandy muds containing varying amount of
intermixed gravel. The sediments become generally
coarser eastward; clayey sediments predominate on the
continental shelf west of Cape Halkett and areas of
sandy bottom are essentially confined to shelf areas to
the east and along the coast (Figure [1]). Lateral
variations in mineral assemblages in the sand and clay
fraction indicate that the fine sediments are of local

derivation, introduced from the major North Slope
rivers and by erosion of the coastal bluffs (Naidu and
Mowatt, 1974). The finer grain size of bottom sediments
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Figure 1. Distribution of bottom sediments and directions of dispersal
of sediments by currents and ice. (From OSCEAP 1978.)



west of Cape Halkett reflects the fact that all of the
streams west of the Colville River have low gradients
and head toward the arctic coastal plain. Rivers east
of the Canning flow northward in steep courses from
mountains a few tens of kilometers south of the Beaufort

Sea coast and bring in coarser material.

Holocene sediment — that is, marine sediment laid
down during the last 10,000 years — covers only part
of the continental shelf. The thicker accumulations

consist of silty fine sand and clayey silt less than 10
m thick (Figure [2]). Furthermore, sedimentation rates
vary widely. Data from seismic reflection profiling
and from the offshore permafrost program suggest rates
of less then 10 cm/century for much of the shelf, both
inshore and offshore from the barrier islands. However,
drillhole data show that sediments in the sheltered

basin of Prudhoe Bay have been accumulating at the much
more rapid rate of 60 cm/century. High sedimentation
rates might be expected off the mouths of the major
rivers, but the apparent limited thickness of Holocene
sediments and the stability of both the subareal shoreline
and the delta front platform off the Colville River
seem to indicate accumulation rates of less than 5

cm/century there. By comparison, sedimentation rates
are about 10 cm/century on the continental slope north
of the Mackenzie River (Pelletier and Shearer, 1972),
and rates of less than 5 mm/1,000 years are reported
for the deep arctic basin away from sites of turbidite
deposition.

Some areas of the shelf lack any substantial
thickness of Holocene sediment. In these areas, the
Pleistocene Flaxman Formation overconsolidated marine

sandy silt containing dropstones of Canadian origin
(Leffingwell, 1919) crops out on the sea floor, underlies
a few centimeters of soupy, sandy silt, or lies beneath
a veneer of gravel.

Patches of gravel and isolated boulders are scattered
on the sea bottom. The gravel patches are generally
less than 1 m thick and commonly thinner than 15 cm
(Figure [2]). They increase in abundance and extend
eastward toward the Canadian border and northward

toward the outer shelf margin. East of Prudhoe Bay,
the gravel consists predominantly of lithologic types
that are not native northern Alaska rocks (Rodeick,
1975), but that are found in the Flaxman Formation.
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However, chert gravel derived from the Brooks Range is
found in shallow water off some mainland beaches, and

most barrier islands west of Prudhoe Bay are composed

of similar gravel. No gravel is being supplied by
modern ice-rafting from distant sources (Barnes and
Reimnitz, 1974), and only small amounts are icerafted
short distances from local sources. Much of the gravel
was supplied by erosion of the coastal bluffs during
the transgression, similar to the way in which it is
introduced today. The surficial gravel locally and
perhaps generally, overlies outcrops of Flaxman Formation
on the sea floor. Evidently most of the gravel accu
mulations are lag deposits that have resulted from the
erosion of considerable thicknesses of the Flaxman

Formation.

The thickness of gravel deposits merits special
consideration, because of the potential requirement
for gravel fill for artificial islands and causeways.
Aside from the river deposits and the barrier islands,
which have been traditional sources of gravel borrow,
the only significant gravel sources on the shelf are
thought to be widespread Pleistocene gravels lying below
finer-grained surface deposits on the shelf. Gravels
have been encountered in the permafrost drill holes
north and south of Reindeer Island. Access to these

gravels may be hindered by the presence of the
overlying Holocene marine section and by overconsolidated
clays such as those encountered during drilling in the
vicinity of Reindeer Island or by the stiff gravelly
muds found in vibracores north of Cross and Reindeer

Islands.

Studies of soil properties, in detail in the
Prudhoe Bay area under the permafrost drilling program
(Chamberlain and others, 1978), and reconnaissance in
formation gathered over wide regions using shear vanes,
cone penetrometers, and rates of vibracore penetration,
show that there are very large variations. The very
stiff, overconsolidated silty clay of the Flaxman Forma
tion is dewatered to the plastic limit or lower. The
unit apparently underlies large areas of the shelf,
locally cropping out at the surface. The Holocene
marine sediments, covering the shelf in general with
a 5 to 10 m thick layer, have a higher water content and
lower strength, but characteristically are much firmer
than lower latitude shelf sediments, judging from the lack
of coring success with anything but vibratory or rotary
tools.



The mechanism causing the overconsolidation of
the very dense clays has not been determined with
certainty. However, Chamberlain et al. (1978) suggest
that the overconsolidation has probably resulted from
freezing and thawing. The strength properties and ex
cavation characteristics of the overconsolidated clays
are much different from those of more typical, normally
consolidated marine silts and clays. For instance,
similar overconsolidated clays occur in the North Sea
and provide stable foundations for drilling platforms.
However, the cyclic action of waves against the drilling
platforms causes a significant reduction in the strength
of the overconsolidated clays. Access to significant
quantities of offshore gravel may require excavation of
a surficial layer of the overconsolidated material. For
these and other reasons, the distribution and thickness
of these sediments is important to the planning for
offshore structures.

Discussion

The drilling program sponsored by the Conservation Division of
the USGS and conducted by Harding-Lawson Associates provided a
considerable amount of new data on the distribution of sediments in

the currently proposed lease area on the Beaufort Sea Shelf. The
locations of the drill sites for this study are shown in Figure 14.

The logs for these holes indicate that past data from the Prudhoe
Bay area obtained by Osterkamp and Harrison (1976) and Chamberlain
et al. (1978) create an anomalous impression of the thickness of the
fine-grained section that covers the older Pleistocene sediment that
is richer in sand and gravel. The recent USGS study suggests that
the thick fine-grained section observed off Reindeer Island (Sellmann
and Chamberlain, 1979) may be more representative of the region. All
of the recent USGS holes removed from possible offshore Paleo-valleys
of major rivers revealed extensive thicknesses of fine-grained material.
Fine-grained sections thicker than 25 m were frequently observed in the
offshore holes east of Prudhoe, with the most easterly hole (No. 18)
consisting predominantly of fine-grained material over its 92-m depth.
The more nearshore holes contained slightly thinner fine-grained surface
surface sections, although more than 10 m of fine-grained material was
common. Determining the properties of this fine-grained unit is further
complicated by the fact that portions of many of the sections are ice-
bonded and commonly consist of dense, overconsolidated materials.

The thickness of this fine-grained material and its properties will
have a significant effect on gaining access to the coarser-grained
sediment, for island construction, by penetration of the fine-grained
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Figure 3. Site locations and major study lines (PB indicates drill hole,
PH probe hole, except for PB-4 which is a 1976 probe hole loca
tion). The dashed line indicates the location of Rogers' seismic
data. (From Sellmann and Chamberlain 1979.)
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surface section. The variation in thickness and properties of this
surface layer will make detailed local site selection for offshore
borrow material a necessity.

The extreme variability in properties of the near-bed sediments has
also been demonstrated by Blouin et al. (1979) . This study was based on
penetrometer observations in the Prudhoe Bay area. The 27 sites occupied
are included in Figure 3. This study also indicates the need for detailed
local investigations prior to any development activity.

A summary of sediment property data from portions of holes in the
Prudhoe area that were not ice-bonded is presented in Figures 4-10 (from
Sellmann and Chamberlain, 1979). The locations of these holes are also
shown in Figure 3. A detailed discussion of these data may be found in
Chamberlain et al. (1978) and Sellmann and Chamberlain (1979). Property
data from the Harding-Lawson study can be obtained from their contract
report (USGS, Contract Report, 1979).

ICE-BONDED SEDIMENTS AND ASSOCIATED GROUND ICE

In the Beaufort Sea, sediments with temperatures below 0°C are
extremely widespread. However, these materials are not necessarily
frozen since they can contain saline pore water. The ice-bonded sediments
in this environment can be grouped into two classes: seasonally frozen
and perennially frozen.

Seasonally frozen sediments are most obvious in shallow water areas
(<2 m) where the sea ice forms to or near the seabed. This is primarily
because the degree of ice-bonding is greatest in this zone, with sediments
having strength properties approaching those observed on land (Blouin
et al., 1979; Sellmann and Chamberlain, 1979). In deeper water (>2 m) in
the Prudhoe Bay area seasonal freezing of the bed was indicated when tem
perature data and calculated freezing point values of the pore water were
compared (Sellmann and Chamberlain, 1979). These data suggest that seasonal
freezing could be anticipated, although there was no indication that this
freezing and ice formation was complete enough to cause a significant
increase in the strength of the bed sediments. In some locations, where
the bed sediments are fresher than normal marine sediments, as in bays
or at the mouths of major rivers, the degree of bonding could be greater.
Therefore, well-bonded seasonally frozen sediments can be expected in
shallow water zones and shoal areas along the coastline and around the
perimeters of islands.

Perennially frozen ice-bonded sediments can be widespread and in
most cases represent permafrost that was formed on land when sea level
was much lower, and was subsequently inundated by the sea. Therefore,
the distribution of this material can be related to factors such as rate
of advance of the sea onto the land, water temperature, sediment properties,

11



and the pre-inundation history of the region. Coastal regions subject
to rapid transgression apparently have relict permafrost preserved many
kilometers from the present coastline as indicated by the data from the
Beaufort Sea shown in Figures 11-14.

The depth to the top of ice-bonded sediments can be expected to be
extremely variable in most regions, influenced by the properties of the
sediments and the geologic and thermal history of the region. For
example, it appears that in the Prudhoe Bay area the top of bonded
sediment is close to the seabed in locations where the bed sediments
consist primarily of dense, overconsolidated clays. It has been suggested
that this could be related to the reduced rates of salt movement expected
in this material. Salt movement in the dense clay would rely on diffusion,
in contrast to more rapid infiltration in more permeable material.

In some regions modifications to the permafrost that occurred prior
to inundation by the sea could account for considerable variability
in the surface of bonded sediments due to deep thaw caused by lakes and
major streams. No evidence for contemporary formation of bonded sediments
exists in the marine environment although it cannot be dismissed.

A provisional estimate of the distribution of perennially frozen
sediments in the U.S. and Canadian Beaufort Sea is provided in Figure 11
(OCSEAP, 1978) . The Canadian data shown were obtained from Hunter et
al. (1976).

A preliminary examination of first returns from seismic records in
the U.S. Beaufort Sea obtained from industry offshore ice-shooting and
marine reflection surveys also indicated extensive offshore distribution
of bonded sediments. A velocity map constructed from these data indicates
that velocities commonly associated with bonded sediments occur near the
surface in a significant portion of the proposed U.S. Beaufort Sea lease
area. Data from the offshore marine lines shown in Figure 12 do not
contain velocities great enough to be interpreted as bonded permafrost.
Therefore, the seaward limit of the bonded sediments must lie between
the nearshore data and the offshore marine records; this limit is cur
rently the subject of further investigation (Sellmann et al., 1979).

No data are available on the thickness of the offshore permafrost
in the U.S. Beaufort Sea, although frozen sections of substantial thickness
are anticipated along the inner part of the continental shelf. Data
from recent seismic investigations indicate that near the shore in the
Prudhoe Bay area the thickness can exceed 300 m (Sellmann et al., 1979).

Additional information on offshore permafrost can be obtained from
investigations conducted as part of the OCSEAP program (Osterkamp and
Harrison, 1976; Rogers and Morack, 1978; Chamberlain et al., 1978).
Some of these data have been summarized in Figure 13.

12



Figure 11. Early estimate of bonded permafrost distribution in U.S.
Beaufort Sea. (From OCSEAP 1978). Canadian data are
from examination of seismic records, from Hunter et al.
(1976). Recent studies support general comments for
nearshore categories in the U.S. Beaufort Sea. The
seaward limit of bonded sediments may not be as great as
indicated by the dashed line, based on examination of
seismic records (Sellmann et al. 1979).
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The recent study conducted by the Conservation Division of the USGS
also provides a considerable amount of new information on bonded permafrost
distribution. This study found that ice-bonded sediments were common,
with significant thicknesses of frozen sediments found in 12 of the 20
holes drilled during their 1979 program, and that bonded permafrost
was possibly encountered in at least three additional holes (USGS,
Contract Report, 1979). The locations of the drill sites studied during
this program are shown in Figure 14. The sites at which bonded sediments
were observed are indicated by a solid dot, and locations where bonded
permfrost may have been encountered are indicated by half shading of the
hole locations. The drill site numbers assigned by Harding and Lawson
are shown above the site locations. The depths, to the nearest meter,
below the seabed of bonded sediments that contained visible ice are
noted below the hole locations. Values were not included for locations
where bonded permafrost was only tentatively identified and no visible
ice was observed.

Previous studies in the Prudhoe Bay area are in good agreement with
permafrost observations from the Conservation Division program (Sellmann
and Chamberlain, 1979; USGS, Contract Report, 1979). These earlier
studies suggest that the USGS Conservation Division drill holes 1 and
7 may not have been deep enough to reach bonded material (Figure 14).

Only a limited amount of data are available on the ice content of
the perennially frozen sediments from the Beaufort Sea. However, the
shallow depth of the ice-bonded sediments over extensive portions of the
near-coastal waters indicates that significant offshore regions exist
where ice lenses and massive ice can occur (Figures 12-14). This is
particularly true since the properties of the offshore relict permafrost
should be much like those of the permafrost on land. The extensive
distribution of ice-bonded sediments with their higher velocities (Hunter
et al., 1978; Sellmann et al., 1979; Rogers and Morack, 1978) observed
both in the U.S. and Canadian Arctic, as well as their increased strength
characteristics, indicate that at the minimum they contain significant
quantities of pore ice (Blouin et al., 1979; Chamberlain et al., 1978).

Samples containing ice lenses were obtained from several locations
offshore in the Canadian Beaufort Sea between 6.1 and 18.3 m below the

seabed (Golden, Brauner and Associates, 1970).

Results from the recent U.S. Geological Survey, Conservation Division
program provide the greatest amount of information on the position and
distribution of ice, other than pore ice (USGS, Contract Report, 1979).
The hole locations, indicated by solid dots in Figure 14, all contained
visible ice at intervals within the bonded section. In 11 of these
holes excess ice in the form of lenses and seams was observed. Lenses

in the fine-grained material were as thick as 0.5 in. (12.7 mm) in at
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least two holes. Lenses on the order of 0.13 to 0.25 in. (3.3 to 6.4
mm) thick were more common. More detailed information on excess ice
morphology and distribution can be obtained from the USGS Contract
Report (1979). The data from this study provide direct evidence that
the morphology and distribution of the excess ice in the marine sediments
are not unlike what is seen on land.

In general, permafrost problems in the marine environment can be
anticipated to be at least as great as on land, and possibly greater
because of higher ground temperatures.

OVERCONSOLIDATED SEDIMENTS

A number of investigations conducted in the U.S. Beaufort Sea
suggest widespread distribution of dense overconsolidated sediment near
the seabed. Based on extensive shallow bottom sampling, Reimnitz et al.
(1977) report that stiff clays occur widely near the bed eastward of the
Colville River to the Canning River. Their sampling indicates that they
occur in shallow waters and out to more than 100 km offshore in 1062 m
of water. Hopkins and Hartz (1977) report that much of the sea floor to
the north of the Colville River is underlain by compact stony mud of the
Flaxman Formation. These sediments can be observed on the outer margin
of the coastal plain in this region.

This widespread occurrence of stiff, fine-grained sediments near
the bed was supported by other local investigations. Reimnitz and
Barnes (1974) observed stiff, cohesive sediment seaward of Reindeer
Island. Their assessment was that a stiff, cohesive silty clay of
undetermined thickness underlies Holocene marine sediments in extensive
areas of the inner shelf and some parts of the central outer shelf.
This was confirmed by extensive diving observations in 1972 which
indicated dense, dry, consolidated silt near the seabed (Rodeick, 1979).
Reimnitz et al. (1974) also observed very stiff silty clay underlying a
scour feature about half a kilometer seaward of Egg Island near Simpson
Lagoon. More recently, Reimnitz and Toimil (1979) reported dense clay
in the deepest part of Leffingwell Channel, which is near the Canning
River.

The recent study conducted by Harding-Lawson for the USGS (1979)
provided data on the distribution of overconsolidated sediments. In
the 20 sites investigated, shown in Figure 14, all sections containing a
significant thickness of clayey sediments were described as being stiff
to hard. Stiff, fine-grained material was observed at every site,
although in several cases the fine-grained zones were thin.
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Engineering property studies in the Prudhoe Bay area (Chamberlain
et al., 1978; Sellmann and Chamberlain, 1979; Chamberlain, 1979) esta
blished that overconsolidated sediments were present at all eight of the
drill sites investigated. The degree of overconsolidation varied greatly
from very weak sediments in the center of Prudhoe Bay to very dense,
highly overconsolidated material offshore of Reindeer Island with a
maximum thickness approaching 10 m.

Overconsolidated bed sediments have also been reported in the
Canadian Beaufort Sea. A study was conducted to determine the degree of
this overconsolidation in Shallow Bay, located in the MacKenzie Delta.
It was observed along the line investigated that sediments consisting of
fine sand, silts and minor amounts of clay and organic material were
highly overconsolidated in the upper 4 m and more weakly consolidated to
depths of 11 m (Hollingshead et al., 1978).

The above observations all suggest that overconsolidated sediments
near the seabed can be expected as a common feature of the bed sediments
in the Beaufort Sea. This could be considered unique since most of the
common mechanisms normally responsible for their formation are not
available for sediment modification in this region. The more common
mechanisms, such as overburden pressure and subsequent erosion, desiccation,
and loading by thick masses of glacial ice, do not appear appropriate
for much of this region (Chamberlain et al., 1978). Because temperature
conditions appear to have been favorable over much of the late Pleistocene
time for deep freezing of the exposed land surface, and since freezing
of bed material can occur in shallow water zones in the existing marine
environment, freeze-thaw consolidation was given serious consideration.
A discussion of the process is given by Chamberlain and Blouin (1978).
Hollingshead et al. (1978) also suggest freeze-thaw as a mechanism and
provide supporting data from modeling potential depth of seasonal frost
penetration in various water depths. Laboratory tests conducted on
remolded samples from Prudhoe Bay confirmed that significant consolidation
is possible from only one freeze-thaw cycle (Chamberlain et al., 1978).
For a significant thickness of these sediments to exist they would most
likely have to have been frozen when the coastal plain was exposed
during a period of low sea level. Thick sections could also occur when
seabed sediments were directly coupled to the atmosphere, for example in
locations where offshore bars or islands occur, or have existed.

If freezing and thawing provide the mechanism for their development
during a period of low sea level, then these sediments should be very
widespread, with distribution controlled by appropriate material types.

It appears that these sediments can influence the infiltration rate
of saline sea water into the sediment, which may have an influence on
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the position or depth to ice-bonded permafrost, which was closer to the
bed in areas where thick sections of overconsolidated sediments occur in

the Prudhoe Bay area (Smith and Hopkins, 1979; Sellmann and Chamberlain,
1979). This relationship also appears to exist for observations from
the recent USGS study (USGS, Contract Report, 1979).

Another aspect of these sediments that could influence offshore
operations in the Beaufort Sea might be their thickness. These sediments
can be thick enough to limit.access to desirable material such as coarser-
grained sediment required for construction of offshore exploration and
production facilities.

NATURAL GAS HYDRATES

Natural gas hydrates are solid clathrate inclusion compounds that
resemble ice or wet snow. Water is the host molecule, forming crystal
lattice cages or nearly spherical chambers in which the guest molecules
of natural gas fit. The guest molecules can be a variety of hydrocarbon
and other gases. These hydrates can occur above and below 0°C when
appropriate pressure and temperature conditions are met for the various
gases (Kaplan, 1974). Given a constant temperature, gases having the
greatest density can occur at lower pressures or depths (Oilweek, 1974) .
However, methane is apparently the most common gas found associated with
natural hydrates, unless the gas is very rich in higher hydrocarbons
such as propane. Reduction in temperature decreases the formation depth
of hydrates as the methane-water phase diagram prepared by Davidson et
al. (1978) (Figure 15) helps to illustrate. This figure assumes that
water exists in excess of that in the hydrate. The two dashed lines
show examples of simple temperature profiles based on mean annual surface
temperatures of 0°C and -10°C. The methane hydrate is stable above the
temperature-pressure curve and between the intersection points of the -
10°C profile. It also indicates that no hydrate can occur when the mean
annual temperature is at 0°C, although they can exist at depths between
200 and 900 m with a -10°C mean annual surface temperature. This depth
range, in which natural gas hydrates are stable, is compatible with
conditions found in areas of thick, cold permafrost, permitting hydrates
to exist within and below the permafrost. It should be noted that the
temperature profiles used are idealized and that actual profiles, particularly
in the marine environment, can be much different than these. Conditions
suitable for hydrates can exist when mean annual bed temperatures are
around 0°C when temperatures are not in equilibrium.
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Limited information on the occurrence of natural gas hydrates in
terrestrial permafrost settings indicates the variability of hydrate
distribution. This variability may even be greater offshore due to the
complex thermal history in this permafrost environment.

Existence of gas hydrates on land has been documented in both the
Soviet and North American Arctic. Considerable information is available
on gas hydrates from the Soviets' large Messoyakha field, which is
situated in the West Siberian Basin (Davidson et al., 1978). In the
Canadian Arctic, indication of hydrates was noted at 12 well sites
discussed in a recent Arctic Petroleum Operators Association Report
(APOA, 1978). Katz (1971) has indicated that at Prudhoe Bay hydrates
might be present at depths between 600 and 1035 m. The Canadian Arctic
is the only one of these regions for which documentation is available on
hydrate occurrence offshore.

Hunter et al. (1976) suggest that offshore hydrates associated with
relict permafrost which formed in the terrestrial environment are generally
degrading together with the permafrost. But they indicate that this
rate is likely slowed by the latent heat required to cause dissociation
of the hydrate into either gas and ice or gas and water. The resulting
gas, since it is at higher than in situ pressure, will then attempt to
migrate to shallower horizons in permeable permafrost to form gas pockets
in the sediment. They believe that this free gas may also combine with
ice in the permafrost to form new hydrates at shallower depths. They^
also comment that the actual kinetics of hydrate formation in nature is
not well understood, but that formation must be much slower than decomposition
because of their essentially explosive dissociation when they are not in
equilibrium.

Natural gas hydrates can be of commercial interest as a potential
source of natural gas, as well as a source of problems during petroleum
exploration and development. Data available from Soviet experience with
hydrates in their Messoyakha gas field discussed by Hitchon (1974)
indicate that, based on calculations from some zones that contained
hydrates, the reserves were 54% higher than they would be if only free
gas occupied the reservoir rock. It was also observed (Hitchon, 1974,
from examination of information in Makogan et al., 1971) that hydrate
zone production was much lower than was observed in free gas zones,
although hydrate zone production in test wells was increased by an order
of magnitude by methanol injection. It appears that techniques for
recovery of natural gas hydrates are in their infancy, with the only
data available on production being from Soviet experience in the Messoyakha
field (Makogan et al., 1971; Chersky et al., 1972, summarized by Hitchon,
1974). Various proposed injection fluids for increasing hydrate decomposition
and production are mentioned in Hitchon's (1974) review and include:
saline formation water, alcohols, diesel fuel, and calcium chloride
solutions.
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As suggested, hydrate occurrence can influence exploration and
development activity. Increased velocity in hydrate zones, to velocities
higher than are normally encountered in thawed sediments, can influence
the interpretation of seismic data. Problems with hydrates can in part
be related to their increased pressure and volume upon decomposition-
One cubic foot of hydrate can contain 170 ft3 of gas" (Oilweek 1974)

High pressures can develop when methane hydrates decompose if no permeable
path exists for pressure relief. Goodman (1978) notes that decomposing
methane hydrates at constant volume have a decomposition pressure of
about 2,000 psi (13,790 kPa) at 60°F (15.5°C) (see Figure 15).

A recent review of oil industry experience with gas hydrates in
exploration drilling in the Canadian Arctic was compiled by the Arctic
Petroleum Operators Association (APOA) and was presented at the 1978
Canadian Symposium on Permafrost Geophysics. Their observations and
conclusions are presented below verbatim:

1. "In most cases, gas hydrate manifestations are inferred
from the response of gas influx in a drilled interval to changes in
temperature. However, the existence of gas hydrates in many cases
cannot be positively established."
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2. "Gas hydrate manifestations are the exception rather than
the normal case, with twelve reported possible occurrences in 375
wells drilled".

3. "Well control equipment is required to handle free gas
accumulations, and the same equipment will handle gas from hydrate
decomposition. Well control procedures must be changed to control
a gas hydrate since increasing the mud density to control decom
position is not practical."

4. "The combined experience in penetrating gas hydrate
intervals would indicate that gas influx from the decomposition
of gas hydrates is slow and will create only a small gas kick which
can easily be handled. However, it is important that the mud
temperature is less than the formation temperature if the well
is left in a static condition for any length of time. If this
is not done, it is possible that a larger bubble can collect in
the well bore. If a larger bubble collects, and if a free gas
is associated with the hydrate interval or elsewhere present in
the open hole, it is possible that the density reduction resulting
from the hydrate gas influx will be sufficient to allow the free
gas interval to flow."

5. "The control method for penetrating a zone containing
gas hydrates is to cool the mud while penetrating the interval.
Any gas liberated is vented at the surface in the normal manner.
Once the interval has been penetrated, it is covered with well
casing and cemented in the normal manner. If free gas is present,
the mud density must be sufficient to prevent free gas influx
and the mud temperature must be maintained low to prevent signi
ficant gas hydrate decomposition. The well bore should not be
left static for long periods of time if the mud is warmer than
the formation."

i

6. "Gas hydrate decomposition behind casing has not created a
problem at any of the twelve exploratory wells where hydrates
have been suspected."

Even though the above comments suggest that procedures for handling
hydrates are routine, it is my understanding that problems with hydrates
have been encountered, presumably when the above procedures were not
employed. The variable and unpredictable distribution of the hydrates
appears to be a problem requiring constant awareness and ability to im
plement well control procedures in all potential hydrate zones. This will
also include consideration of increased external pressure on the pro
duction casing as the thaw zone and sediment temperature increase. The
greatest problems may occur when a casing is subjected to cumulative
stresses related to all aspects of thawing of the permafrost such as
thaw settlement and high pressure due to hydrate decomposition in confined
situations where no relief of pressure is possible. This may be parti
cularly true in offshore production situations where wells will be
closely spaced and permafrost temperatures could be higher, permitting
more rapid thaw.
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Free gas, rich in methane, observed during the Harding-Lawson
subsea permafrost drilling program (USGS, Contract Report, 1979) in the
U.S. Beaufort Sea could be an indication of hydrate decomposition at

depth.

BED TOPOGRAPHY

The Beaufort Sea shelf is generally a planar feature that ranges in
width from 40 to 76 km with the shelf break at approximately 74 m
(Carsola, 1954), It has little relief, with a maximum slope of 1.3 m/km
and an average slope of 0.5 m/km (Rodeick, 1979).

Submerged ridges form prominent features northeast of Pingok Island
(Rodeick, 1979) , while the Reindeer-Cross Island ridge, which extends at
least to Narwhal Island, forms a dominant feature east of Prudhoe Bay
(Reimnitz et al., 1972).

Several bed features that are unique to arctic waters can account
for local irregular bed topography in nearshore waters. They include
bed scour grooves, strudel erosion depressions, and features that it has
been suggested are submarine pingos. The first two are related to the
occurrence of sea ice, while the latter, if true pingos, could be
related to the occurrence of subsea permafrost.

Ice Gouge Patterns

Ice gouges, by far the most common of these features, can form a
wide variety of bed patterns on the inner part of the shelf.

Scouring and gouge formation occur when sea ice and berg ice
contact the bed sediments. This can occur in a wide range of water
depths, depending on size, frequency of occurrence, and movement patterns
of sea and berg ice. These features can range from gouges more than 6.5
m deep to shallow grooves in shallow water areas. Usually these grooves
are bordered by ridges and mounds of material displaced from the incision
(Figure 16a). The gouge can also be filled in, leaving the parallel
ridges as the dominant relief feature. It appears that the ridges
themselves can also act as sediment traps, causing preferential ponding
of sediment on one margin of the linear features depending on the direc
tion of sediment transport (Barnes and Remnitz, 1979).

These features and their dynamic formation mechanism will be of
considerable significance in offshore development activities. Their
distribution, frequency of formation, and depth will influence the
design of seabed pipelines and well completions and any other seabed
installation planned on the inner shelf. Considerable lateral varia
bility in sediment strength properties can be associated with these
features, where rapid infilling of soft sediment occurs in regions of
dense clay common to much of the shelf (Barnes and Reimnitz, 1979).

The zone of greatest interaction between ice and the bed is the
margin of the stationary coastal ice and the moving polar pack, as
marked by a zone of grounded ice ridges (Reimnitz et al., 1977). The
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inner edge of this grounded ridge zone is generally located between the
10 and 20 m isobaths, and is commonly associated with shoals. Gouging
is especially intense in this zone and on the seaward slopes of bathymetric
highs (OCSEAP, 1978). Also, in the OCSEAP synthesis report it is stated
that "Ice gouge densities, depths of incision, and dominant trends are
reasonably well known for the region between Cape Halkett and Flaxman
Island inside 15 m (Figure [17]) but poorly known in deeper water in the
easternmost and westernmost parts of the Alaskan sector of the Beaufort
shelf (Reimnitz and Barnes, 1974)."

Gouges are commonly more than 1 m deep within and seaward of the
zone of grounded ice ridges and generally less than 1 m deep shoreward of
this zone (Figure 18) although maximum values are much greater (OCSEAP,
1978). The following information on depth and orientation is provided
directly from the OCSEAP synthesis report.

"Extreme observed incision depths are 4.5 m in 38 m of water in
the Chukchi Sea, 5.5 m in the same water depth in the Alaskan sector
of the Beaufort Sea, and in excess of 6.5 m in water depths between
40 and 50 m in the Canadian sector (Lewis, 1977). Individual furrows
may be oriented in any direction, but by far the majority are oriented
parallel to the coastline (Figure [17]), reflecting the westward
drift of the polar pack. Inside the stamukhi zone there is a sub
ordinate trend southwestward obliquely toward the coast, reflecting
onshore ice movement, although the dominant trend is still parallel
to the coast. Detailed studies northwest of Oliktok Point indicate
that ice gouging in shallow water occurs yearly at all water depths
studied (Figure [18]). Gouging occurs frequently enough to rework
essentially the entire sea floor to a depth of 0.2 m in less than
100 years (Figure [16b]). The recurrence rate for ice gouging within
the stamukhi zone, although presently unknown, is no doubt much
greater. Large variations in shear strength occur across individual
gouges, with much greater strength in the gouge troughs than on the
flanks, ridges, or undisturbed bottom. It may be that repeated
physical impacts by ice are responsible for the overconsolidated
sediments previously mentioned. Repetitive summer surveys show ice
gouging can occur both in summer as well as winter, although it is
believed to be most intense in winter. Canadian researchers believe
that gouges at water depths greater than 50 m are relict (Lewis et al.,
1977; Pelletier and Shearer, 1972). Researchers in the U.S. have
cautioned against that hypothesis. Diver observations of the process
of erosion and deposition around individual gouges, the presence of
strong current pulses on the outer shelf, the association of gouges
with hydraulic bedforms,. and the consideration of sediment strength
suggest that gouging may presently be occurring in water depths
from 50 m to the shelf break in both the Chukchi and Beaufort Seas.
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Figure 18. Ice gouge characteristics along a trackline northwest of
Thetis Island in Harrison Bay. Data have been summarized
for 500-m segments. The dotted lines represent a summary of
all gouges observed on 1975 data while the solid lines repre
sent the characteristics of new gouges that were made between
1975 and 1976. (From OCSEAP 1978.)

"Communities of benthic organisms are severely disrupted by ice
gouging, with lower abundances being recorded in the stamukhi
(grounded ice) zone. On the other hand, ice gouging must function
to bring buried nutrients to the surface. In water depths shallower
than 15 m, the bottom is reworked by ice to depths on the order of
ten times the sedimentation rate, which should almost completely
obliterate bedding and bioturbation structures. The ubiquitous
presence of well-defined crossbedded sand layers in 1.5m cores
from this region is presently unexplained. Data from farther
seaward on the shelf are limited to the upper 50 cm and generally
show complete disruption of sedimentary structures."

Other investigators have discussed the influence of ice interaction
with the seabed and the resulting formation of gouge patterns (Kovacs,
1972; Kovacs and Mellor, 1974). The composite list of references included
at the end of this section also reflects the literature examined in their
studies. The paper by Kovacs and Mellor provides an extensive assessment
of the forces involved in ice gouging.

A recent paper by Barnes and Reimnitz (1979) discusses seabed sediment
redistribution during periodic events caused by unusually ice-free con
ditions which increase wave and current action on the shelf. These new
observations provide much new and important data on the age, apparent
depth, and role of gouges in bed sedimentation. This study indicates
that previous estimates of gouge frequency and maximum incision depth
have been too conservative, and that ice gouging and obliteration of
these features is much more dynamic than is reflected in previous data.
It also indicates that past estimates of age were probably too great,
the hydrodynamic reworking of the bed during an open water period in 1977
caused extensive obliteration of ice gouges to water depths of at least
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13 m in their study area and caused sediment ponding and gouge infilling
at even greater water depths. Sedimentation rates during this event were
an order of magnitude greater than average accumulation rates on the
Beaufort Sea shelf. The preferential infilling of the gouges caused
maximum values for incision depth to be less than actual ice keel pene
tration. This study also indicates the significance of ice gouges in
controlling sediment distribution on the inner shelf.

Scour Pits

Scour pits or "strudel" scour depressions are another bed feature
unique to the inner shelf in arctic regions. During spring breakup on
the Arctic Coastal Plain discharge from the major streams becomes very
great. This takes place when much of a stream is frozen to its bed.
During the period of initial peak flow, river water flows over the sea
ice, reaching depths of 1.to 3m, and in some areas extends many kilo
meters offshore. This water drains from the sea ice surface through
holes and cracks in the ice. In these zones of localized drainage, bed
scour occurs which can form cylindrical depressions as much as 4 m deep
and tens of meters across (Reimnitz et al., 1974). Sediment excavated
by this hydraulic mechanism is redeposited on the flanks of these
depressions, forming debris mounds. An indication of the outer limit of
these features observed between Harrison Bay and Prudhoe Bay is shown in
Figure 19 (Barnes and Reimnitz, 1977). This process, including the
associated regional flooding, could have some effect on coastal develop
ment activities (OCSEAP, 1977).

Subsea Mounds (Pingos)

Numerous subsea mounds, referred to as pingos, have been observed
on the outer part of the shelf in the southern Beaufort Sea by Shearer
et al. (1971). These features were detected by shallow reflection
seismic studies. The origin of these features has not been positively
established, although their link with permafrost has been suggested. If
they are pingos, they could have formed on land prior to inundation or,
as suggested, they could have formed in thaw lake basins after being
covered by the sea (Hunter et al., 1976). Another possibility is that
some non-permafrost mechanism could have been responsible for their
formation. If they are permafrost-related and formed in the marine
environment as true pingos they would have required mean seabed tempera
tures below 0°C and sediment pore water with very low salinity. The
occurrence of such conditions cannot be discounted. Some of these

submarine mounds are as much as 30 m high, and are within 15 m of the
surface (Hunter et al., 1976).

To my knowledge no published accounts exist of similar features in
the U.S. Beaufort Sea, although the shallow depths observed to ice-
bonded sediment suggest that large features of this type could be pre
served in the offshore environment. If these features are permafrost-

related their distribution can be used as a permafrost mapping tool and
an indication of locations that can contain significant quantities of
massive ice.
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Figure 19. Outer limit of "strudel" scouring, observed between Harrison
Bay and Prudhoe Bay. (From Barnes and Reimnitz 1977.)
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