Special Report 79-7

April 1979

ENERGY REQUIREMENTS FOR SMALL FLOW WASTEWATER TREATMENT SYSTEMS

E.J. Middlebrooks and C.H. Middlebrooks

Prepared for DIRECTORATE OF MILITARY PROGRAMS OFFICE, CHIEF OF ENGINEERS By

UNITED STATES ARMY CORPS OF ENGINEERS COLD REGIONS RESEARCH AND ENGINEERING LABORATORY HANOVER, NEW HAMPSHIRE, U.S.A.

Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Data Br	 ntered)	5K. 79-1
REPORT DOCUMENTATION P	READ INSTRUCTIONS BEFORE COMPLETING FORM	
		3. RECIPIENT'S CATALOG NUMBER
Special Report 79-7		
4. TITLE (and Subtitie)		5. TYPE OF REPORT & PERIOD COVERED
ENERGY REQUIREMENTS FOR SMALL FLOW		
TREATMENT SYSTEMS	WASIEWAIEK	
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(#)		8. CONTRACT OR GRANT NUMBER(*)
E. Joe Middlebrooks		Purchase Order No. DACA 89-77-1915
Charlotte H. Middlebrooks		DACA 89-77-1913
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Middlebrooks and Associates, Inc.		DA Project 4A762720A896
1737 East 1400 North, Logan, Utah	84321	Task 02, Work Unit 004
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Directorate of Military Programs		April 1979
Office, Chief of Engineers		13. NUMBER OF PAGES
Washington, D.C. 20314		85
14. MONITORING AGENCY NAME & ADDRESS(If different is U.S. Army Cold Regions Research	rom Controlling Office)	15. SECURITY CLASS. (of this report)
and Engineering Laboratory		Unclassified
Hanover, N.H. 03755		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
		SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distri		
17. DISTRIBUTION STATEMENT (of the abetract entered in	Block 20, if different from	n Report)
18. SUPPLEMENTARY NOTES		
		·
19. KEY WORDS (Continue on reverse eide if necessary and	identify by block number)	······································
Energy requirements		
Land application		
Unit operations		
Unit processes		
Wastewater treatment 20. ABSTRACT (Continue on reverse side if necessary and it	dentify by block number)	
This report summarizes energy requi systems (0.05 - 5 million gallons p It compares various treatment combi for the most viable alternatives in requirements for various components format making it convenient to calc combinations of the components. In	rements for sma er day) applica nations, and pr tabular form. of wastewater ulate the energ	ble to military installations esents the energy requirement It also presents energy treatment systems in a y requirements for many

7

-

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. Abstract continued

estimates made by others. The report compares typical combinations of unit operations and processes used to produce various quality effluents on the basis of energy consumption. It concludes that land application systems are the most energy-efficient wastewater treatment systems and that they are capable of producing an equivalent or higher quality effluent than any other treatment system.

PREFACE

This report was prepared by E. Joe Middlebrooks and Charlotte H. Middlebrooks, both of Middlebrooks and Associates, Logan Utah.

The study was performed for the U.S. Army Cold Regions Research and Engineering Laboratory (USA CRREL) and was funded under DA Project 4A762720A896, Environmental Quality for <u>Construction and Operation of</u> <u>Military Facilities</u>; Task 02, <u>Pollution</u> <u>Abatement Systems</u>; Work Unit 004, Wastewater Treatment Techniques in Cold Regions.

The final scope of study was defined by Sherwood C. Reed of CRREL. He served as technical monitor during the course of the study and his efforts in this regard contributed significantly to the successful completion of this report.

Technical review of this report was performed by Sherwood C. Reed, Robert S. Sletten, C. James Martel, and Edward F. Lobacz of CRREL.

Permission to reproduce drawings, tables, promotional and instructional materials by the following firms is greatly appreciated.

Journal Water Pollution Control Federation, Washington, D.C. Public Works Journal Corporation, Ridgewood, New Jersey Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan Water and Sewage Works, Scranton Gillette Communications, Inc., Chicago, Illinois

The assistance of Ms. Barbara South in the preparation of this manuscript is greatly appreciated. Ms. Mona McDonald's editorial review was also most helpful.

The contents of this report are not to be used for advertising or promotional purposes. Citation of brand names does not constitute an official endorsement or approval of the use of such commercial products.

TABLE OF CONTENTS

																					0 -
INTRO	DUCTIC	ON	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
	Genera	1	•	•	•	•	•	•	•	•		•	•	•			•		•	•	1
	Other	St	udi	es	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
METHO	DS AND) P	ROC	EDU	RES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9
	Equati	on	De	ve1	opm	ent	•			•	•	•			•	•	•	•		•	9
	Desigr	ı P	ara	met	ers	•		•			•	•	•								9
	Wastew														•			-	•		9
	Energy																•	•	•	•	10
	Second										•		•	•	•	•	•	•	•	•	10
	Second	ar,	ус	ner	gy	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10
RESUL	TS AND	D	ISC	USS	ION	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	11
	Energy	E	qua	tio	ns	•	•		•	•	•	•		•	•		•	•	•	•	11
	Treatu	nen	t S	yst	ems		•		•	•	•	•	•	•		•				•	11
	Energy	C C	ons	ump	tio	n	•	•				•									11
	Carbon	a	nd	Ion	Ex	cha	nge														37
	Gas Ut					•	-		-	•		_			•					Ī	37
	Efflue					-	-	-		-	-	• mon					•	•	•	•	37
	Conven														•		•	•	•	•	39
	conven	ICT.	ona	τv	ers	us .	Lan	u I	rea	Line	11 L	•	•	•	•	•	•	•	•	•	23
CONCL	USIONS		•	•	•	•	•	. •	•	•	•	•	•	•	•	•	•	•	•	•	45
APPEN	DIX A:		EQU	ATI	ONS	DE	SCR	IBI	NG	ENE	RGY	RE	QUI	REM	ENT	S	•	•	•	•	47
APPEN	DIX B:]	RAW	WA	STE	WAT	ER	CHAI	RAC	TER	IST	ICS		•	•	•	•	•	۰.	<i>ī</i> •	77
APPEN	DIX C:	:	SLU	DGE	CH	ARA	CTE	RIS	TIC	S	•	•	•	•	•	•	•	•	•	•	79
LITER	ATURE	CI	FED	•	•	•	•	•	•	•	•	•	•		•		•		•		81

Page

٧

٤.,

ív

LIST OF FIGURES

 Energy requirements for 30 mgd secondary treatment plants (Wesner and Burris, 1978)	Figure			Page
<pre>(BOD₅ = 5-day, 20°C biochemical oxygen demand; SS = suspended solids)</pre>	1			3
digestion.134Activated sludge treatment with anaerobic digestion.145Activated sludge treatment with sludge incineration.156Physical-chemical advanced secondary treatment.167Extended aeration with intermittent sand filter.178Slow rate irrigation.189Rapid infiltration.1910Overland flow.2011Facultative lagoon-intermittent sand filter.2112Advanced wastewater treatment.2213Comparison of energy requirements for trickling filter effluent treatment.4014Comparison of energy requirements for activated sludge, nitrification, filtration and disinfection versus facultative pond effluent followed by rapid infil- tration and primary treatment followed by rapid infiltration.4115Comparison of energy requirements for secondary treatment followed by advanced treatment versus 	2	(BOD ₅ = 5-day, 20 ⁰ C biochemical oxygen demand; SS =	•	12
5 Activated sludge treatment with sludge incineration	3			13
 6 Physical-chemical advanced secondary treatment	4	Activated sludge treatment with anaerobic digestion	•	. 14
 7 Extended aeration with intermittent sand filter	5	Activated sludge treatment with sludge incineration		15
 8 Slow rate irrigation	6	Physical-chemical advanced secondary treatment		16
 9 Rapid infiltration	7	Extended aeration with intermittent sand filter		. 17
 10 Overland flow	8	Slow rate irrigation		. 18
 11 Facultative lagoon-intermittent sand filter treatment	9	Rapid infiltration		. 19
 treatment	10	Overland flow		20
 13 Comparison of energy requirements for trickling filter effluent treated for nitrogen removal and filtered versus facultative pond effluent followed by overland flow treatment	11	-		. 21
 effluent treated for nitrogen removal and filtered versus facultative pond effluent followed by overland flow treatment	12	Advanced wastewater treatment		. 22
<pre>nitrification, filtration and disinfection versus facultative pond effluent followed by rapid infil- tration and primary treatment followed by rapid infiltration</pre>	. 13	effluent treated for nitrogen removal and filtered versus facultative pond effluent followed by overland		. 40
treatment followed by advanced treatment versus facultative pond effluent followed by slow rate land	14	nitrification, filtration and disinfection versus facultative pond effluent followed by rapid infil- tration and primary treatment followed by rapid		. 41
	15	treatment followed by advanced treatment versus facultative pond effluent followed by slow rate land		43

v

LIST OF TABLES

•

.

Ŷ

.

Table		Page
1	Energy requirements, 7.5 mgd, Lake Tahoe Wastewater Treatment system (Culp and Culp, 1971; Culp, 1978)	2
2	Examples of systems to be considered in evaluating energy implications of wastewater reuse (Hagan and Roberts, 1976)	5
3	Estimated energy (electricity and fuel) for alter- native treatment processes (Benjes, 1978)	6
4	Estimated total annual and unit costs for alternative treatment processes with a design flow of 1.0 mgd (Tchobanoglous, 1974)	7
5	Energy comparison of sludge dewatering equipment (Jacobs, 1977)	8
6	Energy comparison of biological treatment systems (Jacobs, 1977)	8
7	Guidance for assessing level of preapplication for land treatment (EPA, 1978)	23
8	Energy requirements for components of trickling filter system with anaerobic digestion in the intermountain area of the USA	24
9	Energy requirements for components of a rotating biological contactor treatment system with anaerobic digestion located in the intermountain area of the USA	25
10	Energy requirements for components of activated sludge system with anaerobic digestion in the intermountain area of the USA	26
11	Energy requirements for components of activated sludge system with sludge incineration in the intermountain area of the USA	27
12	Energy requirements for components of a physical- chemical advanced secondary wastewater treatment system located in the intermountain area of the USA	28

LIST OF TABLES (CONTINUED)

Table		Page
13	Energy requirements for components of an extended aeration system with slow sand filter located in the intermountain area of the USA	29
14	Energy requirements for components of slow rate (irrigation) land treatment system located in the intermountain area of the USA	30
15	Energy requirements for components of a primary wastewater treatment plant followed by rapid infil- tration land treatment systems located in the intermountain area of the USA	31
16	Energy requirements for components of rapid infil- tration land treatment systems located in the intermountain of the USA	32
17	Energy requirements for components of overland flow land treatment systems located in the intermountain area of the USA	33
18	Energy requirements for components of a facultative lagoon-intermittent sand filter system located in the intermountain area of the USA	34
19	Energy requirements for components of an advanced wastewater treatment system processing secondary effluent located in the intermountain area of the USA	35
20	Energy requirements for components frequently appended to secondary wastewater treatment plants	36
21	Expected effluent quality and total energy requirements for various sizes and types of wastewater treatment plants located in the intermountain area of the USA	38
22	Total annual energy for typical l mgd system (electrical plus fuel, expressed as 1000 kwh/yr)	42

CONVERSION FACTORS: U.S. CUSTOMARY TO

METRIC (SI) UNITS OF MEASUREMENT

These conversion factors include all the significant digits given in the conversion tables in the ASTM <u>Metric Practice Guide</u> (E 380), which has been approved for use by the Department of Defense. Converted values should be rounded to have the same precision as the original (see E 380).

Multiply	By	To Obtain
<pre>inch inch foot yard² foot³ yard³ gallon pound pound/inch² pound/foot³ kilowatt-hour horsepower-hour</pre>	25.4* 2.54 0.3048* 0.8361274 0.02831685 0.764549 0.003785412 453.6 6894.757 16.01846 3.600 x 106 2.6845 x 106	millimeter centimeter meter meter ² meter ³ meter ³ gram pascal kilogram/meter ³ joule joule
watt watt Btu BTu standard feet ³ of air/minute	1.000 0.0013410 1054.85 0.000293 0.47195	joule/second horsepower joule kilowatt-hour standard meter ³ of air/minute

*Exact

SUMMARY

With increasing energy costs, energy consumption is assuming a greater proportion of the annual cost of operating wastewater treatment facilities of all sizes, and because of this trend, it is likely that energy costs will become the predominant factor in the selection of costeffective small-flow wastewater treatment systems.

Where suitable land and groundwater conditions exist, a facultative pond followed by rapid infiltration is the most energy-efficient system described in this report. Where surface discharge is necessary and impermeable soils exist, a facultative pond followed by overland flow is the second most energy-efficient system described. Facultative ponds, followed by slow or intermittent sand filters, are the third most energyefficient systems discussed, and are not limited by local soil or groundwater conditions.

INTRODUCTION

General

The concern for energy use at wastewater treatment facilities has developed well after many of the plans were made for the management of water pollution in the United States. This is true in military as well as in civilian installations. With changing standards and technology, information on energy requirements for small (0.05 to 5 mgd) wastewater treatment systems is needed to avoid future errors and to provide information to assist in designing and planning. Several estimates have been made for large systems, usually in the range of 5 to 100 mgd, but because hundreds of small systems are being used by military installations, it is imperative that information be gathered on energy requirements for wastewater treatment for small systems.

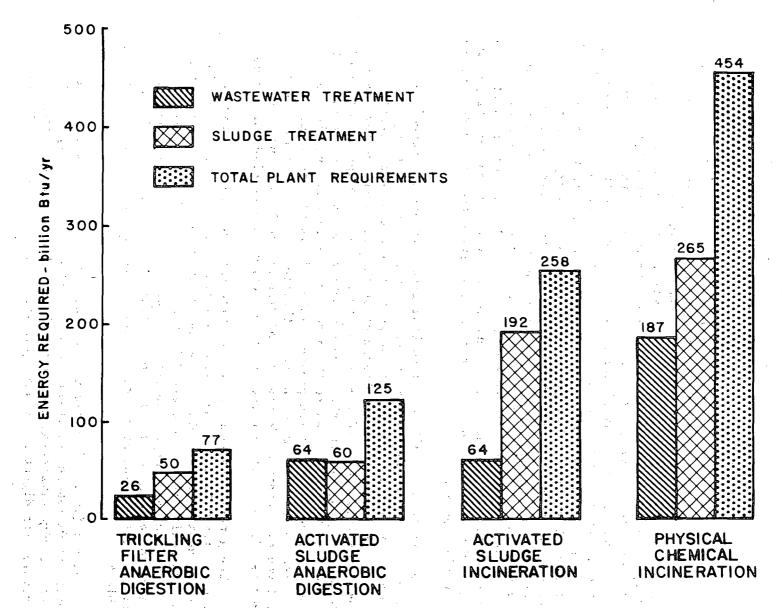
This report summarizes the energy requirements for all viable alternatives presently available to military installations for the treatment of small flow rates (0.05 - 5 mgd) of wastewater. It compares various treatment combinations, and presents in tabular form the energy requirements for the most viable alternatives. The data can be combined to produce an estimate of the energy requirements for all currently available unit operations and processes.

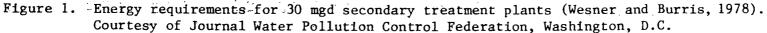
Other Studies

Only one comprehensive study of the energy requirements associated with wastewater treatment has been performed. Wesner et al. (1978) presented a detailed analysis of energy requirements by unit operations and unit processes employed in wastewater treatment. The results of this study were presented in graphical form with accompanying tables outlining the design considerations employed in developing the graphs. Energy requirements were presented in terms of the design flow rate of the treatment system in most cases, but when a wide choice of loading rates was applicable, the graphs were presented in terms of surface area or the flow rate applied to the component of the system. Portions of the Wesner et al. (1978) results are presented in detail in Appendix A in this report

Culp (1978) has presented an analysis of alternatives for future wastewater treatment at South Tahoe, California. This illustrates the increasing sensitivity of energy costs. When the original advanced wastewater treatment system was constructed in the late 1960's, energy was not costly and was not usually a significant factor in concept selection and design. Table 1 illustrates the energy required for alternatives compared with the original design. It is anticipated that the final product

Alternative	Total energy ^a (electricity and fuel expressed as equivalent 1000 kwh/yr)
Original system complete secondary treatment, AWT system, effluent export to Indian Creek Reservoir	64,500
1978 Alternatives Continue secondary, nitrification, effluent export to Indian Creek Reservoir	39,400
Continue secondary, nitrogen removal (ion exchange) effluent export to I.C.R.	40,244
Continue secondary on site, flood irri- gation land treatment in Carson River Basin	25,000


Table 1. Energy requirements 7.5 mgd, Lake Tahoe Wastewater Treatment system (Culp and Culp, 1971; Culp, 1978).


^aDoes not include secondary energy requirements for chemical manufacture.

from the flood irrigation land treatment alternative will be at least equal in quality to the original design effluent.

Energy requirements for four wastewater treatment systems, including sludge processing, that are capable of achieving secondary effluent quality and complete sludge treatment and disposal were presented by Wesner and Burris (1978). Estimated energy requirements were presented for 1) trickling filter with anaerobic digestion, 2) activated sludge with anaerobic digestion, 3) activated sludge with sludge incineration, and 4) independent physical-chemical treatment with sludge incineration using 5 and 30 mgd capacities. A comparison of energy requirements for the four systems treating 30 mgd is shown in Figure 1. The potential for solar energy as a method of heating the digester and control building was discussed. Heat recovery from sewage effluents using heat pumps to heat digesters and buildings was considered.

Zarnett (1976, 1977, and undated) has examined the energy requirements for water and wastewater treatment plants and has presented the requirements by unit operations employed. The results were presented by unit operation to make it convenient to assess any treatment system on the basis of total energy consumption. By combining various flow configurations, a system capable of producing a given effluent quality can be assembled and the energy requirements compared. Zarnett cautions

ω

that the data were presented for comparative purposes and should not be used as absolute values.

Energy requirements for various types of wastewater treatment plants were presented by Hagan and Roberts (1976). In addition to the discussion of conventional secondary and tertiary treatment systems, land treatment systems were considered. Tradeoffs between pollutants removed from wastewater and pollutants added to the environment by energy use were discussed. It was pointed out that decreasing returns are obtained as the level of treatment increases, and it is possible to add more contamination to the environment by increased energy consumption than is removed from the wastewater. Comparisons of energy requirements for a 100 mgd capacity system employing conventional secondary, advanced wastewater treatment and land treatment systems were presented. Energy implications with regard to wastewater reuse were considered, and it was shown that in many instances the reuse of wastewater can conserve energy. The savings are related to the degree of treatment required before reuse. Table 2 is a summary of total energy requirements for various wastewater treatment systems assumed by Hagan and Roberts for direct discharge of the wastewater, employed for various reuse purposes, and the energy requirements for alternative sources of fresh water. Their assumptions include unnecessarily stringent preapplication treatment requirements for the general case of irrigation reuse. Current EPA guidance on the topic is presented in the Results and Discussion section.

Garber et al. (1975) compared biological and physical-chemical processes to treat wastewater in the Los Angeles area. Biological processes were found to be more energy efficient and less stressful on the overall environment. Treatment of the wastewater by physicalchemical methods required almost five times as much energy as activated sludge including nitrification and phosphorus removal. Solids disposal by pumping 90 to 100 miles to the desert to drying beds required 16 times as much energy as the present system of discharging screened digested solids seven miles at sea. Chemical treatment of the sludge followed by mechanical dewatering and disposal at local landfills required 35 times as much energy as the current sludge disposal system.

The general problems associated with small wastewater treatment plants, alternative treatment processes available to small plants, important design considerations, and an economic comparison of the alternatives available were presented by Benjes (1978). Table 3 presents the estimated annual energy required alternative wastewater treatment processes for a range of design flows. Tchobanoglous (1974) conducted a similar analysis and cost factors derived from his work are shown in Table 4.

Jacobs (1977) discussed various ways to more effectively utilize energy at wastewater treatment plants. Use of different types of pumps, sludge dewatering equipment, plant modification and energy recovery from digester gas and incineration of sludge were discussed.

Examples of							
implications	s of wast	ewater	[,] reuse (1	Hagan	and Robert	s, 1976). [°]	

		Total Energy Required for 100 mgd kwh/day
Treatme	nt assumed for discharge	• •
1.	Activated sludge (with chlorination, sludge	•
	digestion and landfill disposal)	93,000
2.	Biological-chemical (activated sludge with alum	
	treatment, nitrification/denitrification, sludge	
	digestion and landfill disposal)	235,000
<u>`</u> 3.	Tertiary (activated sludge, coagulation/filtration,	
	carbon adsorption, zeolite ion-exchange,	
	recalcination)	1,137,000
n		
Type of	•	
1.	······································	57 000
2.	conveyance)	57,000
۷.	Distant irrigation (assume 1,500-ft head for conveyance)	615,000
3.	Industrial (assume 100-ft head)	57,000
4.	Unrestricted (assume 500-ft head)	216,000
· · · ·		210,000
freatme	nt assumed prior to reuse	
For	irrigation reuse:	
	activated sludge	93,000
	biological-chemical	235,000
For	industrial reuse:	
	biological-chemical	235,000
	biological-chemical & desalting	695,000
	tertiary	1,137,000
	tertiary & desalting	1,597,000
For	unrestricted reuse:	
	tertiary	1,137,000
	tertiary & desalting	1,597,000
lterna	tive sources of fresh water	
1.	Local supplies	57,000
± •	,	
2.	Imported	938,000

^aCourtesy of Water and Sewage Works, Chicago, Illinois.

Process	Energy (1000 kwh/yr) Plant capacity (mgd)						
FIOCESS	0.1	0.5	1.0	2.0			
Prefabricated extended aeration	139			_			
Prefabricated contact stabilization	95	447	886	-			
Custom design, extended aeration	197	857	1,901	-			
Oxidation ditch	134	647	1,288	2,571			
Activated sludge, anaerobic digestion Activated sludge, nitrification,	119	387	764	1,525			
anaerobic digestion	251	650	922	2,576			
Trickling filter, anaerobic digestion	31	126	246	485			
RBC, anaerobic digestion	65	276	566	1,105			
RBC, nitrification, anaerobic digestion	113	496	1,026	2,005			

Table 3. Estimated energy (electricity and fuel) for alternative treatment processes (Benjes, 1978).

^aAll with aerated grit chamber, chlorination and sludge drying beds.

A comparison of energy requirements and costs for sludge dewatering equipment is shown in Table 5. Energy requirements and costs for biological treatment systems are presented in Table 6.

Mills and Tchobanoglous (1974) presented detailed methods for calculating the energy consumption by the unit operations and processes used in wastewater treatment. Use of the equations and graphs presented in the paper is illustrated by examples using two alternative flow schemes. Detailed results are presented in tabular form and are easily compared between processes and systems.

Smith (1973) estimated the electrical power consumption by most conventional and advanced processes used to treat municipal wastewater on a unit processes basis. Electrical power consumption for complete plants was estimated by adding the power consumption for the individual processes. A comparison of electrical power consumption by wastewater treatment systems was made with other uses.

Estimates of recoverable energy in digester gases were made by Wesner and Clarke (1978). A discussion of the variation in gas production with the type sludge was presented.

F		· · · · · · · · · · · · · · · · · · ·			
Process	Initial capital cost	Annual	cost, do	llars ^b	Unit cost cents/
	dollars ^D	Capital ^C	0 & M	Total.	1000 gal ^b
Imhoff tank	380,000	41,720	15,550	57,270	15.7
Rotating biological disks	800,000	87,832	57,680	145,512	39.9
Trickling filter processes Activated sludge processes	900,000	98,811	58,480	157,291	43.1
With external digestion	1,000,000	109,790	74,410	184,200	50.5
With internal digestion	500,000	54,895	48,800	103,695	28.4
Stabilization pond processes Land treatment processes Slow rate	250,000	27,447	23,680	51,127	14.0
Basic system	340,000	37,328	41,540	28,859	21.6
With primary treatment	940,000	103,302	81,540	184,742	50.6
With activated sludge	1,240,000	136,139	115,950	252,089	69.1
With stabilization pond Rapid infiltration	590,000	64,775	65,220	129,996	35.6
Basic system	200,000	21,958	25,100	47,058	12.9
With primary treatment	800,000	87,832	65,100	152,932	41.9
With activated sludge	1,000,000	109,790	99,510	209,300	57.3
With stabilization ponds	450,000	49,405	48,780	98,185	26.9

Table 4. Estimated total annual and unit costs for alternative treatment processes with a design flow of 1.0 mgd (Tchobanoglous, 1974).^a

^aCourtesy of Public Works Journal Corporation, Ridgewood, New Jersey.

^bBased on an ENRCC index of 1900.

......

^CCapital recovery factor = 0.10979 (15 years at 7 percent).

. . . .

and the second of the second

in garrante

1 1 1 1 1 1 1 1 1

The Congress

	kw Demand cost/mo.	kwh Usage cost/mo.	Monthly cost	Annual cost
Belt press filters	40.0 kw	6105 kwh		······································
-	\$112.00	\$153.85	\$265.85	\$3190.20
Vacuum filter	75.5 kw	8750 kwh		, i
	\$210.00	\$220.50	\$430.50	\$5166.00
Centrifuges	108.0 kw	13,700 kwh		an a
2	\$299.60	\$313.05	\$612.65	\$7351.80

Table 5. Energy comparison of sludge dewatering equipment (Jacobs, 1977).^a

Notes:

1. Based on dewatering 75,000 lb/week of waste activated sludge at 3 percent feed, and approximately 20 percent cake solids concentration.

2. Costs based on varying rate schedule.

^aCourtesy of Water and Sewage Works, Chicago, Illinois.

 ·)·				
Completely mixed	Extended aeration	Carousel extended aeration	Pure oxygen	Bio-Disk

Table 6.	Energy_comparison	of biological	treatment	systems ^{a,b,c}	(Jacobs,
	1977). [±]				

	mixed AS ^e	aeration AS ^d ,e	extended aeration AS ^d ,e	oxygen AS	Bio-Disk
kw demand	550	540	525	525	425
Cost	\$ 1,070	\$ 1,053	\$ 1,053	\$ 1,020	\$ 800
kwh usage	230,000	236,000	218,000	216,000	188,000
Cost	\$ 3,423	\$ 3,498	\$ 3,282	\$ 3,247	\$ 2,701
Monthly cost Annual cost	\$ 4,498 \$53,976	\$ 4,542 \$54,504	\$ 4,335 \$52,020	\$ 4,076 \$48,804	\$ 3,501 \$42,012

^aComparison based on entire plant energy consumption.

^bIncludes consideration of differences in sludge quantity and characteristics.

^CCosts based on varying rate schedule.

d Result in higher effluent quality.

eActivated sludge.

^fCourtesy of Water and Sewage Works, Chicago, Illinois.

METHODS AND PROCEDURES

Equation Development

The graphs presented by Wesner et al. (1978) were converted to lines of best fit at the lower design flow rates (0.1 - 5.0 mgd) and used to calculate the energy requirements for small systems such as those employed at military installations. Least-squares fits of the linear and curvilinear lines were employed. A power function was used to fit the linear lines on the log-log plots and a polynomial equation was used to fit the curvilinear lines. The forms of the two functions are shown below.

 $\log Y = a + b (\log X) + c (\log X)^{2} + d (\log X)^{3}$ Polynomial function

 $Y = a X^{D}$ Power function

Various combinations of the unit operations and processes were selected to form the most commonly used wastewater treatment systems. Energy requirements for each component of the system for various design flow rates were estimated using the equations of best fit. These results were tabulated for easy comparison between various types of treatment systems.

Design Parameters

Design parameters for all of the unit operations and processes are shown with the energy equations for each operation or process in Appendix A. Additional detail can be obtained by referring to the report by Wesner et al. (1978). The energy relationships for the conventional and advanced wastewater treatment processes are unmodified, but it was necessary to modify the land application energy relationships to conform to accepted practice in cold regions. The slow rate and overland flow application seasons were modified from five months per year to 250 days per year to more realistically reflect actual practice. Rapid infiltration application seasons extend over 365 days per year and not five months per year as shown in the Wesner et al. (1978) report.

Wastewater Characteristics

Raw wastewater and sludge characteristics used to develop the energy relationships are presented in Appendixes B and C, respectively.

Energy Recovery

The potential energy available in digester gas was estimated using a figure of 6.5 million Btu/million gallons of wastewater treated. This value is based upon a mixture of primary and waste activated sludge, and the value will vary with the type of sludge and must be adjusted when better data are available. However, a value of 6.5 million Btu/million gallons of wastewater is satisfactory for estimating purposes and will yield a conservative estimate for net energy consumption.

Btu available in digester gas can be converted to electricity, and a conversion factor of 11,400 Btu per kwh can be used to estimate the electricity generated. The conversion factor assumes an electrical generation efficiency of 30 percent. The gas utilization system also requires energy and this must be considered when comparing systems.

Secondary Energy

Secondary energy requirements are the amounts of energy needed to produce consumable materials used in a wastewater treatment system. Disinfectants, coagulants, sludge conditioning chemicals and regeneration of activated carbon and ion exchange resins require energy in their production, and this energy must be considered when comparing the energy efficiency of various systems.

Methods of construction, materials of construction, seasonal variations and other factors also influence the energy budget for a treatment system, but to a lesser degree than the primary factors such as direct energy consumption on a daily basis. Only the direct energy consumption and the secondary energy requirements are considered in this report.

RESULTS AND DISCUSSION

Energy Equations

The equations of the lines of best fit for the energy requirements of the unit operations and processes used in wastewater treatment based on the graphs reported by Wesner et al. (1978) are presented in Appendix A. Design conditions and assumptions used in developing the graphs are presented along with each equation. Details about the conditions imposed upon the equations can be obtained from the Wesner et al. (1978) report. Each equation is cross referenced to the Wesner et al. report. The equation number used in Appendix A coincides with the figure number in the Wesner et al. report; i.e., Equation 3-15 corresponds to Figure 3-15. Only the portions of the curves below a flow rate of 5 mgd were used to determine the line of best fit. This was done to obtain a better trend at the lower flow rates of interest rather than introduce the influence of the higher flow rates. All equations for the linear lines have a correlation coefficient of 0.999 or better.

Treatment Systems

Flow diagrams of the wastewater treatment systems commonly employed are shown in Figures 2 through 12. The flow diagrams for land applications systems were selected utilizing the preapplication treatment guidelines shown in Table 7. The biological and physical treatment systems shown in Figures 2, 3, 4, 7, 8, 9, 10, and 11 are most often employed in small systems; however, the activated sludge process with sludge incineration (Figure 5), physical-chemical treatment (Figure 6), and the advanced treatment following secondary treatment (Figure 12) have been employed in special cases. These 11 systems can be modified by adding various processes in the treatment train to produce almost any quality effluent desired. Also, a very wide range of energy consumption can be experienced with these basic systems and their modifications.

The raw wastewater characteristics and the expected effluent quality from each of the systems are shown on the figures. The raw water characteristics are also summarized in Appendix B. Sludge characteristics used to develop the energy relationships in Wesner et al. (1978) and this report are presented in Appendix C.

Energy Consumption

Energy requirements for the components of the treatment systems shown in Figures 2 through 12 for various flow rates of wastewater treated by the systems are presented in Tables 8 through 19. The table

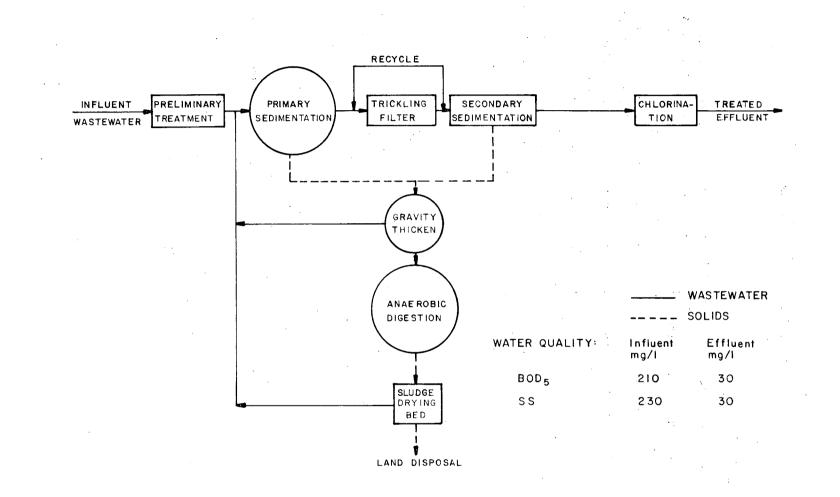
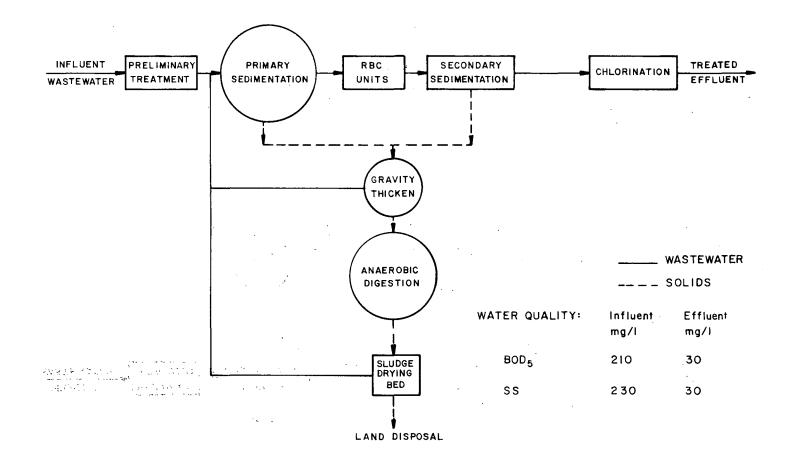



Figure 2. Trickling filter treatment with anaerobic digestion (BOD₅ = 5-day, 20^oC biochemical oxygen demand; SS = suspended solids).

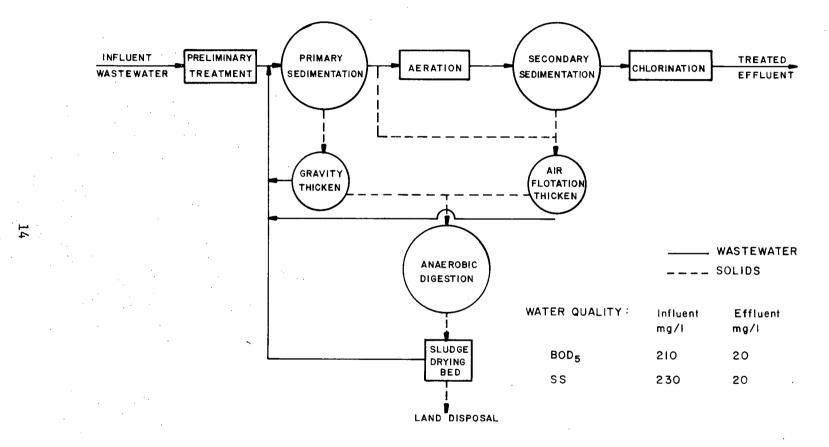


Figure 4. Activated sludge treatment with anaerobic digestion.

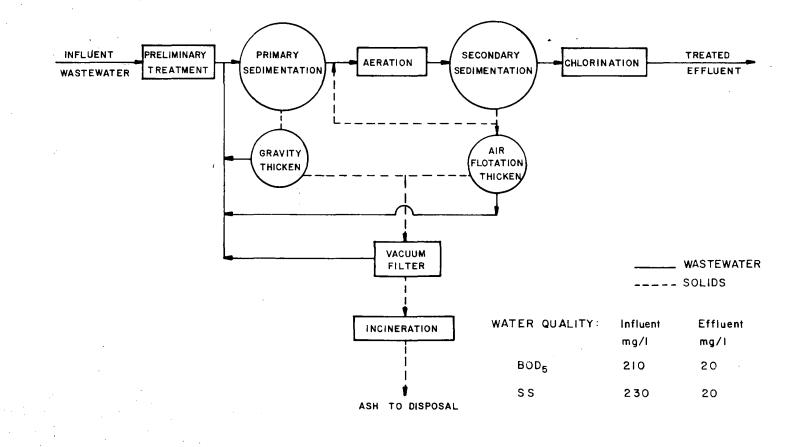


Figure 5. Activated sludge treatment with sludge incineration.

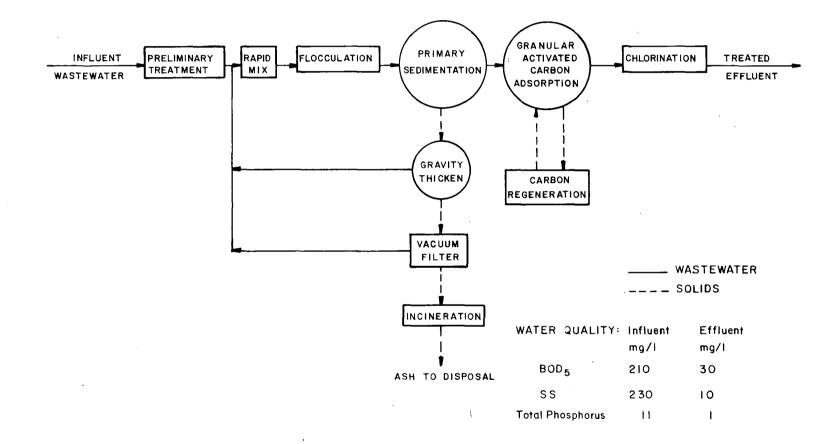


Figure 6. Physical-chemical advanced secondary treatment.

.

•

-16

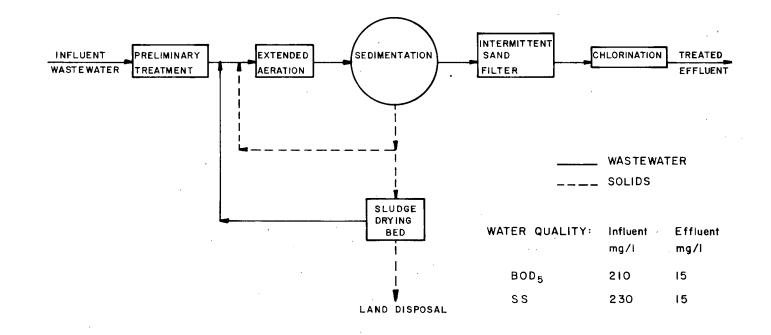


Figure 7. Extended aeration with intermittent sand filter.

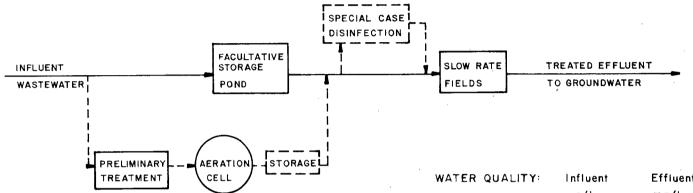
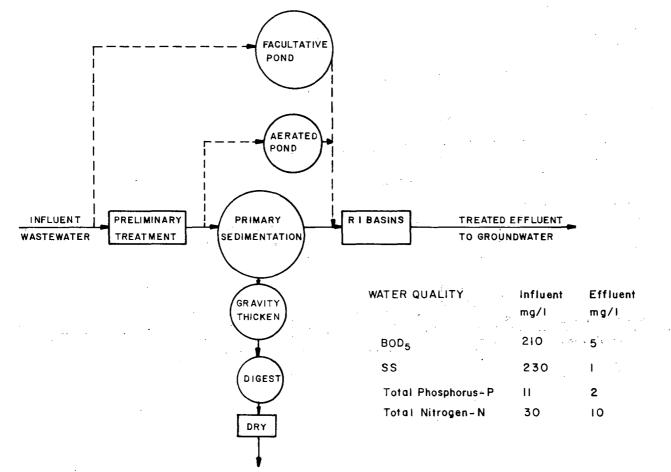



Figure 8. Slow rate irrigation.

ATER QUALITY:	Influent mg/l	Effluent mg/l	
BOD ₅	210	. i	
SS	230	a k ana ang sang sang sang sang sang sang sa	
Total Phos- phorus – P	11	01	
⊤otal Nitro- gen-N	30	3	

LAND DISPOSAL

Figure 9. Rapid infiltration.

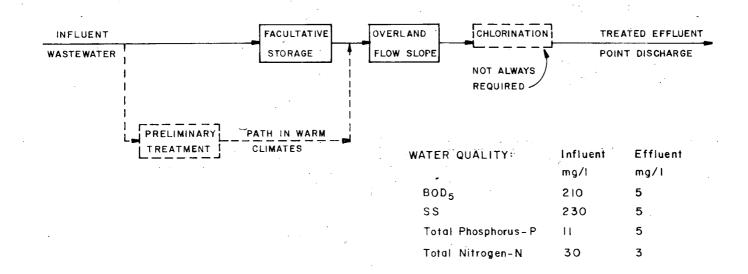


Figure 10. Overland flow.

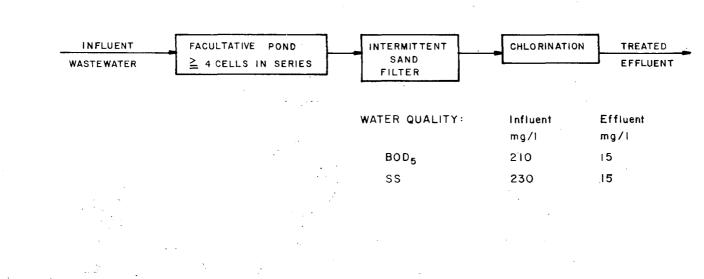
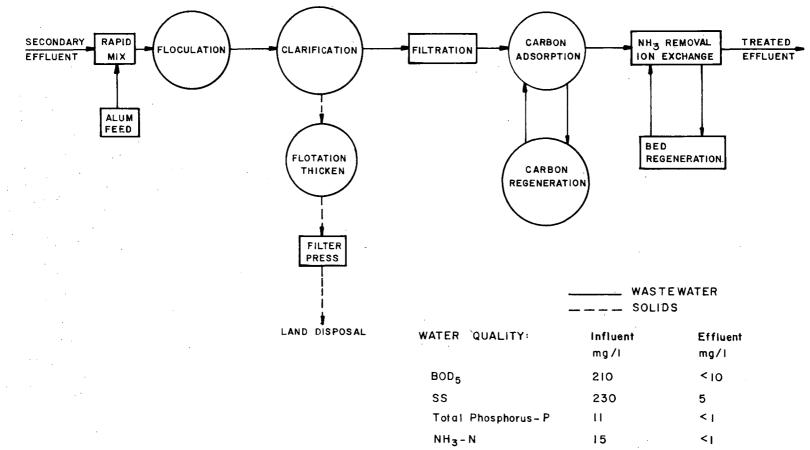



Figure 11. Facultative lagoon-intermittent sand filter treatment.

. .

Figure 12. Advanced wastewater treatment.

•

.

Table 7. Guidance for assessing level of preapplication treatment for land treatment systems (EPA, 1978).

- I. Slow-rate systems (reference sources include Water Quality Criteria 1972, EPA-R3-73-003, Water Quality Criteria EPA 1976, and various state guidelines).
 - A. Primary treatment acceptable for isolated locations with restricted public access and when limited to crops not for direct human consumption.
 - B. Biological treatment by lagoons or inplant processes plus control of fecal coliform count to less than 1,000 MPN/100 ml^a acceptable for controlled agricultural irrigation except for human food crops to be eaten raw.
 - C. Biological treatment by lagoons or inplant processes with additional BOD or SS control as needed for aesthetics plus disinfection to log mean of 200/100 ml (EPA fecal coliform criteria for bathing waters) - acceptable for application in public access areas such as parks and golf courses.

II. Rapid-infiltration systems

- A. Primary treatment acceptable for isolated locations with restricted public access.
- B. Biological treatment by lagoons or inplant processes acceptable for urban locations with controlled public access.
- III. Overland-flow systems
 - A. Screening or comminution acceptable for isolated sites with no public access.
 - B. Screening or comminution plus aeration to control odors during storage or application - acceptable for urban locations with no public access.

^aMost probable number of coliform bacteria per 100 ml of sample.

number corresponds to the figure number; i.e., Table 8 is a listing of the energy requirements for a trickling filter treatment system with anaerobic digestion (Figure 2). The last column in each table lists the equations used to calculate the values (Appendix A).

Table 20 shows the energy requirements for components frequently appended to secondary treatment systems to produce a better quality effluent. By modifying the basic systems shown in Figures 2 through 12, it is possible to develop the energy requirements for almost any

	•,													
	0.05	mgd	0.1	mgd	0.5 mgd		1.0 mgd		3.0	mgd	5.0 mgd			
Operation or Process	Energy Ener Requirements Require						Energy hts Requirements		Energy Requirements		Energy Requirements		Comments	
					tricity,				Elec- tricity, kwh/yr			Fuel, Million Btu/yr		·
Wastewater Treatment Raw Sewage Pumping Preliminary Treatment	1,200	,	2,280		10,200		19,400	, .	53,900		86,700		TDH ^a =10 ft	3-1
Bar Screen Comminutor Grit Removal-Non Aerated	465 1,700 260		640 2,180 305		1,050 3,700 450	·	1,200 4,680 530		1,450 7,080 690		1,590 8,810 780			3-7 3-8 3-10
Primary Sedimentation Trickling Filter (Rock Media	2,530		3,190	٠.	5,420		6,820		9,970		11,990		Circular Tanks	3-12
Recirculation 2:1) Secondary Sedimentation Disinfection	3,670 3,130		7,200 3,750		31,950 5,810		61,300 7,230		172,200 10,920		278,300 13,720			3-16 3-13
Primary energy Secondary energy	830 (8)		1,240 (17)		4,700 (83)		9,330 (165)		29,170 (495)		49,520 (825)		Dosage = 10 mg/1 (Secondary Energy	3-74 4-5
Sub-Total	13,793		20,802		63,363		110,655	;	285,875		452,235		Requirements)	
Sludge Treatment Gravity Thickening Anaerobic Digestion High Rate	35 1,220	62	69 2,435	124	316 12,180	632	610 24,354	1,270	1,730 73,060	3,860	2,730 121,760	6,460	Detention Time = 20 days Mixing= 1/2 HP/1000	3-85 3-105
Drying Beds Hauling-Truck Landfill Disposal	17	0.2 13 1.6	32	0.4 26 3.3	145	2 128 16	282	4 256 33	. 833	13 767 99	1,395	21 1,278 164	Mixing - 1/2 HF/1000	3-98 3-100 3-104
·Sub-Total	1,272	77	2,536	154	12,641	778	25,246	1,563	75,623	4,739	125,885	7,923		
Cther Building Heating Building Cooling	. 199	148	244	. 181	458	320	646	433	1,228	745	1,726	988		3-83 3-84
Total for Treatment System	15,264	225	23,582	335	76,462	1,098	136,547	1,996	362,726	5,484	579,846	8,911		
Digester Gas Utilization System Total with Gas Utilization Energy Recovered-Digester Gas	10,070 25,334	10 235 119	14,480 38,062		34,980 111,442		52,350 188,897		102,950 465,676		143,540 723,386	1,358 10,269 11,865		5-18

Table 8. Energy requirements for components of trickling filter system with anaerobic digestion in the intermountain area of the USA.

^aTDH = total dynamic head.

	Capacity of Wastewater Treatment Facility														
	0.05	mgd	0.1	mgd	0.5	mgd	1.0	mgd	3.0	mgd	5.0	mgd			
Operation or Process)	Energy Requirements		Energy Requirements		Energy Requirements		Energy Requirements		^{''} Energy Requirements		Energy Requirements		Comments		
										Fuel, Million Btu/yr			. • •		
Vastewater Treatment															
Raw Sewage Pumping	1,200		2,280		10,200		19,400		53,900		86,700		TDH = 10 ft		3-1
Preliminary Treatment															
Bar Screen	465		640		1,050		1,200		1,450		1,590				3-7
Comminutor	1,700		2,180		3,700		4,680		7,080		8,810				3-8
Grit Removal-Non Aerated	260		305		450		5 30		690		780				3-10
Primary Sedimentation	2,530		3,190		5,420		6,820		9,970		11,990				3-12
RBC Units	3,650		7,300		36,500		73,000		219,000		365,000		Dense Media		3-20
Secondary Sedimentation Disinfection (Cl ₂)	3,130		3,750		5,810		7,230		10,920		13,720				3-13
Primary energy	8 30		1,240		4,700		9,330		29,170		49,520		Dosage = 10	mg/l	3-74
Secondary energy	8		17		83		165		495		825				4-5
Sub-Total	13,773		20,902		67,913		122,355		332,675		538,935				
ludge Treatment															
Gravity Thickening	· 35		69		316		610		1,730		2,730		•		3-85
Anaerobic Digestion High Rate	1,220	62	2,435	124	12,180	632	24,354	1,270	73,060	3,860	121,760	6,460			3-10
Drying Beds	. 17	0.2	32	0.4	145	2	282	4	833	13	1,395	21			3-98
Hauling-Truck		13		26		128		256		767		1,278	•		3-10
Landtill Disposal		1.6		3.3		16		33		99		164			3-10
Sub-Total	1,272	77	2,536	154	12,641	778	25,246	1,563	75,623	4,739	125,885	7,923	· • *		
Other						•									-
Building Heating		148		181		320		433		. 745		988			3-8
Building Cooling	199		244		458		646		1,228		1,726				3-84
Total for Treatment System	15,244	225	23,682	335		-1,098	148,247	1,996	409,526	5,484	666,546	8,911			
)igester has Utilization System	10.070	10	14,480	25	34,980	159	52,350	315	102,950	864	143,540	1,358			5-14
Total with Gas Utilization	25,314	2 35	38,162		115,992		200,597		512,476		810,086	10,269			
Energy Recovered-Digester Gas		119	<i>J</i> 0 , 192	237.		1,187	,	2,373		7,119	- 10,000	11,865			

Table 9. Energy requirements for components of a rotating biological contactor treatment system with anaerobic digestion located in the intermountain area of the USA. . . .

		,												
Operation	0.05	5 mgd	0.1	mgd	0.5	mgd ,	140 mgd		3.0 mgd		5.0 mgd			
or Process	Energy Requirements		Energy Requirements		Energy Requirements		Energy Requirements		Energy Requirements		Energy Requirements		Comments	
				Fuel, Million Btu/yr			tricity,		t ricity,				• •	
Jastewater Treatment														
Raw Sewage Pumping Preliminary Treatment	1,200		2,280		10,200		19,400		53,900		86,700		TDH = 10 ft	1 – ز
Bar Screen	465		640		1,050		1,200		i,450		1,590			3-7
Comminutor	1,700		2,180		3,700		4,680		7,080		8,810			3-8
Grit Removal-Aerated	10,610		11,400		12,290		13,270		17,800		22,670			3-9
Primary Sedimentation	2,530		3,190		5,420		6,820		9,970		11,990		Circular Tanks	3-12
Aeration-Mechanical	8,000		16,000		80,000		160,000		480,000		800,000		Complete Mix	3-28
Secondary Sedimentation Disinfection (Cl ₂)	4,470		5,010		10,390	,	16,400		37,030		54,870			3-13
Primary energy	830		1,240		4,700		9,330		29,170		49,520		Dosage = 10; mg/1	3-7.4
Secondary energy	8		17		83		165		4.95		825		· · · ·	4-5
Sub-Total	29,813		41,957		127,833		231,265		636,895	1	,036,975			
ludge Treatment														
Gravity Thickening	35		69		316		610		1,730		2,730			3-85
Air Flotation Thickening	4,340		7,940		32,170		58,800		152,900		238,450			3-86
Anaerobic Digestion	1,220	52	2,435	104	12,180	518	24,354	1,040	70,060	3,110	121,760	5,180	Mixing - 1/2 HP/1000ft ³	3-10
													Detention Time ≃ .20 days	3-10
Drying Beds	17	0.2	32	0.4	145	2	282	4	833	13	1,395	21		3-98
Hauling-Truck		12		24		120		240		720		1,200		3-10
Landtill Disposal		1.5		3.1		15.4		.31		93		154		3-10
Sub-Total	5,612	66	10,476	132	44,811	655	84,046	1,315	225,523.	3,936	364,335	6,555		
)ther														
Building Heating		148		181		320		433	-	745		988	· · .	3-83
Building Cooling	199		244		458		646		1,228		1,726			, 3-84
Total for Treatment System	35,624	214	52,677	313	173,102	975	315,957	1.748	863,646	4,681	1 403 .036	7,543		
	10,070	10	14,480		34,980		52,350		102,950		143.540	1,358	· · ·	5-18
Total With Gas Utilization	45,694	224			208,082		368,307		966,596		1,546,576	8,901		
Energy Recovered-Digester Gas		119	.,.,.,	237	200,092	1,187	,	2,373		7,119		11,865		

Table 10. Energy requirements for components of activated sludge system with anaerobic digestion in the intermountain area of the USA.

Ł

• • •

Aug Aug O.1 mgd O.5 Fgd I.0 mgd 3.0 mgd 5.0 mgd Process Energy Requirements Energy Requirements <th< th=""><th></th><th></th><th></th><th> <u>-</u></th><th>Capac</th><th>city of W</th><th>astewate</th><th>I ITEALIN</th><th>and raci</th><th>iity</th><th></th><th></th><th></th><th></th></th<>				<u>-</u>	Capac	city of W	astewate	I ITEALIN	and raci	iity				
Process Energy Requirements Energy Requirements <the< th=""><th></th><th>0.05</th><th>ngd</th><th>0.1</th><th>mgd</th><th>0.5</th><th>mgd</th><th>1.0</th><th>mgd</th><th>3.0 7</th><th>.ngd 5.0</th><th>mgd</th><th></th><th></th></the<>		0.05	ngd	0.1	mgd	0.5	mgd	1.0	mgd	3.0 7	.ngd 5.0	mgd		
tridity, Million tricity, Million triton, Million trice, Million tricity, Million tricity,					0,						0,		Commen	its
Raw Sewage Pumping Preliminary Treatment 1,200 1.280 10,200 19,400 53,900 86,700 TDH = 10 ft 3-1 Bar Screen 465 640 1,050 1,200 1,450 1,590 3-7 Comminutor 1,700 2,180 3,700 4,680 7,080 8,810 3-8 Grit Kemoval-Aerated 10,610 11,400 12,290 13,270 17,800 22,670 3-7 Act ricion-Mechanical 8,000 160,000 480,000 800,000 Complete Mix 3-12 Act ricion-Mechanical 8,000 10,390 16,400 37,030 54,870 3-13 Ub sinfection (12) 4,470 5,010 10,390 16,400 37,030 54,870 3-14 Sub-Total 29,813 41,957 127,833 231,265 636,895 1,036,975 3-85 Sub-Total 29,813 41,957 127,833 231,265 636,895 1,036,975 3-86 Sub-Total 2,500 12,700	. *	tricity,	Million	tricity,	Million	tricity,	Million	n tricity,	Million	tricity,	Million tricity,	, Million		•
Raw Sewage Pumping Preliminary Treatment 1,200 1.280 10,200 19,400 53,900 86,700 TDH = 10 ft 3-1 Bar Screen 465 640 1,050 1,200 1,450 1,590 3-7 Comminutor 1,700 2,180 3,700 4,680 7,080 8,810 3-8 Grit Kemoval-Aerated 10,610 11,400 12,290 13,270 17,800 22,670 3-7 Act ricion-Mechanical 8,000 160,000 480,000 800,000 Complete Mix 3-12 Act ricion-Mechanical 8,000 10,390 16,400 37,030 54,870 3-13 Ub sinfection (12) 4,470 5,010 10,390 16,400 37,030 54,870 3-14 Sub-Total 29,813 41,957 127,833 231,265 636,895 1,036,975 3-85 Sub-Total 29,813 41,957 127,833 231,265 636,895 1,036,975 3-86 Sub-Total 2,500 12,700	√astewater Treatment				·						· · ·		· · · · · · · · · · · · · · · · · · ·	
Bar Screen 465 640 1,050 1,200 1,450 1,590 3-7 Comminutor 1,700 2,180 3,700 4,680 7,080 8,810 3-8 Grit Removal-Aerated 10,610 11,400 12,290 13,270 17,800 22,670 3-7 Primary Sedimentation 2,530 5,190 5,420 6,820 9,970 11,990 Circular Tanks 3-12 Aer tion-Mechanical 4,470 5,010 10,990 16,400 37,030 54,870 3-13 Distification (Cl2) 9 9 16,400 37,030 54,870 3-13 Primary energy 830 1,240 4,700 9,330 29,170 49,520 Dosage = 10 mg/1 3-74 Sucondary energy 8 17 83 165 495 825 4-5 4-5 Sub-Total 29,813 41,957 127,833 231,265 636,895 1,036,975 3-85 3-85 Sub-Total 3,40 7,940 32,170 58,800 152,900 238,450 3-86 <t< td=""><td>Raw Sewage Pumping</td><td>1,200</td><td></td><td>.280</td><td></td><td>10,200</td><td></td><td>19,400</td><td></td><td>53,900</td><td>86,700</td><td></td><td>TDH = 10 ft</td><td>3-1</td></t<>	Raw Sewage Pumping	1,200		.280		10,200		19,400		53,900	86,700		TDH = 10 ft	3-1
Grit Removal-Aerated 10,610 11,400 12,290 13,270 17,800 22,670 3-9 Primary Sedimentation 2,530 3,190 3,420 6,820 9,970 11,990 Circular Tanks 3-12 Aer tion-Mechanical 8,000 16,000 80,000 160,000 480,000 Gonglete Mix 3-28 S-condary Sedimentation 4,470 5,010 10,390 16,400 37,030 54,870 Graphete Mix 3-13 Disinfection (Cl2) ************************************	Bar Screen													-
Primary Sedimentation 2,530 5,190 5,420 6,820 9,970 11,990 Circular Tanks 3-12 Aer tion-Mechanical 8,000 16,000 80,000 16,000 480,000 800,000 Complete Mix 7-28 Aer tion-Mechanical 4,470 5,010 10,390 16,400 37,030 54,870 3-13 Distnfection (Cl2) ************************************														
Aer stion-Mechanical $8,000$ $16,000$ $80,000$ $160,000$ $480,000$ $800,000$ $Complete Mix$ $3-28$ S:condary Seimentation $4,470$ $5,010$ $10,390$ $16,400$ $37,030$ $54,870$ $3-13$ Distincettin (Cl2) $7,010$ $9,330$ $29,170$ $49,520$ Dosage = 10 mg/l $3-14$ Primary energy 830 $1,240$ 4.700 $9,330$ $29,170$ $49,520$ Dosage = 10 mg/l $3-74$ Secondary energy 8 17 83 165 495 825 $1036,975$ $4-5$ Sub-Total $29,813$ $41,957$ $127,833$ $231,265$ $636,895$ $1,036,975$ $-5636,1975$ -7640 Sludge Treatment $7,940$ $32,170$ $58,800$ $152,900$ $238,450$ $3-866$ Vacuum Filter $13,198$ $13,320$ $18,950$ $25,190$ $45,460$ $63,020$ $-3-95$ Incineration $2,250$ 145 $3,870$ 287 $12,350$ $1,440$ $20,630$ $2,880$ $6,520$ $8,630$ $67,900$ $14,390$ $-111,3-112$ Ash Hauling 11 22 109 217 651 $1,085$ 20 miles round grip $3-104$ Sub-Total $9,823$ 157 $25,199$ 312 $63,786$ $1,563$ $57,2100$ $15,615$ -113 Ash Hauling $9,823$ 157 $25,199$ 312 $63,786$ $1,563$ $57,2100$ $15,615$ -756 Sub-Total $9,823$,			Cincular Tasks	
Sucondary Sedimentation 4,470 5,010 10,390 16,400 37,030 54,870 3-13 Disinfection (Cl2) Primary energy 830 1,240 4,700 9,330 29,170 49,520 Dosage = 10 mg/l 3-74 Secondary energy 8 17 83 165 495 825 Dosage = 10 mg/l 3-74 Sub-Total 29,813 41,957 127,833 231,265 636,895 1,036,975 4-5 Sludge Treatment Gravity Thickening 35 69 316 610 1,730 2,730 3-85 Air Flotation Thickening ,340 7,940 32,170 58,800 152,900 238,450 3-86 Vacuum Filter 13,198 13,320 18,950 25,190 45,460 63,020 3-95 Incineration 2,250 145 3,870 287 12,350 1,440 20,630 2,880 46,520 8,630 67,900 14,390 3-113 Ash Hauling 11 22 109 217 651 1,085 20 miles round grip 3-10														
Primary energy8301,2404.7009,33029,17049,520Dosage = 10 mg/1 $3-74$ Secondary energy817831654958254-5Sub-Total29,81341,957127,833231,265636,8951,036,975Sludge Treatment35693166101,7302,7303-85Gravity Thickening,3407,94032,17058,800152,900238,4503-86Vacum Filter13,19813,32018,95025,19045,46063,0203-95Incineration2,2501453,87028712,3501,44020,6302,88046,5208,63067,90014,3903-111,3-112Ash Hauling11221092176511,08520 miles round grip3-104Sub-Total.9,82315725,19931263,7861,563105,2303,125246,6109,365372,10015,615OtherBuilding Heating1481813204337459883-83Building Cooling1992444586461,2281,726Ash Bauilding Cooling1992444586461,2281,726	Secondary Sedimentation								-		· · ·		Comprete nix	
Sub-Total 29,813 41,957 127,833 231,265 636,895 1,036,975 Sludge Treatment Gravity Thickening 35 69 316 610 1,730 2,730 3-85 Air Flotation Thickening ,340 7,940 32,170 58,800 152,900 238,450 3-86 Vacuum Filter 13,198 13,320 18,950 25,190 45,460 63,020 3-95 Incineration 2,250 145 3,870 287 12,350 1,440 20,630 2,880 46,520 8,630 67,900 14,390 3-113 Ash Hauling 11 22 109 217 651 1,085 20 miles round grip 3-100 3-13 Sub-Total .9,823 157 25,199 312 63,786 1,563 105,230 3,125 246,610 9,365 372,100 15,615 Other .9 148 181 320 433 745 988 3-83 Building Heating 199 244 458 646 1,228 1,726 3-84	Primary energy												Dosage = 10 mg/1	
Sludge Treatment 35 69 316 610 1,730 2,730 3-85 Air Flotation Thickening 340 7,940 32,170 58,800 152,900 238,450 3-86 Vacum Filter 13,193 13,320 18,950 25,190 45,460 63,020 3-95 Incineration 2,250 145 3,870 287 12,350 1,440 20,630 2,880 45,460 63,020 3-95 Ash Hauling 11 22 109 217 651 1,085 20 miles round grip 3-103 Sub-Total .9,823 157 25,199 312 63,786 1,563 105,230 3,125 246,610 9,365 372,100 15,615 Other Building Heating		29,813		41,957		127,833		231,265		636,895	1,036,975	,		
Ash Hauling ii 22 109 217 651 1,085 20 miles round grip 3-100 Lanc (i) Disposal 1.4 2.8 14 28 84 140 3-104 Sub-Total .9,823 157 25,199 312 63,786 1,563 105,230 3,125 246,610 9,365 372,100 15,615 Other	Gravity Thickening Air Flotation Thickening Vacuum Filter	,340 13,198	145	7,940 13,320		32,170 18,950		58,800 25,190		152,900 45,460	238,450 63,020)	3-	3-86 3-95 111, 3-112,
Other Building Heating 148 181 320 433 745 988 3-83 Building Cooling 199 244 458 646 1,228 1,726 3-84												,		ip 3~100
Building Heating 148 181 320 433 745 988 3-83 Building Cooling 199 244 458 646 1,228 1,726 3-84	Sub-Total .	.9,823	157	25,i99	312	63,786	1,563	105,230	3,125	246,610	9,365 372,100	15,615		
Total for Treatment System 49,835 305 67,400 493 192,077 1,883 337,141 3,558 884,733 10,110 1,410,801 16,603	Building Heating	199	148	244					433	1,228				
	Total for Treatment System	49,835	305	67,400	493	192,077	1,883	337,141	3,558	884,733	10,110 1,410,801	16,603		
		. *		s. 1	.*						•	,		
	· ,	· •	• :		e.						a da ser	1	· · · ·	1.25

Table 11.	Energy requirements for components of activated sludge system with sludge incineration in the intermountain area of the USA.

• •

• •

				Capac	ity of W	lastewate	r Treatm	nent Faci	lity					
	0.05	mgd	0.1	mgd	0.5	mgd	1.0	mgd	3.0	mgd	5.0	mgd .		
Operation or Process		rgy rements		ergy ements		ergy ements		ergy ements		rgy ements		ergy ements	Comments	
					tricity,			Fuel, Million Btu/yr	bicity,		tricity,	Fuel, Million Btu/yr		
Wastewater Treatment Raw Sewage Pumping Preliminary Treatment	٤,200		2,280		10,200		19,400		53,900		86,700		TDH = 10 ft	3-1
Bar Screen Comminutor Grit Removal-Aerated	465 1,700 10,610		640 2,180 11,400		1,050 3,700 12,290		1,200 4,680 13,270		1,450 7,080 17,800		1,590 8,810 22,670			3-7 3-8 3-9
Chemical Clarification-FeCl3 Primary Energy Secondary Energy	8,580 35		8,950 70		14,900 350		21,850 700		48,500 2,100		75,570 3,500		Dosage = 200 mg/1	3-57 4-6
Activated Carbon Adsorption Regeneration Disinfection (Cl ₂)	3,100 1,900	200	6,200 3,800	400	31,000 19,000	2,000	62,000 38,000	4,000	186,000 114,000	12,000	310,000 190,000	20,000	Upflow Expanded Bed	3-66 3-67
Primary Energy Secondary Energy	830 8		Ì,240 17		4,700 83	•	9,330 165		29,170 495		49,520 825		Dosage = 10 mg/1	3-74 4-5
Sub-Total	28,428	200	36,777	400	97,273	2,000	170,595	4,000	460,495	12,000	749,185	20,000		
Sludge Treatment Gravity Thickening Vacuum Filter Incineration	35 14,000 3,870	400	69 16,310 6,460	. 800	316 31,400 21,000	3,930	610 45,650 34,860	7,800	1,730 96,400 78,800	23,470	2,730 142,300 114,960	39,140	3-111	3-85 3-95 ,3-112 3-112
Ash Hauling Landfill Disposal		24 10		50 20		220 95		450 200		1,400 550		2,300 1,000	20 mile round trip	3-100 3-100
Sub-Total	17,905	434	22,839	870	52,716	4,245	81,120	8,450	176,930	25,420	259,990	42,440		
Other Building Heating Building Cooling	199	148	244	181	458	320	646	433	l,228	745	1,726	988		3-83 3-84
. Gal for Treatment System	46,532	782	59,860	1,451	150,44/	6,565	252,361	12,883	638,653	38,165	1,010,901	63,428		

Table 12. Energy requirements for components of a physical-chemical advanced secondary wastewater treatment system located in the intermountain area of the USA.

				Capac	ity of W	lastewate	r Treatm	nent Faci	lity			· · ·		
	U.05	mgd	0.1	mgd	0.5	mgd	1.0	mgd	3.0	mgd	5.0	mgd		
Operation or Process		rgy ements	: Ene Reguir	ergy ements		ergy ements		ergy Tements		ergy rements		ergy remenus	Commer	nts
		Million			trícity,					Fuel, Million Btu/yr				
astewater Treatment Raw Sewage Pumping	1,200		2,280		10,200		19,400		53,900	~	86,700		TDH = 10 ft	3-1
Preliminary Treatment Bar Screen Comminutor	465 1,700		640 2,180		1,050 3,700		1,200		1,450 7,080		1,590 8,810			3 . 7 38
Grit Removal-Aerated Aeration Secondary Sedimentation	10,610 17,500 4,470		11,400 35,000 5,010		12,290 175,000 10,390		13,270 350,000 16,400	1	17,800 ,050,000 37,030		22,670 ,750,000 54,870		Mechanical	3-9 3-28 3-13
Intermittent or Slow Sand Filter	596	2.5	1,135	5	5,070	25	9,660	50		151	43,150	252	TDH = 5 ft; Diesel	L Powered
n The second se													Truck & Cleaning Hydraulic Loading 0.4 mgad ^a	
en e		·											<pre>12 hr operation of and cleaning equi 6 cleanings/yr.</pre>	pment/acm
				÷	۰.								lons of fuel/hr. 140,000 Btu.	
Disinfection (Cl ₂) Primary Energy Secondary Energy	830 8		1,240 17		4,700 83	·	9,330 165		29,170 495		49,520 825	•	Dosage = 10 mg/1	3-74 4-5
Sub-Total	37,379	2.5	58,902	5	222,483	25	424,105	50	1,223,755	151	2,018,135	252		
ludge Treatment Drying Beds Hauling-Truck Landfill Disposal	64	0.2 12 1.5	. 121	0.3 24 3.1	. 570	1.7 120 15.4	1,140	3.3 240 31	3,530 \	9.9 720 93	6,040	16.5 1,200 154		3-98 3-10 3-10
Sub-Total	64	14	121	27	570	137	1,140	274	3,530	823	6,040	1,371		

646

482 425,891

433

....

1,228

757 1,228, 513

3-83

.3-84

988

745

1,726

1,7192,025,901 2,611

Table 13. Energy requirements for components of an extended aeration system with slow sand filter located in the intermountain area of the USA.

^aMillion gallons per acre per day.

× 1 Building Heating

Total for Treatment System

37,642

148

244 ٠;

164 59,267

181

213 223,511

458

.

29

Other

· · ·				Capa	acity of	Wastewa	ter Trea	ment Fa	cility				•	
	0.05	mgd	0.1	mgd	0.5	mgd	1.0	mgd	3.0	mgd	5.0	mgd		
Operation or Process		rgy rements	Ene Requir	ements		ergy rements		rements		ergy rements		ergy cements	Comments	
							tricity,			Fuel, Million Btu/yr	tricity,			
Wastewater Treatment														
Raw Sewage Pumping Preliminary Treatment	1,200		2,280		10,200		19,400		53,900		86,700		TDH = 10 ft	· - ·
Bar Screen	465	· •	640		1,050		1,200		1,450		1,590			3-7
Comminutor	1,700		2,180		3,700		4,680		7,080		8,810			3-8
Aerated Pond	13,000		•26,000		130,000		260,000		780,000	1,	300,000			3-32
Sub-Total	16,365		31,100		144,950		285,280		842,430	1,	397,100			
Spray Irrigation														
Solid Set	8,970		17,570		83,720		164,000		476,050		781,350			3-79
Center Pivot	13,500		27,000		135,000		270,000		810,000		350,000			3-79
Ridge & Furrow Flooding	1,400	1	2,800	2	14,000	10	28,000	20	84,000	60	140,000	100		
Other														
Building Heating		148		181	•	320		433		745		988		3-8
Building Cooling	199		244		458		646		1,228		1,/26			3-84
Total For Treatment System- Aerated Ponds														
Solid Set	25,534		48,914		229,128		449,926		1,319,708		2,180,176	988		
Center Pivot	30,064	148			280,408		555,926		1,653,658		,748,826	988		
Ridge & urrow-Flooding	17,964	149	34,144	183	159,408	330	313,926	453	927,658	805 1	, 538, 826	1,088	•	
Total for freatment System- Facultative Ponds														
Solid Set	10,369	148	20,094		94,378		184,046		531,178	745 8	369,776	988		
Center Pivot	14,899	148	29,524		145,658		290,046		865,128		438,426	988		
Ridge & Furrow-Flooding	2,799	149	5,324	183	24,658	330	48,046	453	139,128	805 2	228,426	1,088		

Table 14. Energy requirements for components of slow rate (irrigation) land treatment system located in the intermountain area of the USA.

				Сара	acity of	Wastewat	er Treat	ment Fac	ility					
Operation	0.05 1	ngd	0.1	mgd	0.5	mgd	i.0	mgd .	3.0	mgd	5.0	mgd	Comments	
or Process	Ene Requir			rgy ements		rgy ements		ergy ements	Ene Requir	rgv ements		rgy ements		
					tricity,	Fuel, Million Btu/yr			tricity,					
Wastewater Treatment Raw Sewage Pumping Preliminary Treatment	1,200		2,280		10,200		19,400		53,900		86,700		TDH = 10 ft	3-1
Bar Screen Comminutor Grit Removal-Non Aerated	465 1,700 260		640 2,180 305		1,050 3,700 450		1,200 4,680 530		1,450 7,080 690		1,590 8,810 780			3-7 3-8 3-10
Primary Sedimentation Sub-Total	2,530 6,155		3,190 8,595		5,420 20,820		6,820 32,630		9,970 73,090	·	11,990 109,870		Circular Tank	3-12
Rapid Infiltration Flooding	141		287		1,480		3,000		9,200	•	15,490			3-81
Sludge Treatment Gravity Thickening Anaerobic Digestion-High Rate Drying Beds Hauling-Truck Landfill Disposal	35 1,220 17	62 0.2 13 1.6	69 2,435 32	124 0.4 26 3.3	316 12,180 145	632 2 128 16	610 24,354 282	1,270 4 256 33	1,730 73,060 833		2,730 121,760 1,395	6,460 21 1,278 164		3-85 3-10 3-98 3-10 3-10
Sub-Total	1,272	. 77	2,536	154	12,641	778	25,246	1,563	75,623	4,739	125,885	7,923		
Other Building Heating Building Cooling	199	148	244	181	458	320	646	433	1,228	745	1,726	988		3-83 3-84
Total for Treatment System	7,767	225	11,662	335	35,399	1,098	61,522	1,996	159,141	J,484	252,971	8,911		

Table 15. Energy requirements for components of a primary wastewater treatment plant followed by rapid infiltration land treatment systems located in the intermountain area of the USA.

31

. •

				Capac	ity of W	lastewate	er Treatm	nent Faci	lity					
0	0.05	mgd	0.1	mgd ·	0.5	mgd A	1.0	mgd	3.0	mgd	5.0	mgd		
Operation or Process		rgy ements		ergy rements		rgy ements		ergy ements		ergy cements		ergy rements	Comment	3
	tricity,	Million	tricity,	Million	tricity,	Million	tricity,	Million	tricity,	Fuel, Million Btu/yr	tricity,	Million		
Vastewater Treatment Raw Sewage Pumping Preliminary Treatment	1,200		2,280		10,200		19,400		53,900		86,700		TDH = 10 ft	3-1
Bar Screen Comminutor Aerated Pond	465 1,700 13,000		640 2,180 26,000		1,050 3,700 130,000		1,200 4,680 260,000		1,450 7,080 780,000	۱	1,590 8,810 ,300,000		•	3-7 3-8 3-32
Sub-Total	16,365		31,100		144,950		285,280		842,430	1	, 397, 100			
Rapid Infiltration Flooding	141		287		1,480		3,000		9,200		15,490			. 3-8
Dther Building Heating Building Cooling	. 199	148	244	. 181	458	320	646	43.5	1,228	745	i,726	988		3-8: 3-84
Total for Treatment System- Aerated Ponds Flooding	16,705	148	31,631	181	146,888	320	288,926	433	852,858	745	1,414,316	988		
otal for Treatment System- Facultative Ponds Flooding	1,540	148	2,811	181	12,138	320	23,046	433	64,328	745	103,916	988		

.

Table 16.	Energy requirements for components of rapid infiltration land treatment systems located in the intermountain area of the USA.	

.

Table 17. Energy requirements for components of overland flow land treatment systems located in the intermountain area of the USA.

· ·				Capa	acity of	Wastewat	er Treat	ment Fau	ility					
	0.05	mgd	0.0	lmgd	0.5	mgd	1.0	ngd	3.0	mgd	5.01	ngd		
Operation or Process		ergy rements		ergy rements		ergy ements		ergy ements		ergy rements		ergy ements	Comments	
									tricity,	Fuel, Million Btu/yr	tricity,			
Wastewater Treatment Raw Sewage Pumping Preliminary Treatment	1,200		2,280		10,200		19,400		53,900		86,700		TDH = 10 ft	3-1
Bar Screen Comminutor Aerated Pond	465 1,700 13,000		640 2,180 26,000		1,050 3,700 130,000		1,200 4,680 260,000		1,450 7,080 780,000	1	1,590 8,810 ,300,000			3-7 3-8 3-32
Sub-Total	16,365		31,100		144,950		285,280		842,430	1	,397,100			
Overland Flow Flooding Solid Set Sprinklers	460 8,500	. • • ¹	920 17,000		4,600 85,000		9,200 170,000		27,600 510,000		46,000 850,000		(* ; · · ·	3-81 3-82
Disinfection (Cl ₂) Primary Energy Secondary Energy	830 8		1,240 17		4,700 83		9,330 165	·	29,170 495	•	49,520 825	± - `	Dosage = 10 mg/1	3-74 4-5
Dther Building Heating Building Cooling	199	148	244	181	458	320	646	433	1,228	745	1,726	988		3-83 3-84
Cotal for Treatment System- Aerated Ponds Flooding	17,862	148	33,521	181	154,791	320	304,621	433	900,923	745 1	.,495,171	988		
Solid Set Sprinklers	25,902		49,601		235,191		465,421		1,383,323		2,299,171	988		
Fotal for Treatment System- Facultative Ponds											*			
Flooding Solid Set Sprinklers	2,697 10,737	148 148	4,701 20,781		20,041 100,441		38,741 199,541		112,393 594,793		184,771 988,771	988 988		

				Capac	ity of W	lastewate	er Treati	ment Faci	lity							
	0.05	mgd	0.1	mgd	0.5	mgd	1.0	mgd	3.0	mgd	5.0	mgd				
Operation or Process		ergy rements		ergy Tements		ergy ements		ergy ements		ergy rements		ergy		(lomments	
			tricity,	Million	tricity,	Million		Million	tricity,	Fuel, Million Btu/yr		Million				
Wastewater Treatment					10,000		10 / 00				04 200			10 0		
Raw Sewage Pumping Intermittent Sand Filter Disinfection (Cl ₂)	1,200 596	2.5	2,280 1,135	5	10,200 5,070	25	19,400 9,660	50	53,900 26,830	151	86,700 43,150	252	TDH =	10 Et		3-1
Primary Energy Secondary Energy	830 8		1,240 17		4,700 83		9,330 165		29,170 495		49,520 825					3-74 4-5
Sub-Total	2,634		4,672		20,053		38,555		110,395		180,195					
Other Building Heating Building Cooling	199	148	244	181	458	320	646	433	1,228	745	1,726	988			•	3-83 3-84
Total for Treatment System	2,833	150	4,916	186	20,511	345	39,201	483	111,623	896	181,921	1,240	•		• •	•

Table 18. Energy requirements for components of a facultative lagoon-intermittent sand filter system located in the intermountain area of the USA.

Table 19. Energy requirements for components of an advanced wastewater treatment system processing secondary effluent located in the intermountain area of the USA.

				Capad	city of W	lastewate	er Treats	ment Faci	ility				•	
Operation	0.05	mgd	0.1	mgd	0.5	mgd .	1.0	mgđ	3.0	mgd	5.0	mgd		• •
or Process		ergy rements		ergy ements		rgy ements		ergy rements		ergy ements		ergy rements	Comments	
		Million					tricity,					Fuel, Million Btu/yr		
Secondary Effluent Treatment Chemical Clarification (Alum)													· · ·	
Primary Energy Secondary Energy Filtration	10,430 [°] 200 1,100		10,620 401 2,200		17,380 2,005 11,000		25,680 4,011 22,000	·	58,110 12,032 66,000		91,730 20,054 110,000		Zarnett, 1977 Gravity Filters	3-57 3-63
Activated Carbon Adsorption Regeneration Ammonia-N Removal	3,100 1,900	200	6,200 3,800	400	31,000 19,000	2,000	62,000 38,000	4,000	186,000 114,000	12,000	310,000 190,000	20,000	Upflow Expanded Bed	3-66 3-67
Ion Exchange Regeneration	1,100		2,200		11,000		22,000		66,000		110,000		Gravity	3-68
Primary Energy	100		200		1,000		2,000		6,000		10,000		Regeneration with 2% NaCl	3-69
Secondary Energy Disinfection (Cl ₂)	1		2		10		20		60		100			
Primary Energy Secondary Energy	830 8		1,240 17		4,700 83		9,330 165		29,170 495		49,520 825		Dosage = 10 mg/1	3-74 4-5
Sub-Total	18,769	200	26,880	400	97,178	2,000	185,206	4,000	537,867	12,000	892,229	20,000		
Sludge Treatment Air Flotation Thickening Filter Press Hauling-Truck Landfill Disposal	15,030 910	3 0.3	26,470 1,490	5 0.6	107,360 4,720	25 3	195,480 8,190	50 . 6	509,040 16,890	150 19	794,080 24,280	250 32		3-86 3-96 3-100 3-104
Sub-Total	15,940	· [.] 3	27,960	.6	112,080	28	203,670	56	525,930	169	818,360	282		•
Other Building Heating Building Cooling	199	148	244	181	458	320	646	433	1,228	745	1,726	988		3-83 3-84
Total for Treatment System	34,908	351	55,084	587	209,716	2,348	389,522	4,489	1,065,025	12,914	1, 712, 315	21,270		

Table 20. Energy requirements for components frequently appended to secondary wastewater treatment plants.

				Capac	ity of W	astewate	er Treatm	ent Faci	ility					
Operation	0.05	mgd	0.1	mgd	0.5	mgd	1.0	mgd	3.0	mgd	5.Ũ	mgd	Comment	s
or Process		ergy rements		ergy cements		rgy ements		ergy ements		ergy rements		rgy rements		
	Elec- tricity, kwh/yr								tricity,	Fuel, Million Btu/yr		Fuel, Million Btu/yr	·	
Filtration-Gravity Filtration-Pressure	1,100 1,500		2,200 3,030		11,000 15,390		22,000 31,000		66,000 94,030		110,000 157,510			3-63 3-63
Intermittent Sand Filters and Slow Sand Filters Microscreens - 23µ Screen	596 6,097	2.5	1,135 10,540	5	5,070 37,590	25	9,660 65,000		26,830 154,800	151	43,150 231,800	252		3-62
35µ Screen Ammonia-N Removal	4,005		6,930		24,700		42,700		101,700		152,300			3-62
Ior dxchange Regeneration	1,100		2,200		11,000		22,000		66,000		110,000		Gravity	3-68
Primary	100		200		1,000		2,000		6,000		10,000		Regeneration with 2% NaCl	3-69
Secondary Breakpoint Chlorination+	1	•	2		10		20		60		100	*		5 05
Dechlorination	74,460		78,650		98,760		114,600		156,200		186,600		Dechlorination wit Sulfur Dioxide	h 3-73
Nitrification-Suspended Growth	7,000		14,000		70,000		140,000		420,000		700,000		Mechanical Aeratio	n

-

system applicable to the treatment of small flows of wastewater. For combinations not shown in the tables, energy requirements can be calculated using the equations in Appendix A.

Carbon and Ion Exchange Regeneration

Energy requirements for the regeneration of carbon and ion exchange materials for very low flow systems (0.05 - 0.1 mgd) are shown in Tables 12, 19, and 20 only for comparative purposes. In most cases activated carbon would be replaced rather than regenerated and the energy requirements would be reduced accordingly. The regeneration of ion exchange resins would probably be justified, but depending upon local conditions it may be less expensive to replace ion exchange resins on a fixed schedule rather than to regenerate them.

Energy requirements for carbon regeneration represent greater than 10 percent of the electricity and 93 percent of the fuel consumed in the components of an advanced treatment system following secondary treatment at a flow rate of 5 mgd. At a flow rate of 0.05 mgd, the energy requirements for carbon regeneration have been reduced to 5 percent of the electricity and 57 percent of the fuel requirements. However, the inconvenience of operating additional equipment and the need for highly skilled operation would probably rule out the use of carbon regeneration at very small (< 0.5 mgd) wastewater treatment systems.

Gas Utilization

Although the energy required and produced by gas utilization is presented in the examples summarized in Tables 8, 9, and 10, gas utilization in small flow systems, particularly at the lower flow rates of less than 0.5 mgd, may not be advisable. The increased operating expense caused by the need for a more skilled operator and more sophisticated equipment will likely offset any savings from gas utilization. However, this is a decision that must be made on an individual basis.

Effluent Quality and Energy Requirements

Table 21 shows the expected effluent quality and the energy requirements for various combinations of the operations and processes shown in Figures 2 through 12 and Tables 8 through 20. Energy requirements and effluent quality are not directly related. Utilizing facultative lagoons and land application techniques, it is possible to obtain an excellent quality effluent and expend small quantities of energy. Although one system may be more energy efficient, the selection of a wastewater treatment facility must be based upon a complete economic analysis. However, with rising energy costs, energy requirements are assuming a greater proportion of the annual cost of operating a wastewater treatment facility, and it is likely that energy costs will

Table 21. Expected effluent quality and total energy requirements for various sizes and types of wastewater treatment plants located in the intermountain area of the USA.

·	1	Efflue	ent Qua	lity				Tota	l Energy I	Requirement	nts at Vai	ious Flo	# Rates				
Trearment System			mg/1		0.	05 mgd	0.	l mgđ	0.	ōmgd	1.0	mgd	3.0	mgđ	5.0) mgd	
	bod ₅	SS		Total Nítrogen as N	Elec- tricity, kwh/yr	Fuel, Million Btu/yr	Comments										
Frickling Filter with Anaerobic Digestion	30	30	-	-	15,300	225	23,600	335	76,500	1,100	137,000	2,000	363,000	5,490	580,000	8,910	See Figure 2
Rotating Biological Contactor with Anaerobic Digestion	30	30	-	-	15,200	225	23,700	335	81,000	1,100	148,000	2,000	409,000		667,000	8,910	No Energy Recovery See Figure 3 No Energy Recovery
acultative Pond + Microscreens 23u Physical-Chemical Advanced Secondary Treatment	30 30	30 10	ĩ	15	8,330 46,500	148 782		181 1,457	53,000 150,000	320 6,570		433 12,900	239,000 639,000		371,000 1,010,000	988 63,400	See Figure 6
Activated Sludge With Anaerobic Digestion	20	20	-		35,600	214	52,700	313	173,000	975	316,000	1,750	864,000	4,680	1,400,000	7,540	See Figure 4
Activated Sludge with Sludge Incineration	20	20	-	-	49,800	305	67,400	493	192,000	1,880	337,000	3,560	885,000	10,100	1,410,000	16,600	No Energy Recovery Theoretically Cou Recover Enough Hea To Generate All No
Extended Aeration with Sludge Drying Beds	20	20	-	-	37,000		58,100	208			416,000		1,200,000		1,980,000	2,360	Elect. See Figur See Figure 7
rickling Filter + Granular Media Gravity Filtration.	20	10	•	-	16,400	225	25,800	335	87,500	:,100	159,000	2,000	429,000	5,480	690,000	8,910	
rickling Filter + N-Removal (Ion Exchange) + Gran. Media Filt.	20	10	-	5	17,600	225	28,200	335	99,500	۱,100	183,000	2,000	501,000	5,480	810,000	8,910	
acultative Pond + Intermittent Sand Filter	15	15	-	10	2,830	150	4,920	186	20,500	345			112,000		182,000	1,240	See Figure 1:
erated Pond + Intermittent Sand Filter	15	15	-	20	18,000	151	33,700	186	155,000		305,000		900,000		1,490,000	1,240	
xtended Aeration + Intermittent Sand Filter	15	15	-	-	37,600	164	59,300		223,000		426,000		1,230,000		2,030,000	2,610	See Figure 7
ctivated Sludge (A.D.) + Gran, Media Gravity Filt, ctivated Sludge + Nitrification + Gran, Media Gravity Filt,	15 15	10 10	-	-	36,700 43,700	214 214	54,900 68,900	313 313		975	338,000 478,000		930,000		1,510,000 2,210,000	7,540 7,540	
		10	5	-	2,700	148	4,700	181	20.000								
verland Flow-Facultative Pond Flooding apid Infiltration-Facultative Pond Flooding	5	2	2	10	2,700	148	4,700	181	16,900	320 320	38,700 32,500	433	112,000 94,000		185,000	988	See Figure 10
low Rate (Irrigation)-Fac. Pond-Ridge & Furrow Flooding	1	1	0.1	3	3,640	148	6,580	181	29,400	320	57,500		169,000		154,000		See Figure 9
	< 10	ŝ	<1	<1	70,500	565		900	383,000	3,320	705,000		1.930,000		280,000	1,090 28,900	See Figure 8 See Figure 12

become the predominant factor in the selection of small flow treatment systems. Operation and maintenance requirements, and consequently costs, are frequently kept to a minimum at small installations because of the limited resources and operator skills normally available. This favors the selection of systems employing units with low energy requirements. It is very likely that all future wastewater treatment systems at small installations in isolated areas will be designed employing low energy consuming units and simple operation and maintenance. The only exceptions to this will be in areas with limited space or construction materials, or where surplus energy is available.

The effluent quality expected with each of the treatment systems and the energy requirements shown in Table 21 are presented in the order of decreasing BOD5 concentration in the effluent. The other parameters (suspended solids, Total P, and Total N) do not necessarily decrease in the same manner because most treatment facilities are designed to remove BOD5, but in general there is a trend in overall improvement in effluent quality as one reads down the table. As shown in Table 21, there are many systems available to produce an effluent that will satisfy EPA secondary or advanced effluent standards; however, energy requirements for the various systems are varied and can differ by a factor of greater than 10 to produce the same quality effluent.

For purposes of comparison the total energy (electricity plus fuel) for a typical 1 mgd system has been extracted from Table 21 and listed in Table 22 in order of increasing energy requirements. It is quite apparent from Table 22 that increasing energy expenditures do not necessarily produce increasing water quality benefits. The four systems at the top of the list, requiring the least energy, produce effluents comparable to the bottom four that require the most. Three of the top four are land treatment systems, and their adoption will depend on local site conditions. The facultative pond followed by intermittent sand filter and surface discharge to receiving waters is less constrained by local soil and groundwater conditions.

Conventional Versus Land Treatment

A comparison of the energy requirements for a conventional wastewater treatment system consisting of a trickling filter system followed by nitrogen removal, granular media filtration and disinfection with a facultative pond followed by overland flow and disinfection is shown in Figure 13. This comparison is made because of the approximately equivalent quality effluents produced by the two systems (Table 21). The relationships in Figure 13 clearly show that there are significant electricity and fuel savings with the land application system. Similar comparisons for modifications of the two systems can be made by referring to Tables 8, 17, and 20 and selecting combinations to produce equivalent effluents.

Figure 14 shows a comparison of the energy requirements for an activated sludge plant producing a nitrified effluent, followed by

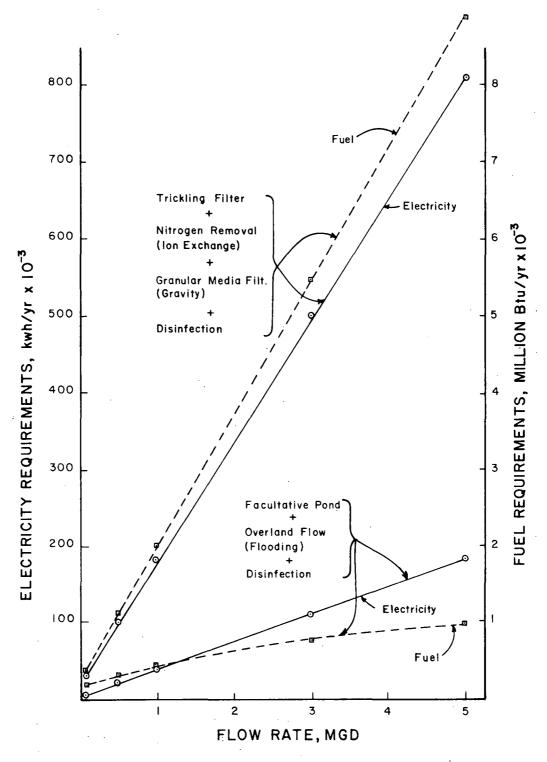


Figure 13. Comparison of energy requirements for trickling filter effluent treated for nitrogen removal and filtered versus facultative pond effluent followed by overland flow treatment.

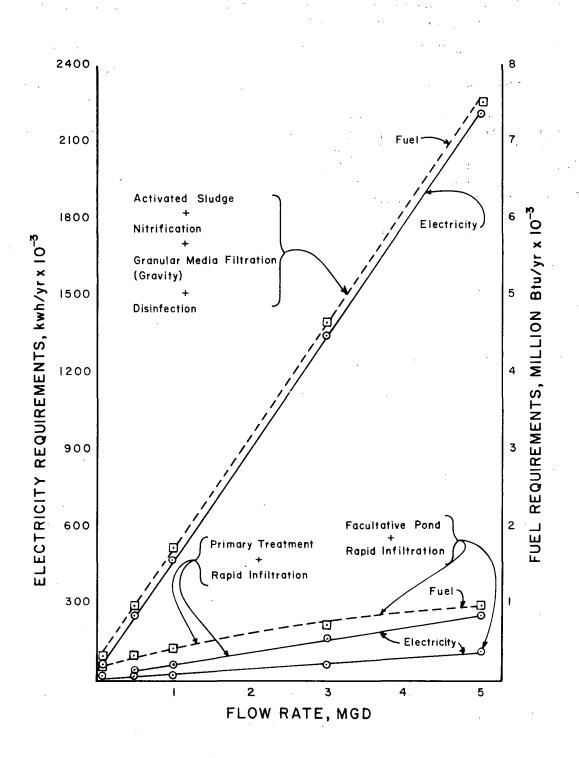


Figure 14. Comparison of energy requirements for activated sludge, nitrification, filtration and disinfection versus facultative pond effluent followed by rapid infiltration and primary treatment followed by rapid infiltration.

Treatment system		Effluent quality						
illeatment system	BOD	SS	Р	N	1000 kwh/yr			
Rapid infiltration (facultative pond)	. 5	1.	2	10	159			
Overland flow (facultative pond)	5	5	5	3	165			
Facultative pond + interm. filter	15	15	- .	10	181			
Slow rate, ridge + furrow (fac. pond)	1	1	0.1	3	190			
Facultative pond + microscreens	30	30	-	15	221			
Aerated pond + interm. filter	15	15	-	20	446			
Extended aeration + sludge drying	20	20	-	-	623			
Extended aeration + interm. filter	15	15	-	-	648			
Trickling filter + anaerobic digestion	30	30	-	-	723			
RBC + anaerobic digestion	30	30	-	-	734			
Trickling filter + gravity filtration	20	10	-	-	745			
Trickling filter + N removal + filter	20	10	-	5	769			
Activated sludge + anaerobic digestion	20	20	-	-	828			
Activated sludge + an. dig. + filter	15	10	-	-	8,50			
Activated sludge + nitrification + filter	15	10	-	-	990			
Activated sludge + sludge incineration	20	20	-	-	1,379			
Activated sludge + AWT	<10	5	<1	<1	2,532			
Physical chemical advanced secondary	30	10	1	-	4,029			

Table 22.	Total	annual	energy	for	typical	1	mgd	system	(electrical plus
	fuel,	express	ed as	1000	kwh/yr).	,			•

granular media filtration and disinfection; a facultative pond followed by rapid infiltration land treatment, and primary treatment followed by rapid infiltration land treatment. The facultative pond system followed by rapid infiltration land treatment is the most energy-efficient wastewater treatment system, but it is closely followed in energy efficiency by the primary treatment and rapid infiltration system. The energy requirements for both of the rapid infiltration land treatment alternatives are less than 10 percent of the energy required for the activated sludge system.

In Figure 15, energy requirements for slow rate land application systems using ridge and furrow and center pivot systems to distribute facultative pond effluent are compared with the energy requirements for an activated sludge plant practicing nitrogen and phosphorus removal, granular media filtration of the effluent, and disinfection prior to discharge. Both the activated sludge and advanced treatment system and the facultative pond and slow rate systems produce approximately equivalent quality effluents. The ridge and furrow flooding technique of land treatment requires less than 10 percent of the energy required by the advanced treatment scheme. Utilizing a center pivot mechanism to distribute the facultative pond effluent increases the energy requirements by a

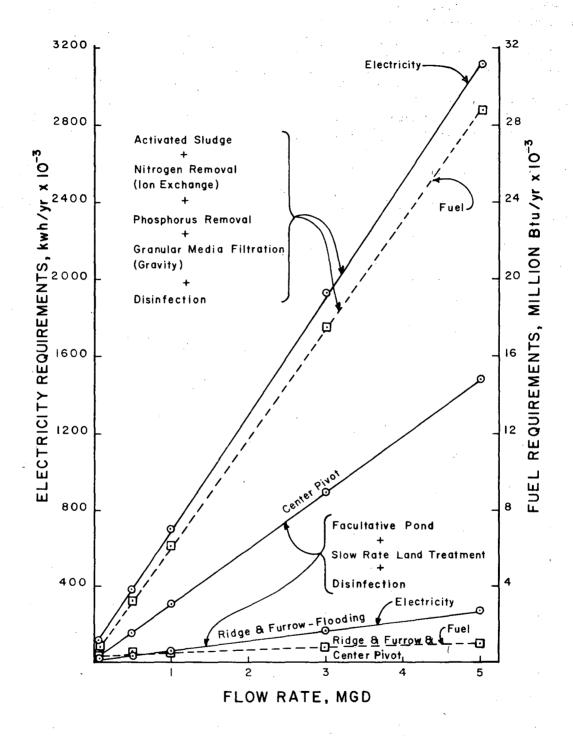


Figure 15. Comparison of energy requirements for secondary treatment followed by advanced treatment versus facultative pond effluent followed by slow rate land treatment.

factor of five compared with the ridge and furrow flooding technique, but the energy requirements for the center pivot system are less than one-half the energy requirements for the advanced treatment system.

In an energy conscious environment, the land application techniques of treating wastewater have a distinct advantage over the more conventional wastewater treatment systems. When land is available at a reasonable cost, the lower energy requirements for land application systems will likely result in a more cost effective as well as more energy effective system of wastewater treatment.

CONCLUSIONS

Based upon the results of the analyses presented in this report, the following conclusions are made.

- 1. With increasing energy costs, energy consumption is assuming a greater proportion of the annual cost of operating wastewater treatment facilities of all sizes, and because of this trend, it is likely that energy costs will become the predominant factor in the selection of cost-effective small-flow wastewater treatment systems.
- 2. Small-flow wastewater treatment systems are frequently designed to minimize operation and maintenance, and as energy costs increase, design engineers will tend to select low-energyconsuming systems.
- 3. Low-energy consuming wastewater treatment systems are generally easier to operate and maintain than energy intensive systems, making the low-energy-consuming systems even more attractive because of the desire to minimize highly skilled operation at small facilities.
- 4. Where suitable land and groundwater conditions exist, a facultative pond followed by rapid infiltration is the most energyefficient system described in this report.
- 5. When surface discharge is necessary and impermeable soils exist, a facultative pond followed by overland flow is the second most energy-efficient system described in this report.
- 6. Facultative ponds, followed by slow or intermittent sand filters, are the third most energy-efficient systems discussed, and are not limited by local soil or groundwater conditions.
- 7. Physical-chemical advanced secondary treatment systems utilize the most energy of the conventional methods of producing an effluent meeting the federal secondary effluent standard of 30 mg/1 of BOD5 and suspended solids.
- 8. Slow rate land application systems following facultative ponds are more energy efficient than most forms of mechanical secondary treatment systems, while also providing benefits of nutrient removal, recovery and reuse.
- 9. Advanced physical-chemical treatment following conventional secondary treatment consumes approximately 13 times as much electrical energy and 26 times as much fuel as slow rate land treatment to produce an equivalent effluent.

- 10. Land application wastewater treatment systems following storage ponds (aerated or facultative), preliminary treatment (bar screens, comminutors, and grit removal), or primary treatment are by far the most energy-efficient systems capable of producing secondary effluent quality or better.
- 11. This study did not consider the energy requirements for production of all materials consumed in the treatment process, but it is not believed that inclusion of such factors would significantly change the relative ranking of the systems discussed. Such inclusion would rather make the differences between simple biological processes and mechanical systems even more dramatic.

APPENDIX A

EQUATIONS DESCRIBING ENERGY REQUIREMENTS

rigure Number From EPA 80/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-1	Raw Sewage Pumping (Constant Speed) Y = 197,000 $x^{0.93}$ TDH = 100 ft Y = 123,000 $x^{0.93}$ TDH = 60 ft Y = 61,100 $x^{0.93}$ TDH = 30 ft Y = 19,400 $x^{0.93}$ TDH = 10 ft Y = 9,660 $x^{0.93}$ TDH = 5 ft Y = Electrical Energy Required, kwh/yr X = Flow, mgd	Design Assumptions: Effeciencies for typical centrifug, pumps (varies with flor) Variable level wet well TDH is total dynamic head Type of Energy Required: Electrical
3-2	Raw Sewage Pumping (Variable Speed) $Y = 69,000 x^{0.94}$ TDH = 30 ft $Y = 24,100 x^{0.94}$ TDH = 10 ft $Y = 10,800 x^{0.96}$ TDH = 5 ft Y = Electrical Energy Required, kwh/yr $X = Flow, mgd$	Design Assumptions: Efficiencies for typical centrifign pumps (varies with flow) Wound rotar variable speed Variable level wet well Type of Energy Required: Electrical
3-3	Raw Sewage Pumping (Variable Speed) $Y = 229,000 x^{0.94}$ TDH = 100 ft $Y = 152,000 x^{0.95}$ TDH = 60 ft Y = Electrical Energy Required, kwh/yr X = Flow, mgd	Design Assumptions: Efficiencies for typical centrifuga pumps (varies with flow) Wound rotor variable speed Varible level wet well Type of Energy Required: Electricat
3- 4	Lime Sludge Pumping log Y = $3.4788 + 0.7475$ (log X) + 0.1906 (log X) ² - 0.0101 (log X) ³ - Raw Sewage, Low Lime log Y = $3.4448 + 0.7273$ (log X) + 0.1714 (log X) ² - 0.0515 (log X) ³ - Raw Sewage, High Lime log Y = $3.3983 + 0.7173$ (log X) + 0.1872 (log X) ² - 0.0532 (log X) ³ - Secondary Effluent, Low Lime log Y = $3.4676 + 0.7619$ (log X) + 1.8422 (log X) ² - 0.0614 (log X) ³ - Secondary Effluent, High Lime Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	<pre>Design Assumptions: TDH 25 ft Operating Parameters: Sludge concentrations, Secondary treatment, are 5% for low lime and 7.5% for high lime Sludge concentrations, tertiary treatment, are 3% for low lime and 4.5% for high lime Type of Energy Required: Electrical</pre>
3-5	Alum Sludge Pumping Y 4,000 x ^{0.95} (Secondary Effluent) Y = 6.330 x ^{0.96} (Raw Sewage) Y = Electrical Energy Required, kwn/vr X = Plant Capacity, mgd	Water Quality: Influent Effluent (Secondary) (mg/1) (mg/1) Suspended Solids 250 30 Phosphate as P 11.0 1.5 Water Quality: Influent Effluent (Tertiary) (mg/1) (mg/1) Suspended Solids 30 10 Phosphate as P 11.0 1.0 Design Assumptions: TDH = 25 ft Sludge concentration (secondary)= 1% Sludge concentration (tertiary)=0 55 Operating Parameter:

^aSee Wesner et al , 1978.

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-6	Ferric Chloride Sludge Pumping log Y = $3.6192 + 0.8308$ (log X) + 0.1364 (log X) ² - 0.0356 (log X) ³ - Secondary Effluent	Water Quality: Influent Effluent (Secondary) (mg/1) (mg/1) Suspended Solids 250 30 Phosphate as P 11.0 1.0
	<pre>log Y = 3.6051 + 0.8078 (log X) + 0.1301 (log X)²</pre>	Water Quality: Influent Effluent (Tertiary) (mg/1) (mg/1) Suspended Solids 30 10 Phosphate as P 11.0 1.0 Design Assumptions: TDH = 25 ft Sludge concentration (secondary)=2% Sludge concentration (tertiary)=1%
		Operating Parameters: Ferric Chloride addition = 85 mg/l Type of Energy Required: Electrical
3-7.	Mechanically Cleaned Screens ¹ log Y = 3.0803 + 0.1838 (log X) - 0.0467 (log X) ² + 0.0428 (log X) ³ Y = Electrical Energy Required, kwh/yr	Design Assumptions: Normal run times are 10 min total time per hr except 0.1 mgd (5 min and 100 mgd (15 min) Bar Spacing is 3/4 in Worm gear drive, 50% efficiency
	X = Flow, mgd	Type of Energy Required: Electrical
3-8	Comminutors log Y = 3.6704 + 0.3493 (log X) + 0.0437 (log X) ² + 0.0267 (log X) ³ Y = Electrical Energy Required, kwh/yr X = Flow, mgd	Type of Energy Required: Electrical
3-9	Grit Removal (Aerated) log Y = $4.1229 + 0.1582$ (log X) + 0.1849 (log X) ² + 0.0927 (log X) ³	Water Quality: Removal of 90% of material with a specific gravity of greater than 2.65
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Design Assumptions: Grit removal to a holding facility by a screw pump Size based on a peaking factor of 2 Detention time is 3 min Tank design similar to that by Link-Belt, FMC Corp. or Jeffrey
		Operating Parameters: Air rate of 3 cfm per foot of lengt Removal equipment
	```	Type of Energy Required: Electrical
3-10	Crit Removal (non-Aerated) Y = 530 X ^{0.24}	Water Quality: Removal of 90% of material with specific gravity greater than 2.6
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Design Assumptions: Grit removal to a holding facility by screw pump Size based on peaking factor of 2 Square tank Smallest volume is 117 cu ft Velocity of 0.55 fps through square tank or 1 min detention time at average flow Operate equipment 2 hr each day Type of Energy Required: Electrical
3-11	<pre>Pre-Aeration log Y = 4.5195 + 0.7785 (log X) + 0.3618 (log X)²</pre>	Design Assumption: Detention time is 20 min Operating Parameter: Air supply is 0.15 cu it/gal Type of Energy Required: Electrical

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-12	<pre>Primary Sedimentation log Y = 3.8564 + 0.3781 (log X) + 0.1880 (log X)² + 0.0213 (log X)³ - Rectangular log Y = 3.8339 + 0.3362 (log X) + 0.0148 (log X)² + 0.0081 (log X)³ - Circular Y = Electrical Energy Required, kwh/yr</pre>	Water.Quality: Influent Effluent (mg/l) (mg/l) BOD ₅ 210 136 Suspended Solids 230 80 Design Assumptions: Sludge pumping included Scum pumped by sludge pumps Multiple tanks
	X = Plant Capacity, mgd	Operating Parameters: Loading = 1000 gpd/sq ft Waste rate ≈ 65% of influent Solids, 5% concentration Pumps operate 10 minutes of each hr
		Type of Energy Required: Electrical
3-13	Secondary Sedimentation log Y = 4.2149 + 0.6998 (log X) + 0.1184 (log X) ² $- 0.0660 (log X)^3$ - Activated Sludge log Y = 3.8591 + 0.3349 (log X) + 0.0735 (log X) ² $+ 0.0238 (log X)^3$ - Trickling Filter	Water Quality: Effluent (mg/l) BOD ₅ 20 Suspended Solids 20 (applicable to activated sludge sys- tem effluent quality variable for trickling filter systems)
	Y = Electricity Required, kwh/yr X = Plant Capacity, mgd	Design Assumptions: Secondary sedimentation for conven- tional activated sludge includes return and waste activated sludge Secondary sedimentation for tricklin filter system includes waste sludg pumping Hydraulic loading = 600 gpd/sq ft
		Operating Parameters: Waste activated sludge = 0.667 lb ss/lb BOD ₅ Return activated sludge = 50% Q Sludge concentration = 1% Waste pumps: operated 10 minutes each hour
		Type of Energy Required: Electrical
	Chemical Treatment Sedimentation Alum or Ferric Chloride log Y = $3.5364 + 0.0743$ (log X) + $0.0290$ (log X) ²	Design Assumptions: Coagulant: alum or ferric chloride
	- 0.0144 (log X) ³ Y = Electrical Energy Required, kwh/yr	Operating Parameter: Overflow rate = 700 gpd/sq ft Type of Energy Required: Electrical
	X = Plant Capacity, mgd	
•	Chemical Treatment Sedimentation Lime log Y = 3.5144 + 0.0172 (log X) + 0.0942 (log X) ² + 0.0905 (log X) ³ Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	-Design Assumptions: Coagulant: Lime Overflow rate, Avg = 1,000 gpd/sq ft Type of Energy Required: Electrical
	High Rate Trickling Filter (Rock Media) Y = 61,300 $x^{0.94}$	Water Quality:         Influent         Effluent           (mg/1)         (mg/1)         (mg/1)           BOD5         136         45
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Suspended Solids 80 45 Design Assumptions: Hydraulic loading = 0.4 gpm/sq 11 including recirculat. TOH = 10 ft Operating Parameter: Recirculation Ratic = 2:1 Type of Energy Required: Electrical

Figure Number From EPA 30/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-17	Low Rate Trickling Filter (Rock Media) Y = 93,600 x ^{0.94}	Water Quality: Influent Efflue (mg/1) (mg/1 BOD ₅ 136 30
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Suspended Solids 80 30 Design Assumptions: Hydraulic loading = 0.04 gpm/sq ft
		TDH = 23 ft Operating Parameter: No recirculation Type of Energy Required: Electrical
3-18	High Rate Trickling Filter (Plastic Media) Y = 161,000 X ^{0.95}	Water Quality: Influent Efflue (mg/l) (mg/l)
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	BOD5 ' 136 35-45 Suspended Solids 80 35-45 Design Assumptions: Hydraulic loading = 1.0 gpm/sq ft including recirculation TDH = 40 ft Operating Parameter:
		Recirculation Ratio = 5:1 Type of Energy Required: Electrical
3-19	Super - High Rate Trickling Filter (Plastic Media) Y = 224,000 X ^{0,93}	Water Quality: Influent Effluen (mg/l) (mg/l)
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	BOD ₅ 136 82 Suspended Solids 80 48 Design Assumptions: Hydraulic loading = 3 gpm/sq ft. including recirculation TDH = 40 ft
		Operating Parameter: Recirculation ratio = 2:1 Type of Energy Required: Electrical
3-20	Rotating Biological Disk Y = 110,000 X ^{1.02} - Standard Media	Water Quality: Influent Efflue (mg/l) (mg/l
	$Y = 73,000 X^{1.00}$ - Dense Media	BOD ₅ 136. 30 Suspended Solids 80 30
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Design Assumptions: Hydraulic loading = l gpd/sq ft Standard media = 100,000 sq ft per unit
		Dense media = 150,000 sq ft per un Type of Energy Required: Electrical
3-21	Activated Biofilter Y = 210,000 $x^{1.00}$	Water Quality: Influent Efflue (mg/1) (mg/1)
	Y = Electrical Energy Required, kwh/yr	BOD ₅ 136 20 Suspended Solids 80 20
	X = Plant Capacity, mgd	Design Assumptions: Bio-cell loading = 200 lb BOD ₅ /1000 cu ft
		Aeration = 1 lb 02/lb B005 Oxygen transfer efficiency in waste water (mechanical aeration) = 1.8 lb 02/hp-hr
		Operating Parameters: Recirculation = 0.9:1 Recycle sludge = 50% Type of Energy Required: Electri al
3-22	Brush Aeration (Oxidation Ditch) Y = $430,000 \times 1.00$	Water Quality: Influent Efflue (mg/l) (mg/l
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	$\begin{array}{cccc} 80D_5 & 136 & 20\\ Suspended Solids & 80 & 20\\ Design Assumptions:\\ Oxygen transfer efficiency = 1.8 II \\ 0_2/hp-hr (wire to water) & \\ Operating Parameter:\\ Oxygen requirement = 1.5 Ib 0_2 \\ consumed/Ib \ 80D_5 \ removed + 4.6 II \\ 0_2 \ consumed/Ib \ 80D_5 \ removed + 4.6 II \\ 0_2 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_2 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_2 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_2 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_2 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_2 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_2 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_2 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_2 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_2 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_3 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_3 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_3 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_3 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_5 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_5 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_5 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_5 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_5 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_5 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_5 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_5 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_5 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_5 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_5 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_5 \ consumed/Ib \ 8D_5 \ removed + 4.6 II \\ 0_5 \ removed + 4.6 II \ 0_5 \ removed + 4.6 II \\ 0_5 \ removed + 4.6 II \ removed + 4.6 II \ 0_5 \ removed + $

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-23	Oxygen Activated Sludge - Uncovered Reactor With Cryogenic Oxygen Generation	Water Quality: Influent Effluen (mg/l) (mg/l)
	Y = 201,000 X ^{1.00} Unstaged, plug flow 0 ₂ activated sludge and complete mix 0 ₂ activated sludge	BOD5 136 20 Suspended Solids 80 20 Design Assumptions: Oxygen transfer efficiency = 1.53 1
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	O ₂ /hp-hr (wire to water) Rotating fine bubble diffusers for dissolution
		Includes oxygen generation Operating Parameter: Oxygen requirement = 1.1 1b O ₂ consumed/1b BOD5 removed
		Type of Energy Required: Electrical
3-24	Oxygen Activated Sludge - Covered Reactor With Cryogenic Oxygen Generation	Water Quality: Influent Effluen (mg/1) (mg/1)
	$Y = 170,000 x^{1.00}$	BOD ₅ 136 20 Suspended Solids 80 20 Design Assumptions:
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	water = 2.07 lb 02/hp-hr (wire to water)
		Surface aerators for dissolution Includes oxygen generation Operating Parameter:
		Oxygen requirement = 1.1 lb O2 supplied/lb BOD5 removed Type of Energy Required: Electrical
3-25	Oxygen Activated Sludge – Covered Reactor With PSA Oxygen Generation	Water Quality: Influent Effluen (mg/1) (mg/1)
	$Y = 230,000 x^{1.00}$	BOD ₅ 136 20 Suspended Solids 80 20 Design Assumptions:
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Oxygen transfer efficiency in waste- water = 1.53 lb O ₂ /hp-hr (wire to water) Surface aerators for dissolution Includes oxygen generation
		Operating Parameter: Oxygen Requirement = 1.1 lb O ₂ consumed/lb BOD ₅ removed Type of Energy Required: Electrical
3-26	Activated Sludge - Coarse Bubble Diffusion	Water Quality: Influent Effluen (mg/1) (mg/1)
	Y = 290,000 X ^{1.00} Conventional activated sludge (complete mix)	BOD ₅ 136 20 Suspended Solids 80 20
	$Y = 600,000 X^{1.00}$ Extended aeration	Design Assumptions: Oxygen transfer efficiency in waste-
	$Y = 350,000 X^{1.00}$ Contact stabilization	water = $1.08$ lb $0_2$ /hp-hr (wire to water, including blower)
·	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Average value for all types of diffusers
		<pre>Operating Parameters: Conventional activated sludge oxygen requirement = 1.0 lb 02 consumed/lb BOD5 removed Extended aeration oxygen requirement = 1.5 lb 02 consumed/lb BOD5 removed + 4.6 lb 02 consumed/lb NH₄-N (in reactor feed) 0xidized Contact stabilization oxygen require ment = 1.1 lb 02 consumed/lb NH₄-N (in recycle sludge) 0xidized Uning reaeration</pre>

Figure Number From EPA 30/9-77-011		cess, and Equation Describing ergy Requirements	Design Conditions, Assumptions and Effluent Quality
3-27		Fine Bubble Diffusion	• Water Quality: Influent Effluent (mg/l) (mg/l)
	$Y = 230,000 X^{1.00}$	Conventional activated sludge (complete mix)	BOD5 136 20 Suspended Solids 80 20
	$Y = 440,000 X^{1.00}$	Extended aeration	Design Assumptions:
	$Y = 240,000 X^{1.00}$	Contact stabilization	Oxygen transfer efficiency in waste- water = 1.44 lb O2/hp-hr (wire to
		rgy Required, kwh/yr , mgd	water, including blower) Average value for all types of diffusers
	·		Operating Parameters: Conventional activated sludge oxygen
3	• •		requirement = 1.0 lb O ₂ consumed/1 BOD ₅ removed
	•		Extended aeration oxygen requirement = 1.5 lb O2 consumed/lb BOD5 re- moved + 4.6 lb O2 consumed/lb
			NH4-N (in reactor feed) oxidized Contact stabilization oxygen require
	•		<pre>ment = 1.1 lb 02 consumed/lb BOD5 removed + 4.6 lb 02 consumed/lb NH4-N (in recycle sludge) oxidized</pre>
			during aeration Type of Energy Required: Electrical
3-28		reatment - Mechanical Aeration	Water Quality: Influent Effluent
	$Y = 160,000 X^{1.00}$	Conventional activated sludge (complete mix)	(mg/l) (mg/l) BOD ₅ 136 20 Suspended Solids 80 20
	$Y = 350,000 X^{1.00}$	Extended aeration	Design Assumptions:
	$Y = 180,000 X^{1.00}$	Contact stabilization	Oxygen transfer efficiency = 1.8 lb O ₂ /hp-hr (wire to water)
	Y = Electrical Ene X = Plant Capacity	rgy Required, kwh/yr , mgd	Surface aerator, high speed Operating Parameters: Conventional activated sludge requi ment = 1.0 lb O ₂ consumed/lb BOD ₅ removed
			Extended aeration oxygen requiremen = 1.5 lb 0 ₂ consumed/lb BOD5 re- moved + 4.6 lb 0 ₂ consumed/lb NH ₄ -N (in reactor feed) oxidized Contact stabilization oxygen requir- ment = 1.1 lb 0 ₂ consumed/lb BOD5 removed + 4.6 lb 0 ₂ consumed/lb NH ₄ -N (in recycle sludge) oxidize- during reaeration Type of Energy Required: Electrical
3-29	Activated Sludge -	Turbine Sparger	Water Quality: Influent Effluent (mg/l) (mg/l)
	$Y = 215,000 x^{1.00}$	Conventional activated sludge (complete mix)	BOD ₅ 136 20 Suspended Solids 80 20
	$Y = 430,000 x^{1.00}$	Extended aeration	Design Assumptions: Oxygen transfer efficiency in waste
	$Y = 250,000 x^{1.00}$	Contact stabilization	water = 1.6 lb $0_2/hp-hr$ (wire to
	Y = Electrical Ene X = Plant Capacity	rgy Required, kwh/yr , mgd	water) Operating Parameters: Conventional activated sludge oxyge
			requirement = 1.0 lb 02 consumed/ B0D5 removed Extended aeration oxygen requirement
		- -	<pre>= 1.5 lb 02 consumed/lb B005 rc- moved + 4.6 lb 02 consumed/lb NH₄-N (in reactor feed) oxidized Contact stabilization oxygen requir ment = 1.1 lb 02 consumed/lb B005</pre>
			removed + 4.6 lb $O_2$ consumed/lb NH ₄ -N (in recycle sludge) oxidize

$Y = 500,000 x^{1.00}$ Extended aeration $Y = 300,000 x^{1.00}$ Contact stabilization Y = Electrical Energy Required, kwh/yr $X = Plant capacities, mgd$ $qui$ rem Exten $Convex$ $r = 170,000 x^{1.00}$ Conventional activated sludge (complete mix) $Y = 170,000 x^{1.00}$ Conventional activated sludge (complete mix) $Y = 340,000 x^{1.00}$ Contact stabilization $Y = 210,000 x^{1.00}$ Contact stabilization $Y = 260,000 x^{1.00}$ Contact stabilization $Y = 100,000 x^$	ded Solids ssumptions: transfer effici p-hr (wire to wa g Parameters: tional activated ement = 1.0 lb O ved ed aeration oxyg consumed/lb BOD5 amed/lb NH4-N-N (it t stabilization lb O2 consumed/lb NH ge) oxidized dur Energy Requireme ality: ded Solids ssumptions: transfer effici	ter) sludge oxy consumed/ en requirem removed + 4, n reactor fr oxygen requ b BOD5 remu Z-N (in rec ing reacrat nt: Electr Influent (mg/1) 136 80 ency in was	rgen re- '1b BOD ₅ hent = 1.5 .6 1b O ₂ acd) oxidiz hirement = vord + 4.6 cycle tion tical Effluen (mg/1) 20		
(complete mix) Suspendent Y = 500,000 x1,00 Contact stabilization O2/ Y = 21ectrical Energy Required, kwh/yr Convertional activated sludge Y = 10,000 x1,00 Convertional activated sludge (complete mix) Suspendent Convertional activated sludge Suspendent Convertional	ssumptions: transfer effici p-hr (wire to wa g Parameters: tional activated ement = 1.0 lb 0 ved ed aeration oxyg consumed/lb RH ₄ -N-N (it stabilization lb 0 ₂ consumed/lb NH ge) oxidized dur Energy Requireme ality: ded Solids ssumptions: transfer effici	136 80 ency = 1.44 ter) sludge oxy 2 consumed/ en requirem removed + 4, n reactor fo b BOD5 remu 4-N (in rec ing reacrat nc: Electr Influent (mg/1) 136 80 ency in was	$\begin{array}{c} 20\\ 20\\ 20\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 1$		
$Y = 300,000 X^{1.00} Contact stabilization  Y = 500,000 X^{1.00} Contact stabilization  Y = Electrical Energy Required, kwh/yr  X = Plant capacities, mgd  Y = 170,000 X^{1.00} Conventional activated sludge  (complete mix)  Y = 170,000 X^{1.00} Conventional activated sludge  (complete mix)  Y = 210,000 X^{1.00} Contact stabilization  Y = 260,000 X^{1.00}  Y = 260,000 X^{1.00}  Y = 260,000 X^{1.00}  Superati  X = Plant Capacity, mgd  3-32 Aerated Ponds  Y = Electrical Energy Required, kwh/yr  X = Plant Capacity, mgd  Super  Super $	transfer effici p-hr (wire to wa g Parameters: tional activated ement = 1.0 lb 0 ved ed aeration oxyg consumed/lb B0h5 amed/lb Nh4-N-N (it t stabilization lb 02 consumed/lb Nh ge) oxidized dur Energy Requireme ality: ded Solids ssumptions: transfer effici	ter) sludge oxy consumed/ en requirem removed + 4, n reactor fr oxygen requ b BOD5 remu Z-N (in rec ing reacrat nt: Electr Influent (mg/1) 136 80 ency in was	rgen re- 'lb BOD5 hent = 1.5 .6 lb O2 aed) oxidiz hirement = yele ion tical Effluen (mg/l) 20		
Y = 300,000 X ^{1.00} Contact stabilization       Op/operating         Y = Electrical Energy Required, kwh/yr       Operating         X = Plant capacities, mgd       qui         remme       Extend         Gondard       Gonventional activated sludge         Y = 170,000 X ^{1.00} Conventional activated sludge         Y = 170,000 X ^{1.00} Contact stabilization         Y = 210,000 X ^{1.00} Extended aeration         Y = 210,000 X ^{1.00} Contact stabilization         Y = 260,000 x ^{1.00} Mater Qui         Y = 260,000 x ^{1.00} Suspen         Y = 260,000 x ^{1.00} Suspen         Y = 260,000 x ^{1.00} Suspen         Y = Plant Capacity, mgd       Low-sj         Mater Qui       Low-sj         Mater Qui       Suspen         Y = 260,000 x ^{1.00} Suspen         Y = 260,000 x ^{1.00} Suspen         Y = 180,000 x ^{1.00} Suspen         Y = 180,000 x ^{1.00} Ammoni <td><pre>p-hr (wire to wa g Parameters: tional activated ement = 1.0 lb 0 ved ed aeration oxyg consumed/lb NH_d=N=N (i t stabilization lb 02 consumed/lb NH ge) oxidized dur Energy Requireme ality: ded Solids ssumptions: transfer effici</pre></td> <td>ter) sludge oxy consumed/ en requirem removed + 4, n reactor fr oxygen requ b BOD5 remu Z-N (in rec ing reacrat nt: Electr Influent (mg/1) 136 80 ency in was</td> <td>rgen re- 'lb BOD5 hent = 1.5 .6 lb O2 aed) oxidiz hirement = yele ion tical Effluen (mg/l) 20</td>	<pre>p-hr (wire to wa g Parameters: tional activated ement = 1.0 lb 0 ved ed aeration oxyg consumed/lb NH_d=N=N (i t stabilization lb 02 consumed/lb NH ge) oxidized dur Energy Requireme ality: ded Solids ssumptions: transfer effici</pre>	ter) sludge oxy consumed/ en requirem removed + 4, n reactor fr oxygen requ b BOD5 remu Z-N (in rec ing reacrat nt: Electr Influent (mg/1) 136 80 ency in was	rgen re- 'lb BOD5 hent = 1.5 .6 lb O2 aed) oxidiz hirement = yele ion tical Effluen (mg/l) 20		
X = Plant capacities, mgd  X = Plant capacities, mgd  X = Plant capacities, mgd  Convext  K = Plant capacities, mgd  Convext  Contant  Line  Contant  Line  Summary  Supper  Activated Sludge - Jet Diffuser  Y = 170,000 x1.00  Y = 170,000 x1.00  Y = 100,000 x1.00  Conventional activated sludge  Convext  Convext  Supper  Supper  Convext  Convext  Convext  Convext  Supper  Convext	tional activated ement = 1.0 lb 0 ved ed aeration oxyg consumed/lb BOD5 amed/lb NH4-N-N (it t stabilization lb O2 consumed/lb NH ge) oxidized dur Energy Requireme ality: ded Solids ssumptions: transfer effici	<pre>2 consumed/ en requirem removed + 4, n reactor fi oxygen required b BOD5 remu 4-N (in rec ing reacrat nt: Electr Influent (mg/1) 136 80 ency in was</pre>	<pre>/1b BOD5 /b BOD5</pre>		
$\begin{array}{c} \mbox{conta}\\ \mbox{Conta}\\ \mbox{Interpreta}\\ \mbox{Supper}\\ \mbox{3-31} & Activated Sludge - Jet Diffuser & Water Quark & Water & Water & Water & W$	<pre>umed/1b NH₄-N-N {i t stabilization lb O₂ consumed/1b 2 consumed/1b NH ge) oxidized dur Energy Requireme ality: ded Solids ssumptions: transfer effici</pre>	n reactor fo oxygen requ b BOD5 rema ing reactat nt: Electr Influent (mg/l) 136 80 ency in was	eed) oxidiz ifrement = oved + 4.6 yele ion ical Effluen (mg/t) 20		
$Y = 170,000 x^{1.00}$ Conventional activated sludge (complete mix) $Y = 340,000 x^{1.00}$ Extended aeration $Y = 210,000 x^{1.00}$ Contact stabilization $Y = 210,000 x^{1.00}$ Contact stabilization $Y = 210,000 x^{1.00}$ $Y = 210,000 x^{1.00}$ $Y = 260,000 x^{1.00}$ $Y = 260,000 x^{1.00}$ $Y = 260,000 x^{1.00}$ $Y = 210,000 x^{1.00}$ $Y = 100,000 x^{1.00}$	ded Solids ssumptions: transfer effici	(mg/1) 136 80 ency in was	(mg/1) 20		
$Y = 340,000 X^{1.00} Extended aeration Design A Y = 210,000 X^{1.00} Contact stabilization Oxygen Y = 210,000 X^{1.00} Contact stabilization I,8 Y = Electrical Energy Required, kwh/yr Operatin X = Plant Capacity, mgd Convert Extended Ib 0 02 convert Extended Ib 0 03-32 Aerated Ponds Value Y = 260,000 X^{1.00} BOD5 Y = Electrical Energy Required, kwh/yr Design A Iow-sy Motor Acratt Total 00peratin 00 convert Note of Convert Not of Convert Not of Convert Not of Convert Not of Convert Not$	ssumptions: transfer effici	136 80 ency in was	20		
$Y = 340,000 X^{1.00}$ Extended aeration $Y = 210,000 X^{1.00}$ Contact stabilization $Y = 210,000 X^{1.00}$ Contact stabilization $Y = 210,000 X^{1.00}$ Contact stabilization $Y = 210,000 X^{1.00}$ $Y = 210,000 X^{1.00}$ $Y = 260,000 X^{1.00}$ $Y = 260,000 X^{1.00}$ $Y = 260,000 X^{1.00}$ $Y = 260,000 X^{1.00}$ $Y = 210,000 X^{1.00}$ $Y = 210,000 X^{1.00}$ $Y = 100,000 X^{1.00}$ $Y = 180,000 X^{1.00}$	ssumptions: transfer effici	80 ency in was			
Y = 210,000 $X^{1.00}$ Contact stabilization Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd Convex qui remu Extend b 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	transfer effici		20		
Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd Converting Y = Electrical Energy Required, kwh/yr 3-32 Aerated Ponds Y = 260,000 $x^{1.00}$ Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd Hotor X = Plant Capacity, mgd 3-33 Nitrification - Suspended Growth Y = 180,000 $x^{1.00}$ Ammoni	15 O ₂ /hp-hr (wir	Design Assumptions: Oxygen transfer efficiency in wastewater =			
quit remu Extend Extend 1b ( $0_2$	1.8 lb O ₂ /hp-hr (wire to water) Operating Parameters: Conventional activated sludge oxygen re-				
1 b c 0 2 c 0 0 x 1 0 0 0 2 c 0 0 x 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0	ement = 1.0 lb 0				
Contact 1.1 1.6 3-32 Aerated Ponds Water Qu $Y = 260,000 x^{1.00}$ BOD5 Susper Y = Electrical Energy Required, kwh/yr Design A Low-sp Motor Aerate $X = Plant Capacity, mgd$ Low-sp Motor Aerate 1.00 3 - 33 Nitrification - Suspended Growth Water Qu $Y = 180,000 x^{1.00}$ Ammoni	ed aeration oxyg 2 consumed/lb BO onsumed/lb NH ₄ -N	D5 removed	+ 4.6 lb		
Y = 260,000 x ^{1.00} BOD5         Y = Electrical Energy Required, kwh/yr       Busper         X = Plant Capacity, mgd       Low-sp         Motor       Acrato         3 cell       Total         0peratin       Oxyger         7       Susper         3-33       Nitrification - Suspended Growth       Water Que         Y = 180,000 x ^{1.00} Ammoni	t stabilization 1b O ₂ consumed/1 2 consumed/1b NH ge) oxidized dur Energy Required:	b BOD5 remo 4-N (in rec ing reaerat	oved + 4.6 Sycle Sion		
Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd Low-sj Motor Acratt to v 3 cell Total Operatin Oxyger remu Type of 3-33 Nitrification - Suspended Growth Y = 180,000 x ^{1.00} Ammoni	ality:	Influent	Effluent		
X = Plant Capacity, mgd X = Plant Capacity, mgd Low-sy Motor Acratt to v 3 cell Total Operatin Oxyger remu Type of 3-33 Nitrification - Suspended Growth Y = 180,000 x ^{1.00} Ammoni	· ·	(mg/1) 210	(mg/1) 25		
Aerato tov 3 celi Total Operatin Oxyger remo Type of 3-33 Nitrification - Suspended Growth Water Qu Y = 180,000 x ^{1.00} Ammoni	ded Solids ssumptions: eed mechanical s	230 urface aera	25 itors		
Total Operatin Oxyger 3-33 Nitrification - Suspended Growth $Y = 180,000 x^{1.00}$ Ammoni	efficiency = 90% r elficiency = 1 ater)		-hr (wire		
$3-33 \qquad \text{Nitrification - Suspended Growth} \qquad \qquad$	s – 1st cell aera detention time = g Parameter:	30 days	11/2/2		
$Y = 180,000 X^{1.00}$ Ammoni	requirement = 1 ved Energy Required:	-			
$Y = 180,000 x^{1.00}$ Ammoni		Influent (mg/l)	E)fluent (mg/1)		
BODs	aiity:	25 50	10		
Y = Electrical Energy Required, kwh/yr Design / X = Plant Capacity, mgd Mechar		kygen _, trans	ter		
wate Use of	r as N ssumptions: ical aeration, or	~			
Oxyger	( as N ssumptions: ical aeration, or ciency = 1.8 lb (	ificant im			
	i as N ssumptions: feal aeration, or ciency = 1.8 lb or r) lime has no sign gy requirement g Parameter: requirement = 44		NH4-N		
	i as N ssumptions: ical aeration, or ciency = 1.8 tb ( r) lime has no sign gy requirement g Parameter:	.6+16-0 <u>2</u> /16	.,		

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-34	Nitrification, Fixed Film Reactor Y = 133,000 $x^{0.92}$ Recycle = 0.5:1 Y = 151,000 $x^{0.92}$ Recycle = 1:1 Y = 226,000 $x^{0.92}$ Recycle = 2:1 Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Waper Quality: Influent Effluent (mg/l) (mg/l) Ammonia as N 25 2.5 BOD5 50 10 Design Assumptions: No forced draft Plastic media Pumping TDH = 40 ft Type of Energy Required: Electrical
3-35	<pre>Denitrification - Suspended Growth (Overall)   (Includes Methanol addition, reaction,         sedimentation and sludge recycle) log Y = 5.0043 + 0.9495 (log X) + 0.0248 (log X)²         - 0.0332 (log X)³ Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd</pre>	Water Quality: Influent Effluent (mg/1) (mg/1) NO ₃ -N 25 0.5 Design Assumptions: Methanol - Nitrogen ratio 3:1 Remaining design assumptions and operating parameters are shown on the following curves in EPA 430/9-77-011 Denitrification Reactor, Figure 3-36 Reaeration, Figure 3-37 Sedimentation and Sludge Recycle, Figure 3-38 Type of Energy Required: Electrical
3-36	Denitrification - Suspended Growth Reactor Y = 72,500 x ^{0.99} , Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Design Assumptions: Temperature = 15°C Nitrate removal = 0.1 lb N03-N/lb MLVSS/da Mixing device, submerged turbines, hp = 0. hp/1000 cu ft Methanol addition is included Operating Parameter: MLVSS = 1500 mg/l Type of Energy Required: Electrical
3-37	<ul> <li>Denitrification, Aerated Stabilization Reactor</li> <li>Y = 32,000 X^{1.00}</li> <li>Y = Electrical Energy Required, kwh/yr</li> <li>X = Plant Capacity, mgd</li> </ul>	Design Assumptions: Detention time = 50 min Mechanical aeration = 1 hp/1000 cu ft Type of Energy Required: Electrical
3-38	Denitrification, Sedimentation and Sludge Recycle log Y = 4.1171 + 0.7596 (log X) + 0.1607 (log X) ² - 0.0389 (log X) ³ Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Design Assumptions: Surface loading = 700 gpd/sq ft Sludge recycle = 50% @ 15 ft TDH Type of Energy Required: Electrical
3-39	Denitrification - Fixed Film, Pressure	Water Quality: Influent Effluent (mg/1) (mg/1)
	<pre>log Y = 4.4238 + 0.8657 (log X) + 0.0840 (log X)² + 0.0097 (log X)³ Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd</pre>	Nitrate as N 25 0.5 Design Assumptions: Sand media size = 2-4 mm Influent pumping TDH = 15 fr Loading rate = 1.7 gpm/sq ft Temp = 15°C Depth = 6 ft
		Operating Parameters: Backwash every 2 days for 15 min @ 25 gpm/sq ft and 25 ft TDH Methanol addition = 3.1 (CH ₂ OH:NO ₃ -N) Type of Energy Required: Electrical
3-40	Denitrification - Fixed Film, Gravity log Y = 3.9344 + 0.7310 (log X) + 0.1803 (log X) ² - 0.0453 (log X) ³ Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	<pre>Water Quality: Influent Effluent (mg/1) (mg/1) Nitrate as N 25 0.5 Design Assumptions: Sand media size = 2-4 mm Depth = 6 ft Loading rate = 1.7 gpm/sq ft Temperature = 15°C Operating Parameters: Backwash 15 min/day @ 25 gpm/sq ft and 25 ft TDH Methanol addition = 3:1 (CH_3OH:NO3-N) Type of Energy Required: Electrical</pre>

From EPA 30/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-41	Denitrification - Fixed Film, Upflow (Based on Experimental Data)	Water Quality: Influent Effluent (mg/l) (mg/l)
	$\log Y = 4.4935 + 0.8695 (\log X) + 0.0864 (\log X)^2$	Nitrate as N 25 0.5
	$-0.0012 (\log x)^3$	Design Assumptions: Sand media size = 0.6 mm
	Y = Electrical Energy Required, kwh/yr	Fluidized depth = 12 ft
	X = Plant Capacity, mgd	Influent pumping TDH = 20 ft Temperature = 15 ⁰ C
		Operating Parameters:
		Methanol addition = 3:1 (CH ₃ OH:NO ₃ -N) Type of Energy Required: Electrical
3-42	Single Stage Carbonaceous, Nitrification, and Denitrification Without Methanol Addition,	Water Quality: Influent Effluent (mg/l) (mg/l)
	Pulsed Air	BOD ₅ 210 20
	$Y = 391,000 x^{0.95}$	TKN 30 7.5
		Temperature 15 ⁰ C - Operating Parameters:
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Oxygen supply for nitrification/denitrific tion = 1.2 BOD5 removed + 4.2 (TKN removed) - 4.6 (0.6 TKN applied)*
		Mechanical aeration Denitrification mixing = 0.5 hp/1000 cu ft Detention time = 12 hours
		Includes final sedimentation @ 300 gpd/sq i and 50% sludge recycle Type of Energy Required: Electrical
		*Reference: Bishop, D.F., et al., WPCF Journal, p. 520 (1976)
3-43	Separate Stage Carbonaceous, Nitrification and Denitrification Without Methanol Addition (Based on Experimental Data)	Water Quality: Influent Effluent (mg/1) (mg/1) BOD ₅ 210 20
	-	NH ₃ -N 30 7.5
	$Y = 413,000 X^{0.98}$	Temperature 15°C -
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Operating Parameters: Air supply for nitrification = 1.1 lb O ₂ /1b BOD removed + 4.6 lb O ₂ /1b NH ₄ -N removed
		Mechanical aeration, 1.8 lb 02 transferred/hp-hr Denitrification mixing = 0.5 hp/1000 cu it
	•	3 hr detention Final aeration stage = 1 hr detention;
	· ·	l hp/1000 cu ft Sedimentation @ 700 gpd/sq ft; 30% recycle Type of Energy Required: Electrical
3-44	Single Stage Carbonaceous, Nitrification, and	Water Quality: Influent Effluent
	Denitrification Without Methanol Addition -	(mg/l) (mg/l)
	Orbital Plants* (Based on Experimental Data)	BOD 210 15 'NH 3-N' 30 4.5
	$Y = 436,000 x^{0.99}$	Temperature 15°C
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Operating Parameters: Total aeration ditch detention time = 8 h; F/M ratio = 0.16 Rotor aeration
		Sedimentation @ 700 gpd/sq ft; 50% recycle Type of Energy Required: Electrical *Reference: Natsche, N.F. and Spatziere, o Austrian Plant Knocks Out Nitrogen, Water a
3-45 ·	Lime Feeding	Wastes Engr., p. 18 (Jan, 1975) Design Assumptions:
	Y = 6,700 $x^{0.75}$ Slaked lime, low lime	Slaked lime used for 0.1-5 mgd capacity
	$Y = 11,000 \text{ x}^{0.75}$ Slaked lime, high lime	plants Quicklime used for 5-100 mgd capacity plan
	$Y = 7,600 X^{0.81}$ Quicklime, low lime	Operating Parameters:
	$Y = 13,300 X^{0.81}$ Quicklime, high lime	300 mg/1, Low Lime as Ca(OH) ₂ 600 mg/1, High Lime as Ca(OH) ₂
	Y = Electrical Energy Required, kwh/yr	Type of Energy Required: Electrical

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-46	Alum Feeding	Operating Parameters:
	$\log Y = 3.4969 + 0.2487 (\log X) + 0.2711 (\log X)^2$	Dosage - 150 mg/l as $A1_2(S0_4)3 - 14H_20$ Type of Energy Required: Electrical
	$+ 0.1337 (\log X)^3$	
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	· · · · · · · · · · · · · · · · · · ·
3-47	Ferric Chloride Feeding	Operating Parameter:
	$log Y = 3.4586 + 0.3358 (log X) + 0.2082 (log X)^{2} + 0.0053 (log X)^{3}$	Dosage – 85 mg/l as FeCl ₃ Type of Energy Required: Electrical
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	
3-48	Sulfuric Acid Feeding	Operating Parameter:
	$\log Y = 3.1523 + 0.0204 (\log X) + 0.0270 (\log X)^2$	Dosage = 450 mg/l (high lime system) Dosage = 225 mg/l (low lime system)
	+ 0.0188 $(\log X)^3$	Type of Energy Required: Electrical
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	
3-49 ,	Solids Contact Clarification - High Lime, Two Stage Recarbonation (Includes reactor clarifier, high lime feeding, sludge pumping, two stage recarbonation)	This curve is valid for chemical treatment of both raw sewage and primary effluent. Water Quality: Influent Effluen (Treatment of Raw Sewage) (mg/1) (mg/1)
	$\log Y = 5.1077 + 0.8739 (\log X) + 0.1084 (\log X)^{2}$ - 0.0549 (log X) ³ - Liquid CO ₂	Suspended Solids 250 10 Phosphate as P 11.0 1.0 Water Quality: Influent Effluen
	- 0.0549 (log X) - Liquid $CO_2$ Y = Electrical Energy Required, kwh/yr	(Treatment of Pri. Eff.) (mg/1) (mg/1) Suspended Solids 80 10.0
	X = Plant Capacity, mgd	Phosphate as P 11.0 1.0 Design Assumptions and Operating Parameters are shown on the following curves in
EPA 430/ 3-45; Re ing 3-61; Re	EPA 430/9-77-011. Lime Feeding, Figure 3-45; Reactor Clarifier, 3-53; Sludge Pump ing, 3-4; Recarbonation, 3-60, 3-61; Recarbonation Clarifier, 3-15 Type of Energy Required: Electrical	
3-50	Solids Contact Clarification, High Lime, Sulfuric Acid Neutralization (Includes reactor clarifier, high lime feed, chemical sludge pumping, sulfuric acid feed)	This curve is valid for chemical treatment o both primary and secondary effluents Water Quality: Influent Effluen (Treatment of Raw Sewage) (mg/1) (mg/1) Suspended Solids 250 10
	$\log Y = 4.5932 + 0.6333 (\log X) + 0.2024 (\log X)^2$	Phosphate as P 11.0 1.0 Water Quality: Influent Effluen
	0.0208 (log X) ³	(Treatment of Sec. Eff.) (mg/1) (mg/1) Suspended Solids 30 10
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Phosphate as P 11.0 1.0 Design Assumptions and Operating Parameters are shown on the following curves in EPA
		430/9-77-011: Lime Feeding, Figure 3-45; Reactor Clarifier, 3-53; Sludge Pumping, 3-4;
		Sulfuric Acid Feeding, 3-48 Type of Energy Required: Electrical
3-51	Solids Contact Clarification Single Stage Low Lime With Sulfuric Acid Neutralization	This curve is valid for chemical treatment o both raw sewage and primary effluents
•.	(Includes reactor clarifier, low lime feeding, sludge pumping, sulfuric acid feeding)	Water Quality:         Influent         Effluen           (Treatment of Raw Sewage)         (mg/1)         (mg/1)           Suspended Solids         250         20
•• •	$\log Y = 4.5447 + 0.6844 (\log X) + 0.1365 (\log X)^{2} - 0.0461 (\log X)^{3}$	Phosphate as P     11.0     2.0       Water Quality:     Influent     Effluen       (Treatment of Pri. Eff.)     (mg/l)     (mg/l)
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Suspended Solids 30 20 Phosphate as P 11.0 2.0 Design Assumptions and Operating Parameters are shown on the following curves in EPA 430/9-77-011: Lime Feeding, Figure 3-45; Reactor Clarifier, 3-53; Sludge Pumping, 3-4;
		Sulfuric Acid Feeding, 3-48 Type of Emergy Required: Electrical

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
. 3-52	Solids Contact Clarification, Alum or Ferric Chloride Addition (Includes chemical feeding, reactor clarifier, sludge pumping) log Y = $4.6237 + 0.6983 (\log X) + 0.1477 (\log X)^2$ $- 0.0470 (\log X)^3 - Alum$ log Y = $4.5496 + 0.6894 (\log X) + 0.1645 (\log X)^2$ $- 0.0559 (\log X)^3 - Ferric Chloride$ Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	This curve is valid for chemical treatment of both raw sewage and primary offluent) Water Quality: Influent Effluent (Treatment of Raw Sewage) (mg/1) Suspended Solids 250 30 Phosphate as P 11.0 1.0 Water Quality: Influent Effluen (Treatment of Pri, Effl.) (mg/1) Suspended Solids 80 10 Phosphate as P 11.0 1.0 Design Assumptions and Operating Parameters are shown on the following curves in EPA 430/9-77-011: Alum or Ferric Chloride Feeding, Figure 3-46, 3-47; Reactor Clarifier, 3-5; Sludge Pumping, 3-5, 3-6 Type of Energy Required: Electrical
3-53	Reactor Clarifier log Y = 4.3817 + 0.7223 (log X) + 0.0947 (log X) ² - 0.0027 (log X) ³ Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Operating Parameters: Separation zone overflow rate, lime = 1400 gpd/sq ft Separation zone overflow rate, alum or ferric chloride = 1000 gpd/sq ft Type of Energy Required: Electrical
3-54	<pre>Separate Rapid Mixing, Flocculation, Sedimentation High Lime, Two Stage Recarbonation log Y = 5.0961 + 0.9484 (log X) + 0.1979 (log X)² - 0.0101 (log X)³ - Liquid CO₂ Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd</pre>	This curve is valid for chemical treatment of both raw sewage and secondary effluent Water Quality: Influent Effluent (Treatment of Raw Sewage) (mg/1) (mg/1) Suspended Solids 250 10 Phosphate as P 11.0 1.0 Water Quality: Influent Effluent (Treatment of Scc. Eff.) (mg/1) (mg/1) Suspended Solids 30 10.0 Phosphate as P 11.0 1.0 Design Assumptions and Operating Parameters are shown on the following curves in EPA 430/9-77-011: Lime Feeding, Figure 3-45; Rapid Mixing, 3-58; Flocculation, 3-59; Sedimentation, 3-15; Recarbonation, 3-60, 3-61; Sludge Pumping, 3-4 Type of Energy Required: Electrical
3-55	<pre>Separate Rapid Mixing, Flocculation, Sedi- mentation Single Stage High Lime, Neutralization With Sulfuric Acid log Y = 4.5919 + 0.6683 (log X) + 0.1926 (log X)² - 0.0432 (log X)³ Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd</pre>	This curve is valid for chemical treatment o both raw sewage and secondary offluent Water Quality: Influent Effluent (Treatment of Raw Sewage) (mg/1) Suspended Solids 250 10 Phosphate as P 11.0 1.0 Water Quality: Influent Effluent (Treatment of Sec. Eff.) (mg/1) (mg/1) Suspended Solids 30 10 Phosphate as P 11.0 1.0 Design Assumptions and Operating Parameters are shown on the following curves in EPA 430/9-77-011: Lime Feeding, Figure 3-45; Rapid Mixing, 3-58; Flocculation, 3-59; Sedimentation, 3-15; Sludge Pumping, 3-4; Sulfuric Acid Feeding, 3-48 Type of Energy Required: Electrical

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-62	Microscreens Y = 65,000 X ^{0.79} 23µ Screen Y = 42,700 X ^{0.79} 35µ Screen Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	<pre>Water Quality: Influent Effluent</pre>
3-63	Pressure and Gravity Filtration Y = 31 x ^{1.01} Pressure Filters Y = 22 x ^{1.00} Gravity Filters Y = Electrical Energy Required, thousand kwh/yr X = Plant Capacity, mgd	<pre>Water Quality: Influent Effluen (mg/l) (mg/l) Suspended Solids 20 &lt;10 Design Assumptions: Includes filter supply pumping (or allow- ance for loss of treatment system head) filter backwash supply pumping, and hydraulic surface wash pumping (rotating arms) Pump Efficiency: 70%; motor efficiency: 93% Filter and back wash head: gravity filters l4 ft, TDH; pressure filters, 20 ft TDH Surface wash pumping: 20 ft TDH Filtration rate (both filters): 5 gpm/sq ft Back wash rate (both filters): 18 gpm/sq ft Hydraulic surface wash rate (rotating arm) l gpm/sq ft (average) Operating Parameters: Filter run: 12 hrs. for gravity, 24 hrs. for pressure Back wash pumping (both filters): 15 min. per back wash Surface wash Type of Energy Required: Electrical</pre>
3-64	Granular Carbon Adsorption - Downflow Pressurized Contractor Y = 74,000 X ^{1.00} Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	<pre>Water Quality: Influent Effluent (mg/l) (mg/l) Suspended Solids 20 10 COD x 40 15 Design Assumptions: 8 x 30 mesh carbon, 28 ft carbon depth, 3 min. contact Filtration head: 28 ft TDH (carbon depth) + 9 ft. TDH, (piping and freeboard) Filtration pumping: 7 gpm/sq ft. 4 37 ft. TDH (average) Back wash pumping: 18 gpm/sq ft. 0 37 ft. TDH (average) Operating Parameters: Operate to 20 ft. head loss building before backwashing Backwash pumping: 15 min per backwash Type of Energy Required: Electrical</pre>
3-65	Granular Carbon Adsorption - Downflow Gravity Contactor Y = 31,000 X ^{1.00} Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Water Quality: (mg/1) (mg/1) Suspended Solids 20 10 COD 40 15 Design Assumptions: 8 x 30 mesh carbon 3.5 gpm/sq ft 30 min contact (14 ft carbon depth) Operate to 6 ft headloss buildup before backwashing Type of Energy Required: Electrical

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3–56	<pre>Separate Rapid Mixing, Flocculation, Sedimentation Low Lime, Neutralization With Sulfuric Acid log Y = 4.4521 + 0.7260 (log X) + 0.2292 (log X)² - 0.0022 (log X)³ Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd</pre>	This curve is valid for chemical treatment of both raw sewage and secondary effluent Water Quality: Influent Effluen (Treatment of Raw Sewage) (mg/l) (mg/l) Suspended Solids 250 in Phosphate as P 11.0 i.0 Water Quality Influent Effluen (Treatment of Sec. Eff.) (mg/l) (mg/l) Suspended Solids 30 i0 Phosphate as P 11.0 i.0 Design Assumptions and Operating Parameters are shown on the following curves in EPA 430/9-77-011: Rapid Mixing, Figure 3-58; Flocculation, 3-59; Sedimentation, 3-15; Lime Feeding, 3-45; Sulfuric Acid Feeding, 3-48; Chemical Sludge Pumping, 3-4
3-57	Separate Rapid Mixing, Flocculation, Sedimentation Alum or Ferric Chloride Addition log Y = 4.4096 + 0.6351 (log X) + 0.2349 (log X) ² $- 0.0169 (log X)^3$ - Alum log Y = 4.3395 + 0.6226 (log X) + 0.2215 (log X) ² $- 0.0133 (log X)^3$ - Ferric Chloride Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	This curve is valid for chemical treatment both raw sewage and secondary effluent Water Quality: Influent Effluen (Treatment of Raw Sewage) (mg/l) (mg/l) Suspended Solids 250 10 Phosphate as P 11.0 1.0 Water Quality: Influent Effluen (Treatment of Sec. Eff.) (mg/l) (mg/l) Suspended Solids 30 10.0 Phosphate as P 11.0 1.0 Design Assumptions and Operating Parameters are shown on the following curves in EPA 430/9-77-011: Alum or Ferric Chloride Feeding, Figures 3-46 and 3-47; Rapid Mixing, 3-58; Flocculation, 3-59; Sedimentation, 3-14; Sludge Pumping, 3-5 and 3-6 Type of Energy Required: Electrical
3-58	Rapid Mixing Y = 3,900 X ^{1.00} Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Design Assumptions: Detention time = 30 seconds G = 600 sec ⁻¹ Temperature = 15 ^o C Coagulant: lime or alum or ferric chloric Type of Energy Required: Electrical
3-59	Flocculation Y = 9,840 X ^{0.98} Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Design Assumptions: Detention time = 30 minutes G = 110 sec ⁻¹ Temperature = 15 ^o C Coagulant: lime or alum or ferric chlorid Type of Energy Required: Electrical
3-60	Recarbonation - Solution Feed of Liquid CO ₂ Source Y = 89,000 $x^{1.03}$ Low lime Y = 141,000 $x^{1.03}$ High lime Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Design Assumptions: Vaporizer = 25 lb $CO_2/kwh$ Injector pumps = 42 gpm/1000 lb $CO_2 \notin 65$ p Operating Parameters: Low Lime = 3000 lb $CO_2/mil$ gal High Lime = 4500 lb $CO_2/mil$ gal Type of Energy Required: Electrical
3-61	Recarbonation - Stack Gas as CO ₂ Source Y = 50,000 X ^{1.00} Low lime Y = 170,000 X ^{1.00} High lime Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Design Assumptions: Stack Cas = 10% CO ₂ , 0.116 lb CO ₂ cu ft at standard conditions (60°F, 14.7 psia); operating temperature, 110°F (following scrubbing) Loss to atmosphere = 20% Injection pressure = 8 psi Operating Parameters: Low lime = 3000 lb CO ₂ /mil gal High lime = 6000 lb CO ₂ /mil gal Type of Energy Required: Electrical

.

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-66	Granular Carbon Adsorption - Upflow Expanded Bed Y = 62,000 X ^{1.00} Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd Granular Activated Carbon Regeneration Y = 38,000 X ^{1.00} Clarified raw wastewater Electricity	Water Quality: Influent Effluent (mg/1) (mg/1) Suspended Solids 20 20 COD 40 15 Design Assumptions: 30 minutes contact 12 x 40 mesh carbon 15% expansion, 7 gpm/sq ft (28 ft carbon depth) 3 ft freeboard Type of Energy Required: Electrical Design Assumptions: Electricity includes furnace driver, after- burner, scrubber blowers and carbon
	Y = 4,000 X ^{1.00} Y = 10,000 X ^{1.00} Y = 1,100 X ^{1.00} Clarified raw wastewater Fuel - million Btu/yr Clarified secondary effluent Electricity Clarified secondary effluent Fuel - million Btu/yr Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	conveyors Fuel required per lb Carbon regenerated Furnace = 3,600 Btu Steam = 1,600 Btu Afterburner = 2,400 Btu Operating Parameters: Carbon dose: Clarified raw wastewater, 1500 lb/mil gal Clarified secondary efflu 400 lb/mil gal Type of Energy Required: Electrical and
3-68	<pre>Iou Exchange for Ammonia Removal, Gravity and Pressure Y = 310,000 x^{1.00} Pressure Y = 220,000 x^{1.00} Gravity Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd</pre>	Water Quality     Influent     Effluent (mg/1)       Suspended Solids     5       NH ₃ -N     15     0.1-2       Design Assumptions:     150     bed volumes throughput/cycle       6     bed volumes throughput/cycle       6     bed volumes/hr loading rate       Gravity bed, available head = 7.25 ft       Pressure bed, average operating head = 10       Includes backwash but not regeneration nor       regenerant renewal       10% downtime for regeneration       Type of Energy Required:
3-69 .	<pre>Ion Exchange For Ammonia Removal - Regeneration Y = 2,000 X^{1.00} Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd</pre>	Design Assumptions: Regeneration with 2% NaCl 40 BV/regeneration; 1 regeneration/24 hrs Total head = 10 ft Does not include regenerant renewal Applicable to gravity or pressure beds Type of Energy Required: Electrical
3-70	<pre>Ion Exchange for Ammonia Removal - Regenerant Renewal by Air Stripping Y = 120,000 X^{1.00} with NH₃ recovery Y = 65,000 X^{1.00} without NH₃ recovery Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd</pre>	<pre>Design Assumptions: Regenerant softened with NaOH, clarified at 800 gpd/sq ft 40 BV/regeneration cycle; 150 BV throughput per cycle Regenerant air stripped; tower loaded at 70 gpd/sq ft with 565 cu ft air/gal Stripping tower overall height = 32 ft Ammonia recovered in adsorption tower with H₂SO₄ Type of Energy Required: Electrical</pre>
3-71	<pre>Ion Exchange for Ammonia Removal, Regenerant Renewal by Steam Stripping Y = 3,180 X^{1.04} Electricity Y = 6,150 X^{1.03} Fuel-million Btu/yr Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd</pre>	<pre>Design Assumptions: Steam stripping used Spent regenerant softened with soda ish at pH = 12 Steam stripper height = 18 ft 4.5 BV/regeneration cycle; 150 BV throughput/ion exchange cycle Power includes softening, pH adjustment, pumping to stripping tower Fuel based on 15 lb steam required/1,000 gal wastewater treated NH₃ recovered Type of Energy Required: Electrical and Fuel </pre>

igure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3- 72	Ammonia Stripping $Y = 82,200 x^{1.01}$ Pumping $Y = 510,000 x^{1.01}$ Fans $Y = 610,000 x^{1.01}$ Total Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Water Quality: pH Ii Il Air temp., ^O F 70 70 NH ₃ -N, mg/1 15 3 Design Assumptions: Pump TDH = 50 ft Operating Parameters: Hydraulic loading = 1.0 gpm/sq ft Air/Water ratio = 400 cu ft/gal Type of Energy Required: Electrical
3-73	Breakpoint Chlorination With Dechlorination log Y = 5.1423 + 0.3092 (log X) + 0.1369 (log X) ² + 0.0458 (log X) ³ Dechlorination with Activated Carbon log Y = 5.0593 + 0.2396 (log X) + 0.0844 (log X) ² + 0.0084 (log X) ³ Dechlorination with Sulfur Dioxide Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	<pre>Water Quality: Influent Efiluent (mg/1) (mg/1) NH₄-N 15 0.1 Design Assumptions: Dosage ratio, Cl₂:NH₄-N is 8:1 Residual Cl₂ = 3 mg/1 Detention time in rapid mix = 1 min. Sulfur Dioxide feed ratio, SO₂:Cl₂ = 1: Activated carbon pumping, TDH = 10 ft Type of Energy Required: Electrical</pre>
3-74	Chlorination and Dechlorination for Disinfection log Y = 4.0108 + 0.9289 (log X) + 0.0868 (log X) ² + 0.0065 (log X) ³ Chlorination with Dechlorination log Y = 3.9698 + 1.0172 (log X) + 0.0766 (log X) ² - 0.0658 (log X) ³ Chlorination Without Dechlorination Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	<pre>Water Quality: Influent Effluent BOD₅, mg/l 20 20 Suspended Solids, mg/l 20 20 Coliform, no./100 ml &gt;1000 200 Design Assumptions: Evaporator used for dosages greater than 2000 lb/day Dechlorination by SO₂ assuming an SO₂:Cl₂ ratio of l:1 and SO₂:Cl₂ residual of l:1 No evaporator for SO₂ Operating Parameters: Chlorine dosage = 10 mg/l Chlorine residual = 1 mg/l Type of Energy Required: Electrical</pre>
3-75	Chlorine Dioxide Ceneration and Feeding log Y = $3.4604 + 0.3656$ (log X) + $0.2171$ (log X) ² + $0.0541$ (log X) ³ Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Design Assumptions: Chlorine Dioxide dosage is 4 mg/l (equivalent to 10 mg/l Cl ₂ ) Sodium Chlorite: Chlorine Dioxide catio = 1.68 to l Chlorine: Chlorine Dioxide ratio = 1.68 to Type of Energy Required: Electrical
3- 76	Ozone Disinfe tion Y = 150,000 X ^{1.00} Air Feed Y = 57,000 X ^{1.00} Oxygen Feed Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Water Quality: Influent Effluent Suspended Solids, mg/l 10 10 Fecal coliforms/100 ml 10,000 200 Design Assumptions: Ozone generated from air @ 1.0% wt. concen- tration and oxygen @ 2.0% Operating Parameters: Ozone dose = 5 mg/l Type of Energy Required: Electrical
3-77	<pre>Ion Exchange for Demineralization, Gravity and Pressure Y = 90,000 X^{1.00} Gravity Y = 120,000 X^{1.00} Pressure Y = Electrical Energy Required, kwh/yr X Plant Capacity, mgd</pre>	Water Quality: Influent Effluent (mg/l) (mg/l) TDS 500 50 Design Assumptions: Loading rate = & gpm/cu ft Gravity bed, available head = 7.25 ft Pressure bed, average operating head 10 ft Includes backwash but not regeneration nor regenerant disposal Type of Energy Required: Electrical

Figure Number From EPA 30/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-78	Reverse Osmosis Y = 2,850,000 X ^{0.95} Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Water Quality: Influent Effluent pH 6 7 Turbidity, JTU 1.0 0.1 TDS, mg/1 500-1300 100-200 Design Assumptions: Feed pressure = 600 psi Single pass system Operating Parameters: Water recovery: 0.1 - 1 mgd 75% 1 - 10 mgd 80% 10 - 100 mgd 85% Type of Energy Required: Electrical
3-79	Land Treatment by Spray Irrigation (Modified) Y = 270,000 X ^{1.00} Center Pivot Y = 164,000 X ^{1.00} Solid Set Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Design Assumptions: Irrigation season is 250 days/yr Center pivot, TDH = 196 ft Solid set, TDH = 175 ft Type of Energy Required: Electrical
3-80	Land Treatment by Ridge and Furrow Irrigation and Flooding (Modified) Y = 20 X ^{1.00} Ridge and Furrow Fuel, million Btu/yr Y = 16,000 X ^{1.00} Flooding Power Y = 12,000 X ^{1.00} Ridge and Furrow Power Y = Electrical Energy Required, kwh/yr except for fuel X = Plant Capacity, mgd	Design Assumptions: Irrigation season is 250 days/yr Power includes runoff return pumping Fuel for annual leveling and ridge and furrow replacement Type of Energy Required: Electrical and Diesel Fuel
3-81	Infiltration/Percolation and Overland Flow by Flooding (Modified) Y = 9,200 x ^{1.00} Overland Flow Y = 3,000 x ^{1.02} Rapid Infiltration Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Design Assumptions: Infiltration/percolation, TDH = 5 ft Overland flow, TDH = 10 ft Disposal time is 250 days/yr for Overland Flow Disposal time is 365 days for Rapid Infiltration Type of Energy Required: Electrical
3-82	<pre>Infiltration/Percolation and Overland Flow by     Solid Set Sprinklers (Modified) Y = 170,000 X^{1.00} Overland Flow Y = 75,000 X^{1.00} Rapid Infiltration Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd</pre>	Design Assumptions: Infiltration/percolation spray, TDH = 115 f Overland flow spray, TDH = 175 ft Disposal time is 250 days/yr for Overland Flow Disposal time is 365 days/yr for Rapid Infiltration Type of Energy Required: Electrical
3-83	Wastewater Treatment Plant Building Heating Requirements $\log Y = 2.6362 + 0.4562 (\log X) + 0.0795 (\log X)^2 + 0.0026 (\log X)^3$ Minneapolis $\log Y = 2.4485 + 0.4498 (\log X) + 0.0483 (\log X)^2 - 0.0345 (\log X)^3$ New York $\log Y = 1.8742 + 0.4162 (\log X) + 0.0732 (\log X)^2 - 0.0118 (\log X)^3$ Los Angeles Y = Building Heating Requirements, million Btu/yr	Design Assumptions: Four fresh air changes/hr Storm windows and insulated walls and ceilings 70 percent fuel utilization factor See Chapter 5, pages 5-2 to 5-7 in EPA 430/9-77-011

Figure Number From iPA 30/9–7–011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-84	Wastewater Treatment Plant Building Cooling Requiréments	Note: See chapter 5, pages 5-8 to 5-10 in EPA 430/9-77-011
	$\log Y = 4.0520 + 0.5279 (\log X) + 0.0856 (\log X)^2$ - 0.0168 (log X) ³ Miami	
	$\log Y = 2.8103 + 0.5304 (\log X) + 0.1114 (\log X)^2$	
	-0.0044 (log X) ³ Minneapolis	
	$\log Y = 2.9050 + 0.5226 (\log X) + 0.0692 (\log X)^2$	
	$-0.0325 (\log X)^3$ New York	
	Y = Building Cooling Requirements, kwh/yr X = Plant Capacity, mgd	
3-85	Gravity Thickening	See Table 3-4 in EPA 430/9-77-011 for design
	$Y = 6.72 x^{0.95}$ Lime Sludge and Other Sludge for Thickener and <2,200 ft ²	assumptions and operating parameters. Lime curve based on tertiary system at 60
	$Y = 174 x^{0.53}$ Other Sludge from 2,200 to 9,000 ft ² of Thickener Area	lb/sq ft/day Type of Energy Required: Electrical
	Y = 1.70 $X^{1.03}$ Other Sludge for Thickener Area >9,000 ft ²	
	Y = Electrical Energy Required, kwh/hr X = Thickener Area, sq ft	
3-86	Air Flotation Thickening	See Table 3-5 for design assumptions and
	$Y = 1,730 x^{0.87}$	operating parameters in EPA 430/9-77-011.
	Y = Electrical Energy Required, kwh/yr X = Surface Area, sq ft	Curve corresponds to a maximum air require- ment of 0.2 lb/lb solids and average of 0.3 scfm air/sq ft surface area. Type of Energy Required: Electrical
3-87	Basket Centrifuge	Design Assumptions:
	$Y = 1,070 \text{ x}^{0.72}$ <800 ft ³ /day of dewatered solids	Operating hp is .375 times rated hp See Table 3–6 for specific sludge
	$x = 160 x^{1.00}$ >800 ft ³ /day of dewatered solids	characteristics in EPA 430/9-77-011.
	Υ = Electrical Energy Required, kwh/yr X = Dewatered Solids Capacitν, cu ft/day	Multiple units required above 800 cu ft/day capacity
		Operating Parameters: Machines run for 20 min, are off for 16 min 10 min, allowed tor unloading, restarting and attaining running speed. Type of Energy Required: Electrica!
2 80	Elutriation	
3-88	Elueriation	
		Sludge 1. Digested primary @ 8% solids
	$Y = 1,660 x^{0.94}$ Digested Primary	1. Digested primary @ 8% solids 2. Digested primary + W.A.S. @ 4% solids
		1. Digested primary @ 8% solids
	Y = 1,660 x ^{0.94} Y = 3,100 x ^{0.97} Digested Primary + Waste Activated Sludge and Digested Primary + Waste Activated	<ol> <li>Digested primary @ 8% solids</li> <li>Digested primary + W.A.S. @ 4% solids</li> <li>Digested primary + W.A.S. (+ FeCl₃) @ 4% solids</li> <li>Design Assumptions:</li> </ol>
	Y = 1,660 x ^{0.94} Y = 3,100 x ^{0.97} Digested Primary + Waste Activated Sludge and Digested Primary + Waste Activated Sludges with FeCl ₃	<ul> <li>l. Digested primary @ 8% solids</li> <li>2. Digested primary + W.A.S. @ 4% solids</li> <li>3. Digested primary + W.A.S. (+ FeCl₃)</li> <li>@ 4% solids</li> <li>Design Assumptions: Overflow rates = 800 gpd/sq ft for 1 500 gpd/sq ft for 2 &amp; 3</li> </ul>
	Y = 1,660 x ^{0.94} Y = 3,100 x ^{0.97} Digested Primary + Waste Activated Sludge and Digested Primary + Waste Activated	<pre>l. Digested primary @ 8% solids 2. Digested primary + W.A.S. @ 4% solids 3. Digested primary + W.A.S. (+ FeCl₃) @ 4% solids Design Assumptions: Overflow rates = 800 gpd/sq ft for 1 500 gpd/sq ft for 2 &amp; 3 Mixing energy: G = 200 sec⁻¹ for 5 min.</pre>
	Y = 1,660 x ^{0.94} Y = 3,100 x ^{0.97} Digested Primary Digested Primary + Waste Activated Sludge and Digested Primary + Waste Activated Sludges with FeCl ₃ Y = Electrical Energy Required, kwh/yr	<ol> <li>Digested primary @ 8% solids</li> <li>Digested primary + W.A.S. @ 4% solids</li> <li>Digested primary + W.A.S. (+ FeCl₃) @ 4% solids</li> <li>Design Assumptions: Overflow rates = 800 gpd/sq ft for 1 500 gpd/sq ft for 2 &amp; 3</li> <li>Mixing energy: G = 200 sec⁻¹ for 5 min. per stage</li> <li>TDH = 30 ft for sludge and 25 ft for water</li> </ol>
	Y = 1,660 x ^{0.94} Y = 3,100 x ^{0.97} Digested Primary Digested Primary + Waste Activated Sludge and Digested Primary + Waste Activated Sludges with FeCl ₃ Y = Electrical Energy Required, kwh/yr	<pre>l. Digested primary @ 8% solids 2. Digested primary + W.A.S. @ 4% solids 3. Digested primary + W.A.S. ( + FeCl₃) @ 4% solids Design Assumptions: Overflow rates = 800 gpd/sq ft for 1 500 gpd/sq ft for 2 &amp; 3 Mixing energy: G = 200 sec⁻¹ for 5 min. per stage TDH = 30 ft for sludge and 25 ft for water Operating Parameters:</pre>
	Y = 1,660 x ^{0.94} Y = 3,100 x ^{0.97} Digested Primary Digested Primary + Waste Activated Sludge and Digested Primary + Waste Activated Sludges with FeCl ₃ Y = Electrical Energy Required, kwh/yr	<ol> <li>Digested primary @ 8% solids</li> <li>Digested primary + W.A.S. @ 4% solids</li> <li>Digested primary + W.A.S. (+ FeCl₃) @ 4% solids</li> <li>Design Assumptions: Overflow rates = 800 gpd/sq ft for 1 500 gpd/sq ft for 2 &amp; 3</li> <li>Mixing energy: G = 200 sec⁻¹ for 5 min. per stage</li> <li>TDH = 30 ft for sludge and 25 ft for water</li> <li>Operating Parameters: Two - stage, countercurrent system with separate mixing and settling tanks</li> </ol>
	Y = 1,660 x ^{0.94} Y = 3,100 x ^{0.97} Digested Primary Digested Primary + Waste Activated Sludge and Digested Primary + Waste Activated Sludges with FeCl ₃ Y = Electrical Energy Required, kwh/yr	<pre>1. Digested primary @ 8% solids 2. Digested primary + W.A.S. @ 4% solids 3. Digested primary + W.A.S. ( + FeCl₃)     @ 4% solids Design Assumptions:     Overflow rates = 800 gpd/sq ft for 1</pre>
3-89	Y = 1,660 x ^{0.94} Digested Primary Y = 3,100 x ^{0.97} Digested Primary + Waste Activated Sludge and Digested Primary + Waste Activated Sludges with FeCl ₃ Y = Electrical Energy Required, kwh/yr X = Sludge Quantity, ton/day (dry solids)	<ol> <li>Digested primary @ 8% solids</li> <li>Digested primary + W.A.S. @ 4% solids</li> <li>Digested primary + W.A.S. ( 4% solids</li> <li>Digested primary + W.A.S. ( + FeCl₃) @ 4% solids</li> <li>Design Assumptions: Overflow rates = 800 gpd/sq ft for 1 500 gpd/sq ft for 2 &amp; 3 Mixing energy: G = 200 sec⁻¹ for 5 min. per stage TDH = 30 ft for sludge and 25 ft for water</li> <li>Operating Parameters: Two - stage, countercurrent system with separate mixing and settling tanks Wash water to sludge ratio = 4:1 Type of Energy Required: Electrical</li> </ol>
3-89	Y = 1,660 x ^{0.94} Digested Primary Y = 3,100 x ^{0.97} Digested Primary + Waste Activated Sludge and Digested Primary + Waste Activated Sludges with FeCl ₃ Y = Electrical Energy Required, kwh/yr X = Sludge Quantity, ton/day (dry solids) Heat Treatment	<pre>1. Digested primary @ 8% solids 2. Digested primary + W.A.S. @ 4% solids 3. Digested primary + W.A.S. ( + FeCl₃)     @ 4% solids Design Assumptions:     Overflow rates = 800 gpd/sq ft for 1</pre>
3-89	Y = 1,660 x ^{0.94} Digested Primary Y = 3,100 x ^{0.97} Digested Primary + Waste Activated Sludge and Digested Primary + Waste Activated Sludges with FeCl ₃ Y = Electrical Energy Required, kwh/yr X = Sludge Quantity, ton/day (dry solids)	<ul> <li>l. Digested primary @ 8% solids</li> <li>2. Digested primary + W.A.S. @ 4% solids</li> <li>3. Digested primary + W.A.S. ( + FeCl₃) @ 4% solids</li> <li>Design Assumptions: Overflow rates = 800 gpd/sq ft for 1 500 gpd/sq ft for 2 &amp; 3</li> <li>Mixing energy: G = 200 sec⁻¹ for 5 min. per stage</li> <li>TDH = 30 ft for sludge and 25 ft for water</li> <li>Operating Parameters: Two - stage, countercurrent system with separate mixing and settling tanks</li> <li>Wash water to sludge ratio = 4:1</li> <li>Type of Energy Required: Electrical</li> <li>Design Assumptions:</li> </ul>
3-89	<pre>Y = 1,660 x^{0.94} Digested Primary Y = 3,100 x^{0.97} Digested Primary + Waste Activated Sludge and Digested Primary + Waste Activated Sludges with FeCl₃ Y = Electrical Energy Required, kwh/yr X = Sludge Quantity, ton/day (dry solids)</pre>	<pre>1. Digested primary @ 8% solids 2. Digested primary + W.A.S. @ 4% solids 3. Digested primary + W.A.S. ( + FeCl₃)     @ 4% solids Design Assumptions:     Overflow rates = 800 gpd/sq ft for 1</pre>
3-89	Y = 1,660 x ^{0.94} Digested Primary Y = 3,100 x ^{0.97} Digested Primary + Waste Activated Sludge and Digested Primary + Waste Activated Sludges with FeCl ₃ Y = Electrical Energy Required, kwh/yr X = Sludge Quantity, ton/day (dry solids) Heat Treatment log \ - 1.5710 + 0.3158 (log X) + 0.1754 (log X) + 0.0914 (log X) ³ Low Oxidation (Air Addition) log Y = 1.1801 + 0.1952 (log X) + 2.2864 (log X) ²	<pre>1. Digested primary @ 8% solids 2. Digested primary + W.A.S. @ 4% solids 3. Digested primary + W.A.S. (# 4% solids 3. Digested primary + W.A.S. (+ FeCl₃) @ 4% solids Design Assumptions: Overflow rates = 800 gpd/sq ft for 1 500 gpd/sq ft for 2 &amp; 3 Mixing energy: G = 200 sec⁻¹ for 5 min. per stage TDH = 30 ft for sludge and 25 ft for water Operating Parameters: Two - stage, countercurrent system with separate mixing and settling tanks Wash water to sludge ratio = 4:1 Type of Energy Required: Electrical Design Assumptions: Reactor conditions - 300 psig at 350°F Heat exchanger AT = 50°F Continuous operation</pre>
3-89	$Y = 1,660 \times 0.94$ Digested Primary $Y = 3,100 \times 0.97$ Digested Primary + Waste Activated Sludge and Digested Primary + Waste Activated Sludges with FeCl ₃ Y = Electrical Energy Required, kwh/yr X = Sludge Quantity, ton/day (dry solids) Heat Treatment $log \ - 1.5710 + 0.3158 (log X) + 0.1754 (log X)$ $+ 0.0914 (log X)^{3}$ Low Oxidation (Air Addition) $log Y = 1.1801 + 0.1952 (log X) + 2.2864 (log X)^{2}$ $+ 0.2512 (log X)^{3}$ Thermal Conditioning	<pre>1. Digested primary @ 8% solids 2. Digested primary + W.A.S. @ 4% solids 3. Digested primary + W.A.S. (+ FeCl₃) @ 4% solids Design Assumptions: Overflow rates = 800 gpd/sq ft for 1</pre>
3-89	$Y = 1,660 \times 0.94$ Digested Primary $Y = 3,100 \times 0.97$ Digested Primary + Waste Activated Sludge and Digested Primary + Waste Activated Sludges with FeCl ₃ Y = Electrical Energy Required, kwh/yr $X = Sludge Quantity, ton/day (dry solids)Heat Treatment\log \times -1.5710 + 0.3158 (\log X) + 0.1754 (\log X) + 0.0914 (\log X)^{3}Low Oxidation (AirAddition)\log Y = 1.1801 + 0.1952 (\log X) + 2.2864 (\log X)^{2} + 0.2512 (\log X)^{3}Thermal Conditioning(No Air)$	<pre>1. Digested primary @ 8% solids 2. Digested primary + W.A.S. @ 4% solids 3. Digested primary + W.A.S. (+ FeCl₃) @ 4% solids Design Assumptions: Overflow rates = 800 gpd/sq ft for 1 500 gpd/sq ft for 2 &amp; 3 Mixing energy: G = 200 sec⁻¹ for 5 min. per stage TDH = 30 ft for sludge and 25 ft for water Operating Parameters: Two - stage, countercurrent system with separate mixing and settling tanks Wash water to sludge ratio = 4:1 Type of Energy Required: Electrical Design Assumptions: Reactor conditions - 300 psig at 350°F Heat exchanger AT = 50°F Continuous operation See Table 5-9 for sludge description and text in Chapter 5 in EPA 430/9-77-011 Curve includes: Pressurization pumps Sludge grinders</pre>
3-89	$Y = 1,660 \times 0.94$ Digested Primary $Y = 3,100 \times 0.97$ Digested Primary + Waste Activated Sludge and Digested Primary + Waste Activated Sludges with FeCl ₃ Y = Electrical Energy Required, kwh/yr X = Sludge Quantity, ton/day (dry solids) Heat Treatment $log \ - 1.5710 + 0.3158 (log X) + 0.1754 (log X)$ $+ 0.0914 (log X)^{3}$ Low Oxidation (Air Addition) $log Y = 1.1801 + 0.1952 (log X) + 2.2864 (log X)^{2}$ $+ 0.2512 (log X)^{3}$ Thermal Conditioning	<pre>1. Digested primary @ 8% solids 2. Digested primary + W.A.S. @ 4% solids 3. Digested primary + W.A.S. (+ FeCl₃) @ 4% solids Design Assumptions: Overflow rates = 800 gpd/sq ft for 1</pre>

Figure Number From EPA 30/9-/7-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
390	Heat Treatment - Without Air Addition Y = 500 X ^{1.00} Y = Fuel Required, million Btu/yr X = Thermal Treatment Capacity, gpm	<ul> <li>Design Assumptions: Reactor conditions - 300 psig at 350°F Heat exchanger AT = 50°F Continuous operation See Table 5-9 for sludge description and text of Chapter 5 in EPA 430/9-77 11: Curve includes: Fuel to produce steam necessary to raise reactor contents to operating temperature Type of Energy Required: Fuel</li> </ul>
3-91	Heat Treatment - With Air Addition $Y = 260 X^{1.00}$ Primary + W.A.S. $Y = 320 X^{1.00}$ W.A.S. $Y = 370 X^{1.00}$ Primary (+ FeCl ₃ ) + W.A.S. and Primary + W.A.S. (+FeCl ₃ ) $Y = 420 X^{1.00}$ Tertiary Alum Y = Fuel Required, million Btu/yr X = Thermal Treatment Capacity, gpm	<ul> <li>Design Assumptions: Reactor conditions - 300 psig at 350°F Heat exchanger ΔT = 50°F Continuous operation See Table 5-9 for sludge description and text of Chapter 5 in EPA 430/9-77-011</li> <li>Curve includes: Fuel to produce steam necessary to raise reactor contents to operating temperature Type of Energy Required: Fuel</li> </ul>
3-92	Heat Treatment - With Air Addition Y = 280 $X^{1,00}$ Primary Y = 310 $X^{1,00}$ Dig. Primary Y = 360 $X^{1,00}$ Dig. Primary + W.A.S. and Primary + W.A.S. (+FeCl ₃ ) Y = 400 $X^{1,00}$ Dig. Primary + W.A.S. (+FeCl ₃ ) Y = Fuel-Required, million Btu/yr X = Thermal Treatment Capacity, gpm	Design Assumptions: Reactor conditions - 300 psig at 150°F Heat exchanger $\Delta T = 50°F$ Continuous operation See Table 5-9 for sludge description and text of Chapter 5 in EPA 430/9-77-011 Curve includes: Fuel to produce steam necessary to raise reactor contents to operating temperature Type of Energy Required: Fuel
3-9.1	Chemical Addition (Digested Sludges) log Y = $3.6422 + 0.3834$ (log X) + $0.2290$ (log X) ² Digested Primarv log Y = $3.5314 + 0.3664$ (log X) + $0.2808$ (log X) ² 0.1057 (log X) ³ Digested Primary + Waste Activated and Digested Primary + Waste Activated with FeCl ₃ Y = Electrical Energy, kwh/yr X = Sludge Quantity, ton/day (dr, solids)	Design Assumptions: See Table 3-8 preceding Figure 3-96 for chemical quantities in EPA 430/9-77-01 Pumping head = 10 ft TDH Curves include: Chemical feeding and handling Sludge pumping Sludge chemical mixing Type of Energy Required: Electrical
3-94	Chemical Addition (Undigested Sludges) log Y = $3.5641 + 0.3108 (log X) + 0.2344 (log X)^2 + 0.0007 (log X)^3$ Waste Activated log Y = $3.5174 + 0.2951 (log X) + 0.3228 (log X)^2 - 0.1381 (log X)^3$ Primary + Waste Activated log Y = $3.4817 + 0.2803 (log X) + 0.2350 (log X)^2 + 0.0292 (log X)^3$ Primary Y = Electrical Energy, kwh/yr X = Sludge Quantity, ton/day (dry solids)	Design Assumptions: Pumping head = 10 ft TDH Curves Include: Chemical feeding and handling Sludge pumping Sludge-chemical mixing Type of Energy Required: Electrical
3-95	Vacuum Filtration log Y = 4.1245 + 0.0840 (log X) + 0.7186 (log X) ² - 0.0177 (log X) ⁵ Y = Electrical Energy Required, kwh/yn X = Vacuum Filtration Area, sq ft	See Table 3-7 for design assumptions in EPA 430/9-77-011 Operating Parameters: 2 scfm/sq ft 20-22 inches Hg vacuum Filtrate pump, 50 ft TDH Curve includes: drum drive, discharge roller, vat agitator, vacuum pump, filtrate pumj Type of Energy Required: Electrical

.

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-96	Filter Pressing $Y = 6,980 x^{0.58}$ Influent solids = 8% $Y = 7,810 x^{0.60}$ Influent solids = 6% $Y = 6,710 x^{0.71}$ Influent solids = 4% Y = Electrical Energy Required, kwh/yr X = Filter Press Volume, cu ft	See Table 3-8 for design assumptions in EPA 430/9-77-011 Operating Parameters: Power consumption based on continuous operation, 225 psi operating pressure Curve includes: Feed Pump (hydraulically driven, positiv displacement piston pump) Opening and closing mechanism Type of Energy Required: Electrical
3-97	Centrifuging Y = 4,000 X ^{1.00} Lime sludge classification Y = 1,940 X ^{1.02} Dewatering Y = Electrical Energy Required, kwh/yr X = Flow, gpm	Operating Conditions:         Power consumption based on continuous operation         Dewatering accomplished with low speed centrifuge, G = 700 sec ⁻¹ Sludge Type       Conditions         Primary + Low Lime       No classification         Primary + Low Lime       No classification         Primary + 2 Stage High Lime       Classification         Tertiary + 2 Stage High Lime       Classification         Tertiary + 2 Stage High Lime       Classification         Tertiary + 2 Stage High Lime       Classification
		dewatering Type of Energy Required: Electrical
	Sand Drying Beds log Y = 2.1785 + 0.9543(log X) + 0.0285 (log X) ² + 0.0020 (log X) ³ Power Consumption Y = 4.0 X ^{1.02} Fuel Consumption @ 7.5% solids pumped, million Btu/yr Y = 2.1 X ^{1.02} Fuel Consumption @ 5.0% solids pumped, million Btu/yr Y = 0.42 X ^{1.00} Fuel Consumption @ 1.0% solids pumped, million Btu/yr Y = 0.42 X ^{1.00} Fuel Consumption @ 1.0% solids pumped, million Btu/yr Y = Fuel Required, million Btu/yr except Power Consumption Which is kwh/yr X = Sludge Quantity, gpm	Design Assumptions: Power consumption based on pumping to drying beds at TDH = 15 ft Fuel consumption based on: drying to 50% solids, 70 lbs/cu ft loading with front end loader, 8 gal/hr use of diesel fuel (140,000 Btu/gal) 15 minutes required to load 30 cu yd tru See Table 3-3 for quantities of various sludges/mil gal treated in EPA 430/9-77-011 Type of Energy Required: Electrical and Fuel
3-99	<pre>Sludge Pumping log Y = 2.6558 + 1.4926 (log X) - 0.2455 (log X)²       + 0.0065 (log X)³ Y = Electrical Energy Required, kwh/yr per mile X = Annual Sludge Volume, mil gal</pre>	Design Assumptions: 4% solids maximum (Dilute to 4% if greater 4 inch pipeline minimum, design velocity 3 fps Pipeline effective "c" factor 85 Pumping based on centrifugal non-clog or slurry pumps, 68% efficiency 20 hours per day average operation Operating Parameters: See Table 3-9 for sludge characteristics for disposal in EPA 430/9-77-011 Type of Energy Required: Electrical
	Dewatered Sludge Haul by Truck $Y = 7.0 x^{1.00}$ Truck Capacity = 10 yd ³ $Y = 4.6 x^{1.00}$ Truck Capacity = 15 yd ³ $Y = 2.6 x^{1.00}$ Truck Capacity = 30 yd ³ Y = Fuel Required, million Btu/one way mile/yr X = Annual Sludge Volume, 1,000 cu yd	<pre>Design Assumptions: 1 gal diesel (#2) = 140,000 Btu Diesel powered dump trucks Operating Parameters: Operation 8 hr per day Average speed; 25 mph for first 20 miles and 35 mph thereafter Truck fuel use 4.5 mpg avg See Table 3-9 for sludge characteristics for disposal in EPA 430/9-77-011 Type of Energy Required: #2 Diesel fuel</pre>

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-101	Liquid Sludge Hauling by Barge $Y = 5.6 x^{0.97}$ Barge Capacity = 2 MG $Y = 11.0 x^{0.97}$ Barge Capacity = 1 MG $Y = 12.0 x^{0.97}$ Barge Capacity = 0.85 MG $Y = 14.7 x^{0.97}$ Barge Capacity = 0.5 MG $Y = 26.9 x^{0.97}$ Barge Capacity = 0.3 MG Y = Fuel Required, million Btu/one way mile/yr X = Annual Sludge Volume, 1,000 cu yd	Desigh Assumptions: l gal marine diesel = 140,000 Btu Non-propelled barges moved with tugs Operating Parameters: Operation 24 hrs per day Average speed 4 mph Tug size: 300,000 gal barge - 1,200 hp 500,000 & 850,000 gal barge - 2,000 hp 1,000,000 & 2,000,000 gal barge - 2,500 hp See Table 3-9 for sludge characteristics for disposal in EPA 430/9-77-011 Type of Energy Required: Marine diesel fuel
3-102	Liquid Sludge Hauling by Truck Y = 14.9 x ^{0.98} Truck Capacity = 5,500 gallons Y = 25.3 x ^{1.01} Truck Capacity = 2,500 gallons Y = 53.2 x ^{1.02} Truck Capacity = 1,200 gallons Y = Fuel Required, million Btu/one way mile/yr X = Annual Sludge Volume, mil gal	Design Assumptions: 1 gal diesel (#2) = 140,000 Btu Diesel powered tank trucks Operating Parameters: Operating 8 hrs per day Average speed; 25 mph for first 20 miles and 35 mph thereafter Truck fuel use 4.5 mpg avg See Table 3-9 for sludge characteristics for disposal in EPA 430/9-77-011 Type of Energy Required: #2 Diesel fuel
3-103	Utilization of Liquid Sludge Y = 180 X ^{1.00} Land spreading Y = Fuel Required, million Btu/yr X = Annual Sludge Volume, mil gal	Design Assumptions: Fuel use: spreading truck - 2 gal/trip l gal diesel (#2) = 140,000 Operating Parameters: 1600 gal big wheel type spreader, 15 minute round trip. Truck is self loading See Table 3-9 for sludge characteristics for disposal in EPA 430/9-77-011 Type of Energy Required: #2 Diesel fuel
3-104	Utilization of Dewatered Sludge Y = 18 X ^{1.00} Landfill Y = 71 X ^{1.00} Land Spreading Y = Fuel Required, million Btu/yr X = Annual Sludge Volume, 1,000 cu yd	Design Assumptions: Fuel use: Bulldozer - 8 gal/hr Front end loader - 8 gal/hr Spreading truck - 3 gal/trip l gal diesel (#2) = 140,000 Btu Operating Parameter: Landfill: 30 minutes bulldozer time per 30 cu yd truckload of sludge Spreading: 7.2 cu yd big wheel type spreader, 20 minute trip time See Table 3-9 for sludge characteristics for disposal in EPA 430/9-77-011 Type of Energy Required: #2 Diesel fuel
3-105	$ \begin{array}{l} \mbox{Mixing} - \mbox{Anaerobic Digester} - \mbox{High Rate} \\ \mbox{Y} = 1.8 \ \mbox{X}^{1.00} & \mbox{Mechanical Mixing} - 1/4 \ \mbox{HP}/1000 \ \mbox{ft}^3 \\ \mbox{Y} = 3.3 \ \mbox{X}^{1.00} & \mbox{Mechanical Mixing} - 1/2 \ \mbox{HP}/1000 \ \mbox{ft}^3 \\ \mbox{Mechanical Mixing} - 1/2 \ \mbox{HP}/1000 \ \mbox{ft}^3 \\ \mbox{Iog Y} = 3.8094 \ + \ 0.1464 \ \mbox{(log X)} - \ 0.0721 \ \mbox{(log X)}^2 \\ & \ + \ 0.0209 \ \mbox{(log X)}^3 \ \mbox{Gas Mixing} - \ \ 5 \ \mbox{scfm}/1000 \ \mbox{ft}^3 \\ \mbox{log Y} = 12.6028 \ - \ 6.3342 \ \mbox{(log X)} \ + \ 1.5075 \ \mbox{(log X)}^2 \\ & \ - \ 0.1036 \ \mbox{(log X)}^3 \ \mbox{Gas Mixing} - \ \ 10 \ \mbox{scfm}/1000 \ \mbox{ft}^3 \\ \mbox{log Y} = 6.3722 \ - \ 1.9562 \ \mbox{(log X)} \ + \ 0.5249 \ \mbox{(log X)}^2 \\ & \ - \ 0.0301 \ \mbox{(log X)}^3 \ \mbox{Gas Mixing} - 20 \ \mbox{scfm}/1000 \ \mbox{ft}^3 \\ \mbox{Y} = \ \mbox{Electrical Energy Required, kwh/yr} \\ \mbox{X} = \ \mbox{Digester Volume, cu ft} \end{array}$	Design Assumptions: Continuous operation 20 ft submergence for release of gas Motor efficiency varies from 85% to 93% depending on motor size Type of Energy Required: Electrical See Chapter 5, pages 5-11 to 5-14 and Figure 3-106 for fuel requirements in EPA 430/9-77-011.

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-106	Thermophilic Anaerobic Digestion	Design Assumptions:
	$Y = 0.7 X^{1.00}$ Primary + High Lime Sludge	Fuel requirements are shown for northern states, for central locations multiply by
	$Y = 0.8 X^{1.00}$ Primary + (W.A.S. + FeCl ₃ )	0.5 for southern locations multiply by 0.
	$Y = 0.9 x^{1.00}$ Primary + FeCl ₃ , Primary + W.A.S., and (Primary + FeCl ₃ ) + W.A.S.	Operating Parameter: Digester temperature 103°F
	$Y = 1.03 X^{1.01}$ Primary, and Primary + Low Lime	See Figure 3-105 for mixing energy in EPA 430/9-77-011
	$Y = 1.19 X^{1.01}$ Waste Activated Sludge	See Table 3-3 for sludge characteristics in
	Y = Fuel Required, million Btu/yr X = Solids, lb/day	EPA 430/9-77-011 Type of Energy Required: Fuel or Natural Gas
3-107	Aerobic Digestion	Design Assumptions:
	$Y = 157 X^{1.01}$ Mechanical Aeration - Detention Time = 8 days	Energy based on oxygen supply requirements: mixing assumed to be satisfied
	$Y = 200 X^{1.00}$ Mechanical Aeration - Detention Time = 16 days	Mechanical aeration based on 1.5 lb O ₂ transfer/hp-hr Diffused aeration based on 0.9 lb O ₂
	Y = 230 X ^{1.00} Mechanical Aeration - Detention Time = 24 days	transfer/hp-hr Temperature of waste = 20 ⁰ C
	Y = 300 X ^{1.00} Diffused Air - Detention Time = 8 days	Oxygen for nitrification is not included in values presented - for nitrification O2 depend + ROD depend multiply up for
	$Y = 360 X^{1.00}$ Diffused Air - Detention Time	<pre>demand + BOD demand multiply value from curve by 1.3 Type of Energy Required: Electrical</pre>
	= 16 days Y = 400 X ^{1.00} Diffused Air - Detention Time = 24 days	
	Y = Electrical Energy Required, kwh/yr X = BOD _{IN} - 1b/day	
3-108	Thermophilic Aerobic Digestion	Design Assumptions:
	$Y = 125 \times 1.00$ 200 lb BOD /1000 ft ³ /day	Process is autothermophilic
	Y = 125 $x^{1.00}$ 200 1b $BOD_5/1000 \text{ ft}^3/\text{day}$ Y = 157 $x^{1.02}$ 100 1b $BOD_5/1000 \text{ ft}^3/\text{day}$	Pure oxygen provided for oxygen transfer having the following power demands:
	Y = Electrical Energy Required, kwh/yr X = BOD _{IN} - 1b/day	1.5 hp/1,000 cu ft mixing 2.9 lb 02/hp-hr PSA generation 4.2 lb 02/hp-hr Cryogenic generation Cryogenic systems assumed for greater demands than 5 ton/day Type of Energy Required: Electrical
3-109	Chlorine Stabilization of Sludge	Design Assumptions:
	$Y = 2,190 x^{0.96}$	Operating pressure = 35 psi Récirculation ratio = 5:1
	Y = Electrical Energy Required, kwh/yr X = Sludge Flow, gpm	Chlorine feed = 4 lbs/1,000 gal Type of Energy Required: Electrical
3-110	Lime Stabilization of Sludges	Design Assumptions:
	$Y = 7.50 x^{0.72}$ Lime Dosage = 200 lb/ton as Ca(OH) ₂	Pumped feed of slaked lime Mix lime and sludge for 60 seconds at C = 600 sec ⁻¹
	Y = 12.25 $x^{0.70}$ Lime Dosage = 400 lb/ton as Ca(OH) ₂	Sludge pumping not included (see Figure 3-4 in EPA 430/9-77-011 if pumping required)
	$Y = 17.97 X^{0.70}$ Lime Dosage = 800 lb/ton as Ca(OH) ₂	Type of Energy Required: Electrical
	Y = 30.71 $x^{0.68}$ Lime Dosage = 1,000 lb/ton as Ca(OH),	
	Y = Electrical Energy Required, kwh/yr X = Sludge Quantity, lb dry solids/day	
3-111	Multiple Hearth Furnace Incineration (See Figure 3-112 in EPA 430/9-77-011 for	See Table 3-10 for design assumptions in EPA 430/9-77-011
	Start-up Fuel)	Operating Parameters: Incoming sludge temperature is 57 F
	$Y = 14.00 \times \frac{1.00}{1.00}$ Primary Sludge	Combustion temperature is 1400 F
	$Y = 16.00 X^{1.00}$ Primary + Low Lime Sludge	Downtown for cool-down equals start-up time
	$Y = 22.30 X^{1.00}$ Digested Primary Sludge	Frequency of start-ups is a function of individual systems
	Y = 40.00 $X^{1.00}$ Primary + (W.A.S. + FeCl ₃ ) Sludge	Excess air is 100%
	$Y = 60.00 x^{1.00}$ (Primary + FeCl ₃ ) + W.A.S., (Primary + FeCl ₃ ) + W.A.S., and W.A.S.	Type of Energy Required: Fuel Off or Natura Gas
	$Y = 66.67 X^{1.00}$ Primary + FeCl ₃ and W.A.S. + FeCl ₃	
	Y = Fuel Required, million Btu/yr	
	X = Dry Sludge Feed, 1b/hr	

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-112	Multiple Hearth Furnace Incineration Start-Up Fuel	Design Assumptions: Use in conjunction with Figure 3-111 in EP/ 430/9-77-011 to determine total fuel
	Y = 0.00194 X Y = Fuel Required, million Btu/hr X = Effective Hearth Area, sq ft	required. Heatup time: Effective Hearth Heatup Area Time sq ft hr less than 400 $\frac{18}{18}$ 400-800 27 $\frac{100-1400}{36}$ 1400-2000 54
		greater than 2000 108 Operating Assumptions: Heatup time to reach 1400°F temperature Frequency of start-up is a function of individual system Type of Energy Required: Fuel Oil or Natura Gas
3-113	Multiple Hearth Furnace Incineration	Design Assumptions:
	Y = 3870 X ^{0.74} Y = Electrical Energy Required, kwh/yr X = Effective Hearth Area, sq ft	Solids         Loading Rates, lb/hr/sq f           Concentration, %         (wet sludge)           Small         Large           Plants         Plants           · 25 mgd         >25 mgd           14-17         6.0         10.0           18-22         6.5         11.0           23-30         7.0         12.0           31         8.0         12.0
		System operates 100% of the time.
3-114	Fluidized Bed Furnace Incineration Y = 10.3 $x^{1.00}$ Primary Sludge, Rate - 14 lb/ft ² /hr Y = 12.5 $x^{1.00}$ Primary + Low Lime Sludge, Rate - 18 lb/ft ² /hr Y = 15.6 $x^{1.01}$ Digested Primary Sludge, Rate - 14 lb/ft ² /hr Y = 31.0 $x^{1.00}$ Primary + (W.A.S. + FeCl ₃ ), Rate - 8.4 lb/ft ² /hr	<pre>Design Assumptions: Heat value of volatile solids is 10,000 Btu/lb See Table 3-10 preceding Figure 3-111 for more design assumptions in EPA 430/9-77- 011. Operating Conditions: Combustion temperature is 1400°F Downtime is a function of individual system (00° superature is a function of individual system)</pre>
	Y = 45.0 $X^{1.00}$ Primary + W.A.S., (Primary + FeC1 ₃ ) + W.A.S., and W.A.S., Rate - 6.8 $1b/ft^2/hr$	40% excess air, no preheater Startup not included, 73,000 Btu/sq ft for startup Type of Energy Required: Fuel Oil or Natural Gas
	Y = 51.0 X ^{1.00} Primary + FeCl ₃ and W.A.S. + FeCl ₃ , Rate - 6.8 lb/ft ² /hr Y = Fuel Required, million Btu/yr X = Dry Sludge Feed, lb/hr	
3-115	Fluidized Bed Furnace Incineration Y = 47,400 x ^{0.93} Y = Electrical Energy Required, kwh/yr X = Bed Area, sq ft	See Table 3-10 preceding Figure 3-111 for design assumptions in EPA 430/9-77-011 Operating Parameters: Full time operation Type of Energy Required: Electrical
3-116	Sludge Drying Y = 10 X ^{1.0} Fuel 30% Input Solids Concentration, million Btu/yr	Design Assumptions: Continuous operation Dryer Efficiency 72%
	Y = 16.5 x ^{1.0} Fuel 20% Input Solids Concentration, million Btu/yr	Product moisture content 10% Power includes blowers, fans, conveyors Type of Energy Required, Fuel and Electricity
	Y = 200 X ^{1.0} Electricity 30% Input Solids Concentration Y = 234 X ^{1.02} Electricity 20% Input Solids	
	$Y = 32.4 \text{ x}^{1.02}$ Y = 32.4 $\text{x}^{1.02}$ Fuel 8% Input Solids Concentration,	
	million Btu/yr Y = 277 X ^{1.01} Electricity 8% Input Solids	
	Concentration Y = 71.0 X ^{1.01} Fuel 4% Input Solids Concentration, million Btu/yr	
	Y = 1154 x ^{1.02} Electricity 4% Input Solids Concentration	

Figure Number From EPA 30/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-116 (Continued)	Y = 150 x ^{1.00} Fuel 2% Input Solids Concentration million Btu/yr	•
	Y = 2650 x ^{1.00} Electricity 2% Input Solids Concentration	
	Y = 300 x ^{1.00} Fuel 1% Input Solids Concentration million Btu/yr	,
	Y = 5100 X ^{1.00} Electricity 1% Input Solids Concentration	
	Y = Electrical Energy Required, kwh/yr except fuel required X = Annual Dry Solids Product, ton/yr	
3-117	Wet Air Oxidation	Design Assumptions:
	<pre>log Y = 2.2518 + 0.6392 (log X) + 0.1259 (log X)²</pre>	W.A.S. = 1800 psig
3-118	Lime Recalcining - Multiple Hearth Furnace Y = 1544 x ^{0.51} Fuel - Primary, 2 stage high lime, million Btu/yr Y = 2094 x ^{0.51} Fuel - Tertiary, low lime, million Btu/yr Y = 2290 x ^{0.51} Fuel - Tertiary, 2 stage high lime, stage high	Design Assumptions: Continuous operation Multiple hearth furnace 7 lbs/sq ft/hr loading rate (wet basis) Gas outlet cemperature = 900°F Product outlet temperature = 1400°F Power includes center shaft drive, shaft cooling fan, burner turboblowers, product
	lime, million Btu/yr Y = 18,650 X ^{0.48} Power, kwh/yr Y = Electrical Energy Required, kwh/hr X = Hearth Area, sq ft	cooler, and induced draft fan Sludge Composition: Primary, 2 stage high lime 65% 2% 13% 20%
		Tertiary, Jow 1 ime 71 10 16 3 Tertiary, 2 stage high 1 ime: 86.1 4.3 6.1 3.5
		Type of Energy Required: Fuel and Electrical
4-1	Activated Carbon Secondary Energy Requirements Y = 1.05 X ^{1.00} 400 lb/mil gal Tertiary granular Carbon treatment, million Btu Y = 17.5 X ^{1.00} 2,500 lb/mil gal, IPC Powered Carbon treatment, million Btu Y = Production Energy, million Btu X = Plant Capacity, mgd	
4-3	Ammonium Hydroxide Secondary Energy Requirements Y = 73 $x^{1.04}$ 4,175 lb/mil gal, million Btu	<u>an an a</u>
	Y = Production Energy, million Btu X = Plant Capacity, mgd	

Figure Number From EPA 30/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
4-4	Carbon Dioxide Secondary Energy Requirements	······································
	$Y = 1.5 X^{1.0}$ 200 mg/1, million Btu	
	$Y = 3.2 X^{1.0}$ 300 mg/1, million Btu	
	Y = Production Energy, million Btu X = Plant Capacity, mgd	
4-5	Chlorine Secondary Energy Requirements	
	$Y = 165 X^{1.00}$ 10 mg/1, kwh	
	$Y = 1800 X^{1.00}$ 135 mg/1, kwh	
	Y = Production Energy, kwh X = Plant Capacity, mgd	
4-6	Ferric Chloride Secondary Energy Requirements	
	$Y = 200 X^{1.00}$ 50 mg/1, kwh	
	$Y = 700 x^{1.00}$ 200 mg/1, kwh	
	Y = Production Energy, kwh X = Plant Capacity, mgd	
4-7	Lime (Calcium Oxide) Secondary Energy Requirements	
	$Y = 6.2 X^{1.0}$ 300 mg/l, million Btu	
	$Y = 8.3 X^{1.0}$ 400 mg/l, million Btu	
	Y = Production Energy, million Btu	
	X = Plant Capacity, mgd	
4-8	. Methanol Secondary Energy Requirements Y = 7.9 $x^{1.0}$ 60 mg/l, million Btu	
	Y = Production Energy, million Btu X = Plant Capacity, mgd	
4-9	Oxygen Secondary Energy Requirements	· · · · · · · · · · · · · · · · · · ·
	$Y = 345 X^{1.0}$ 200 mg/1, kwh	
	Y = Production Energy, kwh X = Plant Capacity, mgd	
4-10	Polymer Secondary Energy Requirements	
	Y = 1950 X ^{1.0} , 1.4 ∦/mil. gal., Btu	
	Y = Production Energy, Btu X = Plant Capacity, mgd	
4-11	Sodium Chloride Secondary Energy Requirements	
	Y = 25 $X^{1.0}$ Rock and Solar, 1200 lb/mil. gal.	
	$Y = 20 X^{1.0}$ Evaporated, 1200 lb/mil. gal.	
	Y = Production Energy, kwh X = Plant Capacity, mgd	
4-12	Sodium Hydroxide Secondary Energy Requirements	
`.	$Y = 550 X^{1.0}$ 375 lb/mil. gal., kwh	
	Y = 7100 $x^{1.0}$ 4760 lb/mil. gal., kwh	
	Y = Production Energy, kwh X = Plant Capacity, mgd	
4-13	Sulfur Dioxide Secondary Energy Requirements	
	$Y = 0.35 X^{1.0}$ 2 mg/1, kwh	
	Y = Production Energy, kwh X = Plant Capacity, mgd	
4-14	Sulfuric Acid Secondary Energy Requirements	······································
	$Y = 1500 X^{1.0}$ 250 mg/l, million Btu	
	$Y = 2600 x^{1.0}$ 450 mg/1, million Btu	
	Y = Production Energy, million Btu	
	X = Plant Capacity, mgd	

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
5-1	Estimated Heat Requirements 1000 sq ft Building	
	Y = 1.7000 + 31.7402 X - 0.7765 X ² Case A: Uninsulated	
	Y = 0.3000 + 17,1750 X - 0.3750 X ² Case B: Added Wall and Ceiling Insulation With Storm Windows	
	Y = 0.0491 + 12.3386 X - 0.2538 X ² Case C: Wall and Ceiling Insulation Double Glazed Windows and Floor Insulation	
	Y = Heat Required, million Btu/yr X = Thousand, deg day/yr	
5-2	Estimated Floor Area for Wastewater Treatment Plants	
	$\log Y = 3.1801 + 0.1789 (\log X) + 0.4170 (\log X)^2$ - 0.1074 (log X) ³ Total Floor Area	
	- $0.1074$ (log X) ³ Total Floor Area log Y = $2.8073 + 0.4146$ (log X) + $0.1857$ (log X) ²	· · · ·
	$- 0.0332 (log X)^{3}$	
	Y = Floor Area, sq ft X = Plant Capacity, mgd	· ·
5-3	Anaerobic Digester Heat Requirements For Primary Sludge	· · · · · · · · · · · · · · · · · · ·
	Y = $3.20 \frac{1}{2} 0.0290$ X South U.S Digestion Temp. = $95^{\circ}F$	
	Y = 3.43 - 0.0293 X Middle U.S Digestion Temp. = 95°F	
	Y = 4.03 - 0.0300 X North U.S Digestion Temp. = 95°F	
	<pre>Y = Digester Heat Required, million Btu/mgd (0.05 lb VS/day/cu ft) X = Sludge Temperature to Digester, ^OF</pre>	
5-4	Anaerobic Digester Heat Requirements for Primary Plus Waste Activated Sludge	
	Y = 6.69 - 0.063 X South U.S Digester Loading = 0.05 lb VS/ft ³ -day	
·	Y = 7.14 - 0.063 X Middle U.S Digester Loading = 0.05 lb VS/ft ³ -day	
	Y = 8.42 - 0.064 X North U.S Digester Loading = 0.05 lb VS/ft ³ -day	
	Y = 6.11 - 0.062 X South U.S Digester Loading = 0.15 lb VS/ft ³ -day	
•	Y = 6.28 - 0.062 X Middle U.S Digester Loading = 0.15 lb VS/ft ³ -day	
	Y = 6.67 - 0.062 X North U.S Digester Loading = 0.15 lb VS/ft ³ -day	
	Y = Digester Heat Required, million Btu/mgd X = Sludge Temperature to Digester, ^O F	
5-5	Heat Requirements Powered Activated Carbon Regeneration	
	$Y = 0.0233 x^{0.88}$	
	Y = Fuel Required, million Btu/yr X = Powered Activated Carbon Regenerated, lb/day	
· · · · ·		

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and / Effluent Quality
5-7	Digester Gas Cleaning and Storage Construction Cost	s
	$\log Y = 0.9701 + 0.8379 (\log X) - 0.1235 (\log X)^2$	
	+ 0.0218 (log X) ³ Total Clean Compress and Store	
	$\log Y = 3.1972 - 1.7054 (\log X) + 0.6770 (\log X)^2$ - 0.0642 (log X) ³ Clean and Compress	
	$\log Y = -0.8547 + 1.7752 (\log X) - 0.3705 (\log X)^2$	
	$+ 0.0521 (log X)^3$ Store	
	Y = Construction Cost, thousand dollars X = Digester Gas Cleaned and Compressed, scfm	
5-8	Digester Gas Cleaning and Storage O&M Labor Requirements	
	$\log Y = 0.2605 + 1.3030 (\log X) + 0.0195 (\log X)^2$	
	$-0.0247 (\log x)^3$	
	Y = 0 & M Labor, hr/yr	
	X = Digester Gas Cleaned and Stored, scfm	
5-9	Digester Gas Cleaning and Storage Maintenance Material Costs	
	$\log Y = -1.6763 + 0.9018 (\log X) + 0.2707 (\log X)^2$	
	-0.0653 (log X) ³	
	Y = Maintenance Material, thousand dollars/yr X = Digester Gas Cleaned and Stored, scfm	
5-10	Digester Gas Cleaning and Storage Energy Requiremen	ts .
	$\log Y = 1.1149 + 0.4622 (\log X) + 0.0753 (\log X)^2$	
	+ 0.0024 $(\log X)^3$	
	Y = Electricity Required, thousand kwh/yr X = Digester Gas Cleaned and Stored, scfm	
5-11	Internal Combustion Engine Construction Costs	600 rpm engine with heat recovery and
	$\log Y = 5.2829 - 3.6573 (\log X) + 1.3169 (\log X)^{2} - 0.1250 (\log X)^{3}$	alternate fuel system
	Y = Construction Cost, thousand dollars X = IC Engine, hp	
5-12	Internal Combustion Engine O & M Labor Requirements	600 rpm engine with heat recovery and alternate fuel system
	$\log Y = -1.1725 + 1.5611 (\log X) - 0.0273 (\log X)^2$	
	$-0.0146 (log X)^3$	
	Y = 0 & M Labor, hr/yr X = IC Engine, hp	•
5-13	Internal Combustion Engine Maintenance . Material Costs	600 rpm engine with heat recovery and alternate fuel system
	$\log Y = -5.4676 + 4.3514 (\log X) - 1.1752 (\log X)^2$	
	+ 0.1337 (log X) ³	
	Y = Maintenance Material, thousand dollars/yr X = IC Engine, hp	
5-14	Internal Combustion Engine Alternate Fuel Requirements	600 rpm engine with heat recovery and alternate fuel system
	$\log Y = -1.9249 + 3.5577 (\log X) - 0.7592 (\log X)^2$	
	$+ 0.0736 (\log X)^3$	
	Y = Alternate Fuel Required, million Btu/yr	
	X = IC Engine, hp	

Digester Gas Utilization System Construction Costs	Complete electricity generation system as shown in Figure.5-6:EPA 430/9-77-01
$\log Y = 2.5404 - 0.4530 (\log X) + 0.6979 (\log X)^{2}$ - 0.1318 (log X) ³	;
Y = Construction Cost, thousand dollars X = Plant Capacity, mgd	n de la serie d La serie de la s
Digester Gas Utilization System O&M Labor Requirements	Complete system for electricity generation as shown in Figure 5-6 EPA 430/9-77-011
log Y = 1.8795 + 1.1374 (log X) - 0.1063 (log X)2 + 0.0029 (log X)3	· · · · · · · · · · · · · · · · · · ·
Y = 0&M Labor, hr/yr X = Plant Capacity, mgd	
Digester Gas Utilization System Maintenance Material Costs	Complete system for electricity generation as shown in Figure 5-6 EPA 430/9-77-011
$\log Y = 4.1712 - 8.2581 (\log X) + 6.1717 (\log X)^2 - 1.3289 (\log X)^3$	
Y = Maintenance Material, thousand dollars/yr X = Plant Capacity, mgd	
Digester Gas Utilization System Energy Requirements	Complete system for electrical generation as shown in Figure 5-6 EPA 430/9-77-011
$log Y = 2.4984 + 0.9564 (log X) - 0.0985 (log X)^{2} + 0.0411 (log X)^{3}$ Fuel	
$log Y = 1.7189 + 0.5938 (log X) - 0.0424 (log X)^{2} + 0.0068 (log X)^{3} Electricity$	
Y = Fuel Required, million Btu/yr X = Plant Capacity, mgd	
Multiple Hearth Incineration Construction Cost log Y = $0.0606 + 0.5432$ (log X) + $0.4666$ (log X) ² - $0.1592$ (log X) ³	Design and Operation Assumptions: Loading rate = 6 lb/sq ft/hr Sludge: Primary + W.A.S. sludge = 16% solids
Y = Construction Cost, million dollars X = Plant Capacity, mgd	
Multiple Hearth Incineration 0 & M Requirements $Y = 1600 x^{0.65}$ Y = 0 & M Labor, hr/yr	Design and Operation Assumptions: Loading rate = 6 lb/sq ft/hr Sludge: Primary + W.A.S. sludge = 16% solids
X = Plant Capacity, mgd	
Multiple Hearth Incineration Maintenance Material Costs log Y = 3.5505 + 0.0972 (log X) + 0.3658 (log X) ² - 0.0539 (log X) ³	Design and Operation Assumptions: Loading rate = 6 lb/sq ft/hr Sludge: Primary + W.A.S. sludge = 16% solids
Y ⇒ Maintenance Material, dollars/yr X = Plant Capacity, mgd	
Auxiliary Heat Required to Sustain Combustion of Sludge	Assumptions: 10,000 Btu/1b VS
Y = 4.09 - 0.165 X Primary, 60% VS Y = 4 - 0.179 X Primary+W.A.S., 69% VS	
Y = Heat Required, million Btu/ton VS X = Sludge Solids, % by weight	
Heat Recovered from Incineration of Sludge Y = $-2636.0 + 5.14 \times - 0.0002 \times^2$ Primary+W.A.S.	Assumptions: Final stack temp = 500°F
$Y = -1195.4 + 2.06 X - 0.0006 X^2 W.A.S. + FeCl_3$	100% Excess air See table preceding Figure 3-111 for sludge characteristics in EPA 430/9-77-011
Y = Initial Flue Gas Temperature, ^O F X = Heat Recovered, million Btu/yr/mgd	
Impact of Excess Air on the Amount of Auxiliary Fuel for Sludge Incineration	Assumptions: Solids 30%
	Exhaust Temp. 1400°F
-	<ul> <li>- 0.1318 (log X)³</li> <li>Y = Construction Cost, thousand dollars X = Plant Capacity, mgd</li> <li>Digester Gas Utilization System 0&amp;M Labor Requirements</li> <li>log Y = 1.8795 + 1.1374 (log X) - 0.1063 (log X)² + 0.0029 (log X)³</li> <li>Y = 0 &amp; M Labor, hr/yr X = Plant Capacity, mgd</li> <li>Digester Gas Utilization System Maintenance Material Costs</li> <li>log Y = 4.1712 - 8.2581 (log X) + 6.1717 (log X)² - 1.3289 (log X)³</li> <li>Y = Maintenance Material, thousand dollars/yr X = Plant Capacity, mgd</li> <li>Digester Gas Utilization System Energy Requirements</li> <li>log Y = 2.4984 + 0.9564 (log X) - 0.0985 (log X)² + 0.0411 (log X)³ Fuel</li> <li>log Y = 1.7189 + 0.5938 (log X) - 0.0424 (log X)² + 0.0068 (log X)³ Electricity</li> <li>Y = Fuel Required, million Btu/yr</li> <li>X = Plant Capacity, mgd</li> <li>Multiple Hearth Incineration Construction Cost</li> <li>log Y = 0.0606 + 0.5432 (log X) + 0.4666 (log X)² - 0.1592 (log X)³</li> <li>Y = Construction Cost, million dollars</li> <li>X = Plant Capacity, mgd</li> <li>Multiple Hearth Incineration O &amp; M Requirements</li> <li>Y = 1600 x^{0.65}</li> <li>Y = 0 &amp; M Labor, hr/yr</li> <li>X = Plant Capacity, mgd</li> <li>Multiple Hearth Incineration Maintenance Material Costs</li> <li>log Y = 3.5505 + 0.0972 (log X) + 0.3658 (log X)² - 0.0539 (log X)³</li> <li>Y = Maintenance Material, dollars/yr</li> <li>X = Plant Capacity, mgd</li> <li>Multiple Hearth Incineration Maintenance Material Costs</li> <li>log Y = 3.5505 + 0.0972 (log X) + 0.3658 (log X)² - 2.0539 (log X)³</li> <li>Y = Maintenance Material, dollars/yr</li> <li>X = Plant Capacity, mgd</li> <li>Auxiltary Heat Required to Sustain Combustion of Sludge</li> <li>Y = 4.0 - 0.165 X Primary, 60Z VS</li> <li>Y = 4.0 - 0.179 X Primary +W.A.S., 69Z VS</li> <li>Y = Heat Required, million Btu/ton VS</li> <li>X = Sludge Solids, Z by weight</li> <li>Heat Recovered from Incineration of Sludge</li> <li>Y = -2636.0 + 5.14 X - 0.0002 x² Primary +W.A.S. Y = -115.4 + 2.06 X - 0.0</li></ul>

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
5-26	Energy Recovery Rotary Kiln Reactor Pyrolysis System	
	Y = 0.02 X Net Energy Output, Btu/1b input	
	X = % Refuse % Sludge = 100 - X	
	$Y = 0.0 + 0.7150 X - 0.0030 X^2$	
	% Recovery of Energy Input	
	X = % Refuse % Sludge = 100 - X	
5-27	Energy Recovery Vertical Shaft Reactor Pure Oxygen Pyrolysis System	······································
	Y = 0.09 + 0.0291 Net Energy Output	
	X = % Refuse % Sludge = 100 - X	
	$y = 4.8750 + 0.9737X - 0.0041 x^2$	
	% Recovery of Energy Input	
5-28	Heat Pump Output Based on Wilton Plant Désign Operating Conditions for Various Effluent Temperatures	·····
	$Y = -0.0714 + 1.9257 X - 0.0109 X^2$ Output, million Btu/yr/mgd	
	$Y = 0.1529 + 0.0775 X - 0.0005 X^{2}$ Coefficient of Performance	
	X = Wastewater Temperature, ^O F	·
5-29	Air to Air Heat Pumps Typical Performance Curve	
	Y = 59 - 0.84 X Typical Structure Heat Loss, thousand Btu/hr	
	X = Outside Temperature, ^O F	
	Y = 11.5091 + 1.2769 X - 0.0054 X ² Heat Pump Capacity	
	Y = 0.8225 + 0.0519 X - 0.0004 X ² Coefficient of Performance	
5-30	Water to Water/Water to Air Heat Pumps Construction Cost	
	$\log Y = 3,026 + 0.1483 (\log x) + 0.1530 (\log x)^{2} - 0.0122 (\log x)^{3}$	
	Y = Construction Cost, dollars X = Heat Pump Capacity, thousand Btu/hr	
5-31	Water to Water/Water to Air Heat Pumps O & M Labor Requirements	
	$\log X = 0.2900 + 0.2924 (\log X) + 0.1916 (\log X)^2$ - 0.0253 (log X) ³	
	Y = O & M Labor, hr/yr X = Heat Pump Capacity, thousand Btu/hr	
5-32	Water to Water/Water to Air Heat Pumps Maintenance Material Costs	
	$log Y = 0.4946 + 1.0205 (log X) - 0.0819 (log X)^{2} + 0.0079 (log X)^{3}$	
	Y = Maintenance Material, dollars/yr X = Heat Pump Capacity, thousand Btu/hr	
5-33	Water to Water/Water to Air Heat Pumps Energy Requirements	Operating Conditions: COP = 2.8
	$Y = 0.95 X^{1.0}$ for 8,760 operating hr/yr	Outside Temperature = $50^{\circ}$ F
	$Y = 0.49 \text{ x}^{1.0} \text{ for } 4,380 \text{ operating hr/yr}$	
	$Y = 0.13 \text{ x}^{1.0} \text{ for } 1,000 \text{ operating hr/yr}$	
	Y = Electricity Required, thousand kwh/yr	
	X = Heat Pump Capacity, thousand Btu/hr	

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality		
5-34	Air to Air Heat Pumps Construction Cost log Y = - 0.1984 + 0.3145 (log X) + 0.1484 (log X) ² - 0.0143 (log X) ³ Y = Construction Cost, thousand dollars X = Heat Pump Capacity, thousand Btu/hr			
5-35	Air to Air Heat Pumps 06M Labor Requirements log Y = $-0.0781 + 0.5929 (\log X) + 0.1290 (\log X)^2$ $- 0.0112 (\log X)^3$ Y = 0 6 M Labor, hr/yr X = Heat Pump Capacity, thousand Btu/hr			
5-736	Air to Air Heat Pump Maintenance Material Costs log Y = 1.0960 + 0.4990 (log X) + 0.0868 (log X) ² - 0.0072 (log X) ³ Y = Maintenance Material, dollars/yr X = Heat Pump Capacity, thousand Btu/hr	· · · · · · · · · · · · · · · · · · ·		
5-37	Air to Air Heat Pump Energy Requirements $Y = 1.18 x^{0.98}$ for 8,760 operating hr/yr $Y = 0.53 x^{1.0}$ for 4,380 operating hr/yr $Y = 0.13 x^{1/0}$ for 1,000 operating hr/yr Y = Electricity Required, thousand kwh/yr $X = Heat Pump Capacity, thousand Btu/hr$	Operating Conditions: COP = 2.4 Outside Temperature = 45 ⁰ F		

#### APPENDIX B

## RAW WASTEWATER CHARACTERISTICS (Wesner et al., 1978)

Parameter	Concentration mg/1, Except pH
Biochemical Oxygen Demand	· 210
Suspended Solids	230
Phosphorus, as P	11
Total Kjeldahl Nitrogen, as N	30
Nitrite plus Nitrate	0
Alkalinity, as CaCO ₃	300
рН	7.3

### APPENDIX C

# SLUDGE CHARACTERISTICS (Wesner et al., 1978)

Sludge Type	Total Solids (wt Percent of Sludge)	Sludge Solids (lb/mil gal)		Volatile Solids (wt	Sludge Volume (gal/mil
		Total Solids	Volatile Solids	Percent of Total Solids)	gal)
Primary	5	1151	690	60	2,760
Primary + FeCl ₃	2	2510	1176	47	16,500
Primary + Low Lime	5	4979	2243	45	11,940
Primary + High Lime	7.5	9807	4370	45	15,680
Primary + W.A.S. ^a	2	2096	1446	69	12,565
Primary + (W.A.S. + FeCl ₃ )	1.5	2685	1443	54	21,480
$(Primary + FeCl_3)$ + W.A.S.	1.8	3144	1676	53	20,960
W.A.S.	1.0	945	756	80	11,330
W.A.S. + FeC13	1.0	1535	776	50	18,400
Digested Primary	8.0	806	345	43	1,210
Digested Primary + W.A.S.	4.0	1226	576	47	3,680
Digested Primary + W.A.S. + FeCl ₃	4.0	1817	599	33	5,455
Tertiary Alum	1.0	700	242	35	8,390
Tertiary High Lime	4.5	8139	3219	40	21,690
Tertiary Low Lime	3.0	3311	1301	39	13,235

^aW.A.S. = Wasted activated sludge.

#### LITERATURE CITED

- Benjes, H. H. (1978) Small community wastewater treatment facilities-biological treatment systems. USEPA, Technology Transfer, Design Seminar Handout, Cincinnati, Ohio.
- Culp, G. L. (1978) Alternatives for wastewater treatment at South Tahoe, CA. Paper presented at the 51st Annual Conference of the Water Pollution Control Federation, Anaheim, CA, October 1978.
- Culp, R. L., and G. L. Culp (1971) Advanced wastewater treatment. Van Nostrand Reinhold Company, New York, N.Y.
- Environmental Protection Agency (1978) Attachment E to USEPA Program Requirements Memorandum #PRM 79-3 issued 15 November 1978, to provide guidance on land treatment alternatives.
- Garber, W. F., G. T. Ohara, and S. K. Raksit (1975) Energy-wastewater treatment and solids disposal. Journal of the Environmental Engineering Division, ASCE, EE3, p. 319-331.
- Hagan, R. A., and E. B. Roberts (1976) Energy requirements for wastewater treatment. Part 2. <u>Water & Sewage Works</u>, Vol. 123, No. 12, p. 52-57.
- Jacobs, A. (1977) Reduction and recovery: Keys to energy selfsufficiency. Water & Sewage Works, Reference Number R-24 - R-37.
- Mills, R. A., and G. Tchobanoglous (1974) Energy consumption in wastewater treatment. In: <u>Energy</u>, <u>Agriculture and Waste Management</u>,
  W. J. Jewell, Editor. Ann Arbor, Michigan: Ann Arbor Science Publishers, Inc.
- Smith, Robert (1973) Electrical power consumption for wastewater treatment, U.S. Environmental Protection Agency, Cincinnati, Ohio, EPA R2-73-281.
- Tchobanoglous, G. (1974) Wastewater treatment for small communities. Parts 1 and 2. Public Works, Vol. 105, No. 7 & 8, p. 61-68 & 58-62.
- Wesner, G. M., L. J. Ewing, Jr., T. S. Lineck, and D. J. Hinrichs (1978) Energy conservation in municipal wastewater treatment. MCD-32. EPA 430/9-77-011. Prepared for the U.S. Environmental Protection Agency, Office of Water Program Operations, Washington, D.C.
- Wesner, G. M., and B. E. Burris (1978) Energy comparisons in wastewater treatment. Paper presented at the 51st Annual Conference of the Water Pollution Control Federation, Anaheim, California, 5 October 1978.

- Wesner, G. M., and W. N. Clarke (1978) There is a lot of energy in digester gas. <u>Bulletin of the California Water Pollution Control</u> Association, p. 70-79, July 1978.
- Zarnett, G. D. (1976) Energy requirements for wastewater treatment equipment. Applied Science Section, Pollution Control Branch, Ministry of the Environment, Ontario, Canada, TN 7008.
- Zarnett, G. D. (Undated) Energy requirements for conventional and advanced wastewater treatment. Applied Sciences Section, Pollution Control Branch, Ministry of the Environment, Ontario, Canada, Publication No. W47.
- Zarnett, G. D. (1977) Energy requirements for water treatment systems. Applied Sciences Section, Pollution Control Branch, Ministry of the Environment, Toronto, Ontario, Canada, Research Paper No. S2043.