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An Analysis of the Stress Wave in Solids (SWIS)
Finite Element Code

KAREN J.L. FARAN

INTRODUCTION

The ability to analyze wave propagation for geometrically complex circumstances is important in

calculating ground motion caused by earthquakes, explosions or other sources of seismic waves.
Analytical models derived using separation of variables methods are limited in this area because they
can only solve problems with simple geometry. For more complex situations, it is necessary to use

finite element or finite difference schemes.

In 1973, Frazier (1974) developed the finite element code Stress Waves In Solids, or SWIS. It has
been used to solve several challenging problems because it includes a variety of seismic propagation
modes, including body waves, interface waves and diffraction. SWIS is able to simulate a number of
seismic phenomena. Some examples are:

1. Explosions in geologically complex formations.

2. Spontaneous earthquake ruptures and near-field ground motions.
3. Disturbances in laterally varying earth models.
4. Wave propagation through buried and surface structures.

SWIS is a versatile code in that it can solve problems in one, two or three spatial dimensions in either
Cartesian or cylindrical coordinates. Although the code assumes linear elasticity and isotropic
materials, it is possible to solve problems in regions containing up to nine material types. The grid
generator has a feature in which the grid size may be progressively expanded at 10% per zone to
simulate a non-reflecting boundary. Finally, SWIS can solve either static, diffusion or wave
propagation problems.

This report describes how to use the SWIS code, which was upgraded at the Center for Seismic
Studies in 1985. (The upgrade was annotated in the code.) First, it describes how to create the input
file. A discussion of the output files follow. Finally, examples of how SWIS was used to solve three

wave propagation problems are discussed.

PROBLEM INITIALIZATION

The numerical algorithm in the SWIS code contains features from both finite element and finite
difference methods. The continuum is divided, using spatial interpolation functions and a virtual work

principle, but the sequence is modeled afterLangrangian finite difference shock codes. Also, the SWIS
code directly computes strain rate, stress and restoring forces instead of developing the conventional

finite element stiffness matrix.

To define a stress wave problem for the SWIS code, the following quantities are required (Frazier

1974, pp 11-12.):



1. Coordinate system designation:

a. Number of spatial dimensions to appear in the grid.

b. Orthogonal curvilinear coordinate system to be employed in the calculations.
2. Grid configuration: Although most grids can be produced using the grid generator in the code,

it is possible to supersede the generator in local regions. Grid configuration is described by:

a. Spatial location of the node points.
b. Node map to associate nodes with elements

3. Boundary conditions and applied forces: Each directional component of each node point is

assigned one of the following constraint conditions:
a. Unconstrained, with applied body force or surface traction to form an array of nodal forces.
b. Constrained, with nodal displacement components constrained to follow a specified time

history.

4. Material properties, described by:

a. Density.

b. Constitutive properties (P-wave and 5-wave velocities).
c. Dimensionless coefficient to regulate the damping of spurious high frequency numerical

oscillations.

5. Time stepping data:

a. Start and finish times.

b. Time step, At.
6. Starting conditions:

a. Velocity and displacement with respect to some reference frame.
b. Stress at the centroid of each element.

7. Presentation of results:

a. Element and node numbers for which results are to be printed at designated time intervals.

b. Printer plots for displaying results at designated time intervals.

c. Time histories of individual node points.

d. Plot files producing graphical displays of the computed results.

FILES USED BY SWIS

For both inputarid outputfiles, SWIS usesa two part codefor its file names. The first half is the
letter "u" followed by a one or two digit code for the Fortran unit number used in SWIS. The second
halfconsists of a two or three letter description of the contents. Thus, file "ul5in" is designated as unit
15 in SWIS, and is used as the input file, and file "u8hn" is the name of unit 8 and contains the time
history for selected nodes.

Input file
To run SWIS, create an ASCII file, for unit 15 titled ul5in. The format of this file and variable

definitions are given in Appendix A.

Output files
SWIS produces eight ASCII files that present computed displacement and velocity results in

different formats. By setting variables in input file ul5in to appropriate values, it is possible to either
suppress printing or set the time intervals for recording.

Each file can be divided into several blocks of information. A descriptive summary and format
outline for each of the output files is given below. Format A indicates a character string, I indicates
an integer and E represents exponential format.



1. u8hn provides displacement time histories for specified nodes at selected time intervals.
\ i
/

; Block 1: Problem description (A).
Block 2: Grid generation description (A).
Block 3: a. Number of time steps (16).

b. Number of degrees of freedom (16).

c. Number of nodes with recorded histories (16).
d. Time step (El2.4).

Block 4: Node numbers for plot history (1117).
Block 5: Displacements for each listed node, for each time interval (8E12.4).

2. u9he contains time histories of element stress and displacement. Block 5 is printed for each
nth iteration (set in input file ul5in).

Block 1: Problem description (A).
Block 2: Grid generation description (A).
Block 3: a. Number of time steps (16).

b. Number of degrees of freedom and stress components (16).

c. Number of time history elements (16).
d. Time step (E12.4).

Block 4: Element numbers for time histories (1117).

Block 5: Displacements and stress components for each element (8E12.4).

3.ul0g contains information about the deformed grid. Block 6 is printed only if a force greater than
0.0001 N is applied to the node. If time history nodes are identified, both blocks 7 and 8 are printed;
if no nodes are identified, only block 8 is printed. Blocks 9-12 are printed every nth iteration (set in

input file ul5in).

Block 1: Problem description (A).

Block 2: Grid generation description (A).

Block 3: a. Number of spatial dimensions [ndimt] (17).
b.2ndimt(I7).
c. Total number of elements (17).

d. Number of different material types (17).

Block 4: Coordinates to be used in grid generation mapping (8E12.4).

Block 5: a. P-wave velocity (El2.4).

b. S-wave velocity (El2.4).

c. Density (El2.4).

Block 6: a. Digit used to separate data (16).
b. Node coordinates (8E12.4).

Block 7: a. Digit used to separate data (=10) (16).
b. Node coordinates of nodes with time histories (8E12.4).

Block 8: a. Digit used to separate data (=999) (16).

b. Node coordinates of node 1 (8E12.4).

Block 9: Time (El2.4).

Block 10: a. 2ndimt (17).
b. Material number (16).

Block 11: Node coordinates of lowest node number in elements (8E12.4).

Block 12: (Displacement^velocity)*(damping) oflowest node number in elements (8E12.4).



4. ullvn supplies data for plotting node vectors. Block 5 is printed for every nth iteration.

Block 1: Problem description (A).

Block 2: Grid generation description (A).

Block 3: a. Number of spatial dimensions (17).
k 2numt>er degrees of freedom syj\

c. Total number of nodes (17).

Block 4: a. Integer code used for specifying nodal constraints (16).
b. Node coordinates (3E12.4).

Block 5: a. Time advance (El2.4).

b. Displacements and velocities (8E12.4).

5. ullve is supposed to provide data for plotting element vectors. Currently, no information is sent
to this file.

6. ulSln provides displacement and velocity information for specified lines of nodes. Block 4 is
repeated for each line of nodes. Block 5 is printed for every nth iteration of the program (set in file
ul5in). In Block 5, the items b, c and d are printed for each line of nodes. Furthermore, displacement
and velocities (item d) are printed for each node in the line.

Block 1: Problem description (A).
Block 2: Grid generation description (A).
Block 3: a. Number of dimensions (17).

b. (Number of degrees of freedom)*2 (17).

c. Number of node lines (17).

Block 4: a. Node line number (17).

b. Number of nodes (17).

c. Node positions (8E12.4).

Block 5: a. Time advance (E12.4).

b. Node line number.

c. Number of nodes in line.

d. Displacements and velocities for each node (8E12.4).

7. ul4div provides the divergence and curl information of the nodes specified in file ul31n.
Information is sent to ul4div only if information is requested for lines of nodes, i.e., if data are sent
to file ul31n. The output file has only one output format block, which is printed for each nth iteration
and for each specified line of nodes. Currently, ul4div is only printed for problems with two spatial
dimensions and with a rectangular mesh.

Block 1: a. Node line number (17).

b. Number of nodes in line (17).

c. Divergence and curl for each node in the line (8E12.4).

8. u!6out summarizes analysis description, provides summary of control parameters, grid defini
tion, material definition, node constraints and output specifications. If so desired, u16out also contains
the computed results for specified time intervals. The organization of this file is self-evident. An
example follows.



Example of ul6out
1. ANALYSIS DESCRIPTION

ul5in.ld.2, one-dim prob, dt=»0.01

2. CONTROL PARAMETERS

- Spatial Representation:
Number of Space Dimensions used
Number of Degrees of Freedom per Node
Number of Stress Components
Solution Coordinate Designation
Order of Fourier Interpolation in Azimuth

- Time Control:
Number of Time Deriviatives

Time. Step
Starting Time
Ultimate Time

2

0.0100

0.0000

2.0000

3. GRID DEFINITION

- Grid Generation, Designator MAPYZ = 2
Regular grid, each element 0.05 meter long

grid size: NEI 100 NEJ 1 NEK
producing: 100 elements and
grid growth to element: IS 0 JS 0
grid growth begins at: IG 0 JG 0
corner nodes of the grid exterior:
0.00 10.00

101 nodes

KS 0

KG 0

4. MATERIAL DEFINITION

- Number of Different Constituents 1
MAT DENS P-VEL S-VEL POIS DAMP

1 2.7000 6.3000 3.1000 0.3403 0.0000
- Material Numbers Assigned to Individual Elements

Lines of Data 0

5. NODE CONSTRAINTS

- Lines of Constraint Data 2
NODE IDNODE SPECIFIED CONSTRAINTS

1 1 0.0000 0.0000 0.0000
101 0 1.0000 0.0000 0.0000

6. OUTPUT SPECIFICATIONS

- Print Results at Interval 0
- Plot Deformed Grid at Interval .... 0
- Plot Node Vectors at Interval 0
- Plot Element Vectors at Interval .. 0
- Plot ( 0) Node Lines at Interval .. 0
- Plot Time Histories of ( 5) Nodes:

21 41 61 81
- Plot Time Histories of ( 0) Elements:

101

NODE INITIALIZATION SUMMARYFTP BOUND

O Y R TYPE

R P I 1

C E N 12

E T 1 2 3

0 0 0 0 1

0 2 0 0 0

SPECIFIED CONSTRAINTS NODE COORDINATES MASS

R P T M

A R Y A

NIPT

G N E

E T

10 0 11 1

101 2

ODE BND

21

41

61

81

101

SI S2 S3 Y2 Y3

0.000

1.000

MOTION AT TIME

0.000

0.000

0.000

0.000

0.00

10.00

0.0100 (time step =

0.00

0.00

1)

0.00

0.00

0.13

0.14

.DISPLACEMENT VELOCITY COMPONENTS .
0.0000E+00

0.0000E+00

0.0OO0E+00

0.0000E+00

0.0000E+00

0000E+00

0000E+00

O000E+00

0000E+00

7407E-03

O.OOOOE+00

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

0.7407E-01

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00



SELECTED EXAMPLES

To test the SWIScode,stresswaves werecalculated for threewavepropagation problems: one-
dimensional longitudinal displacement subjected to impulse loading; a cantilever beam with an
impulse loadapplied along theaxis, at theunsupported end; andtwo-dimensional wave propagation
witha vertical impulseforce (Lamb's problem). The input filesandresultsfor these test calculations
follow.

Example 1: One-dimensional longitudinal displacement

Analytical solution

The first problem consideredwas that of one-dimensional stress longitudinaldisplacement,i.e.,
only displacements in the^-directionwereallowed.This situationdescribes the wavepropagation in
the middle of a large piece of material, rigidly constrained at one face and with a uniformpressure
applied impulsivelyat the other (seeFig. 1).The materialis allowedto moveonly in the directionof
the applied force, and as a result, all other displacements vanish. The equations of motion, initial
conditions and boundary conditions reduce to the following one-dimensionalproblem:

(1)

•^2 -}2
a u _ i a u

3 2 2 3,2ax Cj at

initial conditions: u(x,0)=^i(x,
V ; dt V

boundary conditions: u(0, t) = 0

P(t,t)=PS(t)

where u = displacement

t = time

x = position along beam

cl = [(X+|i)/p]1/2, the longitudinal orF-wave velocity
P = magnitude of the constant pressure

8(t) = delta function
£ = length of the beam.

Applied Uniform
Pressure Pulse

Free Surface . _
Figure 1.(Jeometryfor example 1, one-dimensional

•*>*
x=o x=io stress, longitudinal displacement.

p = material density.

The solution to eq 1 can be found by either a separation of variables or by using transforms. The
latter technique gives the solution as (Graff 1975, pp. 91-94)



v / pCl
U-x) U + x) \

\H<t -i L>-H<t-K- '-> -I ci cx J

H<t-K- i>-//<r-i ^> +
ci c\

(51-x) (5* +*) 1 ,
\H<t-K- l>-H<t-\ }-> -.-. (2)

where // <if-a > is the Heaviside function, defined such that

fO,f<<i
#<f -a> =

|1, r>a

Equation 2 defines a squarewave propagating between the two ends of the material, with wave
speed equal to the longitudinal wave speed.

Inputfile
The mesh created for this example was astringof 201 nodes, lined in thejc-direction, whichcreated

200 line elements (Fig. 2). Since displacement is restricted to only the x-direction, it is unnecessary
to create a three-dimensional mesh. If the material is aluminum, values for element length, time step,
material properties, magnitude of the impulse and dimensions of the region are as follows:

time step (At): DT = 0.005 (ms)

density (p): DENS(l)= 2.70 (Mg/m3)
F-wave velocity (cj): VP(1) = 6.30 (km/s)

5-wave velocity(ct): VS(l) = 3.10(km/s)

damping: DAMP(1) = 0.0

impulse force (P): VSPEC(2,1) = 1.0(N)

length of region (£): YGRID(1,2)-YGRID(1,1) = 10.0 (m)

1 2 3 4 5 6 201

1 M t 9 9 ++ H >> © « © o § ft 0 §"••»
200 PS(t)12 3 4

Figure 2. Finite element meshfor one-dimensional stress problem (200 ele
ments, 201 nodes).

For this problem, node 1 was assigned zero displacementto meet the fixed end condition (line 13
of the following file). A unit impulsive force wasapplied to the freeend of thebeam, node 201, at time
t=0(line 14).Finally, records of the displacementswere made for five nodesalong the beam: 41, 81,
121,161 and 201 (line 17).The input file for this example follows (entries correspond to AppendixA).

Entry Line

A 1

B 2

C 3

D 4

E 5

F 6

Test input, one-dim prob, dt=0.005 ms
11 0 0

2 0.005 0 10

Regular grid, each element 0.05 m long
200 0 0 2 2 0

0.0 10

0 0 0 0 0



Entry Line

G 7 0

I 8 0

K 9 1

L 10 1 2.70 6.30 3.10 0.0

M 11 0

O 12 2

P 13 1 1 0 0 0 0 0

14 201 0 1.0 0 0 0 0

R 15 1 0 0 0

S 16 0 0

U 17 5 41 81 121 161 201

V 18 0 0

J h H L

J h r1 L

_rK_1

_n

i

u
1

n

i i I
4 6

Time, ms

x=10

x=8

x=6

x=4

x=2

-0 10

a. Analytical solution.

2 4 6 8

Time, ms

b. SWIS (dx = 0.05 m; dt = 0.005 s).

x=10

x=8

r=6

x=4

x=2

Figure 3. Comparison ofanalytical and SWISwaveforms calculatedfor example 1.

Comparison ofoutput to theory
The disturbance for the given parameters should be a square wave reflecting between the two ends

ofthe material, at the longitudinal velocity of6.3 km/s. Figure 3 shows that the expected and calculated
waveforms match.

One of the shortcomings of the SWIS solution is the large, unrealistic amount of ringing in the
results. Much ofthis oscillation has been eliminated from previous runs by decreasing both the element
size and time step (Fig. 4). It is expected that the solution could be further refined by additional
reductions in the spatial and time increments.

Another possible way of reducing the oscillations and removing the high frequency noise in the
figures would be to introduce a damping factor with the material parameters. Figure 5 shows that a
damping factorof 0.2 significantly removes theoscillations inFigure 3b,andthesolution using this
damping factor closely resembles the analytical solution. This method may have adverse effects on
the solution, however, in that the higher damping factors change the form of the calculated waves. As

seen in Figure 5, the solutions obtained using non-zero damping factors have slightly rounded corners
and finite rise times. However, the damping factors considered did not seem to affect the amplitude
of the wave, nor did they change the velocities at which the disturbances travel.



x=10

x=8

x=G

x=4

x=2

4 8

Time, ms

a. dx = 0.10 m, dt = 0.01 s.

\ to* "" "\ x=10

x=8

x=6

x=4

TV x=2

0 4 8

Time, ms

b. dx = 0.10 m, dt = 0.005 s.

x=10

x=8

x=6

x=4

x=2

4 8

Time, ms

c. dx = 0.05 m, dt = 0.005 s.

Figure 4. Comparison ofdifferent space and time stepsforexample 1.The aboveplots
use the same vertical scale.

Example 2: Cantilever beam

Analytical solution
Thesecond example considered wasthatofa wave propagating along a longandverythinrod,or

one-dimensional stress where the longitudinal normal stress Gx isafunction ofposition along the rod
andtimeonly (Fig. 6).Allother stresses vanish, and elements areallowed todeform inthetransverse
direction. The equations of motion reduce to

•a2 :>2d u _ 1 a u

dx
2

cb
dt

(3)
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__r

__r

1 I L

^-r> S

i_r
j-\

4 8

Time, ms

a. Damping - 0.2.

__r

__r

x=10

x=8

x=6

x=4

x=2

\

^^ ^ \

~\j—
J L

4 8

Time, ms

b. Damping = 0.4.

x=10

x=8

x=6

x=4

x=2

x=10

x=8

x=6

x=4

x=2

0 4 8

Time, ms

c. Damping = 0.6.

Figure5. Damping effects on one-dimensional model(example 1). The aboveplots
use the same vertical scale (dx = 0.05; dt = 0.005 s).

x = 0 x = 10

Figure6. Geometry ofwavepropagationfor example
2, a cantilevered beam.
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2where cb = £, thebeam velocity
PE = \i[(3X+2\i)/(K+[i)], Young's modulus of elasticity

p = material density.

With no initial displacements nor velocities along the beam, and boundary conditions ofu(0,t) =
0andP(£,t) =/>8(r), the solution tothis problem isalmost identical tothe previous problem. The only
difference betweenthe twosolutions is the velocity at whichthe wavepropagates throughthe beam
(cb <Ci). Manipulation of the relations between the material constants yield the following relation for
cb interms ofthe longitudinal and transverse velocities

cb =2c?[(l.5c?-2c,2)/(c?-ct2)]. (4)
Laplace transform techniques (Graff 1975, pp. 91-94) give the solution tothe problem as

_ Pu (x, t)
1 ' pcb

I U-x) U+x) \
\H<t -± '-> -H<t- i '->)-I cb cb J

I (3*-*) (3£ +x) \
| cb Cb |

I (5*-*) (5£ +x) \
\H<t -* '-> -H<t- K- '->)-•
\ cb cb I J (5)

where u = displacement
P = magnitude of the load
p = material density

cb = beamvelocity
£ = length of the beam

t = time

x - position along beam
H<t-a> = Heaviside stepfunction, defined in theprevious example.

The solution toeq3 is a square wave propagating between the ends of the material at the beam
velocity. Because the beam velocity cb isless than the longitudinal velocitycx, this wave travels slower
than thewave inexample 1.The amplitude oftheresulting wave, however, islarger than that of the
previous example. Aplotofdisplacement versus time, for five points on the beam, is given in Figure 8a.

Inputfile
This example differs from the longitudinal displacement problem because the nodes must be

allowedtomovein thetransversedirections (becauseof thePoissoneffect).A one-dimensional mesh
isnot capable ofhandling these displacements, and"so either atwo- orthree-dimensional grid must be
used.Toreducecomputation time, atwo-dimensional mesh was created (Fig. 7)tomodel an aluminum
beam.The parametersfor this examplefollow.

time step(Ar): DT= 0.005 (ms)
density (p): DENS(l) =2.70(Mg/m3)
/'-wave velocity (cj): VP(1) =6.30 (km/s)

11



5-wave velocity (ct):
beamvelocity (cb):
damping:
impulse force (P):
length of beam (^):

(0.+0.05)

403'

(0,-0.05)

VS(1) = 3.10 (km/s)
cb= 5.1 (km/s)
DAMP(1) = 0.0
VSPEC(2,1)=1.0(N)
YGRID(1,2)- YGRID(1,1)= 10.0 (m)

(10.+0.05)

0 6 0 o •—^603-*— P5 (t)

8 9 8® —4
400 \

>-—®402-«— P5(t)

9 9 0 0 $
200{

>---©201-*—P8(t)

(10,-0.05)

Figure 7.Finite elementmesh ofbeamproblem (400elements, 603nodes).
Impulseforce applied at nodes 201,402 and 603; nodes 1,202 and 403

Forthis example, the.displacements for the nodes at*=0,nodes 1,202and403, were set identically
equal tozero (lines 13,15 and 17 ofthe following input file). Atthe free end ofthe beam, aunit impulse
was applied in thedirection of the beam axis (lines 14, 16and 18 of thefollowing input file). The
longitudinal displacements were recorded forfive nodes located onthe center fiber ofthebeam (line
22) (entries correspond to Appendix A).

Entrv Line

A 1 2-d model of beam, cfr=0.005 ms
B 2 2 2 0 0

C 3 2 0.005 0 10

D 4 Regular elements, 0.05 x 0.05 m 1ong

E 5 200 2 0 2 4 0 0 0 0
F 6 0.0 -0.05 10.0 -0.05 0 0.05 10.0 0.
G 7 0

I 8 0

K 9 1

L 10 1 2.70 6.30 3.10 0.0

M 11 0

O 12 6

P 13 1 ..-11 0 0 0 0 1

14 201 00 1.0 0 0 0 ,. 1
15 202 : 11 0 0 0 0.1
16 402 00 1.0 0 0 0 1

17 403 11 "0 0 0 0 1

18 603 ^00 1.0 0 0 0 1

R 19 0 v.0. 0 0

S 20 ,0 . , 0 •
U 21 5 202 252 302 352 402

V 22 0 0

Comparisonofoutputto theory
A plotof displacement versus time, as calculated by SWIS, for theabove input file is shown in

Figure 8b. SWIS calculates a waveform with a shape and velocity close to that of the analytical
solution. Asinthecase of the one-dimensional strain example, it isexpected that refining theinput
mesh and decreasing the time step could further improve the results.

12



x=10

x=7.5

x=5

x=2.5

x=0

J r1s
J

_n
u

r

i i i i i
-0 2 4 6 8 10

Time, ms

damping=0.0

hi , kl+*+ m«

l l I L

4 8
Time, ms

x=10

x=7.5

x=5

x=2.5

x=0

a.Analytical solution. b. SWIS (dx = 0.05 m; dt = 0.005 s).

Figure 8.Comparison ofanalytical and SWIS waveforms calculatedforexample 2.

a. damping=0.2

2 4 6 8

Time, ms

x=10

x=7.5

x=5

x=2.5

x=0

b. damping=0.4

\ /

\J
_/\

2 4 6 8

Time, ms

10

Figure 9.Damping effects onbeam. Plots use the same vertical
scale (dx = 0.05 in; dt = 0.005 s).

Applying a damping factor again removes much of the oscillations (Fig. 9). A factor of 0.2,
however, already seems to modify the solution in that the waveform is no longer a square wave.
Increasing the damping factor from 0.2 to0.4 removes more ofthe high frequency components, but
results inonly asmall changeinthe solution. Forthesedampingfactors, littleorno reductionisnoticed
in the amplitudes or the wavevelocities.

Example 3:Lamb'sproblem intwo-dimensional Cartesian coordinates
The third example treated the two-dimensional Lamb's problem, a vertical point load applied

impulsively inthe plane ofthe grid (Fig. 10). The results from this example were compared to the
waveforms generated by other computing schemes.
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8(t)

z = 0

x = 0

Figure 10. Example 3, geometry of
Lamb's problem.

Inputfile

No-displacementconstraintswereappliedto the verticalsidesof thismeshso that the waveswould
reflect offofthesides. Tocompare thesolution from SWIS toother models (Kuhn 1985, p.1112), the
following parameters were used:

time step (At):
ending time:
density (p):
P-wave velocity (c{):
5-wavevelocity (ct):
impulse force (P):

DT = 2 (ms)

TMAX = 400 (ms)
DENS = 1.0(Mg/m3)
VP= 1.00 (km/s)
VS(1) = 0.60 (km/s)
VSPEC(2,1) = 1.0(N).

Forthis problem, SWIS was run with several input files toobserve the effect ofthe damping factor
and to get information for different typesof plots. For all of the inputfiles, however, the meshused
was a two-dimensional grid with rectangularelements,each 3 by 3 m. The mesh had 70 elementsin
each direction, andhada total of5041 nodes. A vertical force was applied at theleftupper comer of
the mesh (node4971)and the vertical sidesof the grid wereconstrained so that thesenodeshad no
horizontal movement (Fig. 11).

The file shown below was run toobtain information foracontour plot. For every 10time steps (20
ms), datawere recorded for 15 strings of nodes (line 17of theinput file), eachstring containing 15
nodes (lines 18-32). The damping factor inthis runis0.2(last entry inline 10) (entries correspond to
Appendix A).

4971 5041

Figure11. Finiteelement mesh usedfor Lamb's problem.
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Entry Line

A 1 Lamb's problem, dt=2ms, /max=400 ms

B 2 2 2 0 0

C 3 2 2 0 400

D 4 each element 3 x 3 m, total grid 210 x 210 m

E 5 70 70 0 2 4 0 0 0

F 6 0 -210 210 -210 0 0 210 0

G 7 0

I 8 0

K 9 1

L 10 1 1.00 1.0 0.6 0.2

M 11 0

0 12 3

P 13 1 10 0.0 0.0 0.0 69 71

14 71 10 0.0 0.0 0.0 70 71

15 4971 10 0.0 1.0 0.0 0 1

R 16 0 0 0 0

S 17 15 10

T 18 4971 14 5

19 4616 14 5

20 4261 14 5

21 3906 14 5

22 3551 14 5

23 3196 14 5

24 2841 14 5

25 2486 14 5

26 2131 14 5

27 1776 14 5

28 1421 14 5

29 1066 14 5

30 711 14 5

31 356 14 5

32 1 14 5

U 33 0

V 34 0 0

0 0

Discussion ofoutput
To evaluate the results, horizontal andvertical displacements andvelocities wereplottedagainst

time (Fig. 12 and 13) and contour plots ofthe displacements (Fig. 14) were produced. The range and
depth scales for Figures 12 through 14 were chosen to match those ofKuhn's (1985) figures. It is
important tonote that the plots inFigure 14 may contain some artifacts attributable tothe automatic
contouring algorithm. For example, the contour plot ofthe horizontal displacement at80 ms (Fig.
Hal) indicates zero displacement atabout 108 m. This particular contour line isnot part ofthe wave
front, but a result of the automatic smoothing in the contouring algorithm. Despite the artifacts,
however, it is relatively easy to identify the wavefronts in the contour plots. The contour lines of
interest are grouped closely toeach other, and compose the "steep" portions ofthe mapping.

The plots ofhorizontal and vertical displacement in Figure 12 show the disturbance propagating
through the material. Since the wave velocities for the material are known, itispossible todetermine
thearrival ofeachwave front. Forexample, onthe180-m trace ofhorizontal displacements inFigure
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Figure 12.Horizontal andvertical surface displacements vstimefor example 3.Allplots use the same vertical scale
(dx = 3 m; dt = 2 ms).
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Figure 13. Horizontaland verticalsurfacevelocities
vs timefor example3 (dx = 3 m; dt = 2 ms; damping
= 0.2).

12a, a disturbance arrives at approximately 180 ms. This corresponds to a velocityof 1 km/s, and
implies that the disturbance is a pressure wave. A second wave front reaches the 180-m range at
approximately 300ms,hasavelocityofabout0.6km/s, andcouldbeeithertheshearorRayleigh wave.
Figure 13,aplotofhorizontal andvertical surface velocities against time, alsoshows thepropagation
of the three waves. Finally,noticethat the wavesare non-dispersive. This agreeswith theory,since
the example models a non-layered half-space.

TheNyquist frequency, orthehighest frequency thatcanbemonitored owing tothesampling time
step, is/N = l/(2Ar) = 1/(0.004 s) = 250 Hz. From Figure 12, the period of the Rayleigh wave is
approximately45ms,andcorresponds toadominant frequency of22Hz.Thisisanorderofmagnitude
smaller than the Nyquist frequency, and so it is reasonableto expect that the Rayleigh wave is well
represented in the plot.

The displacement contours in Figure 14 yield results consistent with theory. First, there are no
horizontaldisplacements directlybeneath the source(x= 0-m axis),a constraintset in the input file.
Disturbancesat the depths of 80 and 160m are observedon thex=0 axis of the verticaldisplacement
contour plots at 80 and 160 ms respectively. These disturbances traveled at a rate of 1 km/s, and
probablycorrespondto the pressurewave.The seconddisturbance, the combinedeffect of the shear
and Rayleigh waves, is observednear the range of 48 m on the 80-msplot and at about96 m on the
160-msplot.Finally,thedisplacementmagnitudes, especiallyin thehorizontaldisplacementcontour
plots, fall away to zero withincreasein depthand indicatethe presenceof a Rayleighwave.

Sincethe compressionalenergyandshearenergyareproportional to the squaresof thedivergence
and curl of displacement, respectively (Dougherty and Stephen 1987,p. 242), contourplots of the
divergence andcurlwerecreatedto betterobserve thearrival of the various wavefronts at t= 80and
160ms. The equations usedto finddivergence and curl are givenin Appendix B.

The contour plots of the divergence and curl facilitate observation of the wave fronts. The
divergence contour plots show thepressure wave front asbeingalmost spherical. Disturbances from
shear waves and surfacewavesare presenton the curl contourplots, but it is difficult to distinguish
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a. Attime t = 80ms. Wavefronts areat thefollowing locations: V-wave at80 m; S-wave at 48m;Rayleigh wave dt44 m.

Figure 14. Contour plots of displacements and divergenceand curl ofdisplacementsfor example 3.
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b. At time t =160 ms. Wavefronts are at thefollowing locations: P-wave at 160 m; S-wave at 108 m; Rayleigh wave at 88 m.

Figure 14 (cont'd).
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betweenthetwo waves atthesurfaceofthematerial since thewave speeds arealmost equal. Atadepth
greaterthan 18 m, however, the Rayleigh wave displacements fall away, and only the shearwave
remains.

Computation time

On the ILLIAC computer, Frazier (1974, p. 65) estimated that the calculations were processed that
the rate of0.4 ms per two-dimensional element per numerical time step. With 200 time steps, and 4900
elements (5041 nodes), each of the runs took approximately 30 minutes of real time on a Masscomp
5550, a 32-bit computer running at 20 MHz. At this rate, the computer processes at approximately 1.8
ms per element per numerical time step.

Dampingfactor
Frazier, when using SWIS, used different damping factors for the longitudinal and transverse

waves. It is not apparent, however, how he specified the two factors in the input file as our version of
the code does not allow this option. At this point, the magnitude required to reduce only the high
frequency noise resulting from numerical dispersion has not yet been determined. A value of0.2 does
not seem sufficientbecause the source wave oscillates much more than what has been observed in both

field work and other mathematical models. Damping factors set to 0.4 and 0.6 reduced the amount of
oscillation, but also damped the results. Finally, a value of0.8 caused the disturbance to die out almost

immediately.

Comparison with other models
Kuhn (1985) also conducted a study of Lamb's problem in two dimensions. He used the same

material parameters and numerically integrated the analytical solution. In his work, however, Kuhn

0 0.2 0.4 0
Horizontal

Figure 15. Horizontal and vertical ve
locities (mis) calculated by Kuhn (after
Kuhn 1985, p. 1114, his Fig. 6a).

E 4

i5 1

•1 -

•2 -

3

t = 100us

Numerical

Analytical
(Line Load, Delta
Function in Time
and Space)

Klj))M «•'

10 20 30 40 50

Horizontal Distance (cm)

60 70

Figure 16. Vertical displacement timehistory calcu
lated by Frazier (after Frazier 1974, p. 67, his Fig.
4.2), damping - 0.8.
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used a different approximation for the
impulse force, solved the problem in cy

lindrical coordinates and used a mildly
viscoelastic material for his half-space.

These results are shown in Figure 15.
Kuhn's figure shows surface velocities,

and contains two records of 16 traces

each, with ranges varying from 0-180 m.

The middle column of numbers repre
sents gain, which is constant along each
trace, and allows the comparison ofabso

lute amplitudes between different offset

traces.

In all of his calculations, Kuhn used

only one source function, which had a
dominant frequency of about 20 Hz (Kuhn 1985, p. 1108). Because he solves Lamb's problem by
numerically computing the analytic integral solution, his waveforms are much cleaner and it is easier
to distinguish between the different waves. It is difficult to see the similarities between our solution
(Fig. 13) and Kuhn's (Fig. 15) because the finite element results contain much noise, resulting from
numerical dispersion. However, the waves arrive at approximately the same time, and the initial forms
of the waves are similar.

Frazier (1974, pp. 65-74) used Lamb's problem in a two-dimensional Cartesian coordinate system
to evaluate the SWIS code written for the ILLIAC computer. As mentioned in the section above,
Frazier was able to specify different damping factors for the various waves. He also investigated the
effectiveness of transmitting boundary conditions, an option that is not available on our version of
SWIS. Finally, Frazier used different parameters for his calculations, including a different material,
smaller time and space steps, and a different force. Since the parameters are so different from those
in our model, our comparison is limited to the form of the displacements (Fig. 16).

As a final comparison, we considered the calculations of Lamb (Graff 1985, p. 369). In his analysis
of the half-space problem, he used a line loading with a time variation of

z(») =
t2+ x:

Rayleigh

Time

r(r,0,t)

uz(r,0,t)
Time

Figure 17. Horizontal and vertical displacements calcu
lated by Lamb (after Graff1975, p. 369, his Fig. 6.21).

where x is a constant. If %is small, Z(i) describes a sharp impulse. Lamb's results for the horizontal
and vertical surface displacements from the above loading are shown in Figure 17. The time and
amplitude scales are not included in this figure, but the first disturbance shows the arrival of a P- wave,
the second corresponds to the S-wave, and the major response is ascribable to the arrival of the
Rayleigh wave.
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APPENDIX A: FORMAT FOR INPUT FILE ul5in

Listing
A. HED

B.NDIMT NDFNT MAPXY NFOUR

C.NDBYDT DT TMIN TMAX

D. GRIDH

£.NEI NEJ NEK MAPYZ NBNODES IS JS KS IG JG KG

F. ((YGRID(NDIM,NBN)NDIM=1 ,NDIMT),NBN=1,NBNODES)

G. NNCRDC (if NNCRDC=0, go to /)
H. for NC=1 to NNCRDC:

NODEC(NC) (Y(I,NC),I=1,3) (DELY(I,NC),I=1,3) NANCRD(NC) IANCRD(NC)
/. NENNC (if NENNC=0, go to K)
7.forNC=l,NENNC:

NELN(NC) (NODEE(N,NC),N=l,NNET) NAEL(NC) IAEL(NC) IANE(NC)
tf.NMAT

L.forN=l,NMAT:

MAT DENS(MAT) VP(MAT) VS(MAT) DAMP(MAT)

M. NEMATC (if NEMATC=0, go to O)
Af.forNC=l,NEMATC:

NELM(NC) NEMAT(NC) NAEMAT(NC) IAEMAT(NC)

0. NNBCC (if NNBCC=0, go to Q)
P. for NC=1, NNBCC (if NODEB(NC)>0, go to R)

NODEB(NC) NBTYPE(NC) (VSPEC(I,NC),I=1,3) NANBC(NC) IANBC(NC)
Q.(BCDIR(NC0MP,NAXIS,NC),NC0MP=1,3) NAXIS=1,2)

fl.INTPRT INTPG INTPNV INTPEV

S. NPLTNL INTPNL (if either=0, go to U)
r.forNL=l,NPLTNL:

NDLN(NL) NANLN(NL) IANLN(NL)

U. NTHPTS, (NNPRT(I),I=1,NTHPTS)

V. NTHELM NEPRT(I),I=1 ,NTHELM

Definition of entries

Entry formats are noted inparentheses (A = character string; I = integer; and E1 = exponential
format).

A. HED"
(A) A character string used to describe the problem; to be used as a heading on output. An example

is:

Inputfilefor uniform material-2D withpoint source at surface.
Be sure to leave a space as the first entry so the first letterdoesn't get read as a carriage control character.

B.NDIMT NDFNT MAPXY NFOUR

NDIMT: (15) the number of spatial dimensions (1,2 or 3).
NDFNT: (15) the number of degrees of freedom per node.

MAPXY: (15) designates the type of spatial operator; choices are as follows:
For uniform, rectilinear grid in Cartesian coordinates, MAPXY = 0.
For non-uniform, skewed grid in Cartesian coordinates, MAPXY = 1.
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For non-uniform, skewed grid in Cartesian coordinates, and to store stresses for non-linear
constitutive, MAPXY = 2.

For cylindrical coordinates (r,z) with harmonic interpolation in azimuth, MAPXY = 5.
NFOUR: (15) Fourier azimuthal order in cylindrical coordinates.

If MAPXY=5, NFOUR = 0.

C.NDBYDT DT TMIN TMAX

NDBYDT: (15) the number of time derivatives in the partial differential equation:
For static problem, NDBYDT=0.

For diffusion, NDBYDT=1.

For wave propagation, NDB YDT=2.

DT: (F10.4) grid size in time. DT should be less than the space grid size divided by the longitudinal
wave (P-wave) velocity.

TMIN: (F10.4) starting time.

TMAX: (F10.4) ending time (number of time increments = TMAX/DT).

D. GRIDH

(A) A description of the grid generation. As with HED, leave a space for the carriagecontrol character.
An example for an entry is:

Regular grid, each element 10 mx 10 m, 7 km vertical by 10 kmhorizontal.

E.NEI NEJ NEK MAPYZ NBNODES IS JS KS IG JG KG

NEI: (15) number of elements along the /-direction of a block of elements.
NEJ: (15) number of elements along the /-direction of a block of elements.

NEK: (15) number of elements along the ^-direction of a block of elements.
MAPYZ: (15) designates the mapping from the curvilinear problem.

For identity mapping, MAPYZ = 0.*
For bi-quadratic mapping, MAPYZ = 2.
For cylindrical coordinate mapping, MAPYZ = 3. '

For spherical coordinate mapping, MAPYZ = 4.

NBNODES: (15)number ofnodes that are specified along exterior corners ofthe grid (NBNODES
= 4 is a typical entry).

IS, JS, KS: (15) starting numbers for expanding the grid size at 10% per zone. Grid elements less

than IS, JS and KS are progressively expanded.
IG, JG, KG: (15) starting numbers for expanding the grid size at 10% per zone. Grid elements

greater than IG, JG and KG are progressively expanded.

F. ((YGRID(NDIM,NBN)NDIM=1 ,NDIMT)JVBN=1JVBN0DES)
YGRID(NDIM,NBN): (F10.4) coordinates ofthe nodes at the exteriorcorners of the grid, specified

in the order:

For/min,7min,/i:min,NBN=l.
For/max,/min,^min,NBN= 2.

min'" max'

° max' ^max' "mm'
,tfmax,NBN = 5.

mm' min

MAPYZ = 0 is not operational; use MAPYZ = 2 for identity mapping.
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1max'J min' max'

For ^n'-^max'^max'NBN = 7*
For W ^max' *max' ^N = 8*

Supply NBN's depending on the dimensionality of the problem:
For a one-dimensional problem, NBN = 1-2.
For a two-dimensional problem, NBN = 1-4.
For a three-dimensional problem, NBN = 1-8.

For a two-dimensional problem, 5000 units along the top and 6000 m deep, an entry could be (the
numbering used for generating the grid need not align with the coordinate axes, Y1,Y2,Y3):

0.0 -6000.0 5000.0 -6000.0 0.0 0.0 5000.0 0.0

Forcylindrical coordinates, entertheradius first, andthentheangle inradians. Tospecify afullcircle
(211radians) with radius of 10, the entry would be:

0 0 10 0 0 6.2832 10 6.2832

G. NNCRDC

(15) numberof lines (sequences) of data usedto supersedenodecoordinates.If NNCRD= 0, skip
to entry /.

H.NODEC(NC) Y(IJSfC) (DELY(IflC),I = 1,3) NANCRD(NC) IANCRD(NC)
OPTIONAL. Specify node sequence only if NNCRDC>0!
Complete for NC = 1 to NNCRDC:
NODEC(NC): (15) first node number of sequence on line NC.
Y(I,NC),I = 1,3): (3F10.4) coordinates of node number NODEC(NC).
(DELY(I,NC),I = 1,3): (3F10.4) increment to be added to the node coordinates for generating

additional nodes in the sequence.

NANCRD(NC): (15)number of additional nodes in sequence NC.
IANCRD(NC): (15) incrementto be added to the node numbersto identify subsequentnodes in

sequence NC.

I. NENNC

(15) numberofsequences (lines) ofdatausedtosupersede nodenumbers associated withindividual
elements. SET NENNC = 0 and go to entry K\

J.NELN(NC) NODEE(NtfC) NAEL(NC) IAEL(NC) IANE(NC)
If NENNC = 0, do not enter values. Currently, the code only reads, and does not process these

variables.

K.NMAT

(15)number of materials being specified. 1 < NMAT < 9.

L.MAT DENS(MAT) VP(MAT) VS(MAT) DAMP(MAT)
Specify properties for each material, N = 1 to NMAT.
MAT: (15)material number, 1 < MAT < 9.
3ENS(MAT): (F10.4) mass density for material number MAT.
VP(MAT): (F10.4) />-wave velocity for material number MAT.
VS(MAT): (F10.4) S-wave velocity for material number MAT.
DAMP(MAT): (F10.8)dimensionlessdampingcoefficientto suppresshigh-frequencyamplitudes

from numerical dispersion.
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M.NEMATC

(15) number of assignment sequences; assigns material numbers to elements. NEMATC=0 for a
uniform material. If NEMATC = 0, skip to entry O.

N.NELM(NC) NEMAT(NC) NAEMAT(NC) IAEMAT(NC)
Do not enter values if NEMATC = 0 (uniform material). Enter values for NC = 1 to NEMATC.
NELM(NC): (110) first element in sequence NC.
NEMAT(NC): (110) material number for sequence NC.
NAEMAT(NC): (110) number of additional elements in sequence NC.
IAEMAT(NC): (110) increment in element number for identifying subsequent elements in the

sequence.

O. NNBCC

(15)numberofsequences used to constrain nodes. The number ofdifferent "boundary conditions,"
such as applied forces or displacements, or both. If NNBCC = 0, go to entry Q.

P.NODEB(NC) NBTYPE(NC) VSPEC(ItfC)J=U) NANBC(NC) IANBC(NC)
Used to specify constraints; enter values for NC=1 to NNBCC.

NODEB(NC): (110) first node in sequence NC. To apply a rotation to a node, enter the negative
of the node number.

NBTYPE(NC): (110) multi-digit constraint code for interpreting components of the values

specified by VSPEC(I,NC). The ones digit ofNBTYPE pertains to I=NDFNT; the tens digit pertains
to I = NDFNT-1, etc. The individual digits are interpreted as follows:

0: VSPEC is an applied force.

1: VSPEC is an applied displacement.
Thus, for NDFNT = 2, NBTYPE = 00010 indicates:

VSPEC(1,NC) = displacement assigned to component # 1.

VSPEC(2,NC) = force applied to component #2.

Whereas, for NDFNT = 3, NBTYPE = 00010 indicates:

VSPEC(1,NC) = force applied to component #1.

VSPEC(2,NC) = displacement assigned to component #2.
VSPEC(3,NC) = force applied to component #3.

(VSPEC(I,NC),I = 1,3): (3F10.4) the value for the /th component ofthe force or displacement (as
specified by NBTYPE).

IANBC(NC): (110) increment in node number for the subsequent nodes.
If NODEB > 0, go to entry R.

Q. (BCDIR(NCOMPJVAXISJVC), NCOMP=U), NAXIS=1,2)
(F10.4) used to specify rotations, but not fully operational; vectors to specify rotated directions for

degree of freedom NCOMP with respect to axis NAXIS.

R.INTPRT INTPG INTPNV INTPEV

Used to specify print control. Set the value = 0 to suppress the plot.
INTPRT: (15) interval between time steps for printing computed results to unit 16, file 'ul6out'.

Set INTPRT < 0 to plot intermediate values.

INTPG: (15) interval between time steps for plotting deformed grid to unit 10, file 'ulOg'. Set

INTPG < 0 to plot only the undeformed grid.
INTPNV: (15) interval between time steps for plotting node vectors to unit 11, file 'ul lvn'.
INTPEV: (15) interval between time steps for plotting element vectors to unit 12, file 'ul2ve'.
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5. NPLTNL INTPNL

Plot along specified lines of nodes(sends output to unit 13,file 'ul31n' and unit 14,file 'ul4div').
NPLTNL: (15) number of node lines (set NPLTNL = 0 to suppress plots).

INTPNL: (15) interval between time steps (set INTPNL = 0 to suppress plots).

If either NPLTNL or INTPNL = 0, go to entry U.

T.NDLN(NL) NANLN(NL) IANLN(NL)
Specify lines of nodes to plot displacement; enter values for NL = 1,NPLTNL. Do not enter values

ifNPLTNL = 0.

NDLN(NL): (110) first node number in the line NL.

NANLN(NL): (110) number of additional nodes in the line.
IANLN(NL): (110) increment in node number along the line.

U. NTHPTS, (NNPRT(I), I = lJSfTHPTS)

Used to plot time histories of node displacement to unit 8, file 'u8hn'.
NTHPTS: (110) number of nodes for which time histories are to be plotted.
(NNPRT(I),I = 1,NTHPTS): (110) node number for plot history. No entries are needed if

NTHPTS = 0.

V.NTHELM (NEPRT(I),I=lJSfTHELM)
Used to plot time histories of element stress and displacement to unit 9, file 'u9he'.
NTHELM: (110) number of elements for which time histories are to be plotted.
(NEPRT(I),I = 1,NTHELM): (110) element number for plot history. No entries are needed if

NTHELM = 0.
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APPENDIX B: CALCULATION OF DIVERGENCE AND CURL

SWIS was modified so that the divergence and curl would be calculated for a two-dimensional
problem in rectangular coordinates. The following discussion applies to this specific case only.

For the two-dimensional case, divergenceand curl are definedby:

,. , >. du\ •, du2
divergence (x) = —L + —-

dx By

curl (x) = —=-
dx

du\

ay

where x = position
ux = displacement in^-direction
u2 = displacement iny-direction.

The divergence and curl were calculated using finite differences. The values for the corner nodes
were calculated using forward differences for both directions; edge node values resulted from a
forward difference for the direction perpendicular to the edge and acentral difference along the edge;
and values for nodes in the middle ofthe mesh were calculated using central differences in both
directions.

In general, the forward and central differences for apartial derivative are given by (Abramowitz
and Stegun 1972):

Forward:

Central:

d/o,Q _
dx

/l, 0-/o,0

n

0(n2)

d/o,0 =
dx

f\, 1" /-l, 1+ /l, -1 -/-l.-l
4«

oM

where his the distance between the sampling points, and/itj is the value of the function at the (/thjth)
sampling point. These finite difference formulas use equally spaced sampling points, as shown in
Figure B1. Foragrid with non-uniform spacing, the difference in coordinates must be used instead of
the value h.

M.% (1.1]

(0,0) (1.0)

it(-1.-1 (1.-1)

a. Forward time dif- b.Centralfinite difference
ferencesampling (two sampling (fourpoints),
points).

Figure Bl. Sampling pointsforfinite differenceformulae.
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Nine different sets ofdivergence andcurl formulae were used for the two-dimensional, rectangular
mesh. Each of the four cornernodes requireda set of formulae, as did the nodeson each of the four
sides of the mesh. The final set was written for the nodes in the center of the mesh.

For the following equations, variable definitions are givenas:

nn: node number

nei: number of elements in the ^-direction of the mesh

diver(nn): divergence at node nn
curl(nn): curl at node nn

disp(/,nn): displacement in the ithdirection of node nn
ynode(i,nn): coordinate in the /th direction of node nn

Nodelocationsfor the following formulae are indicatedon FigureB2.

Ill VIII

i

VI-^> IX -VII

/ T ^•K

Figure B2. Node locationsfor finite differenceformulae (I—
lowerleftcorner; II—lower right corner; III—upper leftcor
ner; IV—upper right corner; V—loweredge ofmesh; VI—left
edge of mesh; VII—right edge ofmesh; VIII—upper edge of
mesh; IX—middle ofmesh).

I. Bottom left corner [nn =1]:

. _ [disp(1,nn+1)- disp(1, nn)]. [disp(2, nn+nei+1) - disp(2,nn)]
[ynode(1, nn+1)- ynode(1, nn)] [ynode(2, nn+nei+1)- ynode(2, nn)]

curl (nn) = tdisp(2,nn+ng/+l) - disp(2, nn)] _ [disp(l, nn+1) - disp(l, nn)]
[ynode(1, nn-i-1) - ynode(1,nn)] [ynode(2, nn+nei+l) - ynode(2,nn)]

II. Bottom right corner [nn = nei+1]:

,. , , [disp(l,nn)-disp(l,nn-l)] [disp(2,nn+neH-l)-disp(2, nn)]
diver (nn) = —-—— - —- — + ——

[ynode(1, nn) - ynode( 1, nn-1)] [ynode(2, nn+nei+1) - ynode(2, nn)]
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[disp(2, nn+ng/+l) - disp(2, nn)] [disp(l, nn) - disp(l, nn-1)]
[ynode(l,nn)-ynode(l,nn-l)] [ynode(2,nn+ng/+l)-ynode(2,nn)]

III. Top left corner [nn= nei * (nei + 1) + 1]:

[disp(l,nn+l)-disp(l,nn)] | [disp(2,nn)-disp(2,nn-ng/-l)]
wer (nn) - ^nQd^lnn+l^_ ynode(i? nn)] [ynode(2, nn) - ynode(2, nn-nei-l)]

w x [disp(2,nn)-disp(2,nn-ng/-l)] [disp(l,nn+1) - disp(l, nn)]
curl (nn) = - —— : ~r~z TTT,

[ynode(1,nn+1) - ynode(1,nn)] [ynode(2, nn) - ynode(2, nn-nei-l)]

IV. Top right corner [nn = (nei+ 1) *nei+ 1)]:

[disp(l, nn) - disp(l, nn-1)] [disp(2, nn) - disp(2, nn-nei-l)]
diver (nn) - [ynode(1> ^ _vnode(l, nn-1)] + [ynode(2,nn)-ynode(2,nn-ng/-l)]

_ [disp(2, nn) - disp(2, nn-ne/-l)] _ [disp(l, nn) - disp(l, nn-1)]
[ynode(l,nn)-ynode(l,nn-l)] [ynode(2, nn)-ynode(2, nn-nei-l)]

V. Nodes located on bottom edge of mesh [1 < nn< (nei + 1)]:

[disp(l, nn+1) - disp(l, nn)] [disp(l, nn) - disp(l, nn-1)]
diver (nn) =^ [ynode^ nn+1) _ynode(i, nn)] +2* [ynode(l, nn) - ynode(l, nn-1)]

[disp(2, nn+nei+l) - disp(2, nn)]
[ynode(2, nn+nei+l) - ynode(2, nn)]

2* [disp(2, nn+ng/+l) - disp(2, nn)] [disp(l, nn+1) - disp(l,nn-1)]
curl (nn) = [ynode(1? nn+v> _ynode(i, nn-l)] ~2* [ynode(2, nn+nei+l) - ynode(2, nn)]

VI. Nodes located on the leftedgeof the mesh[mod(nn, nei+ 1)= 1]:

[disp(l, nn+1) - disp(l, nn)] [disp(2, nn+ng/+l) - disp(2, nn)]
diver (nn) =^ynodc(^lf „n+1) _ynode(l, nn)J + 2* [ynode(2, nn+nei+l) - ynode(2, nn)]

+
[disp(2, nn)- disp(2, nn-ng/-l)]

2* [ynode(2, nn) - ynode(2, nn-ng/-l)]

[disp(2, nn+ng/+l) - disp(2, nn-ng/-l)] 2* [disp(l, nn+1) - disp(l, nn)]
cur (nn) = ^ ^^^^^ m+l^ _ynode(l, nn)] [ynode(2, nn+ng/+l) - ynode(2, nn-ng/-l)]

VII. Nodes located on theright edge of themesh [mod(nn, nei + 1)= 0]:

[disp(l, nn) - disp(l, nn-1)] [disp(2, nn+ng/+l) - disp(2, nn)]
diver (nn) =[ynode(1> m) _ynode(i? nw_i)] + 2* [ynode(2, nn +nei+l) - ynode(2, nn)]

[disp(2, nn) - disp(2,nn-ng/-l)]
2* [ynode(2, nn) - ynode(2, nn-ng/-l)]
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curl (nn) = tdisP(2> nn+nei+l) - disp(2, nn-ng/-l)] 2* [disp(l, nn) - disp(l, nn-1)]
2* [ynode(l, nn) -ynode(l, nn-1)] [ynode(2, nn +nei+l)-ynode(2, nn-ng/-l)]

VIII. Nodes located on the top edgeof the mesh [nei*(nei+ 1)+ 1< nn < (nei+ l)2]

, N [disp(l,nn+l)-disp(l,nn)] [disp(l, nn)-disp(l, nn-1)]
diver (nn) = r—: —; — —— — +

2* [ynode(l, nn+1) - ynode(l, nn)] 2* [ynode(l,nn) - ynode(l, nn-1)]

+ [disp(2, nn) - disp(2, nn-ng/-l)]
[ynode(2, nn) - ynode(2, nn-ng/-l)]

2* [disp(2, nn)- disp(2, nn-ng/-l)] [disp(l, nn+1) - disp(l, nn-1)]
curl (nn) =

[ynode(1, nn+1) - ynode(1, nn-1)] 2* [ynode(2, nn)- ynode(2, nn-nei-l)]

IX. Nodes in the center of the mesh:

, , [disp(1, nn+nei+2) - disp( 1, nn+nei)] [disp(1, nn-nei) - disp( 1, nn-nei-2)]
diver(nn) = +

2* [ynode( 1, nn+nei+2) - ynode( 1, nn+nei)] 2* [ynode(1, nn-nei) - ynode( 1, nn-nei-2)]

[disp(2, nn+nei+2) - disp(2, nn-nei)] [disp(2, nn+nei) - disp(2, nn-nei-2)]
2* [ynode(2, nn+nei+2) - ynode(2, nn-nei)] + 2* [ynode(2, nn+nei) - ynode(2, nn-nei-2)]

[disp(2, nn+nei+2) - disp(2, nn-nei)] [disp(2, nn+nei) - disp(2, nn-nei-2)]
curl (nn) = -r— —— —7 rn r; +

2* [ynode(1, nn+nei+2) - ynode(1, nn+nei)] 2* [ynode(1, nn-nei) - ynode(1, nn-nei-2)]

[disp(l, nn+nei+2) - disp(l, nn+nei)] [disp(l, nn-nei) - disp(l, nn-nei-2)]

2* [ynode(2, nn+ng/+2) - ynode(2, nn-nei)] 2* [ynode(2, nn+nei) - ynode(2, nn-nei-2)]
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