
Special Report 64 

Density of Ice 
as a 

s;e64 
AUGUST 1964 

Function of Temperature and Stress 

u.s. ARMY MATERIEL COMMAND 

COLD REGIONS RESEARCH & ENGINEERING LABORATORY 
HANOVER, NEW HAMPSHIRE 



Special Report 64 

DENSITY OF ICE AS A FUNCTION OF TEMPERATURE AND STRESS 
I 

by 

Henri Bader 

August 1964 

Prepared under contract DA-11-l90-ENG-91 
with the University of MiaITli, 

U. S. ARMY COLD REGIONS RESEARCH AND ENGINEERING LABORATORY 
HANOVER, NEW HAMPSHIRE 



SUMMARY 

The equations for calculating the,density of ice of moderate porosity 
(density> 0.8) as a function of temperature and stress condition are 
developed, and the values of parameters are calculated from the best 
available experimental data. 



DENSITY OF ICE AS A FUNCTION OF TEMPERATURE AND STRESS 

by 

Henri Bader 

If a crystal does not change modification when subjected 'to a change in tempera
ture and pressure, the path followed in the change does not affect the result. We can 
change temperature isopiezically, and then pressure isothermally, or vice-versa, or 
change both temperature and pressure simultaneously. The nature of the data avail
able on ice makes it con~enient to take the following path: 

1. change teITlperature isopiezically 
II. change pressure isotherITlally. 

The three following statements are not strictly true, but the error resulting from 
assumption of validity is here considered to be negligible. 

1. Ice aggregates are isotropic with respect totherITlal expansion and elastic _ 
reaction to stress. 

2. Ice of low porosity (very dense snow or bubbly ice) has a coefficient of 
thermal expansion equal to that of bubble free ice. 

3. The ITlagnitude of naturally occurring bubble air pressure has no effect on 
thermal expansion nor on elastic behavior. 

1. Isopiezic density of ice as a function of te~perature 

~he coefficient (a.) of linear thermal expansion of i'C'e at atmospheric pressure was 
measured by Butkovich (195'1) between very close to O°C and _30°C. Anisotropism was 
found to be very sITlall and can be neglected in calculating the volume coefficient. 

1 aL 
a. =--

L at at constant pressure. 

whereL is any length of a piece of ice, and l is the temperature. 

SL, df; =r' a dt 
Ll tl 

where Ll and L z are lengths at tl and tz respectively. 

1nj; = f t
,,, dt. 

tl 

H y is density, and V is voluITle, then 

The exponent is sufficiently small to permit use of the approximation eX ~ 1 + x 

Yz £i! '/1 (1 -3 J: a dt) . 

(1) 

(2) 

(3) 

(4) 

(5) 
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Butkovich determined the parameter s of 

a = a + bt + ctZ + dt3 for 0> t > -30~'C 

a = 52. 5186 x 10- 6 

b = O. 18 5'2 5 x 1 0 - 6 
c .(t;;:, O. 0088 54 x 1 0 - 6 
d = 0.00023712 x 10- 6 . 

Butkovich givesp' and d as negative, but it is clear that he inserts t as a positive 
number; we enter it as a negative Celsius temperature. 

( 6) 

Substituting eq 6 in eq 5 

Y. = Yl {1 + 3 (t1 - t.) [a + ~(tl +t.) + ~ (t~ + ~+ tl t.) + ~(tl + t.)rf. +t~)]} (7) 

o > t > -30~C;. 

Butkovich (1953) also accurately measured ice density~ We now recalculate 
Butkovich's values for the isopiezic density of bubble-free polycrystalline commercial 
lce~ Accurate density values for polycrystaUine ,clear glacier ice are unavailable. 

(at O°C) 
-

t Yit Yio y. 
-!Q. 

Specimen 21a -4.18 0.917122 0.916522 } 
-4.10 0.917111 0.916521 
-4.17 0.917099 0.916499 

0.916514 

-4.17 0.917082 0.916482 } 
-4'.06 0.917059 0.916474 
-3.99 0.'917050 0.916475 

Specimen 21 b 
0.916477 

average 0.916496' 

Until new measurements suggest otherwise, we can accept 0.91650 as the density 
of bubble free ice at 0° C a~d one atmospheric pressure. 

The density at any temperature 0 ::J. t > -30~C is given by 

Yit = 0.91650 [1 - lO-6 t (157. 556 + O. 2779t + O. 008854tZ + O. 0001778t3
)] 

t is entered as a negative Celsius temperature. 

I 
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Table I gives the factor by which the density at 0° C and one atmospheric pressure 
is multiplied to obtain that at another temperature at the same pre s sure, a,nd also 
the density for y. = 0" 9165. 

10 Table 1. 

Yit 
Yit 

-tOC Yio Yit 
-tOC Yio Yit 

0 1.000000 0.91650 16 1. 002474 0.91877 
1 1.000157 0.91664 17 1. 002627 0.91891 
2 1.000314 0.91679 18 1.002779 0.91905 
3 1.000470 0.91693 19 1.002931 0.91919 
4 1. 000626 0.91707 20 1.003082 0.91932 
5 1. 000782 0.91722 21 1. 003234 0.91946 
6 1. 000937 0.91736 22 1.003384 0.91960 
7 1.001092 0.91750 23 1.003535 0.91974 
8 1. 001246 0.91764 24 1. 003685 0.91988 
9 1. 001401 0.91778 25 1.003834 0.92001 

10 1.001555 0.91793 26 1.003983 0.92015-
11 1. 001709 0.91807 27 1. 004131 0.92029 
12 1.001862 0.91821 28 1.004279 0.92042 
13 1.002016 0.91835 29 1. 004426 0.92056 
14 1. 002169 ·0.91849 30 1.004572 0-.92069 
15 1.002322 0.91863 

II. Isothermal density of ice as a function of stress 

The ice aggregate is considered to be elastically isotropic. Let a crx ' acry, a crz 
be the changes of the principal stresses, E Young's modulus, and fJ. Poisson's ratio. 
Both E and fJ. are assumed to be independent of stress. The specific change in volume 
is obtained by using the additive theorem for stresses and strains. 

(8) 

A useful application will be to calculate in situ density of glacier ice from drill
core density measured in the laboratory. For this putpose we consider two likely stress 
conditions. 

1. Ice is vertically compressed under lateral constraint. 

ice load pressure. 

1 . 
Y 

2. Ice is compressed hydrostatically 

1 §..:y 3 Y . 0 cr = E (1 - 2fJ.). 

Equations 10 and 11 have the same form: 

1 .£y~11 Y ocr ,- E 

cr is the vertical 
z 

(9) 

(10) 

(11 ) 

(12) 

where the value of.:: depends on the stress condition and Poisson's ratio. 
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Poisson's ratio is density-dependent. 
the relation is approxiITlatel y 

FroITl seisITlic data by Bentley et al. (1957) 

~~ 0.220+0.122y 

and we calculat~ :: in eq 12: 

:t 
0.80 
0.90 
0.93 

n =",1-~-2~Z 
1 1-~ 

0;761 
0.675 
0.667 

nz ~.l and nl is a weak' function of y. 

nz = 3 (1 -2~) 

1.094 
1. 021 
1.000 

,.. . --

(13 ) 

Nakaya (1959) deterITlined E as a function of density and teITlperature on vibrating 
bars. His results indicate the approxiITlate validity of the following two functions. 

Etl = al + bl Y at teITlperature tl (14) 

1 aE . 
-E -at =p+qy 

o 

I 

where Eo is the ITlodulus at 0° C by extrapolation. 

( 15) 

We differentiate eq 14 with respect to t, hoiding y constant, noting that ~ and .£ 
are functions of.! only. -

aE da db 
at = dt + y Cit· 

FroITl eq 15 and 16 we obtain 

da 
- = pEo dt 

db 
and Cit = qEo ~ 

Integration gives 

also 

at - al = pEo (t - tl) and b t - bl = qEo (t - tl ) 

We also write eq 14 as 

Eo = ao + bo Y 

and can now get an expression for Et' the ITlodulus as a function of teITlperature 

where 

a = al (1 + 'qytl + pt) + bl yp (t - tl ) 
t 1, + ptl + q ytl 

b = bl (1 + ptl + qyt) + al q (t .: tl ) 
t 1 + ptl + q ytl 

( 16) 

(1.7) 

(18 ) 

( 19) 

(20) 

(21 ) 

( 22) 

(23) 

.' 
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The change in density produced by isothermal compression is small enough for 
E and.:: to be con'~tant in integrating eq 12 

Yz ~ Yl exp n ( (Ji - <T1) • (24) 

For a pressure difference as large as 300 kg/ cmz, the value of the exponent is of 
the order of 10-z, so eq 24 simplifies to 

Yz ~ Yl [l' + n ( (J~ - <T1 ) ] at constant te~perature. (25) 

In using eq 25, (J and E must, of course, be given in the same units. If E is in 
dynes / cmz, then (J in g;:~/ cmz must be multiplied by 981. 
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Figure 1. Young I s modulus vs density, tunnel ice 
(PQ) and core samples (RS). (From Nakaya, 1959). 

Figure 1, reproduced from Naka ya (1959), shows that there is a great deal of 
scatter, perhaps attributable mainly to the sensitivity of resonance vibration frequency 
to internal. and external shape of the specimen. Air bubble size and shape, for instance, 
appreciably influence the modulus obtained from resonance frequency. But it would be 
surprising if this were not less so with respect to the bulk modulus determined by 
hydrostatic tests. 

Jellinek and Brill (1956) found, by uniaxial static loading to some 2 x 106 dynes/cmz, 
a value of E ~ 5i x 1010 dynes/cm2 at--5°C for bubbly ice, Y::: 0.886, made from soaked' 
snow. From our equations we calculate E ::: 7. 3 x 1010 • The difference could be attri
buted to scatter or to the different methods of obtaining E. Confidence in calculating the 
effect of stress on density must remain relatively low until new data from static testing 
become available. 

In the meantime we can ac!=ept Nakaya l s two linear segments of Figure 1. 
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The parameter s of equations 14, 22, and 23 are 
I 

, tl = -9
Q

C } 
al -7.2 x 1010 dynes/cm for 0.905 >y > 0 .. 60, 
bl = +16.4 x 1010 dynes/ cm 

:~ ~ =~~~. 7 x 1010 dynes/cm} for 0.917 > y> 0.905 
bl = +132.0 x 1010 dynes/cm 

Lacking data for y > 0.917, we assume continued validity of the latter set of parameters. 

The parameters of eq 15 are 
p = -0.089 
~q = +0.095. 

The use of eq J 5 must have a limit, since it states that the'temperature effect vanishes 
at y = 0.937, which is unlikely to be true. 

Table ,II gives examples of the i!lfluence of hydrostatic pressure on density, calcu
lated from eq 25 for n = 1 and t = -5°:C. 

0 .. ;,8.0000 
0~85000 
0.90000 
0.92000 

--0.80000 
0.85000 
0.90000 
0.92000 

Table II. Y.2.AY for different values oi'6(J" in kg*/cmz • 
y 

1. 000166 
1.000145 
1. 000129 ' 
1. 000101 

0.80013 
0~85012 
0.90012 
0.92009 

50· 

1.000829 
1.000726 
1~"00064 7 
1. 000505 

Y + 6y 

0.80066 
0.85062 
0.90058 
0.92046 

100 200 

1. 00166 1. 00332 
1. 00145 1.00290 
1.00129 1. 00259 
1. 00101 1.00202 

0 .. 80133 0.802~~ 
0.85123 0.85247' 
0.90116 0.90233 
0.92093 0.92186 

300 

1.00497 
1. 00436 
1.00388 
1.00303 

0.80398 
0.85371 
0.90349 
0.92279 

It is evident that even moderate pr'essureaffects the value of the fourth decimal place.-
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