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NOME

a

:nclature

Thermal diffusivity (m2/s)

T

f
c Specific heat capacity [J/(kg K)]

Vi
C Relative bar size

Cx Contiguity (or contact degree) Z

E Modulus of elasticity a

Kl2 Ratio of averaged temperature gradients in

binary heterogeneous system,
K12 =IA<r>1| /I A<T>2|

L Scale of the problem (m) P
Le Lewis number

hr Process length (m)

^sp Specimen length (m) A

/ Molecular scale (m) 5

Wj Mass fraction of the /th component e

n Number of dimensions

Nc Number of particle contacts ej

Np Number of particles

P Pressure of compaction (Pa) V

Pcf Modulus of elasticity or pressure of compac

tion (Pa) n

PC Contact value of modulus of elasticity per n0
unit of contact area (Pa) p

q Local thermal flux density (W/m2) '44
r Coordinates (m)

sc Contact surface area ofa particle (m2) X

•^cont Contact surface area (m2)

•^compl Sum ofparticle surface areas (m2)
c
°nom Nominal section areaof thespecimen (m2) *c

sp Surface area ofa particle (m2) Kf
V Surface contact area projected on the section

plane (m2)
^m

t Time(s) < 5

IV

Temperature (K)

Boundary value of temperature (K)
Heating rate (K/s)

Partial specific volume of the /th component

(ni3/kg;
Distance normal to surface (m)

Relative contact section of molded (or sin

tered) materials. The ratio of contact area

projected onto a cross section to the area of

the cross section of the specimen

Empirical parameter, relating to hardness. P

= 1.2 for soft materials, like aluminum, and

P = 4 for hard metals

Scale of a subregion of the problem (m)

Inhomogeneity scale (m)

Ratio of the scale of the inhomogeneity to

the scale of the problem

Angle between theyth contact plane and the

normal to the section plane

Ratio of thermal conductivities for a binary

heterogeneous system

Porosity

Bulk porosity

Density (kg/m3)
Area or volume fraction of the /th compo

nent

For random InA, and their mean value,

<lnA>, %is lnX,-<lnX>, where probability (%)

is a normal distribution

Contact thermal conductivity (W/m K)

Effective thermal conductivity (W/m K)

Maxwell's solution for effective thermal

conductivity (eq 24)

Average



Thermal Conductivity of Porous Media and Soils
A Review of Soviet Investigations

YURII A. KOVALENKO AND STEPHEN N. FLANDERS

INTRODUCTION

The thermal conductivity of soils and other dis
persedporousmaterials of naturaland artificial origin
depends,firstof all, on the composition andgeometric
microstructure of a system. Besides structure and com
position, thermal,conductivity is influenced by inter
phase (intercomponent) interactions. Heat transfer oc
curs primarilyby conductionin systems with pores of
conventional size (< 10"4 m), with temperatures rang
ing from -50 to 100°C and subject to ordinary tem
perature gradients. Convective and radiative heat ex
change in pores can be estimated (Chudnovskii 1962,
DulnevandZarichnyak 1974) andis generally negligi
ble,exceptinmaterialswithlargepores,suchasthermal
insulation, and some structural construction materials,
notably the large-celled concrete found in the Soviet
Union.

Porous media and soils belong to a large class of
Heterogeneous Media (HM), for which the theory of
heattransferallowstheinvestigatortotakeanapproach
typical ofcontinuous media: first, introduction ofaver
aged characteristics of the medium and the process
(volumecontentofcomponents, temperature, heat flow,
heat capacitance and thermal conductivity), and sec
ond, formulation of principal physical laws in terms of
thesecharacteristics. Sucha continuous approach, ap
plied independently of the order or disorder of the real
heterogeneous system,restson the assumptionthat the
scale of typical inhomogeneities (8) is niiniscule com
pared with the scale of the system (L):

8<<L (1)

Thiscontinuous approachusestheconceptsofaninfin
itesimal volume (Lifshitz and Pitaevskii 1979) and of
incorporatedcontinua. Anysuchaveraged description,
asanalternative toadetaileddescriptionofprocessesin
HM, considerably simplifies theproblem solution, pro
vided that the regular microstructure isknown. It allows
the solutionof practicalproblems whenthe innerstruc

ture is non-regular and unknown (by the statistical
methodin Landauand Lifshitz [1976]). The difficulty
of describing processes in this case is in obtaining
averaged equation coefficients for energy, momentum
and mass(analogous to obtaining closurefor hydrody-
namicequations[LifshitzandPitaevskii 1979]). Being
random variables for 6<L, these coefficients become
single-valued characteristics of the medium when the
conditions of eq 1 are satisfied (the so-called self-
averaging of specific extensive quantities and kinetic
coefficientsas 6/L -> 0 from Lifshitzet al. [1982]).

Several further concepts of HM classification are
useful. Many classifications by different indicators ex
ist (for example, Chudnovskii 1962, Dulnev and
Zarichnyak 1974, Dulnev 1979, Heifitz and Neimark
1982). The principal indicators are:

1. The occurrence of binary or multi-component
mixtures. v

2. The occurrence-of inert mechanical mixtures,
alloys, solutions, HM with chemical interactions, etc.

3. The topology of the microstructure—including
the degree of surface contact and the distribution of
component sizes within the medium, ranging from
uniform to varied.

4. The degree of order or randomness in the HM.
5.Theuniformityor varietyof thecomponentswith

in the HM,ranging fromweakly to strongly heteroge
neous. This includes the physical qualities of the com
ponents and their arrangement within the medium.

Theseclassifications are conventional and in prac
tice thegiven types of systems are mixed, with a high
degreeof disorderof components beingtypical.In this
respectporousmediaandsoilsaresimilartoothertypes
ofHM.

Thefirst investigations in which thecontinuous ap
proachwasextended from homogeneous gases, solu
tions and liquids to heterogeneous media with inner
structure areinworks byMaxwell (1873)andRayleigh
(1892), which focused on calculation of the effective
electricfieldina mediumwithsphericalinclusionsthat
are located at the nodes of a cubic lattice. Burger*



studied the case of ellipsoidal inclusions. In 1887 Ar-
rhenius*stiiciied the analogousproblemfor the viscos
ityofbinaryliquidsolutionsandsuggestedtheformula
for the"logarithmic lawof viscosity mixing." Laterthe
same approach appeared again in Lichtenecker's work
(1909, 1924, 1926, 1929) on conductivity. Eycken*
(1912) apparently wasthefirstto study theequivalent
problem for heat transfer. Analogous problems con
nected withvarious physical fields were alsostudiedby
Wiener* (1912),Fricke*(1924), Voight* (1928),Re-
uss*(1929),Bruggeman( 1935) andothers(Odelevskii
1951, Chudnovskii 1962, Vasiliev and Tanaeva 1971,
Dulnev and Zarichnyak 1974,Dulnevetal. 1976,Bakh-
valov and Panasenko 1984, Shvidler 1985). A modem
introductionto the formal study of physicalcharacter
istics that are analogous to conductivity (the dielectric
constantand magneticpermeability, viscosity,electri
cal and thermal conductivity, diffusion and filtration
coefficients, and moduli of elasticity), is found in
Odelevskii (1951).

Investigations conductedin theU.S.S.R. maybe di
vided into two large groups:1)ad-hocexperimentsin
vestigatingthe thermalconductivityof specificmateri
als andmedia, and2) theoreticalcalculations to determine
generalsolutionsforeffectivethermalconductivityand
overall conductance in wide classes of HM.

CONTINUOUS DESCRIPTION OF THERMAL
PROCESSES IN HETEROGENEOUS MEDIA
AND THE CONCEPT OF EFFECTIVE

CHARACTERISTICS

The fundamental distinction between averaged de
scriptions of HM, and macroscopic descriptions of mo
lecular systems rests with the heterogeneity of the HM
being much larger than molecular scale (/):

8»/. (2)

The averaging technique used allows one to approxi
mate a continuous medium with the same form of con

servation of "energy equations as for the HM and its
internal heterogeneities, each having its own local
physical coefficients.

Even if the contact area on the interface between
components in a micro-heterogeneous systemis large,
one may often neglect the interactionof components
withinit overa largetemperature span.In suchtemper
ature intervals, HM are mechanical mixtures and heat
transferis describedby thepureconduction equations:

div q+ cp — = 0
dt

* Citation not available.

(3)

q = -X grad T

7tr,0)=T0(;),7lB=r(rB,/)

(4)

(5)

Here specific heat c(r\ density p(r) and thermal
conductivity X(r) have rapidly changing coordinate
functions (with periodical or random variables). As
cp(r) and X(r) are discontinuous in HM, the solution of
theeq 3 through5 isconsideredtobe a generalsolution
satisfying corresponding integralrelations(Bakhvalov
and Panasenko 1984). It is necessary to assume a
temperature and heat flux continuum along interfaces
between components

[r] =o, dr

dz
= o

where [] is the function jump on the surface of a contact
anddT/dz is thepartial derivative of temperature nor
mal to the surface.

In principle,a detailedknowledgeof the HMmicro-
structure thatdetermines the functions (fr), p(r) and A(r)
wouldallowone to solvethe problemaccurately.With
the assumption of eq 1 and if the structure is rather
complicated, then such a detailed solution would be
difficult to model on a computer. However, such a
computation wouldrelyonadetailedknowledge of the
microstructure of the HM, which is unknown in detail.
Instead, collectivegeneral propertiesof the microstruc
ture are typically known.Thanksto this knowledge, a
detailedsolution isnotusually requiredandanaveraged
description of the medium and the processes taking
place withinis typicallytheonly appropriatemethod. It
is also advisable to average the processes in simple,
periodic media, as was done in Bakhvalov and Panasen
ko (1984) and Dulnev et al. (1976).

Now we'11 cover isotropicand macroscopically ho
mogeneous systems, that is, the systems in which the
scale of heterogeneity 8 and the averagedparameters
(thevolume ofthecomponents andsoon)donotdepend
on global coordinates. In termsof the multiple scales
methodthatis appliedto averagedprocessesin period
ical media (Bakhvalov and Panasenko 1984), these so-
called"slowvariables"areonthescaleofL,unlike"quick

-variables," whichare insideheterogeneities and areon
the scale of 8.

Averaging can be carried out by several methods.
The method stronglydepends on the microstructureof
the HM. It may be 1) statistical averaging over an
ensemble of similar systems, where cp(rj and X(r) are
random functions, 2)averaging overaphysically small
volume A3, 8« A« L, or3) averaging over an ele
mentary cell that is in a periodic structure. No matter
how the averaging is done, it essentially uses the disin
tegration of the solution from Bakhvalov and Panasen-



ko(1984) or the parabolic operator of equations from
Kozlov (1978), Shvidler (1986) and Zhikov et al. (1981),
sequentially, into a power series of the parameter e =
b/L. Averaged equations of the zeroth order corre
sponding to eq 3 and 4 are expressed as follows

div«£>+<cp>^-^ =0
dt

<q> = -Xef grad< 7V

(6)

(7)

where the operations div and grad are taken only by
global variables. In eq 6-8 the symbols < > mean
averaging 1)over an ensemble of similar systems with
random fields, cp(r) and X(r), 2) of aphysically small
volume A3, or 3) using theperiodicities of regularities
within the structure. In order to solve for <T> approxi
mately in eq 6 and 7 to solve for T in eq 3-5

max|r-<7;>| <C0e

must be satisfied, where Cois a quantity of the first order
of magnitude. One must establish boundary conditions
so that they coincide with their averaged analogue

<T>\n = T(rn,t). (8)

We now look at the concept of effective thermal
conductivity X.ef, which is discussed as a special-case
ancillary problem in Bakhvalov and Panasenko (1984),
Shvidler (1985) and Shvidler (1986). Characterizing
A^fis not trivial and represents the main challenge in this
whole topic. Many works are devoted to the theoretical
determination ofAef- However, experimentation is the
most reliable way for determining X^f.

The other thermal coefficient derived from averaged
equations, average thermal-capacitance <cp> in eq 6, is
determined simply by additivity. In fact, by dividing
regions of integration into separate subregions occu
pied by individual components, it is easy to show that

<cp> =_L. cpdr =£ qPci<l>i (9)

(a3)
where c\and pCj = specific heat capacity and density

'/. = component
<j)j = volume fraction /-component (aver

aged over the characteristic volume
A3). ,'-...

By introducingpartialdensity (theconcentrationof the
/th-component), p,=(pipci, equation 9may beexpressed
as

<cp> = 5>iPi-
i

Another derivation of averaged volume heat capacity is
possible by using the effective specific heat and an
averaged density of the HM. Let's first determine the
mass content of the components in their mixture

mi = Pi/XPi (")
i

and then the partial specific volume

Vi = mi/pci.

By using Vj, we determine the volume content ofthe /th-
component in a manner analogous to eq 11

i

Then, introducing the effective specific thermal capac
ity of the HM as

cef =2>imi
i

and the average density

<p> =X^iPci =ZPi=(S vi)
i i \ i /

from eq 10-13 it is easy to show that :>

<cp> = cef<p> . >M

\-i

(12)

(13)

(14)

Note that the effective specific heat cefdoes not coin
cide with the averaged specific heat, as determined by
the mean of individual specific heats, namely cef* <c>.
The same is true for Xgf* <7c>. In the particular case of
layered HM, as we'll see below, X,ef = <k>. These
quantities agree only for volume-specificproperties.

Note the following limitation on the applicability of
eq 6 and 7 to non-steady-state processes. Their validity
maybeacceptedonlywhenthelocal temperaturewithin
the medium differs only a little from the temperature of
the local thermal equilibrium. They are unconditionally
valid only when the medium isclose to steady state, that
is, at 3778/ ~ 0 in Rubinshtein (1948). Hence, it follows
that they can describe only rather slow non-steady-state
thermal processes with typical response times much
longer than the time constants of the heterogeneities
within the medium, that is

fchar »

4™
(15)

where am\n = min (a\) and can be described by averaged
eq 6 and 7. The condition (eq 15) can also be obtained



from theestimate of the terms of eq 6 and 7 using the
inequality of eq 1 (Buevich 1973). The effective ther
malconductivityineq7fornon-steady-state processes,
tested against the condition in eq 15,coincides with the
steady-state effectivethermalconductivity.

If one cannot adhere to the assumptions of local
thermal equilibrium, then one has to resort to a more
detailed description—forexample, amulti-temperature
model (Rubinshtein 1948, Schvidler 1986). In such a
model, heat transfer terms that are linear functions of
temperature are added to eq 6 for each temperature
within the individual components.

Summing up, let us reformulate the conditions of the
applicability of homogenization of both steady-state
andnon-steady-state thermal problems inHM, including
mechanical mixtures and also dispersed systems with
possible phaseandchemical reactions (Kovalenko 1987).

Withtheinequality ofeq 1astheprincipal condition,
the smallest of the following two dimensions must be
chosen as the typical problem scale: 1)minimal size of
specimen Lsp, or2) the typical process length Lpr, that
is: L = min (Lsp, Lpr). The condition L» 8 must be
observed forany steady-state (this usually allowsL=Lsp)
or non-steady-state process. In this latter case the con
dition of eq 1 can be rewritten by the substitution

t=.v; char*

as the condition of eq 15, in which the L= Lsp, the
characteristic time is simply equal to L^/a. When L=
Lpr, the characteristic time can be expressed by other
parameters.So, forHM undergoingphaseendothermal
change from thawing, tclm =AT/f can be introduced,
whereAris theliquidcharacteristictemperature differ
ence inthe phase diagram (melting phase), and where f
istheheating rate. Thevalue rchar notonlyrepresents eq
15but exceeds the diffusion time in the heterogeneity
scale. The latter condition is thanks to the fact that a
Lewis number, Le < 10~3 « 1, in condensed media
appears sufficient for homogenized modeling of the
medium (in this case the conditionof eq 15 is deliber
ately observed). With such a homogenization, we un
derstandthedescription of themedium withthehelpof
lumped, effective characteristics.

THEORETICAL METHODS FOR THE
DETERMINATION OF EFFECTIVE
THERMAL CONDUCTIVITY

Bydefinition theeffective thermal conductivity isa
coefficientthat relatestheaveragedvaluesforheatflux
andthe gradient of the average temperature (eq7)

<q> = -^ef grad <T>.

Most calculation methods are based on this defini
tion. The problem then is the determination ofthe fields
of<<7>j and<T>X averagedbythecomponents withinthe
HM.

Exact solutions and approximate methods
Exact solutions to the problem of the definition of the

effectivethermal conductivity areknownonlyfora few
cases. In the first place, these are one-dimensional
layered structures for which the longitudinal conduc
tivity is as follows

X|| =<k>

and transverse

X1 = <X-'>-1.

(16)

(17)

For more complex structures, especially for non-
regular ones, it is complicated enough to calculate the
effective thermalconductivityon the basis of the infor
mationaboutfieldstructuresof <^>jand <7!>j, soexact
solutions arevery rare. However, onemay occasionally
avoid awkward and sometimes unsuccessful calcula
tions for systems that are not strongly heterogeneous.
Thispossibility relies onusing variational principles for
estimating the bounds of effective characteristics
(Dykhne 1967, Shvidler 1985). The simplest expres
sion of such bounds is

<^-1>-,<Xef<<X> (18)

which was probably determined for the first time by
Wienerandlater wasascertainedbyHill*(1964)for the
modulus of elasticity and pliability and by Dykhne
(1967) for conductivity.

Dykhne (1970)obtainedan interesting result in his
work, inwhichheprovedthatforaflatisotropic system,
covered on the average by geometrically equivalent
regions with different conductivities X\ and A,2, the
effective conductivity satisfies thefunctional equation

where §{ is the area fraction (in a two-dimensional
model) forregions with conductivity X\ and(|>i+<|>2 = 1.
Hence at <>! = <J>2= V2 it follows

Kl\n) = ^ (19)

In the above mentioned work by Dykhne and also a
paper by Kozlov (1979), the case when, for the random

* Citation not available.



variable X, the distribution of the value %= InA, - <lnX>
is an even function of%, is studied for different possibil
ities. The precise value of the effective thermal conduc
tivity is obtained as

Xq{ = exp <lnX>. (20)

This result with itsparticularcaseofeq 19representsthe
empiricallogarithm-mixing formulabyArrhenius (also
suggested later by Lichtenecker) which,thus, is accu
rate for two-dimensional bicomponent systems with
specialized conductivitydistributionfunctions. Equa
tion 20 can be represented by (Shvidler 1985)

xe{=(<x><x-l>-l)l/2. (21)

This is a geometricmeanthat is betweenthe arithmetic
and harmonic means for thermal conductivity.

In the work in Ivanov (1967), eq 21 is generalized to
other dimensions n with the help of the additional
results of the perturbation method

Xef=<X> i-M < x-1 >r (22)

At n = 1 this formula is accurate for any distribution, at
n = 2 it is accurate if the distribution of %is even and at
n= 3, according to Shvidler (1985), "one can expect the
formula to be accurate enough for normal distributions
oflnX."

The approach made in the early works of Maxwell
(1873) and Rayleigh (1892), which present an approx
imation ofa small concentration ofinclusions dispersed
eitherregularlyor randomlywithinthematrix,gaverise
to a great number of publications in which different
asymptotic formulae for Xgf were obtained. Maxwell
(1873) derived the first term of a decomposition of
effective thermal conductivity as a function of the
volumetric fractions of the inclusions

Xef- X2 ,v(l+2(j>1) +2(1-^0
v(l-<t)1) + 2+(l)1

(23)

where the subscript 1refers to the inclusions, 2 refers to
the matrix, and v = X\fX2. Rayleigh (1892) studied the

/problemofspherical inclusions at thenodesofaregular
cubic lattice. He .obtained the first two terms of an

expansionof Xe{by degreesof <|>i; thefirstandprincipal
termofthis expansiondisregardedthemutualinfluence
of inclusions, and coincided with Maxwell's (1873)
solution (eq 23). Rayleigh's solution was rendered
more precise by adding two more terms of the expan
sion in BerdichevskTi (1979).

Hashin and Strikman (1962) narrowed the limits of
effective parameters beyond those in eq 18 using the

variational principle. For the isotropic two-phase sys
tem with A,i < X2, the limits coincide with asymptotic
formulae by Maxwell (1873)

X

2.(1+2^!)+20,
^in^ef^m

?4>, +2+4>:

= X-

^(1+2^ ,')+24>2
(24)

x2

This is not a casual coincidence. In fact, as shown in
Berdichevskii (1979), if the thermal conductivity of
inclusions X\ is lessthanthatofthemediumX2, thenthe
accurate value of effective conductivity of a periodical
ly structured medium with spherical inclusions is less
than or equal to the first term, Xm of the Rayleigh-
Berdichevskii formula in Berdichevskii (1979) that
coincideswith Maxwell's solution (eq 23). If X\ > X2,
then A,ef > A^.

Unlike the universal bounds for X^fin eq 18, Hashin-
Strikman'sexpression (eq24)forthethree-dimension
al heterogeneous system gives approximate bounds,
which, however, are considerably narrower than the
former(eq 18).Usingsuchbounds it is possible,when
necessary, to constructapproximate solutions, as ineq
24. Shvidler (1985) further recommends that if compo
nentconnectivity isidentical (mutually penetrative com
ponents), then wecantake as anapproximate value of

^f=ta<)/2.
For isotropic matrix HM, he recommends the assump
tion X,ef =A,*, ifthe matrix thermal conductivity is more
than the inclusion conductivity, and Xe{ = A." in the
opposite case. If no single component is simply con
nected, but the components' connectivities are differ
ent, then the estimate for Xef is ?ief =V^m^m •

The perturbation method for determining thermal
conductivity in Landau and Lifshitz (1982) is similar to
the Maxwell (1873) method for approximating small
concentrations of inclusions. The perturbation method
givesgood results for any concentration of components
but only for weakly heterogeneous systems.

In addition to the perturbation method, the self-
consistent effective field method is another important
technique. In a numberof cases it gives better results.
The first self-consistent parameters were probably cal
culatedbyBruggeman (1935).Later,Odelevskii (1951)
in the U.S.S.R., Landauer (1952) and others developed
thismethodforothersystems.The,efficiencyof theself-



consistent field method is shown by direct numerical
computations (Shvidler 1983) and by comparison with
experiments (Odelevskii 1951).Shvidler (1985) gives
tables for the valuesof A^fAi calculatedby this method
for different values of A^Ai and <J>j and for different
dimensional ratios of spheroidal inclusions.

Note that in the strongly heterogeneousHM, perco
lation causes threshold effects (Efros 1982, Shvidler
1985). One can describe conductance behavior near the
thresholdin suchsystems,usingpowerlawsforscaling
according to percolation theory. Critical indexes and
values of the threshold concentration §c for simple
problems can be obtained analytically, but more often
they are computed by the Monte Carlo method. Self-
consistent parameters at v = 0 or at v =«»in some con
centration areas get non-physical, negative values.While
this is certainly the result of approximation, it is also an
indicator for the percolation effect (Shvidler 1985).
Thus, the formula for binary HM with equal compo
nents derived in Odelevskii (1951) by the effective
media method

*ef =̂ M(3Vl)+v(3<J>2-l) +
4

V[(3(t)2-l)+v(3(t)2-l)]2 +8v} . (25)

where v = X2/X\ gives the estimate of percolation
threshold <|>c= 1/3 as v -» 0

when $1 < <J)C Aef = 0

when <J>! >§c A^f = X.i(3<pi—1)/2. (26)

In engineering practice the methods of structural
modeling (Chudnovskii 1962, Vasiliev and Tanaeva
1971, Dulnev and Zarichnyak 1974, Dulnev et al. 1976,
Dulnev 1979) are often used. The real HM structure is
modeled by the most suitable ordered structure in which
an elementary cell is separated, and its thermal conduc
tivity is calculated precisely using a computer as in
Bakhvalov and Panasenko (1984) or approximately as
in Dulnev and Zarichnyak (1974). Approximatecalcu
lations of Xef for the elementarycell are usuallymade
by dividing a cell into separate fragments, containing
only one of the components with surfaces that are ortho
gonal to the direction of heat flow. Then the thermal
resistance ofacompleteelementary cell ismade ofpar
allel and serial connections of fragment resistances and
calculated by the rules of Kirchhoffs chain. A number
of formulae sufficiently useful forengineering calcula
tions are obtained by this method in Dulnev and Zarich-
ny (1974). Thus, a model was suggested for structures
with interpenetrating components, in which one of the
components presents a cubic lattice or frame with bars

of a constant square section. To determine the conduc
tivity of such a system by the method described, the
estimates of A^f were obtained with the help of two
different fragment thermal resistance connections with
in the elementary cell

A,ad=A.,[c2+v(l-C)2 +2vC(l-CXvC+l-C)"1]

C^isot -*•! — '—r +
-1

C2+v(l-C2) C(2-C-)+v(i-C2)

where the subscripts ad and isot refer to adiabatic and
isothermal, respectively, and C is the relative bar size,
which is a root of the equation

2C3-3C2+1-(|>2 =0.

With the arithmetic mean of these values from Dul

nev and Zarichnyak (1974), one can determine the
effectivevalueof A, for any relationship of thecompo
nent thermal conductivities, the result being rather near
to the results of numerical computations. Maximum
calculation error is attained when v = 0 or v = <*>, yet it
doesn't exceed -15% (Dulnev and Zarichnyak 1974).

These methods include the averaged element tech
nique (Dulnev and Zarichnyak 1974). This technique
introduces a set of assumptions about the HM structure
and then averages the parameters of the structure. The
complexity and subjectivity of the procedure to define
such an averaged element substantially explains why
this method was not widely adopted.

In some applied problems, it is necessary to take into
account the statistical distribution of heterogeneities in
HM leading to deviationsin thermalconductivityval
ues from the average value A^f. Zhiroy's work (1976)
focuses on this problem.

The success of the application of all these formulas
to real HM depends on how well one has characterized
the system structure, e.g., the distribution of A. for ran
dom mixtures or for geometrical structures. Variational
estimates based on universally used principles are rela
tively simple and require minimal information about the
HM studied. Therefore, they apply to wide classes of
HM. This is their advantage and at the same time a
limitation on their efficiency when they lead to wide
bounds in estimating effective conductivity. One can
obtain positive results provided that 0.2 < v < 5 for the
Hashin-Strikman estimate and 0.5 < v < 2 for the uni

versal relationship are both true. Attempts to include in
the analysis more detailed informationabout specific
features of the systems studied, in order to narrow the
limits of estimates, instead make the variational esti
mates method considerably more cumbersome.



Semi-empirical methods
All theestimates of effective thermal conductivity

given above havetheform X^^, Aj) anddonotcontain
the parametersthatdirectlyreflectthe real structureof
thematerial. Therefore, theyadequately represent such
factors that affect heat transfer as the forms of inclu
sions,thedispersionof theirsizes,theeffectsof thermal
contact, etc.

Some missing information about actual HM struc
tures can come from direct observations and measure
ments. Thus, we come to the semi-empirical methods
for estimating effective thermal conductivity, which
allow oneto takeintoaccount known specific features
of the HM structure by introducing additional semi-
empirical parameters.

Somesemi-empiricalmethods (Dulnev 1979,Malter
et al. 1980) are based on the representation of the
definitionA^f fromeq 7 in the form

X - ^4^1 -X -^12<l)l+V<l)2
e |V<7>| ! K^i+^2

(27)

where v = A.2A1, and Kn= IV<T>!l l\ V<7>2l is the
ratioof the averaged temperature gradients in the two
components of a binary heterogeneous system (after
Shvidler 1986). A number of properties ofK\2 canbe
set.Thus, usingeq 18it is easy to showthat this value
islimitedbytheboundsforK\2of 1,v and,hence,when
v. = 1, then K\2=\. With the help of such boundary
relationships fordielectric polarization fromOdelevskii
(1951) and Landauand Lifshitz(1982), we obtainthe
value of the derivative when v = 1

^Kn _ 1
dv ""3".

Thereexistgeneralized experimental data fromMalter
et al. (1980) that indicate that, for a wide class"of
systems, when v=0 orv=<*> theboundary values ofKl2
(v) do not depend on the volume fraction over a wide
range and satisfy the condition

0A<Kn(0)+Kl2(o*)£0.67

fci2=*2~ii
Assuming similarproperties oftheratio Kl2, Malter

et al. (1980) suggested a four-parameter approximate
equation forK\2 (v),considering it independent of the
concentration. Assuming thatK\2 is independent of<j>j,
it ispossible todetermine this constant for the given y
andfromeq27if thevalueof A^fhasbeenmeasured for
certain values of <fc; then forthe other values of <|>i the
thermal conductivity can be calculated by using the
derived value of K\2.

AlsoofinterestaretheworksofSerykhandKolesni-

Figure 1.Determination ofCj, theratioofcontact sur
face areatothe total areaof the particle surfaces.

kov (1982) andKolesnikov (1985), which suggest use
of stereological analysis for obtaining the additional
information about HM structures. Thus, for determina
tionofeffective thermal conductivity inporous granu
larsystems whenv = 0,SerykhandKolesnikov (1982)
derive the following formula

^ef=^i"Vc7 (28)

HereCi iscalledcontiguityordegreeofcontact.It is the
ratio of the contact surface area to the total area of the
particle surface (Fig. 1)

C\-2 Scont/S'totai

where 5cont= X(5c)/
H

. 5C = contact surface area
Nc = number of contacts

and Np ,

•Stotal =2 (sp)l
5p = particle surfacearea
Np = numberof particles.

(28a)

(28b)

(28c)

C\ is determined from the stereological analysis of a
microsection specimen. This method can sometimes
simplify thermal experiments forporous granular sys
tems, but usually direct measurement of thermal con
ductivity is simpler.

InBalshin'swork(1948,1972)thefollowingformu-
lafortheconductivity properties ofporous materials is
suggested

A^A^Y^jCt (29)

in which

a = 5Dr/5,pr/ '•'nom (29a)
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Figure 2.Determination ofa, the ratio ofprojectedareas ofcontact tothe
section area ofthe specimen.

and

5pr =SWjCOSej (29b)

where Nc is the number of contacts, 9jis the angle be
tween thenormal tothe/h contact plane andthenormal
to thesectionplane,and'5nom isthe nominalsectionarea
of the specimen (Fig. 2). Balshin used the concept of
contact sections to describe the physical and mechani
cal properties ofcompressed materials inuniform posi
tions. Their characteristics are expressed by a with a
simple formula

Pef = Pca. (30)

HerePefmaY De tnemodulusofelasticityE,thestrength,
or the pressureof compaction/?.Eachof these represent
a resistance propertyfor forming the material.Pc is the
corresponding contact value for this property. ForE,Pc
is thecorrespondingmodulusofelasticityof theframe*
material.For/?,Pcisacorrespondingvaluebetweenthe
material frame strength and the yield point of this
material (Balshin 1948,1972). The weight of the exper
imental evidence in Balshin (1972) suggests an approx
imation of the contact section value through measured
parameters either for porosity n and the initial bulk
porosity no or corresponding values of the volume
fraction of the solid phase <j>i

a =(i-n)2(i-n/n0)P (31)

where p depends empirically on the hardnesses of the
material species.

The stereologicaldefinitionof thecontactsectionis

* The framerefers to the solid skeletonof a porousmaterial,exclusive
of the voids within it.

describedby eq 29alUsing this definition,Serykhand
Kolesnikov (1982) and Kolesnikov (1985) connected
the values C\ and a with the help of the stereological
approach

C\ = a/(t>i (32)

Hence, one can derive the formula for the effective
thermal conductivity identical to eq 29 from eq 28.
Thus, one mightmatchbothapproachesanddetermine
a by stereological means.

The formulas for A^ff in eq 28 and 29 are based on
some lax assumptions that do not account for the phys
ical state of the contacts. This probably overestimates
the thermalconductivity insomecases, forexample, for
compressed metal powderswith high porosity. These
systems were studied by Aleksandrov et al. (1985),
Gruzdev and Kovalenko (1987, 1988a) and Gruzdev et
al. (1989), using compressed powders of nickel, zirco
nium and their mixtures with aluminum powder as
examples. In Aleksandrovet al. (1985) and Gruzdev et
al. (1989), experiments determined that a good analogy
exists between heat transfer and mechanical stress

transfer in these systems,asdetermined by the degreeof
contact present. A lattice model of a powder body
demonstrates the analogy theoretically in Gruzdev and
Kovalenko (1987,1988a). The thermal versus mechan
icalanalogy between themolding pressure andthermal
conductivityisbasedonthesimilarityofdependenceon
specimen porosity. Employing the relationship of po
rositytomechanical properties ineq30,andthethermal
versus mechanical analogy for thermal conduction, we
can write

A, = A,c a(n,n0). (33)

Parameter p\ which enters into the function a (n,no)
(from eq31),depends onthehardnesses ofthematerial



species (Gruzdev etal. 1989). It ranges from (3 = 1to p
=1.5forsoftmetals,suchasaluminum, to p=4 forhard
metals. Experimentation confirms a clearsimilarity of
relationship betweenP(n,no,p) and A.ef (n,no,p). As
follows from the above described thermal-mechanical
analogy, the porosity n, the bulkporosity no, which
characterizes theprecompaction structure, and the pa
rameter parecriteria forsimilarity (Kutateladze 1986)
between the mechanical and thermal properties ofpo
rous, compressed powdered metals. The contact ther
mal conductivity A.c is determined empirically. This
analogy and the formula in eq 33 are limited by the
conditionthat theareaof inter-particlecontactsbesmall
incomparison with the sizes ofspecies. Hence, porosity
should be in the range of fl > 0.25 ± 0.05.

EXPERIMENTAL INVESTIGATIONS

Non-steady-state methods are generally used for
measuringeffective thermalconductivity and thermal
diffusivity ofdispersed andporous media, as inArtyk
paev (1968) and Lyalikov (1965), for example. These
methods can be conventionally divided into several
groups: 1) methods usingmonotonic (Platunov 1973)
andperiodical (Filippov 1984) heating, 2)methods us
ingequilibration atanexponential rate, e.g., the "regu
lar regime of Kondratiev" (Chudnovskii 1962) and3)
probemethods (see,e.g., Sigalova 1965, Bakenovet al.
1972, Zaitzev et al. 1989). Steady-state methods are
more laborious and inaccurate and are therefore used
less often. For temperature intervals in which HM or
theirseparate components (forexample, thawing soils)

-undergo phase transformations, traditional methods do
notwork because thethermal conductivity equation is
nonlinear. Forsuchcases the methods basedoncomput
er solutions of thecorresponding inverse problems are
suggested in Pavlov et al. (1980), Kovalenko (1986)
and Gruzdev and Kovalenko (1988b).

Experimental investigations have, as a rule, been
individual, ad-hoc efforts. Theirpurpose in eachcase
hasbeentostudy thermal conductivityofanarrow class
of materials. There arepractically noexperimental in
vestigations for modeled media.

Thethermal conductivityofsoils(clays, sandstones)
andvarious rock deposits isinvestigatedintheworks by
Bogomolov (1941), Sigalova (1965), Bakenov et al.
(1972), Sidorov (1979), Nikiolaev et al. (1987) and
Zaitzev etal. (1989). Anattempt tosummarize thermal
conductivity of three- or four-component soils (hard
frame with air, water and oil) is made in the works of
Volkov et al. (1982). The works of Franchuk (1941),
Kaufman (1955), Vasiliev and Fraiman (1967),
Zabrodskii et al. (1968), Garnashevich (1974), Frant-

sevich (1976), Litovskii and Puchkelevich (1982) and
Streloy (1982)are dedicatedto experimental study of
the thermal conductivities of thermal insulation and
other building materials. Zarichnyak (1970) summariz
es experimental data for the thermal conductivity of
such systems. Metal-ceramic and compressed metal-
powdermaterialsareconsideredintheworksofLyalik-
ov (1965), Skorokhod (1967), Demidchenko (1972),
Andreev (1975), Aleksandrov et al. (1985) and Gruzdev
etal.(1989).

Experimental investigations can be unsatisfactory
whenthe materialsstudiedare insufficientlycharacter
ized. Also, the amount of experimental data is insuffi
cient to favor one or another calculational model for
specific classes of porous, dispersed materials.

CONCLUSION

\ .
Areview ofSovietstudiesofthermal conductivity of

porous materials and soils shows that theoretical inves
tigations are morecommon than experimental. Many
models are not adequately validated with the meager
experimental datathatexistfordifferent classes of sys
tems. In fact; there are no systematic experimental in
vestigations of the whole classes of HM, as they are
modeled. Investigators give preference to calculations.
The lack of 1) thermal measurement apparatuses, 2)
accurate methods to characterize structure, and 3) a
common data bank for individual experimental results
reinforces this syndrome.

Methods available for determining the effective
thermal conductivity of HM by theoretical calculation
probably exceed in scope the whole range of various
HM classes. Choosing between models for specific
casesis therefore a majorproblem inpredicting of HM
thermal properties.
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