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PREFACE

This report was prepared by Dr. Yurii A. Kovalenko, Institute of Thermophysics, Siberian Branch
of the U.S.S.R. Academy of Sciences, and Stephen N. Flanders, Research Civil Engineer, Civil and
Geotechnical Engineering Research Branch, Experimental Engineering Division, U.S. Army Cold
Regions Research and Engineering Laboratory.

This report was originally submitted to be part of the Proceedings of the Workshop on In-situ Heat
Flux Measurements in Buildings that was held at CRREL on 22 and 23 May 1990. Its late arrival for
the workshop and other considerations made publication as a CRREL Special Report appropriate. The
report is substantially the work of Dr. Yurii Kovalenko. Stephen Flanders reworked the text in
cooperation with Dr. Kovalenko to make it more accessible to its readers in English. Dr. Yin-Chao Yen
and Dr. Virgil Lunardini of CRREL and Dr. Omar Farouki of the Queen’s University of Belfast
provided technical reviews.

The contents of this report are not to be used for advertising or promotional purposes. Citation of
brand names does not constitute an official endorsement or approval of the use of such commercial
products. -
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Thermal diffusivity (m%/s)

Specific heat capacity [J/(kg K)]

Relative bar size

Contiguity (or contact degree)

Modulus of elasticity _ .
Ratio of averaged temperature gradients in
binary heterogeneous system, .
K= | A<T>vl| /l A<T>2|

Scale of the problem (m)

Lewis number

Process length (m)

Specimen length (m)

Molecular scale (m)

Mass fraction of the ith component
Number of dimensions

Number of particle contacts

Number of particles

Pressure of compaction (Pa)

Modulus of elasticity or pressure of compac-
tion (Pa) '

Contact value of modulus of elasticity per
unit of contact area (Pa) 4

Local thermal flux density (W/m?)
Coordinates (m) Co

Contact surface area of a particle (rﬁz)
Contact surface area (m?)

Sum of particie surface areas (m?)
Nom_inal section area of the specimen (m2)
Surface area of a particle (m?) -
Surface contact area projected on the section
plane (m?) ‘

Time (s)

Temperature (K)
Boundary value of temperature (K)

.Heating rate (K/s)

Partial specific volume of the ith compbnent
(n*/kg)

Distance normal to surface (m)

Relative contact section of molded (or sin-
tered) materials. The ratio of contact area
projected onto a cross section to the area of
the cross section of the specimen _
Empirical parameter, relating to hardness. f§
= 1.2 for soft materials, like aluminum, and
B = 4 for hard metals . , a
Scale of a subregion of the problem (m)
Inhomogeneity scale (m)

Ratio of the scale of the inhomogeneity to
the scale of the problem

Angle between the jth contact plane and the
normal to the section plane

Ratio of thermal conductivities for a binary
heterogeneous system '

Porosity - '

Bulk porosity

Density (kg/m3) o
Area or volume fraction of the ith compo-
nent - \ ,

For random In\ and their mean value, .
<InA>; y is InA—<InA>, Whgre p;obability (x)
is a normal distribution

Contact thermal conductivity (W/m K)
Effective thermal conductivity (W/m K)
Maxwell’s solution for effective thermal

- conductivity (eq 24)

Average




Thermal Conductivity of Porous Media and Sonls >
! o A Review of Soviet Investigations

'YURIIA. KOVALENKO AND STEPHEN N. FLANDERS )

INTRODUCTION

The thermal conductivity of soils and other dis-
persed porous materials of natural and artificial origin
depends, first of all, on the composition and geometric
microstructure of a system. Besides structure and com-
position, thermal.conductivity is influenced by inter-
. phase (intercomponent) interactions. Heat transfer oc-
curs primarily by conduction in systems with pores of

conventional size (< 10~ m), with temperatures rang-

ing from -50 to 100°C and subject to ordinary tem-
perature gradients. Convective and radiative heat ex-

change in pores can be estimated (Chudnovskii 1962,

Dulnev and Zarichnyak 1974) and is generally negligi-
ble, exceptin materials with large pores, such as thermal
insulation, and some structural construction materials,
notably the large-celled concrete found in the Soviet
Union. :

Porous media and soils belong to a large: class of

~ Heterogeneous Media (HM), for which the theory of

heat transfer allows the i investigator totake an approach
typical of continuous media: first, introduction of aver-
aged characteristics of the medium and the process
(volume content of components, temperature, heat flow,
heat capacitance and thermal conductivity), and sec-
ond, formulation of principal physical laws in terms of
these characteristics. Such a continuous approach, ap-
plied independently of the order or disorder of the real
heterogeneous system, rests on the assumption that the
scale of typical inhomogeneities (8) is miniscule com-
pared with the scale of the system (L):

d<<L. o ".(1)* |

This continuous anproaeh uses the coneepts of aninfin- -
.itesimal volume (Lifshitz and thaevskn 1979) and of '

incorporated continua, Any such averaged description,
asanalternative to adetailed description of processes in
HM, considerably smphﬁes the problem solution, pro-
vided that the regular microstructure is known. It allows

the solution of practical problems when the inner struc-

ture is non-regular and unknown (by the statistical

- method in Landau and Lifshitz [1976]). The difficulty

of describing processes in this case is in obtaining
averaged equation coefficients for energy, momentum -
and mass (analogous to obtaining closure for hydrody-
namic equations [Lifshitz and Pitaevskii 1979]). Being
random variables for § < L, these coefficients become
single-valued characteristics of the medium when the

" conditions of eq 1 are satisfied (the so-called self-

averaging of specific extensive quantities and kinetic
coefficients as /L — 0 from Lifshitz et al. [1982]).

Several further concepts of HM classification are
useful. Many classifications by different indicators ex-
ist (for example, Chudnovskii 1962, Dulnev and
Zarichnyak 1974, Dulnev 1979, Heifitz and Neimark
1982). The principal indicators are:
~ 1. The occurrence of binary or multi-component
mixtures. B

- 2. The occurrence -of inert mechanical mixtures,
alloys, solutions, HM with chemical interactions, etc.

3. The topology of the microstructure—including -
the degree of surface contact and the distribution of
component sizes within the medium, ranging from
uniform to varied.

4. The degree of order or randomness in the HM. -
. 5. Theuniformity or variety of the components with-
in the HM, ranging from weakly to strongly heteroge-
neous. This includes the physical qualities of the com-
ponents and their arrangement within the medium.

These classifications are conventional and in prac-
tice the given types of systems are mixed, with a high
degree of disorder of components being typical. In this -
respect porous media and soils are similar to other types
of HM.. (
- The first investigations in which the continuous ap-

.proach was extended from homogeneous gases, solu-

tions and liquids to heterogeneous media with i inner
structure are in works by Maxwell (1873) and Raylelgh'
(1892), which focused on calculation of the effective
electric field in a medium with spherical inclusions that

-are located at the nodes of a cubic lattice. Burger*



studied the case of ellipsoidal inclusions. In 1887 Ar-

rhenius* studied the analogous problem for the viscos-
ity of binary liquid solutions and suggested the formula
for the “logarithmic law of viscosity mixing.” Later the

same approach appeared again in Lichtenecker’s work

(1909, 1924, 1926, 1929) on conductivity. Eycken*
(1912) apparently was the first to study the equivalent
problem for heat transfer. Analogous problems con-
nected with various physical fields were also studied by

Wiener* (1912), Fricke* (1924), Voight* (1928), Re- -

-uss*(1929), Bruggeman (1935) and others (Odelevskii

1951, Chudnovskii 1962, Vasiliev and Tanaeva 1971,
Dulnev and Zarichnyak 1974, Dulnev etal. 1976, Bakh--

valov and Panasenko 1984, Shvidler 1985). A moderm

introduction to the formal study of physical character-

istics that are analogous to conductivity (the dielectric
constant and magnetic permeability, viscosity, electri-
cal and thermal conductivity, diffusion and filtration
coefficients, and moduli of elasticity), is found in
Odelevskii (1951). v

" Investigations conducted in the U.S.S R. .may be di-
vided into two large groups: 1) ad-hoc experiments in-
vestigating the thermal conductivity of specific materi-
- alsand media, and 2) theoretical calculationstodetermine
general solutions for effective thermal conductivity and
overall conductance in wide classes of HM.

CONTINUOUS DESCRIPTION OF THERMAL
PROCESSES IN HETEROGENEOUS MEDIA
AND THE CONCEPT OF EFFECTIVE
CHARACTERISTICS

The fundamental distinction between averaged de-

" scriptions of HM, and macroscopic descriptions of mo-
lecular systems rests with the heterogeneity of the HM
being much larger than molecular scale (/):

8>>1. - B : )
oy ,

- The averaging technique used allows one to approxi-
mate a continuous medium with the same form of con-
servation of ‘energy equations as for the. HM and its
internal heterogeneities, each having its own local
physical coefficients.

‘Even if the contact area on the interface between
components in a micro-heterogeneous system is large,

one may often neglect the interaction of components .

within it over a large temperature span. In such temper-

' _ ature intervals, HM are mechanical mixtures and heat.

transfer is described by the pure conduction equations:

aT

"div.c;+cp—a—=0 co o G

it
* Citation not available.

-

- conductivity

g=-AgradT . | @
7(;10) =77 Tig =T_(;B”) - )

Here specific heat c(;) density p(;) and thermal

r) have rapidly changing coordinate
funcnons (w1th periodical or random variables). As
cp(r) -and %(r) are discontinuous in HM, the solution of

* the eq 3 through 5 is considered to be a general solution

satisfying corresponding integral relations (Bakhvalov
and Panasenko 1984). It is necessary to assume a
temperature and heat flux continuum along interfaces
between components

e

z

where []is the function jump on the surface of a contact
and 9779z is the partial derivative of temperature nor-
mal to the surface.

In principle, a detailed knowledge of the HM micro-
structure that determines the functions c(r) p(r) and A(r)
would allow one to solve the problem accurately. With
the assumption of eq’l and if the structure is rather
complicated, then such a detailed solution ‘would be
difficult to model on a computer. However, such a
computation would rely on a detailed knowledge of the
microstructure of the HM, which is unknown in detail.
Instead, collective general properties of the microstruc-
ture are typically known. Thanks to this knowledge, a
detailed solution is not usually required and an averaged
description of the medium and the processes taking
place within is typically the only appropriate method. It
is also advisable to average the processes in simple,
periodic media, as was done in Bakhvalov and Panasen-
ko (1984) and Dulney et al. (1976).

"Now.we’ll cover isotropic and macroscopically ho—

~mogeneous systems, that is, the systems in which the

scale of heterogeneity & and the averaged parameters
(the volume of the components and soon)donotdepend
on global coordinates. In terms of the multiple scales
method that is applied to averaged processes in period-
ical media (Bakhvalov and Panasenko 1984), these so-
called“slow variables” are onthe scale of L, unlike “quick

~ -variables,” which are inside heterogeneities and are on

the scale of 8.

Averaging can be carried out by several methods.
The method strongly depends-on the microstructure of
the HM. It may be 1) statistical averaging over an
ensemble of similar systems, where cp( ?and r) are
random functions, 2) averaging overa physwally small
volume A3, § << A << L, or 3) averaging over an ele-

. mentary cell that is in a periodic structure. No matter

how the averaging is done, it essentially uses the disin-
tegration of the solution from Bakhvalov and Panasen-




ko (1984) or the parabolic operator of equations from
Kozlov (1978), Shvidler (1986)and Zhikovetal. (1981),
sequentially, into a power series of the parameter € =
S/L. Averaged equations of the zeroth order corre-
sponding to eq 3 and 4 are expressed as follows

a<

d|v<q>+<cp> -O : - (6)

<q> =_"7"ef ngad <T> . . : @)

where the operations div and grad are taken only by

global variables. In eq 6-8 the symbols- < > mean
averaging 1) overan ensemble of similar systems with
" random fields, cp(r) and A(r) 2) of a physically small
volume A3, or 3) using the periodicities of regularities
within the structuire. In order to solve for <I> approxi-
mately in eq 6 and 7 to solve for T in eq 3-5

max |7 ~<T>| <Cge

must be satisfied, where Cpis aquantity of the first order
of magnitude. One must establish boundary conditions
* so that they coincide with their averaged analogue .

<Tslg=TGgt). ~ - . ®

We now-look at the concept of effective thermal
conductivity Aef, which is discussed as a special-case
ancillary problem in Bakhvalov and Panasenko (1984),
Shvidler (1985) and Shvidler (1986). Characterizing
Aefis not trivial and represents the main challenge in this

whole topic. Many works are devoted to the theoretical o
determination of A¢r. However, experimentation is the

most reliable way for determining Aet.

The otherthermal coefficient derived from averaged
equations, average thermal.capacitance <cp>ineq®6, is
determined simply by additivity. In fact, by dividing
regions of integration into separate subregions occu-
~ pied by individual components, it is easy to show that

‘ A<£‘P>=1—3_”J cpdr’ =2:Cil3ci¢i .. ®

@

where ¢j and Pci = specific heat capacity and densny
| = component
¢; = volume fracnom-component (aver-
agaed over the characteristic volume
A°). o

By introducing partial density (the concentration of the
ith-component), p;= ®iPci, equation 9 may be expressed
as x S

<c‘p> = 2 CiP;-

i

" Another derivation of averaged volume heat capacity is

possible by using the effective 'specific heat and an
averaged density of the HM. Let’s first determine the
mass content of the components in their mixture

ml—p,/Zpl S any

and then the pamal specific volume

! : —ml/ch

By using v;, we determme the volume content of the z‘h-
component in a manner analogous toeq 11

0= Vi/z Vi

4

-Then, mtroducmg the effective specific thermal capac-
- ity of the HM as '

r=Xem o
and the average density

: ;p? =§]: o0 ;zi‘ PF(; Vi)“ ,‘ (13‘)

from eq 10-13 it is easy to show that -

<cp>= Cef <p> My (14)
Note that the effective specific heat Cef does not coin-
cide with the averaged specific heat, as determined by
the mean of individual specific heats, namely cef# <c>.
The same is true for A # <A>. In the particular case of
layered HM, as we’ll see below, A¢r = <A>. These
quantities agree only for volume-specific properties. . -

" Note the following limitation on the applicability of
eq 6 and 7 to non-steady-state processes. Their validity '
may be accepted only when the local temperature within
the medium differs only a little from the temperature of
the local thermal equilibrium. They are unconditionally.
valid only when the medium is close to steady state, that
is, at 9T/d¢ = 0 in Rubinshtein (1948). Hence, it follows - -
that they can describe only rather slow non-steady-state
thermal processes with typical response times much
longer than the time constants of the heterogenemes
w1thm the medium, that is
2

tchar>.>,

(15)
in

where ap;, =min (g;) and can be described by averaged

eq 6 and 7. The condition (eq 15) can also be obtained



from the estimate of the terms of eq 6 and 7 using the
inequality of eq 1 (Buevich 1973). The effective ther-
mal conductivity ineq 7 for non-steady-state processes,
tested against the condition ineq 15, coincides with the
steady-state effective thermal conductivity.

If one cannot adhere to the assumptions of local
thermal equilibrium, then one has to resort to a more
detailed description—for example, a multi-temperature
model (Rubinshtein 1948, Schvidler 1986). In such a
model, heat transfer terms that are linear functions of
temperature are added to eq 6 for each temperature
within the individual components.

Summing up, let us reformulate the conditions of the
applicability of homogenization of both steady-state
and non-steady-state thermal problemsin HM, including
mechanical mixtures and also dispersed systems with
possible phase and chemical reactions (Kovalenko 1987).

Withthe inequality of eq 1 as the principal condition,
the smallest of the following two dimensions must be
chosen as the typical problem scale: 1) minimal size of
specimen Lsp, or 2) the typical process length Ly, that
is: L = min (Lgp, Ly;). The condition L >> § must be
observed forany steady-state (this usuallyal]owsL =Lgp)
or non-steady-state process. In this latter case the con-
dition of eq 1 can be rewritten by the substitution

L=Vtpyra

as the condition of eq 15, in which the L= Lp, the
characteristic time is simply equal to L 2 /a WhenL =
Ly, the characteristic time can be expressed by other
parameters. So, for HM undergoing phase endothermal
change from thawing, ., .. ='AT/T can be introduced,
where AT is the liquid characteristic temperature differ-

ence in the phase diagram (melting phase), and where T

is the heating rate. The value fcy,, not only represents eq
15 but exceeds the diffusion time in the heterogeneity
scale. The latter condition is thanks to the fact that a
Lewis number, Le < 1073 << 1, in condensed media
appears sufficient for homogenized modeling of the
medium (in this case the condition of eq 15 is deliber-

ately observed). With such a homogenization, we un- -
derstand the description of the medium with the help of |

lumped, effective charactefistics.

' THEORETICAL METHODS FOR THE
DETERMINATION OF EFFECTIVE
THERMAL CONDUCTIVITY

By definition the effective thermal conductivity isa
coefficient that relates the averaged values for heat flux

and the gradient of the average temperature (eq7)

<G> = ~Aef grad <7>

Most calculation methods are base/d on this defini-
tion. The problem then is the determination of the fields
of <g>;and <T>;averaged by the components withinthe
HM. _

Exact solutions and approximate methods

Exact solutions to the problem of the definition of the
effective thermal conductivity are known only forafew
cases. In"the first place, these are one-dimensional

-layered structures for which the longltudmal conduc-

tivity is as follows

Ni=<h> ' (16)
and transverse
AL =<AI>L e (17)

For more complex structures, especially for non-
regular ones, it is complicated enough to calculate the
effective thermal conductivity on the basis of the infor-
mation about field structures of <g>; and <T>;, so exact
solutions are very raré. However, one may occasionally
avoid awkward and sometimes unsuccessful calcula-
tions for systems that are not strongly heterogeneous.
This possibility relies on using variational principles for
estimating the bounds of effective characteristics
(Dykhne 1967, Shvidler 1985), The simplest expres-
sion of such bounds is

A>Tl < A < <A (18)

which was probably determined for the first time by
Wienerand later was ascertained by Hill* (1964) forthe
modulus of elasticity and pliability and-by Dykhne
(1967) for conductivity.

Dykhne (1970) obtained an interesting result in his
work, in which he proved that fora flat isotropic system,
covered on the average by geometrically equivalent
regions with different conductivities A; and A, the
effective conductivity satisfies the functional equation

Aee(01) * Aer (92) = MAa
where q),'is the area fraciion’ (in a two- dimerisional

modet) for regions with conductivity A; and ¢1+¢2 =1.
Henceat ¢ = ¢, =4 it follows

e,(1/2.)= m. L)

In the above mentioned work by Dykhne ahd also a
paper by Kozlov (1979), the case when, for the random

* Citation not-available.




variable A, the distribution of the value 3 = InA — <InA>
is an even function ofy, is studied for different possibil-
ities. The precise value of the effectlve thermal conduc-
tivity is obtained as :

Aef = €Xp <InA>. : - (20)

This result with its particular case of eq 19 represents the
empirical logarithm-mixing formula by Arrhenius (also
suggested later by Lichtenecker) which, thus, is accu-
rate for-two-dimensional bicomponent systems with
specialized conductivity distribution functions. Equa-
tion 20 can be represented by (Shvidler 1985)

Aef = (<A> A-I>1H12, ¥3))

This is a geometric mean that is between the arithmetic

and harmonic means for thermal conductivity. -

In the work in Ivanov (1967), eq 21 is generalized to
other dimensions n with the help of the additional
results of the perturbation method

Aot PN A > b 2)
At n =1 this formula is ac_curate‘for any distribution, at
n =2 itis accurate if the distribution of  is even and at
n=3,according to Shvidler (1985), “one can expect the
formula to be accurate enough for normal distributions
of InA.” :

_ The approach made in the early works of Maxwell
(1873) and Rayleigh (1892), which present an approx-
imation of asmall concentration of inclusions dispersed
eitherregularly orrandomly withinthe matrix, gaverise
to a great number of publications in which different
asymptotic formulae for Ar were obtained. Maxwell
(1873) derived the first term of a decomposition of

effective thermal conductivity as a functnon of the -

volumetric fractions of the inclusions

'

i ’Azav(1+2¢,)+2(1f¢l) | (25)'
v(1—9,) + 2+,

where the subscript 1 refers to the inclusions, 2 refers to
the matrix, and v = A/A,. Rayleigh (1892) studied the
~problem of spherical inclusions at the nodés of aregular
cubic lattice. He.obtained the first two terms of an
expansion of A.¢by degrees of ¢}; the first and principal
term of this expansion disregarded the mutual influence
of inclusions, and coincided with Maxwell’s (1873)
solution (eq 23). Rayleigh’s solution was rendered
more precise by adding two more terms of the expan-
sion in Berdichevskii (1979).
- Hashin and Strikman (1962) narrowed the limits of
effective parameters beyond those in eq 18 using the

variational principlé. For the isotropic two-phase sys-
tem with A; < A, the limits coincide with asymptotic
formulae by Maxwell (1873)

M2 (1+20,) + 26,
A, ’”i ST S A< A
224 +2+
2+ 2+ 0

ML (1429,) + 20
=2, i — . © (29
Lo, +2+
% 7 ¢

This is not a casual coincidence. In fact, as shown in
Berdichevskii (1979), if the thermal conductivity of
inclusions A is less than that of the medium A, then the
accurate value of effective conductivity of a periodical-
ly structured medium with spherical inclusions is less
than or equal to the first term, Ar, of the Ray]elgh—
Berdichevskii formula in Berdichevskii (1979) that
coincides with Maxwell’s solunon (eq23). If Ay 2 Ay,
then Aef 2 Am.

Unlike the universal bounds for Acrineq 18, Hashin—
Strikman’s expression (eq 24) for the three-dimension-
al heterogeneous system gives approximate bounds,
which, however, are considerably. narrower than the
former (eq 18). Using such bounds it is possible, when
necessary, to construct approximate solutions, as in eq
24. Shvidlér (1985) further recommends that if compo-
nent connectivity is identical (mutually penetrative com-
ponents), then we can take as an approximate value of

léf; (X;+l:l)/ 2.

For isotropic matrix HM, he recommends the assump-
tionA s = Ap, if the matrix thermal conductivity is more
than the inclusion conductivity, and A= A, in the
opposite case. If no single component is simply con-
nected, but the components’ connectivities are differ- .
ent, then the estimate for Aef is Aef = ,,/)\,:n?\,; . ,
The perturbation method for determining thermal
conductivity in Landau and Lifshitz (1982)is similarto
the Maxwell (1873) method for approximating small
concentrations of inclusions. The perturbation method

~ gives good results for any concentration of components

but only for weakly heterogeneous systems.
In addition to the perturbation method, the self-

~ consistent effective field method is another important
" technique. In a number of cases it gives better results.

The first self-consistent parameters were probably cal-

- culated by Bruggeman (1935). Later, Odelevskii (1951)

in the U.S.S.R., Landauer (1952) and others.developed
this method for other systems. Theefficiency of the self-



consistent field method is shown by direct numerical
computations (Shvidler 1983) and by comparison with
experiments (Odelevskii 1951). Shvidler (1985) gives
tables for the values of A.¢/A calculated by this method

for different values of A»/A; and ¢; and for different .

dimensional ratios of spheroidal inclusions.
Note that in the strongly heterogeneous HM, perco-
lation causes threshold effects (Efros 1982, Shvidler
- 1985). One can describe conductance behavior near the
threshold in such systems, using power laws for scaling
according to percolation theory. Critical indexes and
values of the threshold concentration ¢, for simple
problems can be obtained analytically, but more often
they are computed by the Monte Carlo method. Self-
consistent parameters at v =0 or at v = < in some con-
centration areas get non-physical, negative values. While
- this is certainly the result of approximation, it is also an
indicator for the percolation effect (Shvidler'1985).
*. Thus, the formula for binary HM with equal compo-

nents derived in Odelevskii (1951) by the effective

media method

=L {(30,-1)+ V(30,-1) +

B B FT®) - s

where v = Ay/A; gives the estimate of percolanon
threshold ¢c=1/3as v — 0

when 01 <¢c  Aer= )
Aer=MGBO1-1)2.  (26)

In engineering practice the methods of structural
modeling (Chudnovskii 1962, Vasiliev and Tanaeva
1971, Dulnev and Zarichnyak 1974, Dulnev et al. 1976,

when ¢ > ¢

Dulnev 1979) are often used. The real HM structure is
" modeled by the mostsuitable orderedstructure in which
an elementary cell is separated, and its thermal conduc-

tivity is calculated precisely using a computer as in
Bakhvalov.and Panasenko (1984) or approximately as
in Dulnev and Zanchnyak (1974). Approximate calcu-
lations of et for the elementary cell are usually made
by dividing a cell into separate fragments, containing
only one of the components with surfaces that are ortho-
gonal to the direction of heat flow. Then the thermal
. resistance of acomplete elementary cell is made of par-

allel and serial connections of fragment resistances and'

calculated by the rules of Kirchhoff’s chain. A number
of formulae sufficiently useful forengineering calcula-
tions are obtained by this method in Dulnev and Zarich-
ny (1974). Thus, a model was suggested for structures
with interpenetrating components, in which one of the
components presents a cubic lattice or frame with bars

of a constant square section. To determine the conduc-
tivity of such a system by the method described, the

estimates of A¢r were obtained with the help of two

different fragment thermal resistance connections thh-
in the elementary cell v

Ayg =M[C3v(1-C) + 2vC(1-C)vC+1-C) ]
1< ' c I

N C +v(1-—C )+ 2—C)+v(l—C )

isot

where the subscnpts ad and isot refer to adlabatnc and
isothermal, respectively, and C i is the relative bar size,
whnch is a root of the equation -

2c3'-3c2+1-¢2=

With the arithmetic mean of these values from Dul-
nev and-Zarichnyak (1974), one can determine the
effective value of A for any relationship of the compo-
nent thermal conductivities, the result being rather near
to the results of numerical computations. Maximum

) calculation error is attained when v=0o0r v =0, yet it

doesn’t exceed ~15% (Dulnev and Zarichnyak 1974).
These methods include the averaged element tech-
nique (Dulnev and Zarichnyak 1974). This technique
introduces a set of assumptions about the HM structure
and then averages the parameters of the structure. The
complexity and subjectivity of the procedure to define
such an averaged element substantially explams why

- this method was not widely adopted..

In some applied problems, it is necessary to take into
account the statistical distribution of heterogeneities in’
HM leading to deviations in thermal conductivity val-
ues from the average value A.¢. Zhirov’s work (1976) '
focuses on this problem.

The success of the application of all these formulas
to real HM depends on how well one has characterized ‘
the system structure, e.g., the distribution of A for ran- -
dom mixtures or for geometrical structures. Variational
estimates based on universally used principles are rela-
tively simple and require minimal information about the
HM studied. Therefore, they apply to wide classes of
HM. This is their advantage and at the same time a
limitation on their efficiency when they lead to wide
bounds in estimating effective conductivity. One can
obtain positive results provided that 0.2 < v < 5 for the’
Hashin-Strikman estimate and 0.5 < v < 2 for the uni-

. versal relationship are'both true. Attempts to include in

the analysis more detailed information about specific
features of the systems studied, in order to narrow the
limits of estimates, instead make the variational esti-
mates method considerably more cumbersome.




Seml-empmcal methods
All the estimates of effective thermal conducnvrty

given above have the form A¢¢(¢;, A;) and do not contain

the parameters that directly reflect the real structure of

the material. Therefore, they adequately represent such

factors that affect heat transfer as the forms of inclu-

sions, the dispersion of their sizes, the effects of thermal '

contact, etc.

Some missing information about actual HM struc-
tures can come from direct observations and measure-
. ments. Thus, we come to the semi-empirical methods

for estimating effective thermal conductivity, which'

- allow one to take into account known specific features
of the HM structure by introducing addmonal semi-
empirical parameters.

Some semi-empirical methods (Dulnev 1979, Malter
et al. 1980) are based on the representation of the
definition A¢f from eq 7 in the form

= kel o Kigrtvey @)
he IV<T>| K|2¢1+¢2' ' '

where v = Ay/A), and Ky = | V<T>| /| V<T>| is the
ratio of the averaged temperature gradients in the two
components of a binary heterogeneous system (after
Shvidler 1986). A number of properties of K, can be
set. Thus, using eq 18 it is easy to show that this value
is limited by the bounds for Kj, of 1, v and, hence, when
v.= 1, then K3 = 1. With the help of such boundary
relationships for dielectric polarization from Odelevskii
(1951) and Landau and ershxtz (1982), we obtain the'
value of the denvanve when v = 1 -

K _1.
av 3
There exist generalized experimental data from Malter

et al. (1980) that indicate that, for a wide class” of
systems, when v =0 or v =co the boundary values of K,

(v) do not depend on the volume fraction overa wide |

range and satisfy the condrtron _
04 < K,z(o) + K(o0) < 0.67

(ki =k30).

Assummg similar properties of the ratlo K, Malter v

et al. (1980) suggested a four-parameter approximate
equation for K3 (v), considering it independent of the
concentration. Assuming that K}, is independent of ¢,
it is possible to determine this constant for the giveny
-and from eq 27 if the value of Acrhas been measured for
certain values of ¢;; then for the other values of ¢; the
thermal conductivity can be calculated by usrng the
derived value of K.

Also of interest are the works of Serykh and Ko]esm- '

Figure 1. Determination of C;, the ratio of contact sur-
face area to the total area of the particle suifaces.

kov (1982) and Kolesnikov (1985), which suggest use
of stereological analysis for obtaining the additional -
information about HM structures. Thus, for determina-
tion of effective thermal conductivity in porous granu-
lar systems when v = 0, Serykh and Kolesmkov (1982)
derive the following formula

Aes= A0V Cy . : (28)
Here Cl iscalled contiguity or deg'reeb'of contact. Itisthe

ratio of the contact surface area to the total area of the
particle surface (Flg 1)

=2 SconI/Stotal v : A (28a)
N, Co
where Scont = 3. (S ) . (28b)
= L

S¢ = contact surface area

N, = number of contacts
and L
Stotal ( p)l oy (8o

S partrcle surface area
- Np = number of pamcles

.C is determined from the stereological analysis of a-
microsection specimen. This method can sometimes ‘
simplify thermal experiments for porous granular sys-
tems, but usually direct measurement of thermal con-
ductivity is simpler. -

InBalshin’ swork(1948 1972)thefollowmgformu—
la for the conductivity properties of porous materials is
suggested

ef—?»V«b; L
anthh | »

0= Spe/ Snom -~ S (29a)



g Section
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Figure 2. Determination of 0., the ratio of projected areas of contact to the

section area of the specimen.
and

( cosO o (29b)
B =] . ‘\_

M =

.

where N, is the number of contacts, 6; is the angle be-

~ tween the normal to the /" contact plane and the normal
to the section plane, and Spom is the nominal section area
of the specimen (Fig. 2). Balshin used the concept of
contact sections to describe the physical and mechani-
cal properties of compressed materials in uniform posi-
tions. Their characteristics are expressed by o'with a
simple formula

pef:pca, f (30

Here P.ymaybe the modulus of elasticity E, the strength,

- orthe pressure of compaction p. Each of these represent
a resistance property for forming the material. P is the
corresponding contact value for this property. For E, P¢
is the corresponding modulus of elasticity of the frame*
material. Forp, P.isa correspondmg value between the

.material frame strength and the yield point of this
material (Balshin 1948, 1972). The weight of the exper-
imental evidence in Balshin (1972) suggests an approx-
imation of the contact section value through measured
parameters either for porosity IT and the initial bulk
porosity I, or corresponding. values of the volume
fraction of the solid phase ¢,

o = (1-1M)2 (1-T1/TT,)P E))
where B depends empirically on the hardnesses of the

matenal species.
The stereologlcal definition of the contact section is

* The frame refers 10 the solid skeleton of a porous material, exclusive
of the voids within it. .

described by eq 29a. Using this definition, Serykh and

" Kolesnikov (1982) and Kolesnikov (1985) connected
the values C and o with the help of the stereological

approach
= 0(./¢| . B . (32)

Hence, one can derive the formula for the effective

. thermal conductivity identical to eq 29 from eq 28.

Thus, one might match both approaches and determine
o, by stereological means.

The formulas for Aegr in eq 28 and 29 are based on
some lax.assumptions that do not account for the phys-
ical state of the contacts. This probably overestimates
the thermal conductivity in some cases, foréxample, for

"compressed metal powders with high porosity. These

systems were studied by Aleksandrov et al. (1985),

Gruzdev and Kovalenko (1987, 1988a) and Gruzdev et
al. (1989), using compressed powders of nickel, zirco-
nium and their mixtures with aluminum powder as
examples. In Aleksandrov et al. (1985) and Gruzdev et
al. (1989), experiments determined that a good analogy
exists between heat transfer and mechanical stress
transferin these systems, as determined by the degree of
contact present. A lattice model of a powder body
demonstrates the analogy theoretically in Gruzdev and

Kovalenko (1987, 1988a). The thermal versus mechan-

ical analogy between the molding pressure and thermal
conductivity is based on the similarity of dependence on
specimen porosity. Employing the relationship of po-
rosity tomechanical propertiesin eq 30, and the thermal
versus mechanical analogy for thermal conductlon we
can write :

A = A (TLTL,). . L (33)

" Parameter §, which enters into the function o (I1,11,)

(fromeq 31), depends on the hardnesses of the material -

'



species (Gruzdev et al. 1989). It ranges from [3 =1tof
=1.5 for soft metals, such as aluminum, to B=4forhard
metals. Experimentation confirms a clear similarity of

relationship between P(I'I1,,B) and Ac¢ (ILIT,,B). As’

follows from the above described thermal-mechanical
analogy, the porosity IT, the bulk porosity IT,, which

“ characterizes the precompaction structure, and the pa-
rameter B are criteria for similarity (Kutateladze 1986)
between the mechanical and thermal properties of po-
rous, compressed powdered metals. The contact ther-
mal conductivity A. is determined empirically. This
analogy and the formula in eq 33 are limited by the
condition that the area of inter-particle contacts be small
incomparison with the sizes of species. Hence, porosity
should be in the range of I1> 0.25 £ 0.05.

EXPERIMENTAL INVESTIGATIONS

Non-steady-state methods are generally used for
measuring effective thermal conductivity and thermal
diffusivity of dispersed and porous media, as in Artyk-
paev (1968) and Lyalikov (1965), for example. These
methods can be -conventionally divided into several
‘groups: 1) methods using monotonic (Platunov 1973)
and periodical (Filippov 1984) heating, 2) methods us-

‘ing equilibration at an exponential rate, e.g., the “regu-
lar regime of Kondratiev” (Chudnovskii 1962) and 3)
probe methods (see; e.g., Sigalova 1965, Bakenov et al.

1972, Zaitzev et al. 1989). Steady-state methods are -

more laborious and inaccurate and are therefore used

less often. For temperature intervals in which HMor .

their separate components (for example, thawing soils)
-undergo phase transformations, traditional methods do

not work-because-the thermal conductivity equation is

nonlinear. For such cases the methods based on comput-
er solutions of the corresponding inverse problems are

suggested in Pavlov et al. (1980), Kovalenko (1986)

' and Gruzdev and Kovalenko’ (1988b).

Experimental investigations have, as a rule, beenv

individual; ad-hoc efforts. Their purpose in each case
has been tostudy thermal conductivity of anarrow class
of materials. There are practically no experimental i in-
vestigations for modeled media.

The thermal conductivity of soils (clays, sandstones)
and various rock deposits is investigated in the works by
Bogomolov (1941), Sigalova (1965), Bakenov et al.
(1972), Sidorov (1979), Nikiolaev et al. (1987) and
Zaitzev et al. (1989). An attempt to summarize thermal

conductivity of three- or four-component soils (hard -

frame with air, water and oil) is made in the works of
Volkov et al. (1982). The works of Franchuk (1941),
Kaufman (1955), Vasiliev and Fraiman (1967),
Zabrodskii et al (1968) Garnashevich (1974), Frant-

'

sevich (1976), Litovskii and Puchkelevich (1982) and
Streloy (1982) are dedicated to experimental study of
the thermal conductivities of thermal insulation and
other building materials. Zarichnyak (1970) summariz-
es experimental data for the thermal conductivity of
such systems. Metal—ceramic and compressed metal- -
powder materials are considered in the works of Lyalik-
ov (1965), Skorokhod (1967), Demidchenko (1972),
Andreev (1975), Aleksandrov et al (1985) and Gruzdev
et al. (1989).

Experimental investigations can.be unsatisfactory
when the materials studied are insufficiently character-
ized. Also, the amount of experimental data is insuffi- ’
cient to favor one or another calculational model for

specific classes of porous, dispersed materials.

CONCLUSION

\ 7 _
- Areview of Soviet studies of thermal conductivity of
porous materials and soils shows that theoretical inves-

* tigations are more common than experimental. Many

models are not adequately validated with the meager
experimental data that exist for different classes of sys-
tems. In fact, there are no systematic experimental in-
vestigations of the whole classes of HM, as they are
modeled. Investigators give preference to calculations.
The lack of 1) thermal measurement apparatuses, 2)
accurate methods to characterize structure, and 3a
common data bank for individual experimental results
remforces this syndrome.

Methods available for determining the effective
thermal conductivity of HM by theoretical calculation

.probably exceed in scope the whole range of various

HM classes. Choosing between models for specific
cases is therefore a major problem in predicting of HM
thermal properties. /
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