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PREFACE 

This paper is based on a talk given by Dr. W. F. Weeks, G e ologist, Snow 
and Ice Branch, U. S. Army Cold Regions Research and Engineering Labora
tory (USA CRREL) at the Symposium on Antarctic Oceanography sponsored 
by the Scientific Committee on Antarctic Research (SCAR). The Sym;>osium 
was held in September 1966 at Santiago, Chile. 

USA CRREL is an Army Materiel Command laboratory. 
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UNDERSTANDING THE VARIATIONS OF THE PHYSICAL 
'pROPER TIES OF SEA ICE 

by 

W. F'. Weeks 

During the winter, sea ice cover s approximately 38 x 106 kmz (7% of the earth IS 

surface or 12% of the surface of the sea). Despite the tremendous area covered by 
this material, it has received little attention from scientific investigators. This is 
not too surprising inasmuch as sea ice is a rather unpleasant material to handle, it 
is not r -eadilY· transportable, and most important it has been only recently that 
regular transportation to and from areas of active sea ice formation has become 
available during the winter months. The lack of investigators is, however, defi
nitely not the result of any lack of problems. 

This paper is limited to discus sing a few problems as sociated with the rather 
unusual physical properties of sea ice. It ther.efore oompletely neglects the 
large scale geophysical problems as sociated with sea ice as a boundary layer be
tween the ocean ·and the atmosphere. 

Figure 1 shows the low temperature portion of the NaCl-Hz 0 phase diagram 
which provides a great deal of information about sea ice. At equilibrium at a 
given temperature, pure ice coexists with brine of a specified composition; i. e. , 
when ·sea water freezes, if the process can be approximated as a continuous series 
of equilibrium or near-equilibrium states, a sheet of lake ice containing no impuri
ties should form. If this were to happen, all the salt initially in the volume occupied 
by the ice would be rejected back into the underlying sea water. However, this is 
not the case. A series of salinity profiles from young sea ice (Fig. 2) (Weeks and 
Lee, 1962) shows that (1) when sea ice first forms it is quite salty; (2) the salinity 
of a given segment of ice gradually decreases with time; and (3) the vertical 
salinity profile at any given time has a characteristic .. C shape. 

To gain insight into why and how this salt ·is entrapped in the ice, it is necessary 
to examine a thin section of sea ice (Tabata and Ono, 1957; Weeks and Hamilton, 
1962; Bennington, 1963). In Figure 3 areas having the same tone can be considered 
parts of a single crystal, and we note that each crystal possesses a characteristic 
platy substructure. Under greater magnification (see Fig. 14), it is seen that along 
these substructures are located the tiny liquid inclusions of brine (the so-called 
brine pockets) that contain the salt found in sea ice. One of the main prerequisites 
to understanding sea ice is to understand why this substructure forms and traps 
brine instead of rejecting all the salt back into the underlying sea water. 

Fortunately, we do know something about this process. Figure 4a shows the 
buildup of salt ahead of an advancing planar solid-liquid interface. This buildup 
is produced by the partial rejection of salt by the growing ice. Through the phase 
relations this compositional profile uniquely fixes a freezing temperature profile 
(Fig. 4, T e ). The freezing temperature is, of course, lowest next to the growing 
interface where the water contains the most salt. 

Consider two possible temperature gradients (G1 and G 3 ) in the liquid ahead 
of the interface. With temperature gradient G 1 , the liquid ahead of the interface 
is always above the freezing temperature as specified by its composition. There
fore, if a protuberance were to form on the interface, it would protrude into a 
liquid that is above the freezing temperature. This is, of course, an unstable 
situation; the interface remains planar, all the salt is rejected back into the liquid 
and lake ice forms. However, with temperature gradient G 3 there is a zone ahead 
of the interface that is supercooled as a result of its composition. Once a non
planar interface forms as a result of this so-called constitutional supercooling 
(Rutter and Chalmers, 1953; Tiller, 1963), brine is trapped and sea ice results. 
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Figure 3. Photomicrograph of a thin section of sea ice, Point Barrow, Alaska. 
The grid is 1 cm o n a side (Weeks and Hamilton, 1962). 
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Calculating the growth conditions under which each of these two interface 
morphologies is stable using the formal theory developed by Tiller, Jackson, Rutter 
and Chalmers (1953) and Smith, Tiller and Rutter (1955)~:' , we obtain the results 
shown in Figure 5. Here G" is the temperature gradient in the liquid, v is the growth 
velocity, and ko is the equilibrium distribution coefficient between pure ice and sea 
water. If we assume that ko ...... 10- 4 ( a maximum value; see Harrison and Tiller, 
1963ai b; Weeks and Lofgren, 1966), we find that lake ice (water-.,salinity ...... lO-Z%), 
which forms with a planar interface, falls well within the growth conditions that 
should specify a non-planar or sea ice interface. This is because the calculations 
assume that salt transfer in the liquid is by diffusion only. However, during the 
formation of sea ice, salt in the liquid is transferred by a much more efficient 
process, convection. Therefore, the theory of constitutional supe,rcooling should 
be revised to permit the treatment of both free convection (the fast ice situation) 
and forced convection (the pack ice situation) and the calculations compared with 
carefully controlled experiments. 

Once a non-planar interface has developed, it can assume a variety of shapes 
(Harrison and Tiller, 1963a, b; Janles, 1966). The interface shown in Figure 6 is 
composed "of a series ,of parabolic platelets; brine can easily become trapped be
tween these plates producing the characteristic brine pockets associated with sea 
ice. If it were possible to precisely specify the interface geometry as a function of 
growth conditions, it is quite possible that some simple geometrical models could 
be developed that would permit the calculation of the amount of brine entrapment. 
This approach appears particularly appealing inasmuch as some recent studies 
have shown that the amount of brine entrapment is directly controlled by the growth 
conqitions (Tsurikov, 1965; Weeks and Lofgren, 1966). 

In Figure 7, k (the salinity of the ice divided by the salinity of the water at the 
time the ic e formed) is plotted as In (1 /k - 1) vs the growth velocity v. Some 
theoretical work on the solidification of metal systems has suggested that such a 
plot should be linear as indeed it is for sea ice (Weeks and Lofgren, 1966). This 
indicates that k is a smooth function of v provided the mixing conditions in the 
liquid are relatively constant (Fig. 8). This relation, of course, breaks down once we 
begin to approach growth conditions where a planar interface becomes stable: 
notice the consistent "tailing off" to high In (l/k - l) values at low values of v in 
Figure 7. This trend is clearly shown in Figure 9 which plots freezing runs that 
went through the sea ice ~ lake ice transition. Here the k values show signifi
cant deviations from k values determined fr"om samples showing the sea ice sub
structure. These deviations appear well before the gross sea ice substructure 
disappears. 

Once an equation" is available relating k to growth conditions, initial salinity 
profiles can be calculated in terms of the factors that control the growth rate 
(that is, the meteorology). Figure 10 shows several such salinity profiles cal
culated for different air temperatures. It is encouraging to note that the upper 
parts of these profiles are in good agreement with observed salinity profiles. 
Unfortunately, this agreement completely disappears in the lower parts of the 
profiles; the bottom parts of the C -shaped profiles shown in Figure 2 are com
pletely missing in Figure 10, presumably because we have neglected the fact 
that in general the salinity of any given layer of sea ice decreases with time. The 
"mechanism of this brine drainage is not known. There are no detailed field or 
experimental data on the subject. It is even difficult to find a simple series of 
salinity profile"s on the same ice during its initial year of formation. Some recent 
model calculations by Unter steiner (1966) have, however, shown that brine pocket 
migration as visualized by Whitman (1926) is far too slow to account for any 

~:'See also Mullins and Sekerka (1964). 
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growth velocity, oviD, where 0 is the thickness of the laminar 
boundary layer, D is the diffusion coefficient of salt in water 

and v is the growth velocity (Weeks and Lofgren, 1966). 

significant decrease in the salinity of the ice. Untersteiner was able to obtain 
a steady- state salinity profile similar to that observed in old multi-year pack ice 
by using a "flushing" and a brine pocket "expulsion" mechanism (Fig. 11). How
ever, as he points out, this general agreement in no way proves that his postulated 
mechanisms are the dominant ones. More field work and experimentation are 
clearly needed. 

In dealing with problems such as brine drainage, it is nece~sary to know 
the brine volume at different positions in the ice as a func tion of time. A 
phase diagram for sea water at sub-freezing temperatures is required to obtain 
brine volume values from the temperature and salinity values. Figure 12 (Assur, 
1958) is calculated from the studies of Ringer (1906), Nelson (1953) and Nelson 
and Thompson (1954). It shows the different temperatures of crystallization of 
some solid salts and the amount of brine and ice in the system at any given tempera
ture. It has been kriown for some time that there were significant discrepancies 
between the results of these authors at temperatures below -25C. However, be
cause natural sea ice rarely becomes this cold, this was not considered too critical. 
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No one had ever positively identified, either optically or by X-rays, the different 
solid salts that crystallize from the brine at low temperatures. The chance for 
severe errors in the diagram became apparent when the work of the Russian 
chemistGitterman became available (Savel'ev, 1963). Gitterman claims that 
CaS04 precipitates in significant quantities. This is a solid salt that does not even 
appear in As sur's diagram. Gitterman' s results also suggest that some of the 
early formed salts partially rereact with the brine at lower temperatures and go 
back into solution. These reactions result in a final solidification of the brine at 
-36C as compared with the value of -54C as determined by Ringer. I am skeptical 
of Gitterman's results; needless to say they must be carefully checked. There is 
also the recent interesting su·ggestion of Tsurikov (1965) that certain effects at
tributed to the precipitation of CaC03 • 6Hz 0 are actually the result of the adsorption 
of the calcium ion on ice. Also, we are not even certain that the ionic ratios in 
sea ice brine are identical with those in normal sea water. 

Figure 13 shows the peculiar effects that the changes in brine volume and the 
precipitation of solid salts have on a non-structurally sensitive property, the 
density of sea ice (Ander son, 1960). Note the m i nimum in the density in the low 
salinity range and the pronounced discontinuity when NaCl. 2Hz 0 precipitates. 

It is, however, in the structurally sensitive properties that the extremely 
interesting changes occur. For example consider the tensile strength of sea ice. 
A relatively cold specimen of sea ice is shown in Figure 14. Note that the brine 
pockets are small. If we consider any possible failure plane in this specimen, 
we find that an appreciable percentage of this plane is ice. Therefore, this speci
men would be expected to have a significant tensile strength. The specimen shown 
in Figure 15, on the other hand, contained a large volume of brine at the time the 
thin section was prepared. (Unfortunately, because these brine passages were 
interconnected, this brine is no longer in the specimen. It is quite clear, however, 
where it was.) A plane can be pas sed through this sample without ever encountering 
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0.950rr--.--- r----.----.-----.-----, an ice-ice bond. Therefore, this specimen 
would be expected to have a tensile strength 
close to zero even though it contains an 
appreciable amount of ice. In Figure 16 the 
tensile strength of NaCl ice with a structure 
identical to sea ice (Weeks, 1962) varies from 
a (T axis intercept ((To) of roughly 25 kg/ cmz 
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Figure 13. Sea ice density at dif
ferent salinities as a function of 

temperature (Ander son, 1960). 

at low temperatures (low brine volumes) to a 
strength of zero kg/cmz at a v l / 2 axis inter
cept (va) of 0.48 (va = 230%0). Similar re
sults have been obtained for natural sea ice 
by Assur (1958), Hendrickson and Rowland 
(1965) and Frankenstein (1966). Rubbings 
have also shown (Anderson and Weeks, 
1958; Tabata, 1960) that the fracture sur-
face does indeed follow the planes of weak
ness as specified by the substructure. It 
is, therefore, possible to construct some 
simple geometrical models to explain the 
variation in the strength of sea ice. This 
has been done by Anderson and Weeks 
(1958), Assur (1958), and Tsurikov (1947a, 
b) and the results were quite successful in 
predicting variations in sea ice strength 
until recently when a large amount of in
formation on the strength of warm, high 
brine volume sea ice became available 
(Frankenstein, 1966). These results (Fig. 
17) show that in the high brine volume 

range, strength becomes independent of brine volume. It is quite possible that this 
is the result of some change in the growth pattern of the brine pockets. There is, 
however, no direct pro6f of this at the present. 

Assur (1958) has suggested that the precipitation of solid salts. causes signifi
cant strengthening of sea ice, even to the point of making it stronger than lake ice. 
Graystone and Langleben (1963), Tabata (1966) and Weeks (1962) showed that there 
was no experimental justification for this suggestion. Nor does there appear to be 
any indication of Naz S04' 10Hz 0 strengthening in the results of either Frankenstein 
(Fig. 17) or Hendrickson and Rowland (1965). However, Peyton (1966) has revived 
the idea. Unfortunately, in his figure that supposedly demonstrates the effect he 
doe s not differentiate specime ns that contain solid Naz S04' 10Hz 0 from those that 
do not. Therefore, it is still difficult to decide whether the effect is real. It is 
also possible that the effect only appears' when certain types of t e st procedures are 
used. However, let us assume that Assur and Peyton are correct: they then 
suggest several strengthening models that purportedly explain the e xperime ntal 

. results. Unfortunately, in the current literature there are no observations on 
either the precipitation patterns of salt in brine pockets or on the failure mech-
anisms in sea ice with or without solid salts. . 

Figure 18 shows that in NaCl ice, va (the brine volume necessary to cause the 
ice to have zero tensile strength) is a function of position in the ice sheet (Weeks 
and As sur, 1963). This means that if ice near the top of the she e t has the same 
brine volume as ice near the bottom of the sheet, it still will not have the same 
physical properties. This, of course, introduces an extreme difficulty in dis-
cus sing structurally sensitive physical properties. We fir st m ust cor rect th e 
measured values to a constant vertical location in a given ice she et b e fore we can 
begin to make significant comparisons. But to make this correction, it is nec
essary to understand the structural basis for the phy"sical property change. We 
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Figure 14. 

Figure 15. 

Photomicrograph of sea ice at low temperatures (-19C, Thule, 
Greenland). 

Photomicrograph of sea ice at a temperature only slightly below the 
freezing temperature (- 3C, Thule, Greenland). 
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know a little about the controlling factors. 
The spacing between the brine layer s is a 
function of the freezing velocity (v) when 
that particular la ye r of ice formed. As sur 
and reeks ( 1963) assumed the relation 
a vI 2 = constant where a is the distance 
between the brine layers based on experi
mental results from the freezing of metals 
and limited data on NaCl ice. Using this 
relation they were able to explain a num
ber of 'peculiarities in the vertical profile 
of sea ice properties. However, when 
Lofgren and Weeks (unpublished) per
formed a series of experiments to see if 
the assumed relation was correct, they 
found that the power of v, instead of 
having a constant value of 1/2, had a power 
that varied from 1 at high values of v to 
almost 0 at low values. This is probably 
the result of convection instead of diffusion 
in controlling the solute transfer in the 
liquid. If so, we should obtain the a. vI /2 
constant relation when we freeze from the 
bottom up so that salt transfer is diffusion 
limited. Unfortunately, this experiment 
has not been performed. 

There are other structural parameters 
that vary with position in the ice sheet. Grain size increases with depth (Fig. 19) 
and basic brine pocket spacing probably varies with depth also. In short, we 
are currently blaming all the vertical variation on differences in the spacing of 
the brine layers. The need for more studies on the interrelations between struc
tural parameters and growth conditions is obvious. 

Another presumably structurally sensitive parameter which has just begun to 
be investigated is the dielectric constant of sea ice. There are three recent papers 
on this subject: Wentworth and Cohn (1964), Addison and Pounder (1966) and 
Fujino (1966). Fujino's results show pronounced changes in the slopes of both the 
isofrequency dielectric constant and conductivity curves as plotted as a function 
of temperature. These slope changes occur at roughly -22 and -52C. The -22C 
change obviously correlates with the precipitation of NaC!. 2Hz 0 and the - 52C 
change with the final disappearance of liquid brine. The change of slope at - 52C 
should not be very encouraging to Gitterman who claimed that the last of the brine 
disappeared at -36C. All of these authors have found extremely high dielectric 
values in the low frequency range, presumably as the result of polarization of the 
brine cells to form macroscopic dipoles. It will be interesting to see some 
theoretical treatments of this phenomenon. In the high frequency range (~ 1 
megacycle/ sec) the effects of polarization decline and it should be possible to apply 
a modified mixing formula to obtain information on the temperature dependence of 
the geometry of the brine pockets. This, unfortunately, has not been attempted. 
If, however, we replot Wentworth and Cohn l s data at 3 mc / sec ver sus brine vol
ume instead of versus temperature and salinity, some very interesting relations 
appear. Figure 20 shows a simple linear dependence of the dielectric constant on 
the brine volume . Slush ice, which is quite structurally different, lies on a 
separate curve as should be expected if sea ice is considered as a simple mixture 
of ice and brine. Fujino's results cannot be used because his work was limited 
to the frequency range below 100 kilocycles / second. Although there have been a 
large number of studies on the dielectric characteristics of pure ice (Evans, 1965), 
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there are apparently no measurements of the dielectric properties ·of sea ice brine. 
It should be possible to make significant progress in this area in the near future. 

I hope that in this short paper I have been able to give some general impression 
of the field referred to as sea ice physics. The fascinating thing about the subject 
is the interrelations between ITleteorology, growth conditions, structural details in 
the ice, and physical properties. Unfortunately, we are just beginning to appreciate 
how complex these interrelations are. 
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