MISCELLANEOUS PAPER C-68-I

EFFECT OF TEMPERATURE ON AIR-ENTRAINING ADMIXTURE DEMAND OF CONCRETE WITH AND WITHOUT POZZOLANS

Ьу

W. O. Tynes

July 1968

Sponsored by Office, Chief of Engineers U. S. Army

Conducted by

U. S. Army Engineer Waterways Experiment Station CORPS OF ENGINEERS

Vicksburg, Mississippi

ARMY-MRC VICKSBURG, MISS.

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED

Miscellaneous Paper C-68-1 EFFECT OF TEMPERATURE ON AIR-ENTRAINING ADMIXTURE DEMAND OF CONCRETE WITH AND WITHOUT POZZOLANS

KEY

Manufacturer	Symbol	Product
Lone Star Cement Co. Birmingham, Alabama Spocari, Alabama	RC-572	Portland cement, type II
Commonwealth Edison Co. Chicago, Illinois (Procured from Chicago Fly Ash Co., Chicago, Illinois (Fisk Station))	AD-3(10)	Fly ash I
Oregon Portland Cement Co. Oswego, Oregon	AD-140(11)	Calcined shale
Consolidated Gas, Electric Light & Power Co. Baltimore, Maryland	AD-9	Fly ash IV
Hunt Process Southern Corp. Ridgeland, Mississippi	AEA-692	Air-entraining admixture ("Air-In" brand)
Vulcan Materials Co. Hermitage Limestone Quarry Nashville, Tennessee	CRD-MS-17(2) CRD-G-31(3), (4)	Manufactured limestone fine aggregate Manufactured limestone coarse aggregate

DEPARTMENT OF THE ARMY WATERWAYS EXPERIMENT STATION, CORPS OF ENGINEERS VICKSEURG, MISSISSIPPI 39181

IN REPLY REFER TO WESAR

4 September 1968

Errata Sheet

No. 1

Miscellaneous Paper C-68-1

EFFECT OF TEMPERATURE ON AIR-ENTRAINING ADMIXTURE DEMAND OF CONCRETE WITH AND WITHOUT POZZOLANS

July 1968

/1. On page 11, paragraph 24, fifth line, add "ash" at end of line.

/2. In table 1, second column, change "5" to "50" across from C_3S , %.

THE CONTENTS OF THIS REPORT ARE NOT TO BE USED FOR ADVERTISING, PUBLICATION, OR PROMOTIONAL PURPOSES. CITATION OF TRADE NAMES DOES NOT CONSTITUTE AN OFFICIAL EN-DORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS.

FOREWORD

The tests reported herein were authorized by the Office, Chief of Engineers, in first indorsement, dated 27 October 1965, to U. S. Army Engineer Waterways Experiment Station (WES) letter dated 24 September 1965, subject, "Effect of Temperature on Quantity of Air Entrained in Concrete, ES 623." The project is item ES 601.18 and is a part of item ES 601, "Research in Mass Concrete," of the Engineering Studies Program of the Corps of Engineers.

This work was conducted during the period November 1965 to August 1967 at the Concrete Division of WES under the direction of Mr. Bryant Mather and the supervision of Messrs. James M. Polatty, W. O. Tynes, Leonard Pepper, and W. B. Lee. This report was prepared by Mr. Tynes.

COL John R. Oswalt, Jr., and COL Levi A. Brown, CE, were Directors of the WES during this investigation and the preparation and publication of this report. Mr. J. B. Tiffany was Technical Director.

v

CONTENTS

	Page
FOREWORD	v
CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT	ix
SUMMARY	xi
PART I: INTRODUCTION	l
Background and Purpose	l l
PART II: MATERIALS, MIXTURES, AND TESTS	3
Materials	3 3 4
PART III: TEST RESULTS AND DISCUSSION	5
Test Results	5 56 8 9
PART IV: SUMMARY OF RESULTS	11
LITERATURE CITED	12
TABLES 1-4	

PLATES 1 and 2

CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT

British units of measurement used in this report can be converted to metric units as follows:

Multiply	By	To Obtain
inches	2.54	centimeters
cubic yards	0.764555	cubic meters
pounds	0.45359237	kilograms
gallons	3.78533	liters
pounds per square inch	0.070307	kilograms per square centimeter
pounds per cubic yard	0.593	kilograms per cubic meter
Fahrenheit degrees	5/9	Celsius or Kelvin degrees*

* To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use the following formula: C = (5/9) (F - 32). To obtain Kelvin (K) readings, use: K = (5/9) (F - 32) + 273.16.

SUMMARY

Mixtures were made with portland cement, blends of portland cement and pozzolan, and pozzolan alone, at temperature ranges of 40-45, 70-80, and 90-100 F to determine whether increasing the temperature of freshly mixed concrete results in an increased requirement for air-entraining admixture in order to maintain a given level of air content in the concrete. The results indicated that the amount of air-entraining admixture (AEA) required in the mixture containing a low-carbon fly ash and no cement was affected very little if at all by temperature; whereas, in all other mixtures, the AEA demand was increased with increasing temperature. The temperature effect was considerable in the mixture containing the pozzolan. calcined shale, between the temperature ranges of 40-45 and 70-80 F. The data also show that the carbon content of fly ash and temperature effects are interrelated. It is believed that the effect of carbon is primarily physical.

EFFECT OF TEMPERATURE ON AIR-ENTRAINING ADMIXTURE DEMAND

OF CONCRETE WITH AND WITHOUT POZZOLANS

PART I: INTRODUCTION

Background and Purpose

1. The fact that the quantity of air-entraining admixture (AEA) required to maintain a constant amount of air in concrete increases as the temperature of mixtures containing portland cement or blends of portland cement and fly ash increases is well known. At present, it has not been determined if other pozzolans react to increased temperature in the same way as fly ash; also it is not clear whether the increase in AEA demand is caused by temperature alone or whether other factors influence the increase. The purpose of this investigation was to determine: (a) whether increased mixture temperature itself results in the increased requirement of AEA, (b) if carbon content of fly ash and temperature effects are interrelated, (c) if other pozzolans act the same as fly ash in regard to AEA demand, and (d) the nature of the temperature effect on AEA requirements.

Scope

2. The first part of this study consisted of the proportioning of two concrete mixtures, one containing portland cement and the other fly ash, at different temperatures, and determining AEA demand. To verify the results of these initial tests and to determine the extent of temperature effect, seven additional mixtures were proportioned, containing (a) portland cement, (b) portland cement plus each of three pozzolans, and (c) each of the three pozzolans alone. Each mixture was mixed and tested for air content and slump at each of three temperature ranges: 40 to 45, 70 to 80, and 90 to 100 F.* To determine the nature (i.e. chemical or physical) of the changes in AEA requirement with temperature, leach water from pastes of five of the test mixtures was chemically analyzed. Other

^{*} A table of factors for converting British units of measurement to metric units is presented on page ix.

minor tests were conducted, as described in Part III, to aid in interpreting the results of the major tests.

Materials

Portland cement and pozzolans

3. A type II portland cement (RC-572) was used in this investigation. The pozzolans consisted of a high-carbon fly ash (AD-9), a low-carbon fly ash (AD-3(10)), and a calcined shale (AD-140(11)). Chemical and physical properties of the portland cement and pozzolans are given in table 1. Prior to the beginning of the work, sufficient quantities of cement, fly ashes, and shale were blended separately for the complete study. Aggregates

4. Crushed limestone aggregate from Tennessee, which was graded to comply with applicable Corps of Engineers guide specifications, was used for the coarse and fine aggregates (CRD-G-31(3), (4) and CRD-MS-17(2)). The physical properties and gradings of the aggregates are given in table 2. Air-entraining admixture

5. A neutralized vinsol resin solution (AEA-692) was used.

Mixtures

6. For the first part of the study, two mixtures were proportioned, one containing portland cement and the other a low-carbon fly ash. The cement mixture contained 5 bags* of cement per cu yd and 6.5 gal of water per bag of cement. The fly ash mixture contained 5 bags of fly ash (the same volume as the cement mixture) and 5.9 gal of water per bag. Both mixtures were proportioned with 1-1/2-in. maximum-size limestone aggregate. Three batches were made from each mixture, one for each temperature range.

7. For the second part of the study, seven air-entrained concrete mixtures, containing 1-1/2-in. maximum-sized limestone aggregate, were proportioned to have a slump of $2-1/2 \pm 1/2$ in., and an air content of 5 ± 0.25 percent. For the 70- to 80-F temperature range, 5 bags of cement

^{*} One bag of cement = 94 lb of cement.

or pozzolans, or blends of cement and pozzolans with a solid volume equal to the volume of 5 bags of cement, were used. Mixture data are given in table 3. For the other temperature ranges, the water-cement ratio was kept constant for all comparable mixtures and only the quantity of airentraining admixture was varied to provide the required air content. Three batches (rounds) of concrete were made for each mixture for each of the three temperature ranges. The leach water tests were conducted on paste mixtures representing five of the test mixtures.

Procedures and Tests

8. To obtain the desired temperature ranges of the concrete mixtures, 40-45, 70-80, and 90-100 F, materials were stored and batches were cast in a regulated temperature room with a temperature range of approximately 15 to 150 F. The mixing water was heated to 130 F for the concrete range of 90-100 F. Samples from each batch were tested for slump and air content according to test methods CRD-C 5^1 and CRC-C 41, respectively. The quantity of air-entraining admixture required for an air content of 5 percent was determined, and the water content was observed. Both the ambient and concrete temperatures were recorded. Leach water from the paste mixtures was chemically analyzed to determine the types and amounts of solids present.

Test Results

9. As stated earlier, two mixtures were proportioned for the first part of the study, one containing portland cement and the other a low-carbon fly ash. Results of tests of these two mixtures are given below:

Desired Temperature Range, ^O F		ual ture, ^O F Concrete	AEA ml/batch	Slump 	Air Content %
	Por	tland Cemer	nt Mixture		
40-45 70-80 90-100	47 79 100*	49 81 95	10 18 29	2-1/2 2-1/2 2-1/2	4.8 5.2 5.2
		<u>Fly Ash M</u>	ixture		
40-45 70-80 90-100	47 87 102*	49 86 95	8.5 8.5 9.2	2-1/2 2-3/4 2-1/2	4.9 5.0 5.0

* The temperature of the mixing water was 130 F so that the temperature of the concrete would be 95 F.

This series of tests indicated that temperature has very little, if any, effect on AEA demand when cement has been totally replaced with fly ash.

10. The results of the tests on the seven concrete mixtures of the second part of the study are shown in table 3. The values for slump, air content, temperature, and amount of air-entraining admixture represent an average of three tests.

Effect of Temperature on Amount of AEA Required

11. The amount of air-entraining admixture needed to entrain the required air increased as the temperature increased for all mixtures with the exception of mixture 2, which contained a low-carbon fly ash. Some of the increases in amount of AEA required from that for the temperature range of 40-45 F to that for the 70-80 F range were substantial, but the

increase for mixtures cast at temperatures between 90 and 100 F was not so pronounced as those for the 70-80 F range (plate 1). A search of records of previous investigations² revealed that AEA demand at the 70- to 80-F casting temperature for the portland-cement mixture, the mixture containing 30 percent fly ash replacement (mixture 5), and the mixture containing 30 percent calcined shale replacement (mixture 7) followed the same trend as similar mixtures in other investigations which were cast at comparable temperatures.

12. The motion of water molecules is proportional to the temperature; therefore, as the temperature increases the attraction between molecules is reduced. Consequently, more bubbles break down and go into solution as the temperature increases, which would probably explain why more AEA is required to provide the same air content for the same mixture when the temperature is increased. A publication by Little and Ives³ states that "the surface tension of a liquid (against air) decreases with rising temperature." It is believed that some of the increase in the AEA demand as the temperature increases is attributable to this surface tension phenomenon.

Effect of Carbon Content on Amount of AEA Required

13. The temperature did not appear to affect AEA demand of the mixture containing the low-carbon (less than 1.5 percent) fly ash (mixture 2), but did appear to affect that of the mixture containing the fly ash with a carbon content of approximately 7.00 percent (mixture 3). These data suggest that there may be a carbon content level of fly ash at or below which temperature has little or no effect on the AEA demand, but above which temperature has a definite effect. B. Mather⁴ states that, in regard to the effect of carbon content of fly ash on AEA demand,

...fly ash I, which showed less air-entraining admixture requirement when it was used to replace type II cement, contains 0.43 percent carbon, and fly ash III, which caused the largest increase in air-entraining admixture requirement when it was used, contains ll.13 percent carbon.... It is, therefore, suggested that these data,

while they do indicate the very marked effect on airentraining admixture demand as a function of the carbon content of the fly ash, serve also to point up what has been so often emphasized in the past, that very many other factors affect the amount of air-entraining admixture required in concrete.

The fly ash I referred to by Mather was from the same source as fly ash AD-3(10) used in this investigation, but was an earlier shipment.

14. The fineness of the low-carbon fly ash is much higher than that of the high-carbon fly ash. It is known that fineness of materials in a concrete mixture has a considerable effect on AEA demand, i.e., the finer the material passing the No. 100 sieve, the more AEA is required. Therefore, the carbon effect shown in plate 1 has probably been reduced by the fineness effect.

15. Two batches of mortar were made to verify the effect of carbon content on the AEA demand. One batch was made with fly ash AD-3(10) as received (approximately 1.5 percent carbon), and the other batch was made with AD-3(10) with lamp black added to bring the carbon content to 7.22 percent which is about the carbon content of fly ash AD-9. The mixture proportions and results of tests are as follows:

	As Received	With Carbon Black Added
Fly ash, g	274.2	274.2
Sand, g	1400	1400
AEA, ml	0.10	4.00
Water, ml	170	210
Flow, %	91	90
Air content, %	16.7	15.0

The data indicate that the addition of lamp black definitely has a marked effect on the AEA demand.

16. From the test results as represented in plate 1, starting at the left with mixture 1 which contained cement only, it is apparent that with this product, which had a fineness of the order of 3000 sq cm/g, there was a regular increase in the amount of air-entraining admixture required to produce a given air content as the temperature went up. Mixture 2, which

contained only low-carbon fly ash having a fineness of about 8000 sq cm/g, required only slightly more admixture at the original temperature, 40-45 F, than did the cement mixture and no increase in the admixture demand with increasing temperature. It is possible that at the initial temperature there was an evolution of desorbed gas from the carbon that compensated for the increased fineness that would otherwise have caused an increase in air-entraining admixture demand and that the amount of gas evolved increased with increasing temperature and prevented the increase in airentraining admixture demand for mixture 2 that was observed with mixture 1. In the case of mixture 3, which contained high-carbon fly ash, it might be assumed that the greater fineness of this product (9500 sq cm/g) was not fully compensated for by gas desorption in the low-temperature case, but that the increase in air-entraining admixture demand was in part compensated for by the gas desorption phenomena; otherwise, the observed increase would be expected to be comparable to that shown by mixture 4, which contained calcined shale of comparable fineness but without significant carbon from which adsorbed gas might be evolved. The activated carbon gas absorptiondesorption mechanism has been studied⁵ to a limited extent in connection with an examination of an expansive grout composition and also is described in the patent covering the product.

Effect of Calcined Shale on Amount of AEA Required

17. Mixture 4, containing calcined shale, required more AEA than the two mixtures containing fly ash to produce the same air content. In mixture 4, a large increase in the amount of AEA was required for the temperature range of 70-80 F as compared to that for the 40-45 F range (plate 1). This material was somewhat finer than the two fly ashes, and some of the increase in the AEA was probably due to this fact. Scripture and Litwinowicz⁶ state that "entrained air content decreases with increasing cement factor. This effect is most marked in the leaner mixes." Kennedy⁷ states that "particles small enough to pass the 100-mesh sieve seem to have a depressive effect on air entrainment." It is reported by ACI Committee 212 that "particular attention should be given to the

unusually high amount of air-entraining admixture often required in concrete containing high early strength (type III) portland cement, portland-pozzolan cements, fly ash, finely divided mineral admixtures such as natural pozzolans, or finely divided coloring admixtures such as untreated carbon black."⁸ Tynes⁹ states "the amount of air-entraining admixture needed to entrain the required amount of air increased as the amount of pozzolan increased." Scripture, Benedict, and Litwinowicz¹⁰ state "with increasing surface area of the cement the amount of air entrained by air-entraining agents decreases. Without air-entraining agents there are no significant variations in air content with surface area."

Nature of Temperature Effect on AEA Demand

18. To determine if the temperature effect on the amount of AEA required is chemical, a chemical analysis was made of leach water from five paste mixtures, with and without AEA, at temperatures of 40-45 and 90-100 F. The mixtures represented the following five mixtures used in the basic work: mixtures 1, 2, 4, 5, and 7. The filtered leach waters with no AEA were analyzed for total solids: Si, Al, Fe, Ca, Mg, Na, K, and SO₃. Since minor or trace amounts of Si, Al, and Fe were found in these waters, these elements were not determined in the mixtures containing AEA. The results of these tests are shown in table 4.

19. Less total solids as Ca and SO_3 , and greater amounts of Na and K were leached at 100 F than at 40 F for all mixtures, as shown in plate 2. These changes at these temperatures are normal since $CaSO_4$ decreases in solubility as the temperature increases, whereas Na and K compounds usually increase in solubility as the temperature is increased. The leach water from the shale (mixture 4) contained more Si and appreciably more Mg than the other waters.

20. The Na values of the leach waters from the fly ash mixtures (2 and 5) were considerably higher than those of the other mixtures, while the K values for both the fly ash (mixture 2) and shale (mixture 4) leach waters were much less than for the other mixtures.

21. In order to determine if the large amounts of sodium have any effect on AEA demand, air content was determined on four mortar mixtures, two with and two without sodium, at 100 F. The mixtures and results of the tests were as follows:

Mixture	Material	Air Con- tent, %
l	Portland cement + AEA	18.6
2	Portland cement + AEA + 450 ppm Na*	18.8
3	Low-carbon fly ash + AEA	16.1
4	Low-carbon fly ash + AEA + 450 ppm Na*	16.2

* This additional sodium was added as sodium hydroxide with the mixture water and the quantity was based on the sodium extracted from the leach tests.

22. The data indicate that the additional sodium had little or no effect on AEA demand of the mixtures. The results of the leach tests do not suggest any plausible explanation for the unusual behavior of the AEA demand in mixture 2, which contained a low-carbon fly ash. It is believed that the temperature effects on the mixtures containing fly ash were influenced to some degree by an activated carbon:gas absorption-desorption mechanism.

- 23. The test results indicated that:
 - a. The amount of AEA required for mixture 2 (low-carbon fly ash and no cement) was not affected by the temperature in the ranges investigated.
 - b. Increased temperature did cause an increase in AEA demand of another pozzolan (calcined shale), blends of pozzolans and cement, and even another fly ash which had a higher carbon content.
 - <u>c</u>. The concrete mixture showing the greatest effect of increased temperature on the AEA demand was mixture 4, which contained calcined shale and no cement. The large increases in AEA requirement generally occurred for the temperature range from 70 to 80 F compared to the AEA required for the range from 40 to 45 F.

24. The data show that the carbon content of the fly ash and temperature effects are interrelated, i.e., temperature had very little effect on mixtures containing fly ash with a low carbon content but had a much greater effect on mixtures containing fly ash with a high carbon content. It is believed that the temperature effects on the mixtures containing fly (ish) were influenced to some degree by an activated carbon:gas absorptiondesorption mechanism.

- 1. "Handbook for Concrete and Cement," with quarterly supplements, Aug 1949, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- Mather, B., "Investigation of Cement-Replacement Materials; Preliminary Investigations (Phase A)," Miscellaneous Paper No. 6-123, Report 1, Apr 1955, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 3. <u>Complete Book of Science Illustrated</u>, J. J. Little & Ives Co., Inc., Educational Publishers, New York, 1958.
- 4. Mather, B., "Discussion on Fly Ash in Concrete," <u>Proceedings</u>, <u>American</u> <u>Society for Testing Materials</u>, Committee Reports--Technical Papers, Vol 54, 1954, pp 1159-1164.
- 5. "New Cement Formulation Reduces Early Shrinkage in Concrete," Engineering News Record, Vol 180, No. 10, 7 Mar 1968, pp 50-51.
- 6. Scripture, E. W., Jr., and Litwinowicz, F. J., "Some Factors Affecting Air Entrainment," <u>Proceedings, American Concrete Institute</u>, Vol 45, 1948-1949, pp 433-442.
- Kennedy, T. B., "Air Entrainment and Its Effect on the Design of Concrete Mixtures," <u>Air Entrainment in Concrete Design</u>, Bulletin No. 30, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss., 1947, pp 1-18.
- American Concrete Institute Committee 212, "Admixtures for Concrete," <u>Proceedings, American Concrete Institute</u>, Vol 60, July-Dec 1963, p 1497.
- 9. Tynes, W. O., "Investigation of Cement-Replacement Materials; Use of Large Amounts of Pozzolans in Lean Mass Concrete," Miscellaneous Paper No. 6-123, Report 10, Aug 1962, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 10. Scripture, E. W., Jr., Benedict, S. W., and Litwinowicz, F. J., "Effect of Temperature and Surface Area of the Cement on Air Entrainment," <u>Journal, American Concrete Institute</u>, Vol 23, No. 3, Nov 1951, pp 205-210.

Table 1 Results of Chemical and Physical Tests of Portland Cement, Fly Ash, and Shale

Component or Test	Cement RC-572		ly Ash AD-3(10)**	Shale AD-140(11)	Component or Test	Cement RC-572	Fly AD-9	Ash AD-3(10)	Shale AD-140(11)
Ch	emical Da	ita			Phy	sical Dat	<u>a</u>		
Si0 ₂ , %	22.7	44.97			Specific gravity	3.15	2.26	2.47	2.55
Al ₂ 0 ₃ , % ^{Fe} 2 ⁰ 3, %	4.1 3.3	34.0 6.5	80.1†	81.98t	Air permeability (Blaine fineness), sq cm/g	3320			
2337 CaO, %	64.7	2.3			Air permeability (Blaine Tineness), sq cm/cc		9 503	7845	9185
MgO, % SO ₃ , %	2.9 1.5	0.4 0.34	0.74 2.00	2.02 1.04	Water required for normal consistency, %	24.6			
Loss on ignition, %	0.85	7.9	2.10	1.40	Time of set, Gillmore:				
Insoluble residue, %	0.14	76.8			Initial, hr:min Final, hr:min	4:35 6:40	 		
Na20, %	0,19	0.30			Soundness, autoclave				
K ₂ 0, %	0.43	1.72			expansion, %	0.08		0,05.	0.07
Total alkalies as Na ₂ 0, %	0.47	1.43			Air content of mortar, %	10.0	2.8		
c ₃ s,%	5 0				Compressive strength, psi				
c ₂ s, %	27				3 days 7 days	2115 3250			
C ₃ A, %	5				28 days	5660			
с _ц ағ, %	10				Mean particle diameter, microns		6.3	7.6	2.6
Available alkalies at 28 days					Lime-pozzolan strength, psi			985	1405
Na ₂ O, % K ₃ O, %			0.72 0.65	0.26 0.43	Water requirement, increase in flow, %			40	29
Total alkalies as Na ₂ 0, %			1.15	0.54	Pozzolanic strength, %			89.4	84.2
Moisture loss, %		0.26	0.31	0 . 20	Drying shrinkage of mortar, %				0.005
Heat of hydration, cai/g 7 days 28 days	72 85	 	 		Jung Drammage of moreoury jo				

* High carbon. ** Low carbon. † Si0₂ + Al₂0₃ + Fe₂0₃.

			arse
Test	Fine CRD-MS-17(2)	No. 4 to 3/4 in. CRD-G-31(4)	3/4 to 1-1/2 in. CRD-G-31(3)
	Physical P	roperties	
Bulk specific gravity saturated, surface dry	2.67	2.69	2.71
Absorption, %	1.3	0.6	0.4
<u>P</u>	ercent Passing &	Standard Sieve	
Sieve: 2-in. 1-1/2-in. 1-in. 3/4-in. 1/2-in. 3/8-in. No. 4 No. 4 No. 8 No. 16 No. 30 No. 50 No. 100 PAN	100 85 68 40 19 9 6	100 98 70 45 4	100 97 42 6 1

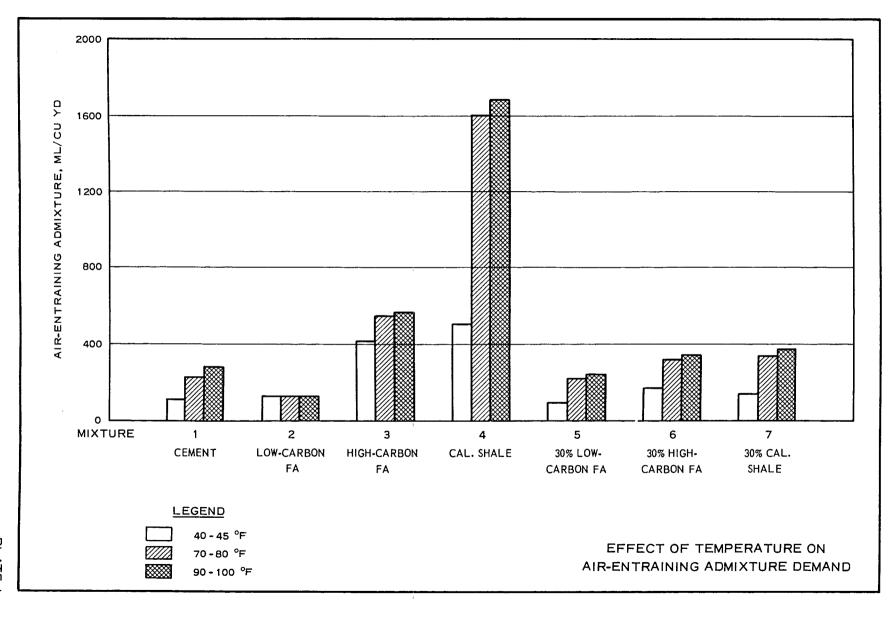
Physical Properties and Grading of Crushed Limestone Aggregate

Table 2

Table 3 Mixture Proportions and Effects of Temperature on AEA Demand

Mixture	Temperature Range, ^O F	Water- Cement Ratio gal/ bag*	Volume** of Cement or Pozzolan/ cu yd	Port- land Cement lb/ cu yd	Pozzolanic Mat	erial Amount lb/ _cu yd	Wei	egate ght u yd Coarse	Total Water Content lb/ cu yd	Temper Oj <u>Amb</u>	rature F <u>Conc</u>	Amount of AEA ml/cu yd	Slump in.	Air Content
1	40-45	6.5	2.390	470	None	None	1133.5	2037.5	270.75	37	42	120	2 - 3/4	5.0
1	70-80	6.5	2.390	470	None	None	1133.5	2037.5	270.75	78	78	240	2 - 1/2	5.0
1	90-100	6.5	2.390	470	None	None	1133.5	2037.5	270.75	100	94	290	2 - 1/2	5.0
2	40-45	5.7	2.390	None	Low-carbon FA†	368.5	1165.0	2095.0	237.40	37	41	140	3	5.2
2	70-80	5.7	2.390	None	Low-carbon FA	368.5	1165.0	2095.0	237.40	80	79	140	2-1/2	5.1
2	90-100	5.7	2.390	None	Low-carbon FA	368.5	1165.0	2095.0	237.40	98	93	140	2-1/2	5.1
3	40-45	6.5	2.390	None	High-carbon FA	337.0	1133.5	2037.5	270.75	38	42	430	2-1/2	5.0
3	70-80	6.5	2.390	None	High-carbon FA	337.0	1133.5	2037.5	270.75	79	78	560	2-1/4	5.0
3	90-100	6.5	2.390	None	High-carbon FA	337.0	1133.5	2037.5	270.75	99	93	580	2-1/4	5.1
չ	40-45	6.7	2.390	None	Calcined shale	374.5	1123.5	2021.5	280.00	37	41	520	2-1/2	5.0
Հ	70-80	6.7	2.390	None	Calcined shale	374.5	1123.5	2021.5	280.00	80	78	1600	2	4.9
Հ	90 - 100	6.7	2.390	None	Calcined shale	374.5	1123.5	2021.5	280.00	98	94	1700	2-1/4	5.0
5	40-45	6.2	2.390	328.5	Low-carbon FA	111.0	1145.0	2058.5	258.25	37	41	106	2-3/4	4.9
5	70-80	6.2	2.390	328.5	Low-carbon FA	111.0	1145.0	2058.5	258.25	80	79	234	2-1/2	5.0
5	90-100	6.2	2.390	328.5	Low-carbon FA	111.0	1 1 45.0	2058.5	258.25	99	94	250	2-1/4	5.0
6	40-45	6.4	2.390	328.5	High-carbon FA	101.5	1137.0	2044.5	266.55	37	42	180	2-1/2	5.0
6	70-80	6.4	2.390	328.5	High-carbon FA	101.5	1137.0	2044.5	266.55	79	79	330	2-1/4	5.0
6	90-100	6.4	2.390	328.5	High-carbon FA	101.5	1137.0	2044.5	266.55	99	94	354	2	4.9
7	40 - 45	6.6	2.390	328.5	Calcined shale	112.5	1129.5	2030.5	274.90	37	42	150	2-1/2	4.9
7	70-80	6.6	2.390	328.5	Calcined shale	112.5	1129.5	2030.5	274.90	79	79	354	2-1/4	5.0
7	90-100	6.6	2.390	328.5	Calcined shale	112.5	1129.5	2030.5	274.90	99	94	380	2	4.9

Note: All mixtures were made with 1-1/2-in. maximum-size coarse aggregate and 36 percent of total aggregate volume as fine aggregate. Values for temperature, amount of air-entraining admixture, slump, and air content are averages of three tests.


* Based on 5 bags of cement/cu yd.

** Based on volume of 5 bags of cement/cu yd.

t FA = fly ash.

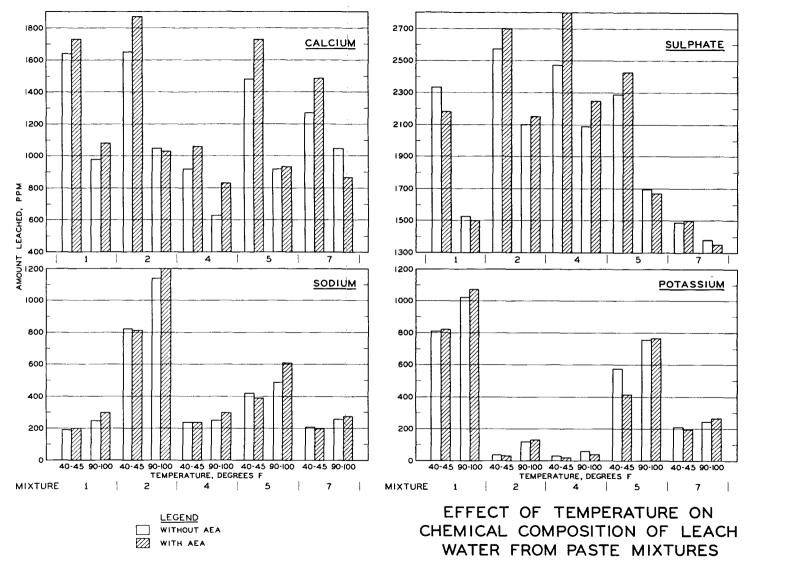

	Added	Mixtu	re l	Mixtu	ire 2	Mixtu	ure 4	Mixtu	re 5	Mixtu	re 7
	AĖA	40 F	100 F	40 F	100 F	40 F	100 F	40 F	100 F	40 F	100 F
Total grams leached	No	·117.06	143.45	174.47	159.42	139.22	129.60	131.00	152.50	120.37	127.16
	Yes	124.82	142.32	185.89	162.02	144.21	140.93	132.51	155.89	123.62	132.26
Total solids, ppm	No	7075	5710	7630	6995	5070	4130	6650	5930	5210	4910
	Yes	7055	5850	7905	7310	5545	4565	7010	5960	5620	5045
Si, ppm	No	2.6	1.3	1.9	2.6	14.7	26.2	2.8	1.5	1.8	0.7
	Yes										
Al, ppm	No Yes	0 	0 	0.5 	0 	0.04 	0 	0	0 	0 	0
Fe, ppm	No Yes	0 	0 	0 	0 	0 	1.0 	0 	0.1	0	0
Ca, ppm	No	1650	985	1650	1050	925	628	1480	93.0	1270	1050
	Yes	1740	960	1870	1030	1065	835	1740	1080	1480	870
Mg, ppm	No	0.2	0.1	0.2	0.1	102	69	0.2	0.1	0.2	0.1
	Yes	0.1	0.05	0.1	0.06	101	68	0.1	0.05	0.1	0.04
Na, ppm	No	199	257	823	1139	223	249	415	593	208	249
	Yes	197	297	816	1208	245	297	390	616	197	274
K, ppm	No	814	1026	46	116	33	46	576	754	428	520
	Yes	822	1063	37	133	33	56	422	769	357	548
so3	No	2330	1530	2570	2100	2470	2090	2290	1700	1490	1370
	Yes	2180	1510	2700	2150	2800	2250	2430	1670	1500	1350

Table 4Chemical Data for Leach Water from Paste Mixtures

9103 PLATE

DISTRIBUTION LIST FOR CONCRETE RESEARCH REPORTS

Office	No. of Copies	Remarks
OCE (ENGCW-E) OCE (ENGAS-I) OCE (ENGSA)	2 2 1	
Bd of Engrs for Rivers & Harbors Engr School Library Fort Belvoir	l l	
CERC	l	
HUNTSVILLE	1 1 1	ATTN: Mr. A. H. Bauman ATTN: Mr. John J. Kennedy, Jr. ATTN: Mr. Michael M. Dembo
LMVD	l	ATIN: Library
Memphis	1	ATTN: Tech Library
New Orleans	l l	ATTN: Foundations & Mtls Branch ATTN: Construction Division
St. Louis	l	Abstract to DE ATTN: Foundations & Mtls Branch
Vicksburg	1 1 1 1 1 1 1	ATTN: Chief, Construction Division ATTN: Chief, Design Branch ATTN: Chief, Foundations & Mtls Branch Area Engineer, Greenville Res Engr, Ouachita Resident Office, Jonesville Res Engr, DeGray Resident Office, Arkadelphia ATTN: Mr. H. L. Mullin ATTN: Mr. Jack R. Black
MRD	2 2	ATTN: Geology, Soils & Mtls Branch Laboratory
Kansas City	5	ATTN: Library
Omaha	4	ATTN: Office of Admin Serv (Library)
NED	l	ATTN: Foundations & Materials Branch

Office	No. of Copies		Remarks
NAD	1 1 1	ATTN: ATTN: ATTN:	Engineering Division Civil Works Br, Constr-Oper Division Mr. Iarrobino
Baltimore	4	DE	
New York	1 1 1 1	DE ATTN: ATTN: ATTN: ATTN:	
Norfolk	1 1	DE ATTN:	Asst Chief, Design Branch
Philadelphia	1 1	ATTN: ATTN:	Engineering Division, NAPEN-D Engineering Division, NAPEN-F
NCD	1 1	DE ATTN:	Chief, Soils & Mtls Branch
Buffalo	l	ATTN:	Chief, Engineering Division
Chicago	l l	ATTN: ATTN:	Chief, Engineering Division Chief, Operations Division
Detroit	2	ATTN:	Library
Rock Island	l	DE	
St. Paul	1 1	DE ATTN:	Chief, Design Branch
NPD	1 1 2	ATTN: ATTN: ATTN:	Geology, Soils & Mtls Branch Construction Division Division Materials Laboratory
Alaska	l l	ATTN: ATTN:	Library Foundations & Mtls Branch
Portland	2	ATTN:	Library
Seattle	1 1 1	ATTN: ATTN: Seattl	Chief, Construction Division Chief, Foundations & Mtls Branch e Resident Office
Walla Walla	3 1	DE Reside	nt Engineer, John Day Dam

Office	No. of Copies	Remarks		
ORD	1 2	DE Director, ORDL		
Huntington	l l	ATTN: Library ATTN: Mr. David Deeds		
Louisville	1	ATTN: Chief, Construction Division		
Nashville	1 1 1 1	ATTN: Chief, Design Branch, Engrg Div ATTN: Chief, Construction Division Res Engr, J. Percy Priest, Res Office Res Engr, Cordell Hull Project Res Engr, Laurel River Reservoir Project		
Pittsburgh	1 1 1 1	ATTN: Engineering Div Tech Library ATTN: Chief, Design Branch ATTN: Chief, Construction Division ATTN: Chief, District Laboratory		
POD	1	ATTN: PODVG		
Honolulu	6	ATTN: Library		
SAD	l l	ATTN: Engineering Division ATTN: SAD Laboratory		
Canaveral	l	DE		
Charleston	1.	ATTN: Chief, Engineering Division		
Jacksonville	1 1	ATTN: Chief, Engineering Division ATTN: Chief, Design Branch, Engrg Div		
Mobile	1 1 1 1 1 1	ATTN: SAMEN-F ATTN: Mr. Walter C. Knox ATTN: Mr. W. K. Smith ATTN: Mr. J. F Stewart, Jr. ATTN: Mr. Ray E. Anderson ATTN: Mr. Jack Abbott, Jr. ATTN: Mr. Richard E. Mueller		
Savannah	1 1 1 1	ATTN: Paving and Grading Section ATTN: Construction Division ATTN: Structural Section ATTN: Foundation and Materials Section		
Wilmington	1	ATTN: Chief, Engineering Division		

Office	No. of Copies		Remarks	
SPD	1 1	ATTN: SPD La	Chief, Geology, Soils & Mtls Branch boratory, Sausalito	
Los Angeles	l	ATTN:	Library	
Sacramento	l	ATTN:	Library	
San Francisco	2	ATTN:	Library	
SWD	4	ATTN: 3 abst	Library cracts	
Albuquerque	5	DE		
Fort Worth	1	ATTN:	Librarian	
Galveston	1	ATTN:	Librarian	
Little Rock	1	DE		
Tulsa	26	DE		
Corps of Engineers Personnel Abstract of report	100 80			
CRREL	1	Direct	cor	
DDC	20	ATTN:	Mr. Myer Kahn	
Chief, R&D, Hqs, DA		ATTN: 3 copi	Dir of Army Tech Info es of Form 1473	
Consultants: Mr. Byram W. Steel Mr. R. L. Blaine Professor Raymond Dr. Roy W. Carlson Dr. Bruce E. Foste	E. Davis	5		1 1 1 1
Washington, D. (Library of Congres	ublic Doc J. ss, Doc H	, U. S. xpd Pro	Govt Printing Office, Dj, Washington, D. C. Ne 294, Denver, Colo.	1 1 3 2 1

Exchange Basis: Magill University, Canada (ENG-271) 1 Dir of Road Res, Road Res Lab, Ministry of Transport, Crowthorne, Berks., England (ENG-299) 1 Swedish Cement & Conc Res Inst, Stockholm, Sweden (ENG-121) 1 National Research Council, Ottawa, Canada (ENG-17) 1 The Librarian, Ministry of Technology at Kingsgate House. London, England (ENG-46) 1 Inst of Civil Engineers, London, England (ENG-47) 1 Institution of Engineers, Australia (ENG-162) l Cement and Concrete Assoc, London, England (thru ENGTE-AS) l M. P. Dutron, Bruxelles 5, Belgium (ENG-304) 1 APPLIED MECHANICS REVIEWS, San Antonio, Tex. 2 Dept of Civil Engineering, The University of Arizona 1 Dr. Donald Sawyer, Engr Experi Sta, Auburn Univ, Ala. 1 Library, Bureau of Reclamation, Denver, Colo. 1 Engineering Library, Univ of Calif., Berkeley, Calif. 1 Central Records Lib, Dept of Water Resources, Sacramento, Calif. 1 Prof. H. R. Nara, Engrg Div, Case Inst of Tech, Cleveland, Ohio 1 Central Serial Record Dept, Cornell Univ Lib, Ithaca, N. Y. 1 Engrg & Ind Experi Sta, Univ of Florida, Gainesville, Fla. 1 Price Gilbert Memorial Lib, Georgia Inst of Tech, Atlanta, Ga. 1 Gordon McKay Library, Harvard Univ, Cambridge, Mass. 1 Gifts & Exchange Div, Univ of Ill. Library, Urbana, Ill. 1 Library, Iowa State Univ of Science & Tech, Ames, Iowa 1 Engrg Experi Sta, Kansas State Univ of Agric & Applied Science. Manhattan, Kans. 1 University Library, Univ of Kansas, Lawrence, Kans. 1 Librarian, Fritz Engineering Lab, Lehigh Univ, Bethlehem, Pa. 1 Hydrodynamics Lab, 48-209, MIT, Cambridge, Mass. 1. Mr. Robert T. Freese, Univ of Michigan, Ann Arbor, Mich. 1 Engrg & Industrial Research Station, State College, Miss. 1 College of Engrg, Univ of Missouri, Columbia, Mo. 1 Librarian, Univ of Mo., School of Mines & Metallurgy, Rolla, Mo. 1 National Sand & Gravel Assoc, Silver Spring, Md. 1 Dept of Engrg Research, N. C. State College, Raleigh, N. C. 1 New York University, ATTN: Engrg Lib, University Heights, Bronx, N. Y. 1 Dept of Civil Engrg, Technological Inst, Northwestern Univ, Evanston, Ill. 1 Gifts & Exchange, Main Library, Ohio State Univ, Columbus, Ohio l College of Engrg, Univ of Arkansas, Fayetteville, Ark. 1 Engrg Experi Station, Oregon State Univ, Corvallis, Oreg. 1 Engrg Lib, Pennsylvania State Univ, University Park, Pa. 1 Periodicals Checking Files, Purdue Univ Lib, Lafayette, Ind. 1 Engrg Library, Stanford Univ, Stanford, Calif. 1 Tennessee Valley Authority 1

Exchange Basis: (Continued) Research Editor, Texas Transportation Inst, Texas A&M Univ, College Station, Tex. 1 Office of Engrg Res, Pubs., Univ of Washington, Seattle, Wash. 1 Allbrook Hydraulic Lab, Washington State Univ, Pullman, Wash. 1 Engineering Library, Univ of Wisconsin, Madison, Wis. 1 Portland Cement Assoc, Skokie, Ill. 1 Serials Acquisitions, Univ of Iowa Libraries, Iowa City, Iowa 1 Prof. S. P. Shah, Dept of Mtls Engrg, Univ of Illinois, Chicago, Ill. 1 Abstract of Report: Commandant, USAREUR Engineer-Ordnance School, APO New York 09172 U. S. Naval Civil Engineering Laboratory, ATTN: Mr. Lorman Mr. William A. Maples, American Concrete Institute Bureau of Public Roads, ATTN: Harold Allen Highway Research Board, National Research Council National Crushed Stone Assoc, Washington, D. C. CG, Fourth U. S. Army, Fort Sam Houston, Tex., ATTN: AKAEN-OI Princeton University River & Harbor Library, Princeton, N. J. Duke University Library, Durham, N. C. Princeton University Library, Princeton, N. J. Serials Record, Pennsylvania State University, University Park, Pa. Louisiana State University Library, Baton Rouge, La. The Johns Hopkins University Library, Baltimore, Md. University of Kansas Libraries, Lawrence, Kans. Laboratorio Nacional de Engenharia Civil, Lisboa, Portugal University of Tokyo, Bunkyo-ku, Tokyo, Japan University of California Library, Berkeley, Calif. Mr. C. H. Willetts, Alabama Power Co., Box 2641, Birmingham 2, Ala. Mr. William F. Wescott, Asst Dir of Engr, Maule Ind., Inc., 5220 Biscayne Blvd, Miami, Fla. Amman and Whitney, Consulting Engineers, 76 Ninth Ave, New York, N. Y. Announcement of Availability by Technical Liaison Branch: CIVIL ENGINEERING THE MILITARY ENGINEER ENGINEERING NEWS-RECORD PIT AND QUARRY Magazine ROCK PRODUCTS Magazine

Unclassified Security Classification						
DOCUMENT CONT						
(Security classification of title, body of abstract and indexing 1. ORIGINATING ACTIVITY (Corporate author)	annotation must be		overall report is classified) ECURITY CLASSIFICATION			
U. S. Army Engineer Waterways Experiment St	ation	26. GROUP	assified			
Vicksburg, Mississippi						
3. REPORT TITLE						
EFFECT OF TEMPERATURE ON AIR-ENTRAININ	G ADMIXTURE	DEMAND				
OF CONCRETE WITH AND WITHOUT PO	ZZOLANS					
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)						
Final report						
5. AUTHOR(5) (First name, middle initial, last name)						
William O. Tynes						
6. REPORT DATE	78. TOTAL NO. C	FPAGES	75. NO. OF REFS			
July 1968	24		10			
BA. CONTRACT OR GRANT NO.	94. ORIGINATOR	S REPORT NUM	BER(\$)			
	Miscella	neous Pape	er C-68-1			
5. PROJECT NO.		-				
с.	95. OTHER REPO	RT NO(S) (Any o	other numbers that may be assigned			
	this report)		net nellovia ulet may be assigned			
d.						
10. DISTRIBUTION STATEMENT						
This document has been approved for public unlimited.	release and	sale; its	distribution is			
11. SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY ACT	IVITY			
	Office, Chief of Engineers, U. S. Army					
	Washington, D. C.					
13. ABSTRACT	<u> </u>					
Mixtures were made with portland cement, bl	ends of port	land cemen	t and pozzolan and			
pozzolan alone, at temperature ranges of 40	-45. 70-80.	and 90-100	F to determine whether			
increasing the temperature of freshly mixed	concrete re	sults in a	n increased requirement			
for air-entraining admixture in order to ma						
concrete. The results indicated that the a						
required in the mixture containing a low-ca						
little if at all by temperature; whereas, i	n all other	mixtures,	the AEA demand was			
increased with increasing temperature. The mixture containing the pozzolan, calcined s	temperature	n the temp	s considerable in the			
40-45 and 70-80 F. The data also show that	the carbon	content of	fly ash and tempera-			
ture effects are interrelated. It is belie	ved that the	effect of	carbon is primarily			
physical.						
DD 100 1473 REPLACES DD FORM 1473. I JAN 44. 1	WHICH IS		assified			

Security Classification

Unclassified

	Security Classification							
14.	KEY WORDS	LINK A ROLE WT		ROLE	кв wт	LINK C ROLE WT		
	Cement, portland							
	ConcreteAir entrainment							
	ConcreteTemperature factors							
	Concrete admixtures							
	Concrete mixtures							
	Pozzolans							
						}		
ļ								
]		
						1		
						[
1								
1								
l						.		
ļ								
ł								

Unclassified

Security Classification