MISCELLANEOUS PAPER C-77-5

AN INVESTIGATION OF CONCRETE CONDITION, WILLIAM BACON OLIVER LOCK AND SPILLWAY

by

James E. McDonald, Roy L. Campbell

Concrete Laboratory
U. S. Army Engineer Waterways Experiment Station P. O. Box 63I, Vicksburg, Miss. 39180

June 1977
Final Report
Approved For Public Release; Distribution Unlimited

Prepared for U. S. Army Engineer District, Mobile Mobile, Alabama 36628
 \title{

DEPARTMENT OF THE ARMY
 \title{ \section*{DEPARTMENT OF THE ARMY

 WATERWAYS EXPERIMENT STATION, CORPS OF ENGINEERS

 WATERWAYS EXPERIMENT STATION, CORPS OF ENGINEERS

 P. O. BOX 631

 P. O. BOX 631

 VICKSBURG. MISSISSIPPI 39180

 VICKSBURG. MISSISSIPPI 39180}

Errata Sheet

NO. 1

AN INVESTIGATION OF CONCRETE CONDITION,
WILLIAM BACON OLIVER LOCK AND SPILLWAY
Miscellaneous Paper C-77-5
June 1977

1. Replace Table 1 in Appendix F, page F7, with corrected and expanded Table 1.

(5) comparison of results with previous work on the structure.

Results indicate the concrete, despite extensive cracking in some monoliths: containing the higher-alkali cement, is of generally good quality. Although the concrete still has the potential for internal growth and expansion due to alkali-silica reaction, any increases in cracking in recent years is more likely attributed to physical deterioration, such as freezing and thawing, than to the direct effects of continued alkali-silica reaction.

In situ pulse velicity data obtained during the period 1948-1976 indicate that, of the monoliths tested, only the concrete in Monolith Nos. 16 and 20 would be classified as questionable. However, the same data indicate that the concrete in these monoliths is not experiencing progressive deteri.oration; in fact, the trend is for increased pulse velocities since tests were initiated. Similarly, a comparison between current surface cracking and monolith displacements and that present in 1948 indicates that present conditions are not significantly different from those at the time of the initial investigation.

Results of the material property tests indicate the current concrete quality to be generally good and substantially unchanged from the initial investigation in 1948. This tends to alleviate the concern regarding the effect of reduced concrete strengths on the magnitude and location of stress concentrations within gate monoliths.

Extensive repairs and/or rehabilitation of the structure do not appear necessary at present. For specific areas identified through continuing periodic inspections as requiring maintenance, removal of approximately $1-3 \mathrm{ft}$ of surface concrete and replacement with new concrete is recommended.

THE CONTENTS OF THIS REPORT ARE NOT TO BE USED FOR ADVERTISING, PUBLICATION, OR PROMOTIONAL PURPOSES. CITATION OF TRADE NAMES DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COO2SERCIAL PRODUCTS.

PREFACE

An investigation to assess the condition of the concrete in William Bacon Oliver Lock and Spillway was conducted, for the U. S. Army Engineer District, Mobile, by the Concrete Laboratory (CL), U. S. Army Engineer Waterways Experiment Station (WES). This investigation was authorized by Intra-Army Order for Reimbursable Services No. 77-013, dated 27 October 1976.

The contract was monitored by the Mobile District Office under the direction of Mr. Bobby Felder, whose cooperation is greatly appreciated. Mr. Bill Kling coordinated District support to CL: during the field work. His assistance and that of the lock personnel was outstanding.

The investigation was conducted under the direction of Messrs. B. Mather and J. M. Scanlon. Active participants in the condition survey included J. E. McDonald, R. L. Campbell, J. T. Peatross, Z. N. Ok, A. Muller, H. Thornton, and D. Glass. The petrographic examination was under the direction of Mr. A. Buck. The stress analysis was directed by Mr. Campbell, with assistance from Mr. A. M. Alexander. The report was prepared by Messrs. McDonald and Campbell.

Col J. L. Cannon, CE, was WES Commander and Director during the conduct of this investigation. Mr. F. R. Brown was Technical Director.

CONTENTS

PREFE.CE $\frac{\text { Page }}{2}$
CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENTS 4
PART I: INTRODUCTION 5
Background 5
Purpose and Scope 7
PART II: CONDITION SURVEY. 9
Concrete Cracking 9
Soniscope Investigation. 13
Material Properties 17
PARI III: STRESS ANALYSIS 93
Solution Methods 93
Finite Element Grid. 94
Input Data 95
PARI IV: DISCUSSION, CGNCLUSIONS, AND RECOMMENDATIONS 126
REFERENCES 132133
TABLES 1-5
PLATES 1-9
APPE:SDIX A: HISTORICAL DATA
APFESDIX B: BOARD OF CONSULTANTS REPORT, NOVEMBER 1947
APPEDIX C: BOARD OF CONSULTANTS REPORT, JANUARY 1948
APPERDIX D: LABORATORY INVESTIGATION OF CONCRETE DISINTEGRATION
APPEDDIX E: BOARD OF CONSULTANTS REPORT, OCTOBER 1949
APFEDIX F: PETROGRAPHIC REPORT, DECEMBER 1976
APPE: A IX G: FIELD DRILLING LOGS

CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

U. S. customary units of measurement used in this report can be converted to metric (SI) units, as follows:

Multiply	By	To Obtain
inches	2.540000 E-02	meters
feet	3.048000 E-01	meters
pounds (mass)	4.535924 E-01	kilograms
pounds (mass) per cubic foot	1.601846 E+01	kilograms per cubic meter
pounds (force) per square inch	$6.894757 \mathrm{E}+03$	pascals
kips (force) per square inch	6.894757 E+06	pascals
feet per second	3.048000 E-01	meter per second
Fahrenheit degrees	5/9	Celsius degrees or Kelvins*

[^0]
AN INVESTIGATION OF CONCRETE CONDITION,
 WILLIAM BACON OLIVER IOCK AND SPILLWAY

PART I: INTRODUCTION

Background

William Bacon Oliver Lock and Dam was constructed on the Warrior River near Tuscaloosa, Alabama, between 1937 and 1939. Historical data pertaining to the concrete placed in this structure is included in Appendix A. This record states that several years (the exact time is not known) after completion of the structure, small cracks appeared in the top surfaces and faces of the lock wall. This cracking increased progressively and by 1947 had reached such serious proportions, that it was decided a special investigation should be made to determine its cause and any action necessary to prevent further deterioration. Consequently, a Board of Consultants was appointed to study and report on the condition of the concrete and to recommend remedial measures.

The Board examined the structure in November, 1947, reviewed available data, and concluded that: (1) cracking in monoliths built with Alpha Portland cement was more advanced than in the monoliths built with Penn-Dixie Portland cement; (2) there were no indications that wormanship or inspection was responsible for the condition of the lock; and (3) additional data on the condition of the structure should be obtained by drilling cores, examining concrete specimens and materials, and by making a detailed crack survey. The complete report by the Eoard is contained in Appendix B.

A series of cores was drilled including a 36-in diameter core from Monolith No. 5, the upstream gate monolith in the land wall. The Board met again in January, 1948, examined the additional data, the cores, the 36-in core hole, and concluded that: (1) the cracking in Monolith No. 5 was not as serious as it had appeared from the surface, and (2) laboratory investigations should be conducted to determine the causes of the cracking. The complete report of the Board is included as Appendix C.

In February, 1948, the Concrete Laboratory at Waterways Experiment Station (NES) was requested by the Mobile District to conduct tests to determine the cause of cracking and disintegration of the concrete in the lock walls. Two sections of the 36 -in core, 2 ft and 5 ft in length, and a total of 91 ft of $43 / 4$-in core from three other monoliths (Nos. 3,20 , and 60) were sent to the laboratory for study. Detailed results of this investigation are given in Appendix D, and the conclusions are summarized in the following:

1. The primary cause of concrete cracking and disintegration is a deleterious chemical reaction between the alkalies in the cement and unstable silica in the aggregate.
2. The study of the concrete specimens confirmed the indications developed from examinations and physical tests of the structure that, (a) the cracking is largely confined to near-surface zones, and (b) is more pronounced in those portions of the structure in which reportedly Alpha cement was used.

The Board of Consultants met again in October, 1949, to review the field data obtained since the last board meeting, inspect the condition of cracking in the lock walls, and discuss the alkali-aggregate problem
involved in this and similar structures. On this basis the Board concluded that: (1) internal expansion and external cracking were continuing throughout the various lock-wall monoliths but at a rate generally decreasing compared to the preceding two years; (2) the cracking in Monolith No. 51 had increased appreciably since the last meeting; (3) the Concrete Laboratory report was sufficiently exhaustive to serve the purpose of this investigation, and no further study of alkali-aggregate reaction was necessary for the maintenance and operation of the lock in the future; (4) internal concrete growth would likely continue for an undetermined period; and, until it ceased, extensive repairs would appear impractical except to specific points, such as konolith No. 51 where concrete around the mooring bit had deteriorated to such an extent to make it dangerous for use; and (5) no further meetings of the Board were contemplated. The Board recommended that the concrete in the top of Monolith No. 51 be removed, and that a reinforced concrete cap block be cast on top of this monolith. The complete report by the Board is contained in Appendix E.

Purpose and Scope

The purpose of this investigation is to assess the condition of the concrete in Oliver Lock and Spillway through an engineering condition survey and stress analysis. The following is included in this study:

1. Crack survey of lock walls.
2. Soniscope investigation of lock and spillway.
3. Examination of concrete and foundation cores and tests to determine material properties.
4. Finite element stress analysis of the upper land wall gate block.
5. Report of results including comparisons with previous work on this structure.

PART II: CONDITION SURVEY

The engineering survey to assess the condition of concrete in Oliver Lock and Spillway consisted primazily of mapping significant cracking, soniscope investigation of selected monoliths, and an examination and testins of concrete and foundation cores to determine material properties. Field work associated with the condition survey was accomplished during the Fall of 1976.

Concrete Crackir:

During the course of the condition survey, a comprehensive examination of concrete cracking was made. Based on these visual and photographic records, maps of surface cracking were prepared for the lock structure, as shown in Figs. 1-10. Excluding the pipe gallery, where no delineation as to size was attempted, the following surface delineation vas used:
Designation Surface Crack Width, in.

Maximu: width $<1 / 16$
Maximas width $\geq 1 / 16$
In gencral, monoliths cast entircly with concrete containing the higher alkali cement exhibited the most severe cracking. of these, Monolith Nos. ©, 16, and 20 had the most ovensive surface cracking Figs. 11-18). :Konolith No. 5 also had extensive cracking but slightly less severe than the other three monoliths (Figs. 19-20). While the number of cracks for a given surface area was comparable for all
four monoliths, the width of the cracks in Monolith No. 20 was generally larger than in the three remaining monoliths. Restraint due to the backfill, operating machinery, gate anchorages, and size of section may have contributed to the generally smaller crack widths in the other three monoliths.

The intensity of surface cracking in the lock wall monoliths generally decreased with distance from the surface, and, for the most part, was limited to the upper 20 ft of the monoliths. Moisture and temperature conditions in these areas were probably more conducive to alkali-silica reaction. It should be noted that significant cracking was located in some instances at greater depths, particularly in the bulkhead recess, Monolith No. 16 (Fig. 13).

The upstream land wall gate monolith (No. 5) received particular attention during the condition survey because it had the most extensive surface cracking of the four gate monoliths and was built entirely with the higher-alkali cement. The current condition of surface cracking in selected areas is compared to the condition of the same areas in 1948 (Figs. 21-31). A number of the cracks located in 1948 are not evident currently; however, the major cracks appear to be slightly wider at present than they were in 1948. Also, there is surface spalling along the edges of the current cracks which was not apparent in 1948. It is suspected that most of these changes occurred during the period shortly after 1948, since the current inspection indicated almost all of the cracks have been inective for some time. While differences in camera positions, focal distances, etc., make exact comparisons of crack conditions impossible, crack patterns and widths do not appear to have changed significantly during the past 28 years.

Overall, the chanber faces of boti lock walls appear to be in relatively good condition. The river wall face, in particular, showed little evidence of deterioration. With the exception of some small areas which have experienced abrasion and gouging from tows during locking operations, the river chamber face reanins essentially unchanged with time (Eig. 32). A number of the moroliths in the land wall have a significant horizontal crack in their chamber faces, coinciding approximately with the upper pool water level (Fig. 33). This cracking is generally confined to those monoliths with thin upper sections and coincides approximately with the change in cross section of the monoliths. A number of these monoliths exhibit areas of gel leaching in their upper portions (Fig. 34).

In general, cracking was less extensive in the inspection galleries than on the monolith surfaces. Examples of this type of cracking are shown in Fig. 35. Deposits of gel resulting fron the alkali-silica reaction were evident on gallery surfaces within a number of monoliths (Fig. 36). There were only a very few instances, such as Monolith No. 13, where leaching appeared to be a current process.

A number of monoliths, particularly in the river wall, contained the higher alkali cement only in their lover portions. While the upper portions of these monoliths exhibit no significant deterioration, the lower poritions have cracked as a result of the alkali-silica reaction (Figs. 37-40). Consequently, the internal growth and cracking of this concrete has caused significant displacernents,
both horizontal and vertical, of the top stirface of some monoliths, particularly in the lower guard wall (Figs. 41-43). Relative displacements betwcen adjacent monoliths of more than 2 in. were measured, and these large displacements have contributed to joint deterioration (Fig. 44). Naximum relative displacenents between the joints of other lock-wall monoliths were approximately $1 \mathrm{in} .$, and the majority were due to internal growth of high-alkali concrete in the upper portions of these monoliths (Fig. 45). A comparison of current photographs of joint displacements with similar photographs obtained in 1948 and 1954 (Figs. 41, 42, and 45) indicates the major part of these displacements occurred relatively early in the life of the structure. Some system of periodic measurements to monitor these displacements would appear desirable.

Monolith No. 54 would also appear to merit periodic inspection. What appears to be a transverse settlement crack is located immediately upstream of the operations building. This crack crosses the top of the monolith and continues down both the lock and river faces (Fig. 46) to near the water line. In addition, there is some vertical displacement at the joint between Monolith Nos 54 and 55 on the river side. This is also evidenced in the displacement of piping at this joint within the operations building.

The equipment used in a soniscope investigation is similar to that described in Corps of Engineers test method CRD-C 51-721. The apparatus transmits pulses of ultrasonic sound through a material and measures electronically the time required for their transmission. The three principal components of the equipment are: a control unit, a transmitting transducer, and a receiving transducer.

The transmitting and receiving heads consist essentially of stacks of piezoelectric crystals mounted in a metal housing which is covered with a rubber diaphragm and filled with castor oil under slight pressure. The transmitting head transforms electrical pulses into mechanical waves to produce bursts of sound waves lasting a few hundred microseconds. These sound waves travel through the concrete and are picked up by the receiving head. Both the transmitting and receiving heads are connected to the control unit by coaxial cables. The control unit contains the electronic circuits necessary to generate the pulses, and a cathode ray tube upon which both the transmitted and received pulses are displayed. A time-measuring circuit provides for the accurate determination of the pulse transmission time. Velocities through the material can be computed by using the following formula:

$$
\text { Pulse velocity, } f p s=\frac{\text { Path length, } f t}{\text { Transrission time, sec }}
$$

Experience in ultrasonic testing indicates that the relation between velocity and quality of concrete of normal density is approximately as shown in the following tabulation. It should be noted, however, that these values are only typical, and cannot be expected to apply in all instances.
Pulse Velocity,
fps^{2}

Above 15,000
12,000-15,000
10,000-12,000
7,000-10,000
Below 7,000

Condition

Excellent

Generally good
Questionable
Generally poor
Very poor

Previous Tests
The initial soniscope tests vere conducted in June, 1948, by the Portland Cement Association. Subsequent tests have been conducted periodically by the Concrete Laboratory, WES., 3,4 Initial results indicated the pulse velocity of the concrete in Monolith No. 5 between the calyx hole and the lock chamber face (7.62-ft path length) progressively increased from 12,200 ffs at a depth of 5 ft below the top surface, to 15,110 fps at a depth of 35 ft (Plate 1). Subsequent tests, while limited to the upper 12 ft (with the exception of 1952 and 1954), gave similar results. The variation in pulse velocity, with time for the upper portion of Monolith No. 5, is shown in Fig. 47. The pulse velocity of concrete at a depth of 12 ft was essentially constant during this period, averaging approximately $14,500 \mathrm{fps}$. At the $8 \frac{1}{2}-\mathrm{ft}$ depth, the trend was for concrete pulse velocity to decrease slightly, with an average of approximately $13,700 \mathrm{fps}$. In comparison the concrete at $5-\mathrm{ft}$ depth exhibited an increase in pulse velocity from approximately 12,000 fps to more that $13,000 \mathrm{fps}$ during this period.

During the period 1948-1975, soniscope tests were conducted on five other monoliths, in addition to Monolith No. 5, with results as shown in Table l. In this group of tests, the soniscope test path was
vertical from the roof of the inspection tunnel to the top of the lock. The variation in average pulse velocity with time for each of these monoliths is shown in Fig. 48. In addition the average of the three tests on the upper portion of Monolith No. 5 is included for comparison. Pulse velocities range from approximately $11,00 \mathrm{fps}$ for Monolith No. 20 , which exhibits significant cracking, up to approximately $15,000 \mathrm{fps}$ for Monolith Nos. 21 and 60, which are essentially free of cracking in the upper portions tested. In all monoliths a line of best fit determined by least squares analysis indicates an increase in pulse velocity, hence concrete quality, with time.

Current Investigation
During the fall of 1976 , soniscope tests were conducted on several areas of the structure not previously investigated. Tests were conducted on Monolith Nos. $5,8,16,18,68$, and 72 , upper miter gate sill, and fixed-crest spillway. The nature of this investigation dictated the use of both standard and borehole transducers. Borehole transducers are essentially the same as the standard type previously described, but are waterproofed and are omni-directional. They are lowered into boreholes filled with water, and measurements are made through various elevations of a structure between the boreholes. Water in the hole acts as a couplant.

Test results are presented in plates 2-9. Of the 72 individual
results, only two pulse velocities were less than $13,000 \mathrm{fps}$, and one of these was $12,990 \mathrm{fps}$. The other result, 8850 fps , obtained in a test on Monolith No. 8 (Plate 3) is attributed to some local condition on the lock chamber face and is not considered indicative of overall concrete quality for that test path. For this test the transducer inside
the lock chamber was at a depth of 40 ft , or approximately 6 ft above lower pool elevation. This is an area of frequent gouges and surface abrasions created during normal locking operations. Since tests at depths both above and below this level gave pulse velocities in excess of $14,000 \mathrm{fps}$, this $8840-\mathrm{fps}$ test result is not considered representative of the concrete in this general area.

Test results for Monolith No. 5 (Plate 2) were essentially constant for the various depths within the 16 - to 35 -ft zone, with an overall average of $14,295 \mathrm{fps}$. It should be noted that the slight decrease in velocity with depth is attributed to the transducer drifting away from the side of the calyx hole which was not drilled exactly vertical. Excluding the one test from Monolith No. 8 previously discussed, the remaining 42 tests on the various lockwall monoliths gave pulse velocities ranging from 13,360 to $15,210 \mathrm{fps}$, with an average of 14,575 fps.. Results of tests on the upper miter sill appear even better, ranging from 14,00 to $15,895 \mathrm{fps}$, with an average of $15,060 \mathrm{fps}$. Similarly, test results for the fixed-crest spillway ranged from 12,990 to $15,635 \mathrm{fps}$, averaging $14,510 \mathrm{fps}$.

With the exception of Monolith Nos. 16 and 20, both of which exhibit significant cracking, soniscope tests indicate concrete pulse velocities generally in excess of $13,000 \mathrm{fps}$. By comparison pulse velocities in the range of 12,000 to $15,000 \mathrm{fps}$ indicate generally goodquality concrete. Data obtained during the period 1948-1975 indicate the concrete in Monolith Nos. 16 and 20 would be classified as questionable. However, it should be noted that the same data indicate the concrete in these moncliths is not experiencing progressive deterioration; in fact, the trend is for increased pulse velocities since tests were initiated in
the early 1950's.

Material Properties

Two shipments of concrete and foundation cores were furnished WES by the Mobile District. The first shipment consisted of concrete and foundation core from Monolith No. 5 and concrete core fron Monolith No. 16. Complete laboratory logs of those cores are included in Appendix F. The second shipment of cores consisted of concrete core from Monolith Nos. 8, 16, 18, 68, and 72. In addition, concrete and foundation core from Monolith No. 100 of the fixed-crest spillway was included in this shipnent. The foundation portion of core from the spillway was logged in the laboratory, with results included in Appendix F. Field logs of all cores are included in Appendix G. Based on an examination of all logs, portions of the core were selected for testing to determine compressive strength, modulus of elasticity, Poisson's ratio, ultrasonic pulse velocity, and potential for alkali-aggregate reaction. Also, triaxial tests and petrographic examinations were conducted.

Concrete Core Tests

Fifteen 4- by 8 -in. specimens from the first shipment of core were tested to determine unconfined conpressive strength, modulus of elasticity, and Poisson's ratio, with results as shown in Table 2. The ultrasonic pulse velocity of each specimen was determined prior to wounting four surface strain gages, two each lateral and longitudinal, for destructive testing. Results of tests on 28 similar specimens from the second shipment of core and 3 additional specimens from the
first shipment to determine pulse velocity and unconfined compressive strength are shown in Table 3.

The ultrasonic pulse velocity of the concrete generally increased with increased compressive strength (Figs. 49 and 50). For a given strength, the pulse velocity was generally lower for the second series of tests. The time between drilling and testing was longer for the second series and, although the cores were either waxed or wrapped in plastic bags, small losses in moisture content would result in lower pulse velocities.

Compressive strengths of specimens from Monolith No. 5 ranged from 3970 to 6530 psi, with an overall average of 5300 psi. Two specimens from this monolith were tested in 1948, with one 4.75-in. core from a depth of 19.0-23.0 ft having a compressive strength and modulus of elasticity of 5140 psi and $4.52 \times 10^{6} \mathrm{psi}$, respectively. In comparison, the average of four current tests on core fron $15.5-$ to 24.5-ft defth indicates essentially the sane compressive strength, 5180 psi, and a somewhat lower modulus of elasticity, 3.38×10^{6} psi. The other specimen previously tested was a 6-in. diameier core drilled from the lower section of the $36-i n$, core which indicated a compressive strength and modulus of elasticity of 5200 psi and $2.68 \div 10^{6} \mathrm{psi}$, respectively. The average modulus of elasticity from the two previous tests, $3.60 \times 10^{6} \mathrm{psi}$, is essentially the same as that determined in the current tests.

Although there were significant varietions between individual test results, a least squares curve of best fit (Fig. 51) indjcates that
the compressive strength of concrete in konolith 10.5 increases vith depth. A similar trend is observed for both modulus of elasticity (Fig. 52), and ultrasonic pulse velocity (Fig, 53), when the results of all strength tests on concrete containing the higior-alkali cement are examined, it appears that compressive strength incricases with depth down to approximately 20 ft , after which the strength lovel is relatively stable (Fig. 54). In comparison, results of tests on concrete containing the lower-alkali cement incicate no systematic variction in compressive strength with changes in ciepth (Fig. 55). The cor, vessive strength of this concrete ranged from 4960 to 9150 psi, with ail overall average of 6630 psi for the 18 specinens tested. Excluding \because ife two test results greater than 9000 psi , the remaining results rangei from approximately 5000 to 7500 psi, with an average of 6320 psi . In comparison, results of tests on the 25 specimens containing the higher-alkali cement ranged from 2580 to 6760 psi, with an overall average of 5070 psi. The differences in pulse velocity for the two concretes were not so pronounced; however, the higher-alkali concrete did seem to be more affected by increased depth (Figs. 56 and 57).

Stress-strain relations for the two concrete specimens tested under triaxial concitions are presented in Fig. 50 . The modulus of elasticity and Poisson's ratic for each specimen ves calculated as shown in Table 4. The confined rodulus of elasticity wes somewhat higher tian that determined in unconfined tests on comparable specimens.

Exclueing the in situ test at 5-ft deptir, the current uitrasonic pulse velocities for concrete core from Monolith lo. 5 are essentially the same as those determined in situ in 1948 (Fig. 59). The in situ velocity at 5 -ft depth has varied considerably over the years (flate 1). In the two most recent teste, velocities ranged fron 12,155 fips in 1965 , to $13,535 f_{p s}$ in 1975 . The latter result is morc consistent with core tests.

Foundation Core Tests

Upon arrival in the laboratory, foundation core from Monolith : 10 . 5 was examined and logged as shown in Apperdix F. Based on this examination, four zones were selected for testing to determine material properties for input to the stress analysis as follows:

Zone	Approx. Defth, ft	
D	$63.1-68.5$	Description Black shale with siltstone
F	$68.5-73.7$	Siltstone with tan clay, shale
G	$73.7-79.9$	Black shale with small amounts of tan clay and siltstone stringers
	$79.9-91.4$	Black shale vith coal stringers

The material descriptions are based on the core log; however the petrographic report states the siltstone is more properly called sandstone.

Eight 4; by 8-in specimens, two from each zone, were tested to determine unconfined compressive strength, modulus of elasticity, and Poisson's ratio, with results as shown in Table 5. In addition two specimens were tested under triaxial conditions. Stress-strain relations for these two tests are shown in Fig. 60. The modulus of elasticity and Poisson's ratio was calculated for each specimen as shown in Table 4.

Petrographic Examination

Samples of both concrete and foundation were taken for petrogiaphic examination. Evidence of alkali-silica reaction and the potential for additional expansion were of perticular interest during concrete core examination. The complete petrographic report is included in Appencix F.

Results and conclusions are summarized in the following:

1. The full lengths of concrete core from both monoliths (hos. 5 and 16) examined show evidence of alkali-silica reaction. Evidence of this reaction decreases with depth, and the major effects of the reaction appear to be concentrated in the upper few feet of each core.
2. Length-changes of concrete specimens from both monoliths stored at 100 percent RH and $100^{\circ} \mathrm{F}$ show that the concrete still has expensive potential. In general, these length-changes increased with time and with depth.

Figure 2. Surface cracking, land wall, and lower end

Figure 3. Surface cracking, river wall, and upper end

Figure 8. Surface cracking, pipe gallery, river wall, and lower end

∞
$\ddot{\sim}$
$\dot{\sim}$
$\dot{\sim}$
$\dot{+}$
$\dot{~}$
$\dot{\sim}$
corver crack

Figure 9. Surface cracking, machinery recesses, and land and river walls

Figure 10. Surface cracking, bulkhead recesses, and land and river walls

Fig. 11 Expansive force sufficient to warp metal grate.

a. 1948

b. 1976

Fig. 12 Cracking, Monolith No. 16.

Fig. 13 Cracking in upstream face of bulkhead recess, Monolith No. 16 .

Fig 14 Top Surface, Monolith No. 20, 1948.

a. 1954

b. 1976

Fig 15 Top Surface, Monolith No. 20.

Figi6 Cracking in Monolith No. 20 as seen from gallery looking upstream.

Fig 17 Cracking in Monolith No. 20 as seen from gallery looking downstream.

a. River face, Monolith Nos. 19 and 20

b. Land face, Monolith No. 20

Fig. 18 Lower guide wall deterioration.

Fig. 19 Cracking in upper gate block,
land wall (Monolith No. 5).

51

Fig. 20 Cracking in upstream face at bulkhead recess, Monolith No. 5.

a. 1948

b. 1976

Fig. ${ }^{22}$ Top surface, Monolith No. 5.

a. 1948

b. 1976

Fig. 23 Top surface, Monolith No. 5.

a. 1948

b. 1976

Fig. 24 Top surface, Monolith No. 5.

a. 1948

b. 1976

Fig. 25 Top surface, Monolith No. 5.

a. 1948

b. 1976

Fig. 26 Top surface, Monolith No. 5.

a. 1948

b. 1976

Fig. 27 Top surface, Monolith No. 5.

a. 1948

b. 1976

Fig. 28 Top surface, Monolith No. 5.

a. 1948

b. 1976

Fig. 29 Top surface, Monolith No. 5.

a. 1948

b. 1976

Fig. 30 Top surface, Monolith No. 5.

62

b. 1976

Fig. 31 Top surface, Monolith No. 5.

a. 1948

b. 1976

Fig. 32 Monolith No. 60, lock chamber face.

Fig. 33 Land wall, lock chamber face.

Fig. 34 General condition of lock chamber faces.

66

Fig. 36 Examples of cracking
in inspection galleries.

,Fig. 36 Typical deposits of gel resulting from chemical reaction.

a. Overall

Fig. 37 River wall, river face.

b. Joint between Monolith Nos. 65 and 66

a. 1948

b. 1976

Fig. 38 Monolith No. 60, river face.

a. Monolith No. 65

b. Monolith No. 74

Fig. 39 River wall and lower guard wall, river face.

a. 1948

b. 1976

Fig. 40 Nosing, lower guard wall, Monolith No. 74.

Fig. 41 Vertical displacement between Monolith Nos. 73 (foreground) and 74.

a. 1948

b. 1976

Fig. 42 Longitudinal displacement between Monolith Nos. 73 (left) and 74.

Fig. 43 Gallery displacements, lower guard wall.

a. Overall

b. Closeup

Fig. 44 Deterioration of joint between Monolith Nos. 73 and 74.

a. 1954

b。 1976
Fig 45 Displacement Between Monolith Nos. $19 \& 20$.

Fig. 46 Cracking in river face of Monolith
No. 54 immediately upstream of operations building.

Figure 47. Concrete pulse velocity, monolith No. 5.

Figure 48. Pulse velocity tests. 1948-1975

Figure 49. Relationship between pulse velocity and compressive strength - Series 1 tests.

Figure 50. Relationship between pulse velocity and compressive strength for various monoliths - Series 2 tests.

Figure 51. Variation in compressive strength with depth.

Figure 52. Relationship between modulus of elasticity and depth.

Figure 53. Relationship between pulse velocity and depth.

Figure 54. Variation in compressive strength with depth for various monoliths containing the higher alkali cement.

Figure 55. Variation in compressive strength with depth for various monoliths containing the lower alkali cement.

Figure 56. Variation in pulse velocity with depth for various monoliths containing the higher alkali cement.

Figure 57. Varlat ion in pulse volocity wieh depth for various monoliths containlng the lower alkali cement.

Figure 58. Triaxial test results, concretc cores, monolith No. 5.

Figure 59. Comparison of tests on cores and in-situ tests, Monolith No. 5.

Figure 60. Triaxial test results, foundation cores, monolith No. 5.

Reduced concrete strengths resulting from alkali-silica reactions initiated concern regarding magnitude and location of stress concentrations within certain lock wall monoliths. In the evaluation of the lock, gate monoliths were singled out because of their importance in the operation of the lock and because of the magnitude of their applied loads. The upstream land wall gate monolith was of particular concern because it had the most extensive surface cracking of the four gate monoliths and was built entirely with the higher alkali cement. Consequently, the upstream land wall gate monolith was determined to be the most critical monolith in the lock. As such, it was selected as the subject of a stress analysis investigation to determine the magnitude and location of stress concentrations and to evaluate these results with respect to current design criteria.

Solution Methods

A. 2-1 plain strain and a 3-D solid element stress analysis were considered as potential solution methods. The 2-D analysis offered:
a. Reasonable computer cost.
b. Graphical presentation of output.
c. Orthotropic material properties as input.

This type of analysis, however, is restricted to the $x-y$ plane and does not allow the distribution of stresses in the Z direction due to point loads in the $x-y$ plane. Consequently, a $2-D$ analysis of the
gate monolith containing point loads would, at best, yield questionable results.

The 3-D solid element stress analysis would model a structure that had point loads and other changes along the z axis, such as variation in loadings and geometry. The disadvantages of the $3-\mathrm{D}$ analysis were:
a. Higher computer cost due to increase in problea size.
b. No graphical presentation of output.
c. Isotropic material properties as input.

When the two potential solution methods were compared, it was determined thet the monolith could best be modeled by a $3-D$ analysis because of the following conditions in loadings and geometry of the structure: a. Foint loading:

1. Pintle (gate weight and free-hanging gate forces)
2. Top of recess (gate thrust)
3. Gate anchors (free-hanging gate forces).
b. Variable soil loadings.
c. Variable geometry:
4. Gate and bulkhead recesses
5. Varying pipe gallery location.

Finite Element Grid

Monolith geometry and loading are shown in figures 61 through 65. A finite element $3-\mathrm{D}$ grid was constructed to model the structure and 30 ft of foundation below the structure. The grid contained 2746 nodes and 2061 elements and is shown in figures 66 through 76. A
finer grid was used around cutouts to improve the accuracy of the output for these potentially criticel areas of stress. A wiethor height-to-length ratio of 1.0 to 7.36 was used for minimum elenent size.

Input Mta

The structure was divided ints three zones to reflect the decrease in concrete strength with tie increase in elevation. These zones and their material properties were as follows:

Zone \quad\begin{tabular}{c}
Modulus

Elasticity

Elevation

\quad

Poisson's

Ratio
\end{tabular}

A
129.6-140.0 ft
2.34
0.144

B
111.0-129.6 ft
3.38
0.158

C
77.8-111.0 ft
4.20
0.204

The foundation was classified into fror material zones as previously discussed in the description of foundition core tests. Material properties for these zones are shown in Table 5.

Three load cases were used in the analysis, as follows:

Load Case

1
2.

3

Normal
Operation

Norma 1

Maintenance

Description
Uper pool water level upstream arc downstrcam of gate

Upier pool water level upstrean of gate and lower pool downstream o: gate

Leck chamber dewatered

Gate loads and $u_{r^{\prime}}$ lift pressures werc different for each case (figures 62 through 65). The hydrostatic pressores in the intake culvert were at a constant upper pool head $\because \because$ all cases.

Based on the results from a previous subsurface investigation by the Mobile District ${ }^{5}$, the following properties were used to calculate backfill pressures:

$$
\begin{aligned}
\text { Moist Unit Weight } & =128.8 \mathrm{lbs} / \mathrm{cu} \mathrm{ft} \\
\text { Submerged Unit Weight } & =67.7 \mathrm{lbs} / \mathrm{cu} \mathrm{ft} \\
\emptyset \text { Angle } & =30.0^{\circ}
\end{aligned}
$$

Average Water Table Elevation= 125.0 ft The at-rest carth coefficient, K_{0}, for the backfill was calculated using the following equation from reference 6:

$$
K_{0}=1-\sin \phi=0.5
$$

As dictated by the Structural Analysis Program 4 input, pressure loadings on negat elements faces were applied as element pressures and on positive faces as nodal loads. As a result there were some 1600 nodal loads used as input. Gate loads were applied as point loads, as follows:

Load Case
1

2

3

Free-hanging weight minus buoyancy: weight applied at pintlc and moment forces applied at pintle and gate anchors

Thrust loads: whest applied at pintle and the portion of the thrust load not taken by the sill applied at the top of the monolith

Free-hanging weight: weight applied at pintle and moment forces applicd at pintle and gate anchors

Uplift vas applied simultaneously to the structure and the foundation through interface foundation elements. For the first computer run, these elements were used to make the interface between the structure and the foundetion continucus. This allowed unrealistic tension to develop
between the structure and the foundation. To correct this a second run was to be made deleting interface elements that transferred such tension. Also, the pressures due to headloss in these element areas were to be replaced, with full hydrostatic pressures and uplift recalculated.

A data check run showed this problem to be the largest stress analysis problem ever attempted on the WES G-635 computer. The global stiffness matrix consisted of 7412 equations with a bandwidth of 812. During the first solution attempt, storage was exceeded while writing to the scratch disc pack (four million-word capacity) that solved the global stiffness matrix. It was later determined that the matrix solution was approximately one-third complete and would require a multireel tape file having a twelve million word-storage capacity to complete. The total solution time was estimated to be in excess of ten hours.

At this point in time, the WES G-635 system did not have a $3-D$ bandwidth-minimizer program available. The minimization was attempted manually, with the results being less then optimum. Therefore, the efficiency of the $\operatorname{SAP} 4$ program was reduced. A new version of SAP (SAP 5) was added later to the system, that does have a 3-D bandwidth minimizer. As part of the check on the new code it was possible to use the 3-D bandwidth-minimizer capability on the oliver stress analysis problem with results as follows:

	Before	After
Bandwidth	812	717
Global matrix size, words	$12,989,710$	$17,680,480$

The solution time with a minimized grid was estimated to be 11 hours on the WES G-635 computer. Since the structure and foundation were linked together at common node points, a second solution run would be required to eliminate tension between the two. The computer cost for the two runs required was estimated at $\$ 3300$ (22 hr x \$150/hr). Since there was some concern about the capability of generating a file of sufficient size to accommodate the golbal matrix, a sample run was made in which a file was successfully created containing $10,752,000$ words storage.

It was decided in discussions with District personnel that time and funding constraints would not allow completion of the stress analysis at this time. Therefore, work on the analysis was terminated, and all data was stored on cards and filed at this office for possible future use with the SAP 5 program.

Figure 61. Plan View, Monolith No. 5.

Figure 62. Load Diagrams, Load Cases 1-3, Section A-A, Monolith No. 5.

Figure 63. Load Diagrams, Load Cases 1-3, Sections B-B and C-C, Monolith No. 5.

Figure 64. Load Diagrams, Load Cases 1-3, Section D-D, Mono1ith No. 5.

$$
\begin{array}{ll}
\text { LOAD CASES } & \text { LOAD CASE } \\
1 \text { AND } 3 \text { ONLY } & 2 \text { ONLY }
\end{array}
$$

Figure 65. Gate Loads "Load Cases 1-3, Section E-E, Monolith No. 5.

Figure 66. Finite element grid, monolith 5

Figure 67. Finite element grid, section view of gate recess, monolith 5

Figure 68. Finite element grid, top layer of elements with hidden lines shown, monolith 5

Figure 69. Finite element grid, top layer of elements without hidden lines shown, monolith 5

Figure 70. Finite element grid, zone A, concrete, monolith 5

Figure 71 . Finite element grid zone B concrete monolith 5

Figure 72. Finite element grid, zone C (concrete) and zone D

Figure 73. Finite element grid, interface elements, zone D, foundation, monolith 5

Figure 74. Finite element grid, interface elements, zone E, foundation, monolith 5

Figure 75. Finite element grid, zone F, foundation, monolith 5

Figure 76. Finite element grid, zone G, foundation, monolith 5

PART IV: DLACUSSION, CONCLUSICNS, AND RECOMFENDATIONS

Although the exact time is not known, sometime after completion of the stricture in 1939 small cracks appeared in the top surfaces and faces of the lock walls. This cracking increased progressively and by 1947 had reached such serious proportions that a special investigation was made to determine its cause. Results of this investigation ircicated the primary cause of cracking and disintegration was alkali-silica reaction. The internal expansion and external crackine resulting from this reaction appear to have continued at a greatiy diminished rate during the ensuing years.

The petrografiic examination of concrete core from Nonolith No. 5 shows evidence cf alkali-silica reaction the full depth of this monolith. Similir results were obtained on concrete from Monolith No. 16, which was drilled to a depth of approximately 25 ft. In both cases the evicence of alkali-silica reaction decreases with depth, and the major effects of the reaction appear to be concentrated in the upper few feet of each core.

Length-change data for concrete from Monolith No. 5 stored at 100 percent RH and 100 F show an increase with time and depth. Similar results were obtained for concrete from Monolith No. 16 , to a mínor degree. Hovever, all of the data indicate encugh expansion to show that the poterial for expansion due to alkali-silica reaction is still present in the concrete under these conditions of high moisture and temperatre. Similar data for cores stored at high
moisture conditions and temperatures of approximately 70 F would provide an interesting comparison, since they would more nearly simulate possible field conditions.

A first impression of the current concrete cracking is not unlike that of Prof. R. W. Carlson, who observed in 1948, ${ }^{7}$ "... lock wall is so badly cracked that the natural impression would be that it is about to collapse." However, as Prof. Carlson later st,ated, "p.. pulse velocity tests tell a different story, and probably the true one." These results indicated practically sound concrete for most of the wall, with serious internal disintegration only near the top, and Prof. Carlson concluded that most of the cracking was confined to the surface and that the interior was sound. Subsequent soniscope tests continued to indicate generally good-quality concrete. In situ pulise velocity data obtained during the period 1948-1976 indicated that, of the monoliths tested only the concrete in Monolith Nos. 16 and 20 would be classified as questionable. However, it should be noted that the same data indicate the concrete in these monoliths is not experiencing progressive deterioration; in fact, the trend is for increased pulse velocities since tests were initiated.

The intensity of surface cracking in the lock wall monoliths generally decreases with distance from the surface, and, for the most part, is limited to the upper 20 ft of the monoliths. A comparison between surrent surface cracking and relative displacements of adjacent monoliths and that present in 1948 indicates that crack patterns and widths and morolith displacements have, in general, not undergone any drastic changes since the initial investigation.

Results of tests to determine material properties correlate generally with previous tests and other phases of the current condition survey. Of the 46 concrete specimens tested, only three compressive strengths less than 3800 psi were obtained. The ultrasonic pulse velocity of the concrete cores generally increased with increased compressive strengti, and all results wor? in the minje (12,000-15,000 fps) of generally good concrete, or better. The compressive strengti and pulse velocity of the higher-alkali concrete generally incroased with depth, the compressive strength increasing with depth to approximately 20 ft , then stabilizing.

While it is regretted that time and funding constraints prevented pursuing the stress analysis to a final conclusion, results of the other phases of the investigation tend to minimize this concern. In particular, the results of material property tests indicating the current concrete quality to be generally good and substantially unchanged from the initial investigation in 1948 tends to alleviate the concern regarding the effect of reduced concrete strengths on the magnitude and location of stress concentrations within the monolith.

Based on the results of this investigation and comparison with previous work on this structure, it appears that the concrete, despite extensive cracking in some monoliths, is of generally good quality. In those areas of obvious distress, it appears that the condition of the concrete has stabilized over the years, even though the concrete still has the potential for expansion due to alkali-silica reaction. It is believed that any increases in cracking in recent years is more likely attributed to physical deterioration, particularly freezing and thawing,
than to the direct effects of continued alkali-silica reaction. Extensive repairs and/or rehabilitation of the existing 460-ft lock chamber do not appear necessary at the present. Specific points identified through continuing systematic inspections as requiring maintenance would be exceptions. In such cases a procedure similar to that previously employed to repair a portion of Monolith No. 51 is recommended (Fig. 77). This procedure involves removing approximately 1-3 ft of surface concrete, depending on the extent of deterioration, and replacing it with a new reinforced concrete cap block. After 20 years the repair to Monolith No. 51 exhibits only two small cracks, despite significant cracking in the unrepaired portion of the monolith (Fig. 78). The difficulty involved in arresting a propagating crack should be recognized; and the fact that the repair has a minimum of cracking may be further evidence of chemical reaction stabilization as much as 20 years ago.

a. Before

b. After (20 yra, later)

Fig. 77. Repair of Monolith No. 51.

Fig. 78. Portions of Monolith No. 51 repair after approximately 20 years.

REFERECCES

1. US Army Engineer Waterways Experiment Station, CE, "Handbook for Concrete and Ciment," Aug 1949 (with quarterly supplements), Vicksburs, MS.
2. Roshore, E. C., "Field Soniscope Tests of Concrete; 1953 Tests," Technical Menorandum No. 6-333, Report 1, Apr 1954, US Army Engineer Waterways Experiment Station, CE.
3. Roshore, E. C., "Field Soniscope Tests of Concrete; 1953-1957 Tests," Technical Memorandum No. 6-303, Report 2, Mor 1958, US Army Enjineer Waterways Experiment Station, CE, Vicksburg, MS.
4. Thornton, H. T., Jr., "Field Soniscope Tests of Concrete; Ten-Year Sumar, of Results," Technical Memorandun No. 6-333, Report 3, Mar 1967, US Army Engineer Waterways Experiment Station, CE, Vicksburg, MS
5. Lamar, J. H., "Oliver Lock and Dani - Subsurface Investigation," Mar 1971, US Army Engineer District, Mobile, CE, Mobile, AL.
6. , , "Retaining Walls," Engineer Manual No. 1110-2-2502, November 1975, Office, Chief of Engineers, Washington, DC.
7. Carlson, R. W., "Wave Velocity Apparatus and Its Place in NonDestructive Testing of Concrete in Place," Memorandum for office, Chief of Engineers, November 1948.

SONISCOPE TESTS

ROOF OF INSPECTION TUNNELS TO TOP OF LOCK

Monolith	Station	```Path```	Puisc Velocity, fps							
No.	No.	ft	1953	1954	1955	1957	1959	1963	1969	1975
15	(27)*	7.85	--	--	13,285	13,820	13,920	14,375	13,870	14,405
16	(35)		+-	--	12,020	12,095	12,135	12,210	12,150	12,745
	(42)		r-	--	12,020	12,115	12,190	12,500	12,460	12,850
\downarrow	(52)	\downarrow	-	--	12,115	12,220	12,150	12,210	12,060	12,440
20	30-10V	4.42	**	**	9,910	9,405	11,135	6,770 ${ }^{+}$	8,420	10,550
	$30-3 \mathrm{~V}$		10,160	10,400	9,865	11,220	11,570	10,575	11,510	12,885
	30-1.5V		10,885	10,890	10,475	11,725	12,555	12,450	10,730	12,850
	30 V		10,860	10,835	10,400	11,600	11,880	11,725	11,600	12,775
	$30+1.5 \mathrm{~V}$		11,335	11,515	10,995	12,520	12,555	12,520	11,420	12,850
21	5		14,880	14,850	14,305	14,635	14,445	14,585	14,540	14,985
V	10	V	15,085	15,155	14,635	14,735	14,585	14,830	14,585	15,035
60	31 H	7.97	15,125	15,035	14,895	14,870	14,730	14,850	***	15,300
	32 H		14,570	14,545	14,360	14,260	14,310	14,595	***	14,870
	3311		14, 335	15,010	14,870	14, 760	14,730	14,815	***	15,210

[^1]TABLE 2

OLIVER LOCK AND DAM

CONCRETE CORE TESTS

$\begin{aligned} & \text { Monolith } \\ & \text { No. } \\ & \hline \end{aligned}$	Spec. No.	Approx. Depth, ft	Pulse Velocity, fps	Unconfined Compressive Strength, psi	Modulus of Elasticity,* psi $\times 100^{*}$	Poisson's Ratio
5	1-A	1.0	13,812	4120	2.10	. 122
	2-A	5.5	13,914	5670	2.50	. 159
	3-A	7.0	14,347	5530	2.45	. 173
	4-A	8.5	13,770	3970	2.31	. 122
			13,960	4820	2.34	. 144
5	1-B	16.5	14,391	4230	2.86	. 128
	2-B	18.5	14,622	5380	3.74	. 153
	3-B	21.5	15,136	5540	3.46	. 181
	4-B	24.5	14,755	5550	3.47	. 169
			14,726	5130	3.38	. 153
5	1-C	42.5	14,711	4670	2.99	. 167
	2-C	43.5	15,136	5930	4.98	. 218
	3-C	46.5	15,418	6580	4.70	. 250
	4-C	47.0	$\frac{15,441}{15,176}$	6450	4.13	. 179
			15,176	5910	4.20	. 204
16	1-H	7.5	14,733	4980	2.77	. 278
	$2-\mathrm{H}$	8.5	14,170	3860	2.03	. 163
	$3-\mathrm{H}$	11.0	13,408	$\underline{2610}$	1.37	. 342
			$\overline{14,104}$	3820	$\overline{2.06}$. 261

* Sccant modulus of elasticity determined at 50% of ultimate stress.

Table 3
Concrete Core Tests

$\begin{aligned} & \text { Monolith } \\ & \text { No. } \\ & \hline \end{aligned}$	Spec. Ko.	Approx. Depth, ft	Pulse Velocity, fps	$\begin{gathered} \text { Unconfined } \\ \text { Compressive } \\ \text { Strength, psi } \end{gathered}$
\downarrow	8-A	5.2	13,316	2580
	8-B	6.3	12,820	2670
	8-C	15.2	12,657	4080
	8-D	16.2	12,900	3880
16	16-J	16.9	14,062	6760
	16-K	17.9	14,062	5950
	16-I	19.0	13,690	4240
18	18-A	6.2	13,975	5990
	18-B	10.8	14,492	6320
	18-C	15.5	14,273	5140
	$18-\mathrm{D}$	19.7	13,975	5650
	18-E	23.0	13,833	6310
	18-F	25.5	14,062	5780
\checkmark	18-G	27.1	13,854	6380
68	68-A		13,945	6110
	68-B	11.0	13,916	6030
	68-C	16.9	14,583	9050
$\begin{array}{r} 72 \\ t \end{array}$	72-A	4.0	13,860	6340
	72-B	5.0	14,945	6620
	$72-\mathrm{C}$	17.2	13,500	7450
100	S-A	5.4	14,149	9150
(Spillway)\downarrow	S-B	12.6	13,860	7210
	S-C	16.9	13,981	5860
	S-D	25.5	12,000 14,527	5850 7150
	S-E	32.4 38.2	14,527 15,345	7410
	S-G	44.9	14,583	7030
	$\mathrm{S}-\mathrm{H}$	51.6	14,147	4960
	S-I	56.6	13,833	5990
	S-J	59.6	14,062	5840
	S-K	61.3	13,854	6380

Table 4
Triaxial Tests
Concrete and Foundation Cores

| Mono.
 No. | Specimen
 No. | Approx.
 Depth, ft | Min Prin
 Stress, σ_{3} | Max Prin
 Stress, σ_{1}
 psi | Modulus of
 Elasticity,
 psi X 106 |
| :---: | :---: | :---: | :---: | :---: | :---: | | Poisson's |
| :---: |

Table 5
Oliver L\&D Foundation Core Tests

Mono. No.	Spec. No.	Approx. Depth, ft	Unconfined Compressive Strength, psi	$\begin{gathered} \text { Modulus of } \\ \text { Elasticity, }{ }_{2}^{*} \text { psi } \times 10^{6} \\ \hline \end{gathered}$	$\begin{gathered} \text { Poisson's } \\ \text { Ratio } \\ \hline \end{gathered}$
5	2-D	63.1-68.5	5120	1.49	0.064
	3-D		4430	1.09	0.254
			4780	1.29	0.159
5	1-E	68.5-73.7	4400	1.68	0.233
	2-E		11920	2.68	0.128
			8160	2.18	0.180
5	1-F	73.7-79.9	4790	1.15	0.293
	2-F		5230	1.16	0.289
			5010	$\overline{1.16}$	0.291
5	1-G	79,9-91.4	4160	0.86	0.296
	2-G		3760	0.66	0.311
			3960	0.76	0.304

*Secant modulus of elasticity determined at 50% of ultimate stress.

(
PlaN

$20-25$
$20-30$
$20-35$
$20-40$
$20-45$

ELEvation

8.75
7.93
8.75
11.25
7.33
9.29
12.70
16.92
$=1.48$
$=6,20$

Pulse $\underline{\text { Velocity, for }}$
13,360
13,625
14,000
14,330
14.465
14.920

14, 505
15,000
14.920
$14,8 \% 0$
14,600
14.590

2,340
14,435

$$
\begin{gathered}
1976 \\
\text { SONI:GCFE } \\
\text { TEET RESOLTS } \\
\text { MONOLITH NO. } 8
\end{gathered}
$$

PLAN

Elevatran

1976
Sonsseupa
TEST RESUTS
MONOLエTH ND: 3
)

Pulse

18
$18-20$
$18-22$
$18-23$
$18-24$
$18-25$
22.00

14,865
22.09
22.36
22.56

14,775
-

LOCK CHAMBER
22.86 Faded out 14.900

$$
\begin{gathered}
1976 \\
\text { SUNISCOPE } \\
\text { TEST RESULTS } \\
\text { MONOLITH NO } 68
\end{gathered}
$$

)

PLAN
)

APPENDIX A

HISTORICAL DATA

Extorical Data Ferieining to conerete Piaced in the Fuserioosa 1.00 E end Dem

General

1. Fine Tuscaloosa Lock and Dem is located on the Farrior River at Tuscaloose, Alabane, and wes conctructed by the Hardaway Contracting Comeny of Columbus, Georgia, under Goverment Contract Fo. Ww555-ang. 1503, dated 2 December 1530. The placing of ooncrete mas oomencai 11 october 1937 end complatea 15 Septamber 1935.

Cemert

2. Ail cembat was furaished by the contractor, approximately 90,000 barrels being sacured from the Alphs Portiand Cament company, end the balence, approzinataly 120,000 barrels, Irom the Penn-Dirie Cenent Compeny. All teste of the cerect wore mede by the Pittaburgh Iestine Laboratory, Eirminghon, Elabam under a contract with tho conetruction contractor.
3. The Coverment contract for the construction of thic lock and den recuired that the cement "conform to Federal Specifioations sS-C-181, for 'Cowant: Portlond', Oct. 14, 1930, With the following exooptione:
"Comound Composition: It anall contain not more then 55 perocnt Tri-Csicinim-Silicate compound (3GeO. SiO2) nor more tinan e pereent pri-Celcium-
 cecordance with the mothod outlined by R. E. Bogue in Paper Ko. 21, Portlend Coment Acsociation Fellowship, on Calculation of the Compomas in Portland Coment."
4. Ficsts were made in the bins at the mill and a complete test mes arde of each 2, 000 barrels of cement. Reportt of all tasts made were furaiched the Governent and a certificate wes alss furnizhod for wil oars of oement delivered for uso in the look and dams giving the number of the bin from which taken and the leboratory text numbers and detes. AII cement used complied fully with the epecifications. Ho Eigh Early Strongth Comont was used.
5. The cement vas delivered to the site of tho work in baik. on arrivel at the aite the coment was dischorgec from the eare into a hopper from vinch it wes conveged by acrer comveyor to a belt conveyor which traneported it to a gteel silo of 1,000 berrel capacity joceted et the fixore, from viacia it passed orer batching scales to the nivers.
6. The first car of hiphe oonent res reocirec at the bite 7 ootooer 1087 end the last cas 7 Earch 1933. The first car of Fenn-Dinie Ceaent mar peceired 7 lierci 1958 end aith the emoeption of the cement remining in the cilo and tro cars of Alpha coment containing a totel of 673.7 barrels receirec on 7 Lerch 15SS, Penn-jixic cement wes used in ali concrete plecec after tilit dato.
7. A1Fha comet mas usea in the following monoliths:

Fenn-Dixie comsnt mas used in all other monoliths or portions of naculiths.

Finc ent corrse Agbregato

B. The fine and coarse aggregates used consisted of ratural cand and gravel and wac sacured from the montgomary Gravel Compay, kontgancy, Alabanin. Fo edmixture was used.
E. Practically all of this agbregeto tas taken from a pit lazatad anprozimetely 9 miles wast of kontgomery. For a short period it vas zocoasery to securo some of the harcer sizes of the coarse ageregrte from wictior git in the ame vicinity, Fith a Lew cars of tivis larger ageregate bellg secured Eron Selma, slabema.
10. The priminy pit oonsistea of an ertificial lake noar the oest bank of the Aiabern Rirer. Ail of the sand mas socured from this pit. "he matorial mes taken from the pit by hydraulic drecie without cutterhead and wis dischercect onto Fibrating screens located on the bank. The screening plant could be acijusted to produce a very wids renge of sines and tho meterials, beva sund end
 screen. Cocrse ageregate wre loaded into the railroad cars in tric rangea in sizes, gravel ranging in size from No. 4 sieve to $1 / 2$ maximum size ($3 / 4$ inch) being losded into separste cars fran gravel over $5 / 4$ inch to maximin 5 iso (i-1/2 inch). On arrivel at the site of the foris. the coarse nexyceate wise dumed from the bottom dum cars into two batching bine, one bin for each rence in tize. From thene bins it passed orer batehing seoles to a belt conveycr vinch transported it to the bateh hoppors at tho mixera. Hisue wes no
 into tro betching bins em pasced from these cins to the batohing nopers at: the minors in the seme msmer ani on the same belt conveyor as tio erevel.
12. To àtermine riether the pit wae satisfactory as a sourse for the
 Llabam, to cramino the yit end to mele tects of the materiele, buver all tests of tho eseregste doifverci for use in the work were made by tie Southere
 56S-en5. I675, cated 9 September 15c7. Sicto anolyses of each ciy of acerocinto were made by Goverman: emplayees.
 the month of Sertember 1937 centario purpotes woré mede is for a show perioc tho eiere quixtes for kom
 gates mere aniysed and acos gos at the git mith the miteriai beinic epot cheoked at the site.
13. Conciccerible diff: inty was enooutered in producing sand with the required quantity of fines, id some differances were foud in the analyass at tho pit ane the spot cher anelyses at the 6ite. This was thoroughiy investifetad and resulted in the anslyses for aceptenoe purases befng egain made at the site. bettor aci- ments mero made in the soreene to produee the

 pit and spot chacibad et the ainte.
14. Ali chemiesl and prosical tezt reports made by the Southarn Testing Laboratories an agereceto ílicatod anil comifance mith the epeciriontione with tio very rare exceptio: st oceseionel repori shoming piate II or Flata I-II for orgenie tatier in $2-5$ send.

Mising water

 of the oity cf fuscolcosa. .as wher for ouch butoh of concrete was weighea: on sociac, for that gurpose, "ooated at the wixers. The quantity of wier adisd at the nixer was the fontity roguireci for the rafr lesa the quantity of water in ths agergezto.

Comerets

16. Leter mucrous miven mere decigned the miz adopted for ciase E
 to $5 / 4$ incin, and 2562 lbs, rravel over $3 / 4$ inch to $1-1 / 2$ jnel, for a 2 oubie yard batch. Fhie mix was uced from the begiming of the concrote worle to 23 November 1937. At twie inse the batch wes changec from 2 cubie yurde to 2.2 cubic yardis, one consicith of 951 lbs. cenenty 2500 lbs. estif, 1990 Ibs. gravel ro: 4 to $3 / 4$ snch, $5: 00$ Ind. gravel over $3 / 4$ fnch to $1-1 / 2$ inch, rhici was cortinued until 5 Januer i956. At this time a earies of emerimente ware
 concrete malls. Thess expen nents conevated princincily of incrousing the

 util 18 way lese. ifter tas date ell of the Glese E concreta rexini-m to

 to 1-I/2 ino: sor a 2 cubic … betch, nith slicht variations in tice coarse efrrogeto for contril purtul.
17. Verw litule class a conerete was required. dil comeassion teats

 cless A conerete yoguired by the comtracti.
18. Tht concrate ves mixed in tro 2 cubio yeri rixers of tio tilting tree mad was trangortod to the wonolithe by coblemey, coblemy and whirler derricin, and by belt convevor ent tram track to whirier derrick rifich pleoed
 cepactity o: 3 cubic juris.
19. Riter the oonerete mee cumped from the bucisets it was vibrated with anproved Tibratere to racuce the yile to the 24 inch moximun thichess of layer cequired by the comtract and to socure thorough comaction. The vibratine wis euplozeatad by hand epeding adjacent to the forms.
20. Thom conerate wes pleoce with the omblent tonerature lees then 35 degrecs F . the contructor mes rochired to heat the matorinls to produce a temprature of the concreie, wher, giaped, of not lese thm 50 cegrees F.
21. The depthe of the concreto lifte viried from four feet to apprefimitely einht feot mith the depth betreen ifre end ecmen feet predomanting. shore was no lirit for the tine interval betwoen the pourine of lifts end in a number of casas lifte mere poured on auoesaite deys.
22. All comerete was kept wet during the 14 day curing period recuired by the occtract by corering ritt. vater and aprinkilut by mans of perforated Expe.

Kiscelleneout

25. There Fero no indicativae at any time that tinc quality of the concrete es to stremeth enc durebility mac not adequeto. she coly cuestion arising reindive to the adecuecy of tie mix was in connection mith the faces of the wail wich cortained mmerou small air pits and an ocoanional small area of honeycosb. In an offort to ciminate the air pits varloun chenges wero msdo in the concrete mi= consistine principally in incressing the eement conteni and chargea his the ratio of lerge course acrrecate to encill coarge abgregato.

 anc action mecessery to provent finther deterioration.

$$
\text { Eminajlo } 3 a^{2} \text { 年 }
$$

25. "ho followize rocorce rilative to the concrets placed th the Tuece.

Test repcrts on cememt by the Plttsburgh Postiag Liborevory,

Fest roports curing and coarso equregatas by the southorm restor ing Laboretories, Eirminghan, LIabume.

Sieve enciysas of fine ana course aggregate, by Gorermant persennel and the Pittsturch qesting haboratory.

Fabulated recorí of cars of coment rocéted Eiting dxito rocairoci,
 of cerset.

Trubulatec record of bah dey's pour of comereto girine deto, mono-

Goncrete progress chart shoriag the nuber of each monelith end the date os whiol nach concrete lifft mis poureci.
26. Fhare are atheched hereto prints of typioal shouta of tite tabulatod rescris and chari lieted in ting above paragrain.

Propered 17 Rovember 294?
by F. F. Gatitn, Princijai Entineer
 CEIERTESETE TEE TUSCALOEA LOKK AND DA:

Average

$$
\text { Anhasi } \quad \text { Femn-Dixie }
$$

APPENDIX B
BOARD OF CONSULTANTS REPORT
NOVEMBER 1947

SUEJOM: Investigation of Disintegration of the Concrete in Tuscaloosa Lock and Dem

FROM: Bocric of Consultants

Corps of Engineers
mobile District

1. In accordance with previous arrangements the undersigned essenilcd at Tuscaloosa on the morning of $2 \pm$ november end inspected the operating gallery and all parts of the lock walls readily visible by drawing down the water in the lock. It mes not possible to make En inspection of the dam, since water res flowing over the crest but the source was advised that when the crest on the dan was unvatered a short tire ago there mas no visible cracking on the crest or the cicinstrean slope of the ogee.
2. After a close inspection of the various monoliths in the lock rimes and a brevier of the data presented for use et this comEerenoe, it was evident that the crackine in monoliths built with Alone Fcritenc cement from Birmingham is in a rows acrenced stage thin in the monoliths built with Fenn-jiaie Forilund cement. This statement holds recardess of the position of the cement in the monoliths in so far as surface indiceticus are concerned. Until cores have bets drill ed from some of the monoliths effected by the cracking it will not be possible to determine wether there is any difference between the tiro congrats relative to depth or extent oi cracking in the interior.
3. There are no indications on the structure or in the data fumishec the the workmanship or inspection was in wy way responsible for theprisent condition of the lock. $=11$ concrete surfaces, whether horizontal or vertical, five evidence of well placed low slump concrete.
4. as a basis for determining the extent of repairs to the. lock wills the should be undertaken at this time oi in the near future, the following points were agreed upon after a thorough discussion of the various features involved in possible repair work:
a. Lap all cracks in Blocks $\leq, 5,6,20,51,54,55$ and 60 by either pantorraphic methods or by potogrenhic methods, marking all cracks with chalk in surfaces to be pho:oraneg so that the cracks will be rec.aily visible.
b. Locate the center of all ow lock-çte pintels by intersection ?ron readily accessible pomenent moments so es to be able ± 0 measure ell future movements ave to tomeceture changes in the con-

place in the lock-gate blocks. All wurvenid done in conoction with pintel intorsection location should be ecconclished setwen daylifht and sun-up so as to aroid errors due to temporature veristion ater sun-up. Torperature records and weathor condition should also eccompary this work.
c. Itake a crack width measurement survey of the top of the lock wills by photogrophic methods usive a tripod to support the camera at a fixed dictence above the top of the lock malls. A steol scale should be pleced across the crack on the center line of the camere. the location of the center line of the camers for all such piotures should be suittioly marked so thet at any future time cuplicate photoceans can be token and the veriation in the crack width be determined by compricon. This sumey shorlu be accompanied by suiteble messurements of the ovorall widh of locl: ralls so that in the future a repetition of these mesurerents under similer temperature conditions will cive oreasorable estincto of overali expensive crowth of the concrete durira the intervenies period.
d. Drill two $6^{\prime \prime}$ dimond drill holis in both vertical faces of Block : I .60 in the crecked orea constructod tith inphe cerent. The depth of each hole shoula be sufíicient to obtinin at least three uncracled cores, each $16^{\prime \prime}$ in length.
e. Drill a $6^{\text {n }}$ diamond drill hole at location selected for the initial $36^{\prime \prime}$ calys hole in Gate Elock 5 anti iollow the drillirg of this $6^{\prime \prime}$ core with the drilling $0:$ the $36^{\prime \prime}$ core to El. $99 \frac{1}{1}$. The pieces or the $36^{\prime \prime}$ core should be assembled in sequence adjecent to tho lock mill. A complete photoertphic record oi the entire surface of the $36^{\prime \prime}$ calyx hole showld be ootainod and suitable prints made and transmitted to the members of the bourd as soon as practicaiole and pricr to the next board meeting if possible. Crachs in the hole should be owlined with chell and orientation of gete block injoatod so that crackirs can be eveluted rele.tive to possiole cffect on stubility of gate block. IT the cracking in Dlock 5 is as decp soajed as appeers fron the surface, it is proposed to recomend thet this block be reinforced, the desiçn of any necessary reiniorcinf to be determined after a coreful encineoring study of the plans by wich this mis constuacted and the ioromation provided by an juspection or the $36^{\prime \prime}$ core hole, ane further discussion of this periovicor block et, the next Sonrd neeting.
I. Careful consicaration ma given to the zoscibilita of
 rei: wetcr into the oracked ereas. Sinoe a setistectory mothod of Whtorrooine did not appor proticcl to all to resous on the cosud, itws decided to postwone wry reommenitions relatire to waturprofing until the Jomum meoting of the Dowa.

h. It is recommended thet tho Conoreto nosenuch Jivisicn or the hatemays zeperimont atytion uo authorized to mite such studies of cerent, sond, ereal ant cowerete apecirens fron this lock as is necessary to detamine the owuce ou the cracking and disEnterration of tre concrete \vdots it the lock wils. It is also reccmandod that a few $6^{\prime \prime}$ cores be drilled in the ogee orst of the dan to deterrine whether there is any evidence of the same type of cracloirg in the crost thint is tuking place in the look wells. Due to more or less constant temperature, crachino in the crest may de in evidence under the microscope but not sufficiently acranced to be recognized by the naked eyo.
i. In Elock 51 cut the eye beums free from contact with the loose block of concrete at tie lostream corner and tie this loose block back into sclic concrete with reiniorcement bars suitably embedded in the block and into the solid concrete.
j. It is recommended that an extensive crack survey of all blocks in the lock, except as rotec heroin, should be posiponed for further consideration durim the second meeting of the Eosird in Jenuary. f.t this time it is proposed to give coreful considere.tion to ε complete survey of 811 bluchs ene $\varepsilon 11$ crects. $3 y$ thet tine, or shortly thereanter, minirum termerature and maximum opening of the cracks for the winter socson will je in efecet.
5. The conerence dejcurnca at 3:00 3.0 on 25 Movember with the understanding thet the second mectine would be colled by ir. Catinn as soon es the $36^{\prime \prime}$ col-2 hole in Elocle 5 ws approcimtely completed. The tentative deto for this mecting was suegested for the reek of 12 jenvary 1948.
6. The Eoard of Consvitants was ascisted in the isspection and in the discussions by ir . Iran L. Frler, Portland Cement ascociation, Vhicego, IIInois in. C. C. Olsen, Fortland Cerent Lssociation, Chicago, Illinois
Lir. Clifitord, Reed, Jr., South ittlantic Division Lr. Ervant iather, Concrete Research Division, Vaterweys Experirent Siation

$$
\begin{aligned}
& \text { (SIGID) E. K. COUK } \\
& \text { F.F.C.OLIT } \\
& \text { J. C. EPASCE } \\
& \text { E. I. SmeLe Charmon }
\end{aligned}
$$

APPENDIX C
BOARD OF CONSULTANTS REPORT
JANUARY 1948

SUBJECT: Investigation of Disintegration of the Concrete Walle in Tuscaloosa Lock and Dam

FROL: Board of Consultants
70: The District Engineer Corps of Engine ers MOBIIE, ALABALIA

1. The undersigned in accordance with the agreement made curing the meeting at Tuscaloosa in November, assembled for a second meeting on the morning of 13 January and spent the following two days in inspecting the results of core drilling operations and in discussing further investigations end the necessity for repair work.
2. After a careful inspection of the $36^{\prime \prime}$ calyx core and the calyx hole, there does not appear to be any necessity for immediate repairs to monolitin $\frac{1}{2} 5$, wich is the upstrean lock gate monolith on the land sice of the lock and is the gate monolith that is the most effected by surface cracking.
3. Although the cracking in monolith $\# 5$ is not as serious as it appeared from surface indications before the 361 hole was drilled, it is believed that the internal gronth in the concrete will continue and that the cracking will be progressive. Hence a thorough eyetem of checks on gate pintile center line movements in any direction should be developed and periodic measurements made by the Tusceloosa Operations Forces.
4. It is believal that with the completion of the $6^{\prime \prime}$ hole in monolith 3, the cores now zvaileble are eufficient for the investigations to be conducted at Clinton and at Mariamont Laboratories.
5. In view of the probabie continued erowth of cancrete and development of cracks it is believed that the District should evaluate briefly the cracking on oll monoliths as of today for use in comparison of crack development in later years.
6. In view of the non-appearance of any type of cracking in the $36{ }^{11}$ hole or of any incilcation that structural cracks might develop because of the 36 h hole, it is believed that it rould be desirable to leeve this calyx hole open for future observation and that it should be euitably covered with a door that can be readily opened for inspection at anytime.
7. Further consideration was given to the possibility of water-proofing the top of the lock walls. iffer a thorough discussion it was concluded

Intr to DE HOD fm OL $3 t d 18$ Near 48, sub: "Investigation of Disintegration of the Concrete Falls in Tuscal Dose Lock and Dam" (Contd)
that any such attempt would serve no useful purpose and won lo prevent the opportunity of future observation of crack development.
6. In addition to the monoliths mentioned in the Board's report dated December 15, it has been decided to add Monoliths 1,12 and the lower portion of 74 to the monoliths selected for detailed photographs. The structural cracks, as well as the pattern cracking in monolith \#l ane of particular interest and may be worth watching and measuring if concrete growth during the coming warm weather is as accelerated in the sumer season as it appeared to be during the sumer of 1947 .
9. After a thorough discussion of a system of recording monolith conditins of cracking, it was decided to leave this detail to Kr. Getlin to work out at the site.
10. Due to the importance of the work load at Clinton, the studies to be made by the CRD will not take priority over any pending investigation on mich contract work depends and hence a report by clinton on the laboratory studies of the Tuscaloosa cores will probably not be issued for several months.
11. It is the understanding of the Board that the CRD mill make a report to the Board after its studies are completed and that the Board will submit a report to the District Engineer relative to the causes of the cracking soretime later this year, preferably after the effect of hot weather and moisture during the coring summer season are in evidence.
12. The following were present part of the time during the inspection and discussion:

Hr": Iran L. Tyler, Portland Cement Association Chicago, Illinois

Mr. C. C. Olsen, Portland Cement Association Chicago, Illinois

F. F. GATLIM
J. C. SPRAGs
B. Ti. STERIE, Chairmen

APPENDIX D
IABORATORY INVESTIGATION OF CONCRETE DISINTEGRATION AUGUST 1949

Disintegration of Concrete from

Tuscaloosa Lock and Dam

1. Correspondence from the Division Engineer, South Atlantic Division, dated 27 October 1947, subjects: "Tuscaloosa Lock and Dan" stated that the concrete in the lockwalls of the Tuscaloosa Lock and Dam had been inspected and that portions of it had been found to be in an advanced stage of disintegration. This letter also announced the decision to appoint a Board to study and report on the condition of the concrete and to recommend remedial measures.
2. Correspondence from the District Engineer, Nobile District, dated 17 November 1947, forwarded copies of "Eistorical Data", "Cement Data", "Combined Concrete Record", and"Concrete Progress Chart." These data record that the Tuscaloosa Lock and Dam was constructed between 11 October 1937 and 15 September 1939; that the cement used consisted of $90,000 \mathrm{bbl}$. from the Alpha Portland Cement Co. and 120,000 bbl. from the Penn-Dixie Cement Co.; that the cement was required to conform to Federal Specifications SS-C-191 except that it should contain not more than 55 per cent tricalcium silicate and not more than 8 per cent tricalcium aliminate; that the aotual calculated tricalcium aluminate content ranged from 7.42 to 6.33 per centand averaged 6.39 for the Alpha Cement, ranged from 6.96 to 6.50 and averaged 6.70 for the Penn-Dixie Cement; that the mixing water came from the Tuscaloosa city water supply; and the aggregates consisted principally of natural sand and gravel fron the hontomery Gravel Co. pit located approxia mately 9 miles west of Lontgonery, Ala. on the east bank of the Alabama River. It is understood that the Penn-Dixie Cement was manufactured at

Richard City, Temessee, and the Alpha Cement at Birminghan, Alabama.
3. The meeting of the Board held at Tuscaloosa, Ala. on 24-25 November 1947 developed the following points as recorded in its report dated 15 December 1947ょ
a. Cracking is more advanced in monoliths built with Alpha cement than in those built with Penn-Dixie.
b. Cores should be drilled from the ε tructure.
c. A crack survey should be made.
4. The meeting of the Board on 13-15 January 1948 developed the following poirts as recorded in its report dated 18 March 1948s:
a. The cracking in Monolith \#5 is not as serious as it appeared from surface indications but it is believed that the internal growth of the concrete will continue and that the cracking will be progressive.
b. The studies to be conducted by the Concrete Research Division of the Waterways Experiment Station should not take priority over pending investigations for other projects.
5. Correspondence from the District Engineer, Mobile District, dated 12 February 1948, subject: "Investigation of Disintegration of the Concrete in Tuscaloosa Lock and $\operatorname{Dam}^{7 i}$ requested that this office conduct tests to determine the cause of the cracking and disintegration of the concrete in the lock walls.
6. In accordance with arrangements made between the Office, Chief of Engineers and the Portland Cement Association tests were conducted on 16-19 June 1948 using the wave velocity apparatus owned by the Association to determine the velocity characteristics of the concrete in monolith 5 . In accordance with a request from the Portland Cement Association this office
determined values for shear modulus of selected cores to provide data to be used in calculations based on wave velocity. The results of these tests are given in a later section of this report.
7. In accordance with the request contained in the correspondence referred to in par. 5 above, this office undertook a program of investigation involving petrographic and other studies of the concrete specimens taken from the lock wall and shipped to this laboratory in accordance with correspondence from the Resident Engineer, Tuscaloosa, Ala., dated 4 February 1948. The results of the petrographic study are set forth in sumary and are detailed on the attached LDN form 557 and inclosures thereto. The results of the other studies are given below.
8. Strength and Elastic Properties. Samples of $43 / 4$-ins: idiameter cores extracted from various monoliths of Tuscaloosa Lock and Dam were received 4 February 1948. Monoliths represented are 3, 5, 20, and 60. All cores except those from Monolith 60 were drilled vertically; those from Monolith 60 were drilled horizontally. Core lengths varied from about 6 to 40 in. All cores contained the same aggregates, and all except those from Konolith 3 from depths less than 10 ft contained the same cement. ill sections of $43 / 4-i n$. core of lengths greater than 10 in. were tested for dymamic modulus of elasticity, in an as-receivedcondition. This was done by averaging the lengths determined at several points of the end surfaces for each core, determining the resonant fundamental flexural frequencies, and computing the moduli. Following this, six representative cores vere taken, and the ends sawed plane on a diamond cut-off wheel. Fundamental rlexural and torsional frequencies were determined on these cores. Noduli of elasticity and rigidity, and Foisson's ratio were calculated from these readings.

The moduli of elasticity determined on the cores in the asreceived condition are given in Table l. This table gives also the average lengths, weights, and flexural frequencies of these cores.

Table 2 shows the moduli of elasticity and rigidity, lengths, weights, and fundamental flexural and torsional frequencies, for the six selected cores. The trable also gives Poisson's ratio for these cores.

The results given in Tables 1 and 2 are the best that have been
obtained. The flexural frequencies and moduli of elasticity are believed to be fairly accurate in most oases but due to the averaging of leagths on all cores, and the existence of cracking (visually determined) in several, the moduli of elasticity should be considered merely indicative of the state of the concrete, and not exact. In addition internal cracking is quite probable in several of the cores tested, which would lead to less precise readings of flexural frequencies.

Compressive strength and modulus of elasticity (static) were determined on nine sections of core. These data are given in Table 3.
9. Weve Velocity: The wave velocity tests referred to in paragraph 6 above provided additional data on the strength and elastic properties of the concrete. These tests were conducted with an apparatus consisting essentially of a pulse repetition oscillator, a transmitter, a timing wave circuit connected to an oscilloscope, and suitable amplifiers. Data were developed from these tests from which values for Young's modulus were calculated. The nost interesting results were obtained from tests on monolith 5 at various depths from 5 ft to 35 ft in the 36 -in. diameter calyr core hole. A progressive increase in velocity from $12,200 \mathrm{ft} / \mathrm{sec}$ at the $5-\mathrm{ft}$ depth to $15,110 \mathrm{ft} / \mathrm{sec}$ at the $35-\mathrm{f} t$ depth was found. The
velocities correspond to values of Young's modulus of from approximately 3.7 to approximately 5.8×10^{6}. The individual values are tabulated below:

> Data on Lonolith 5, Tuscaloosa Lock and Dam

Depth feet	Velocity	$\begin{aligned} & \text { Young's yodulus } \\ & \times 10^{-6} \mathrm{psi} \end{aligned}$	
		(a)	(b)
5.0	12,200	3.9	3.5
8.5	13,890	5.3	4.7
12.0	14,390	5.8	5.2
16.0	14,610	6.0	5.3
20.0	14,890	6.1	5.4
25.0	14,910	5.8	5.2
29.0	14,810	6.1	5.4
33.0	14,930	6.2	5.5
35.0	15,110	6.2	5.5
(a) Computed as a massive structure (b) Computed as a slab			

All the data developed from these tests are given in Table 4.
10. These data are discussed by Prof. R. W. Carlson in a memorandum entitled "Wave Velocity Apparatus and its Place in Non-Destructive Testing of Concrete in Place", dated 17 November 1948 prepared for the Office, Chief of Engineers, as follows:
"The Tuscaloosa Lock Wall is so badly cracked that the natural impression would be that it is about to collapse. But the wave velocity tests tell a different story and probably the true one. The wave velocity was found to vary from $15,110 \mathrm{ft}$ per second at a depth of 35 feet below the top, to 12,200 at a depth of 5 feet. The change was systematic and gradual, except near the top where the change was more rapid. These results indicate practically sound concrete for most of the wall, with serious internal disintegration only near the top. The conclusion is that most of the cracking is confined to the surface and that the interior is
sound. The systematic variations in wave velocity indicate that much more could have been learned had earlier measurements been made for reference. Small differences in wave velocity can be measured reliably."
11. Volume Changes Three 6-in. diameter cores were drilled in the Concrete Research Division laboratory from the top of the 36-in. calyx section from hole $5-2$ (Monolith 5). These cores were fitted with inserts to permit measurements of length change, soaked in water, and stored at 100 F , over or immersed in water. Measurements to an exposure period of 1 year indicate a progressive expansion for a relatively short period of time followed by equilibrium as shown below:

Laximum Expansion, at one year per cent	Length of Exposure to reach maximum, days
+0.08	11 days
+0.06	80 days
+0.06	80 days

12. Aggregate: Pertinent data on the aggregate present in the concreth are given in the attached petrographic report. The information contained therein may be compared with that given in the petrographic report forwarded by this office to the South Atlantic Division Laboratory with correspondence dated 1 June 1948, subject: "Reports of Tests on Aggregates, Tennessee Tombigbee Project", covering a sample of gravel from the Roquemore Gravel Co., Wontgomery, Ala. This semple was examined in the sizes from 1 in, to Ho. 4 and had more than 50 per cent quartz in all sizes smaller than 1 in. and 46 per cent quartz in the fraction retained on 1 in. Chert was present as follows: 39 per cent on 1 in., 31 per cent on $3 / 4$ in., 35 per cent on $1 / 2$ in., 22 per cent on $3 / 6$ in., and 36 per cent on No. 4. The remainder
of the sample consists of quartzite, sandstone, and granite. Chalcedony was found in one or two of the chert particles; most of the particles which were powdered and examined were found to contain no material with an index of refraction lower than that of quartz. Physical tests on sand and gravel samples from the Roguemore deposit are sumarized below:

Bulk specific gravity, saturated surface dry: sand $=2.65$, gravel $=2.62$

Absorption, per cent: sand $=0.4$, gravel $=0.7$
Percentage of particles lighter than 2.40 after 5 hr boiling: gravel $=2.1$

Loss after 5 cycles of magnesium sulfate soundness test, per cent: sand $=4.7$, gravel $=4.0$

Linear coefficient of thermal expansion of sand mortar $x 10^{6}$ per $\operatorname{deg} F=7.4$

Durability factor of concrete after 300 cycles of accelerated freezing and thawing $=46$
13. Chemical Data: Results of the quick chemical test for reactivity of aggregates sampled from the concrete are given in the attached petrom graphic report. Information supplied from the Geological Survey of hlabama by Stewart J. Lloyd, Assistant State Geologist, states that an analysis of a sample of water from the Warrior River above Tuscaloosa, Alabama, showed a sulfate content of 10 parts per million of the SO_{4} radical. This is not regarded as an excessive amount since it is reported that the city water supply of Birmingham, Ala . on analysis in 1932 showed 61 ppm of SO_{4}.

Two samples of the gel reaction product from the Tusculoosa lock wall concrete were subjected to chemical analysis. Sample lio. 1 consisted of naterial scraped from the wall of the 36-in. core hole in kionolith 5 on 16-19 June 1948. Sample no. 2 was collected from pockets in 53/4n.
cores from holes 20-1 and 60-1 after the concrete had dried in laboratory air. The results of these anelyses are as follows:

	Per Cent	
	Sample 110. 1	Sample $\text { 50. } 2$
Moisture loss at, 105 C	34.6	9.81
Composition calculated on dry weight:		
SiO_{2}	49.82	61.73
CaO	21.11	12.28
$42_{2} \mathrm{O}_{3}$	1.15	2.17
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	0.81	0.47
SO_{3}	0.16	0.00
Insoluble	5.58	8.1
Ignition loss	-	14.84
Calculated calcium sulfoaluminate	0.47	0.0

14. Conclusions: It is concluded that the disintegration and cracking has been caused, at least primarily, by deleterious chemical reaction between the alkalies in the cement and unstable silica in the aggregate. A study of aggregate particles from the concrete has revealed that approximatcly 70 per cent of the chert pebbles consist, at least in part, of the material bnown as "chalcedony", which containe opal. Chalcedony is known to be one of the materials which is capable of participating in a deleterious chemical reaction in concrete. The study of the aggregate has not revealed the presence of any other constituent which is regarded as capable of participating in such a reaction.

The study of the concrete specimens has confimed the indications developed from the examination of the structure and the physicel tests of the concrete both on specimens and in the structure, that the cracking is largely confined to near surface zones and is more pronounced in those portions of the structure in which it is reported that hlpha cement was used. Although specific data on the alkali contents of the cements used in this project are not evailable, it is regarded as probable that the A pha cement contained a larger percentage of alkalies than did the Fenn-Eixie. The microscope examination of the concrete specimens reveals, however, that gel, which is the characteristic product of the chemical reaction, is present in all of the concrete specimens exemined without regard to tho brand of cement used or the depth in the structure.

The concrete is characterized not only by the preserce of the gel referred to above, but also by the presence of deposits of crystals of calcium sulfoaluminate. Calcium sulfokluminate is the nomal product of the reaction of the Eypsum which is interground with the cement for the purpose of controlling time of setand the calcium aluminate in the cement. In normal, nom-deteriorated concrete the calcive sulfoaluminate is widely distributed in the cement paste and does not appear as deposits of crystals. Concrete which has suffered detericration from any cause whatsoever frequently exhibits crystalling deposits of this material. Unless it can be shown that additional sulfate has been provided from an external source for further reaction with the aluminete portion of the cenent, such deposits do not indicate that the concrete containing them has undergone any deterioration due to sulfate attack. In the case of the Tuscaloosa concrete, since the available informetion does not indicate en additional source of
sulfate, and since the evidence of deterioration due to alkali-chalcedony reaction is thoroughly established, it is not regarded as likely that there was a significant sulfete-attack factor involved in this occurrence.

TABLE I

DYNALIC LODULUS OF ELASTICITY OF COINCFETE CORES

TUSCALOOSA LCCK AMD DAK

Speciren	Depth	Modulue of Elasticity \qquad $\mathrm{E} \times 10^{-6} \mathrm{psi}$
3-1	0.0	6.40
3-1	3.0-4.2	6.09
3-1	8.2	6.31
3-1	11.8	6.08
Average		6.15
5-1	0.0-1.5	2.40
5-1	6.0-7.5	1.51
5-1	7.5-9.0	4.33
501	9.0-10.0	4.15
5-1	12.5-13.5	5.90
5-1	18.9-23.8 Sect 1	5.71
$5-2$	18.0-23.8 Sect 2	5.26
5-1	23.8-28.8 Sect 1	6.50
5-1	23.8-28.8 Sect 2	5.65
5-1	28.8-33.5 Sect 1	5.31
5-1	28.8-33.5 Sect 2	5.56
5-1	33.5-39.6 Sect 1	6.03
5-1	33.5-39.6 Sect 2	5.28
5-1	$33.5-39.6$ Sect 3	6.26
Average		4.99
20.1	3.7-6.9	3.34
Average		3.34
60-1	0.0-4.8 Sect 1	2.59
60-1	0.0-4.8 Sect 2	3.26
60.1	4.8-10.2 Sect 1	3.85
60-1	$4.8-10.2 \operatorname{Sect} 3$	3.74
Average		3.36
60-2	0.0-4.8 Sect 1	2.00
60-2	0.0-4.8 Sect 2	3.30
CO-2	4.8-10.2 Sect 1	3.26
60-2	4.8-1C.2 Sect 2 (Fart 1)	4.34
60-2	4.8-10.2 Sect 2 (Part 2)	4.45
Average		3.47

$\xrightarrow{\text { ThBIS } 1 \text { (Concluded) }}$

TABLE 2

DETERIILATION OF FOISSONTS RATIO OF CCRES FROA TUSCALOOSA LOCK \& DAK

Eonom lith	$\begin{aligned} & \text { Section } \\ & \text { and } \end{aligned}$	Depth	Length	Meight	Fundame Frequenci Flexural	$\begin{aligned} & \text { ntal } \\ & \text { es cps } \end{aligned}$	$\begin{aligned} & \text { Kodu } \\ & 10^{-6} \end{aligned}$	$\begin{array}{r} 11 x \\ \text { psi } \\ \hline \end{array}$	Poisson'in
$3^{(1)}$	3-1	14.8	14	21.6	2790	3050	5.8	1.6	0.775
5	$\begin{aligned} & 5-1 \\ & \text { (Upper) } \end{aligned}$	13.5-18.9	131 $\frac{1}{4}$	20.1	2510	3100	3.8	1.5	0.275
5(2)	5-1 (liddle)	13.5-18.9	$10 \frac{7}{8}$	16.8	3450	4150	3.8	1.8	0.600
20	$\begin{aligned} & 20-1 \\ & (\text { Lever }) \end{aligned}$	6.9-9.4	10ㅈㄹ	16.5	3450	3750	3.6	1.4	0.249
60	$\begin{aligned} & 60-1 \\ & \text { (Inner) } \end{aligned}$	4.8-10.2	13 $\frac{1}{4}$	20.2	2320	2900	3.3	1.3	0.244
60	$\begin{aligned} & 60-4 \\ & (0 \text { uter }) \end{aligned}$	4.8-8.2	14	21.2	2310	3030	3.8	1.6	0.233

(1) Ccre \#3 - Poisson's ratio is high. Torsional frequency is high, and True Torsional maxinum may be masked by flexural maximum.
(2) Core \#5-1 (Kiddie) - Torsional frequency is high. This section believed to have internal cracking.

TETEE 3
 Compressive Strength and Static Rodulus
 TUSCELOOSS LOCK AMD DALA

Core Tests (4.75" Diameter Cores)

Core No.	Hole Mo.	Depth Ft.	Compr. Str. pei	Mod. Elast. pei
Con-1 (1)	3-1	11.8-13.7	6850	4,640,000
Con-1 (2)	3-1	4.2.0.5	7040	6,782,000
Con-2	5-1	19.0-23.0	5140	4,520,000
Con-3	20-1	3.7000	4265	2,024,000
Con-4	60-1	4.8-7.0	3520	2,180,000
Con-5 (1)	60-2	0-4.8	2575	1,242,000
Con-5 (2)	60-2	4.8-10.2	3785	2,710,000
Con-6	60-3	$0-6.0$	2890	2,360,000
Con-7	60-4	0-4.8	3005	1,940,000

Note: All cores showed white deposits. Very fev deposits in 60-2 (4.8-10.2) ard in $3-1(11.8-13.7)$

6-in. Diameter Core Drilled from
36-in. Core, Lower Section

WHE VELOCITIES IN TUSCELOCSA LOCK

(Data Provided by Fortland Cement fissociation)

Dete, Eonolith \&
1948 Test Number

6/18	9-10]	31 from U.S. Joint	13,960
	$9-115$	Center of Lionolith 9	13,960
	9-12H	3' from D.S. Joint	13,330
6/18	10-13H	3' from U.S. Joint	13,330
	10-14H	Center of Lionolith 10	12,780
	10-15H	31 from D.S. Joint	13,330
6/18	11-164	3' from U.S. Joint	14,200
	11-17H	Center of mionolith 11	14,200
	11-154	31 from D.S. Joint	13,960
	11-17¢. H ***	$6{ }^{\prime \prime}$ below 11-17H	14,200
6/19	11-16V	31 from U.S. Joint	14,180
	11-17V	Center oî lionolith 11	14,060
	11-18V	3' from D.S. Joint	No signa
$6 / 19$	12-19H	31 from U.S. Joint	13,330
	12-20H	Center of Komolith 12	13,050
	12-21H	31 from D.S. Joint	13,640
$6 / 19$	13-22H	3' from U.S. Joint	15,000
	13-23H	Center of Eionolith 13	13,960
	15-24H	31 from D.S. Joint	13,960
$6 / 19$	14-25H	31 from U.S. Joint	13,960
	14-26H	Center of Bionolith 14	13,640
	14-27H	31 from D.S. Joint	13,960
6/19	20-28H	28.5' from D.S. Joint, 9^{\prime} below top of Kionolith	13,890
	20-29H	18.5" " " " " " " " "	13,890
	20-30H	31 " " ". " " 11 " "	14,700
		(all H shots in 20 made to S. face of monolith)	
	20-30V	3' from D.S. Joint	12,880
	20-30-3V	$6{ }^{6} 1111$	12,160
	20-30-1.5V	4.5' from D.S. Joint	12,330
	20-30+1.5V	$1.5^{\circ} \quad \mathrm{n} \quad \mathrm{n} \quad \mathrm{I}$	12,880
	20-30-10V	13' " "	11,850
$6 / 19$	60-34	31 from D.S. Joint, center 8th lift from top	13,030
	60-35	3' from D.S. Joint, " 7th " " "	14,000
	60-36	3' from U.S. Joint, " 8th " "	12,930
	60-37	31 from U.S. Joint, " 7th " "	13,870
	60-314	31 from U.S. Joint, 3.25' below tunnel roof	13,050
	60-32H	17.75' fron U.S. Joint, $3.25{ }^{\prime}$ below tunnel roof.	23,050
	60-32H	3' from D.S. Joint, 3.25' below tumel roof	13,050
	60-31V	31 " U.S. "	12,860
	60-32V	17.75' from U.S. Joint	12,860
	60-33V	31 from D.S. Joint	12,960

* - Letter "V" denotes shot made in vertical direction from timnel roof. Unless otherwise noted, all "V" shots made over \hat{E} of tunnei.
** - Letter "E" denotes shot made in horizontal direction fror tumel wall to lock wall. Triess otherwise noted, all " H " shots made 4.3 " above floor level of tunnel.
*** - This was the oniy location in konolith 8 et which a vertical shot was successfully ettempted.
**** - Routine shots ir Lonolith 11 were in $3 r d$ lift from top. Shot 11-17hy was in 4th lift from top.

CORPS OF ENGINEER) S. ARMY MISSISSIPPI RIVER COMMISSION WATERWAYS EXPERIMENT STATION		PETRC SRAPHIC REPORT		NCRETE REGEARCH DIVISION P. O. ECX 217 CLINTON, MISSISSIPPI	
SYMBOL: $\text { YOB-4 } 6078$	Lock	T:Tusca:cose d Den		$\begin{aligned} & \text { EPORT } \\ & \text { TEO: } 23 \text { AUg } 19 \leq 9 \\ & \hline \end{aligned}$	initials KM
SERIAL NO: MOB-4 CON-1 through CON-9	SOUR Tu	loose Lock			

1. Samples. The samples cons: of cores extracted from the subject structure described as follows:

$\begin{aligned} & \text { CED Ser. No. } \\ & \text { MOE-4 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Dianeter, } \\ \text { ing } \\ \hline \end{gathered}$	Hole 15,\%	No. of Boxes	Approximate Length, $f t$.
CON-1	$43 / 4$	3-1	2	10.5
2	$43 / 4$	5-1	6	38.7
3	$43 / 4$	20-1	2	8.0
4	$43 / 4$	60-1	2	8.8
5	$43 / 4$	60-2	2	9.1
6	$43 / 4$	60-3	1	6.6
7	$43 / 4$	60-4	2	8.2
8	36	5-2	-	2
9	36	5-2	-	5

The first number in the identificatic: of each hole is the monolith number. All of the samples were received at this office by truck from Tuscelcosa on 4 February 1948. All of the samples received were taken from vertical holes except those from monolith 60 which vere taken horizontally. All of the cores received contain the same aggrecates, and all contain Alpha cement except those from hole $3-1$ from deptic less than 10.0 ft .
2. Sumary. Petrographic examination has been made of a total of sefen $43 / 4-i n$, and two 3 obin. diameter cares from monoliths $3,5,20$, and 60 of Tuscaloosa Lock, Tuscaloosa, Ala. hil of the cores contain visible cracks of various widths in the upper or surfscce sections; some of them contain vide weethered cracks. All of the cores, regardless of brand of cement, contioin deposits of gel in voids, cracks, are aggregate particles in all sections, regardless of depth from the upper or outer surface of the structure. AIl of the cores also contain calcium sulforminate in all sections. However, the wicest fresh cracks are coated with ecl and the adjoining peste is soaked with gel. In all of the concrete, there is more gel than there is sulfoeluminate; more roids are filled with gel than wi.th sulfoalminate. Sulfoalumine ie is most developed in the most highly lesched and cracked concrete. It is therem fore believed that the gel produced by alkeli-ageregate reaction is the major cauce of the cracking of the upper and outer portions of the cores.

Chalcedonic chert is the cally constituent found in the coarse or fine ageregate which is known to be capsble of deleterious reaction with the rinor alkalies of portland cenent. Such cistrt is a much more important constituent of the coarbe aggregate than of the line aggregate. Based on counts of orer 5000 particles on sawed surfaces of the $43 / 4$-in. cores 42 per cent of the

	STREOL:	SERTAL MO.:	B2TE:
EETROGRLPEIC PEPORI (CON'D)	KOB-4 6078	HOB-4 CON-1 through	$\begin{gathered} 23 \text { Aus. } \\ 1949 \end{gathered}$

total coarse aggregato is cheri and 58 per cent consists of other types, principally highly metmmorphic quartzito and vein quartz. The fine aggrem gate is principally quartz, with feldspar and some chert. Determinations of $\epsilon 8$ chert pebbles cloce to gel pockets showed that 71 per cent of them consisted of or contained chalcedony. Since the pebbles were selected because they were close to gel, it is believed that they give too high a figure for the chalcedony content of the course aggregate. Assuming that 50 to 70 per cent of the total chert is chalcedonic, the percentage of chalcedony in the coaree aggregate would amount to 21 to 30 . The average of 40 daterminations of inder of refraction of the chalcedony particles is 1.5365 . Using this value end assuming chalcedonies of varying opal content, the opal content of the coarse eggregato is estimated as 1 to 5 per cent. Further confirmetion of the hypothesis that the chelcedonic chert is the reactive constituent is found in the preferential association of gel with chert rather than with any other of the types of aggregate.

While cracks and gel are most devoloped in the upper and outer sections of the core, all eections of all cores contain gel, and gel grew on the core surfaces after they were drilled and stored in a damp condition. The late gel grew more abundantly on the midde and lower sections of the cores. This fect suggests that while reaction in the structure had only gone far enough to crack the concreto near the surface, all the necessary ingredients for reaction are present in the deeper concrete and that the production of gel in this concrete is accelerated when a source of moisture is provided. As an example of the speed with which reaction can develop, under favorable conditions, a thin section blank from core $5-1$, section 7.5-9.0 ft, was ground smooth and exposed to laboratory air (warm, hunid) for about 36 hr . Then the blank was examined, it was foud that three gel pockets and one chelcedony particle on the ground surface had taken up water from the air and swelled up perceptibly above the general levol of the ground surfece. The concrete containing Alpha cement shows more signB of reaction than that containing Penn-Dixie cement, but the concrete containing Penn-Dixie does contain cracks in the upper eection and gel throughout the core.

10 Incls

1. Detailed Petrography
2. - 4. Tables 1 - 3
1. Fig. 1
2. - 10. Fhotographs 1 - 5

PETROGRAPHIC REPORI (CONDD)	SMABOL: HOB-4 6078	SERIAL NO.8 WOB-4 CON-1 through CON-9	DATK8 23 Aug 1949

Detailed Potrography

1. Test Procedure. The two 36-in. cores were inspected and the seven $43 / 4$-in. cores were ex\&mined megascopically and logged for the prosenco of gel and cracks, and for general condition and appearance. Selected sections of each core were examined on the drilled surface using a stereoscopic microscope. Selected sections of each core were sawed transversely or longitudinally and examined under the storeoscopic microscope. A number of sections were broken and the broken surfaces exafined using the stereoscopio microscope. Megascopic counts were made of coarse aggregate and gel on sawed surfaces. Sixty-oight particles of chert that were associated with gel were crushed and examined in immersion media to disoover whether they were composed of quarte or chalcedony. The index of refraction of 40 particles of chalcedony was determined. Kany samples of gol were examined in immersion media. Fourteen thin sections were prepared and examined, and several photographs made.
2. Concrete Cores. The cores examined incluied all those received except 6 sections tested for torsional frequency and subsequently shipped to the Portland Cement Association and 9 sections tested for compressive strength and static modulus of elasticity. All of the $43 / 4$-in. core had been packed in damp cedar sawdust. At the time that the petrographic examination began, the sawdust and the concrete were dry. The wet sawdust had stained many of the core sections brown. Results of the examination of the cores are sumarized in table 1 . The composition of the aggregate, the condition of the concrete, the relation of gel and chert, and the types of exudates and deposits found in the concreto are discussed in paragraphs 3 through 6.
3. Composition of Aggregate.
a. Coarse Aggregate. Identification of the coarse aggregate particles intersected by sawed surfaces (table 2) indicates that ebout 40 per cent of the coarse aggregate is chert, and 60 per cent consists of other types of material, principally vein quartz, quartzite and sandstone, with very small quantities of granitic gneiss, and ochre or limonite. Sixtymeight chert particles which were associated with gel pockets were examined in imersion media; 48 of these particles (71 per cent of those examined) contained or consisted of chalcedony. The index of refraction of 40 of the chalcedony particles was determined (Fig. 1); the average of the 40 indices is 1.5365 with an observed range from 1.5240 to 1.5420 . Since the chert particles were deliberately selected from those which had adjoining gel pockets, it is believed that the calculated percentage of chalcedonic chert, 71 , is a maximum. If it is assumed that from 50 to 70 per cent of the chert is chalcedonic, the chalcedony content of the coarse aggregate is calculated as 19 to 30 per cent. Using the determined average ralue of the index of refraction of the chelcedony, and curves giren by

	STEBOL:	SERIAL NO. 8	DATE:
FETROGRAPHIC REPORT (COI'D)	1103-4 6078	NOB-4 CON-1 through CON-9	$\begin{gathered} 23 \text { Aug. } \\ 1949 \end{gathered}$

Donnay, (1) the opal content of the chalcedony can be estunated as between 5.5 and 17.5 per cent, and the cpal content of the total coarse ageregate as between 1 and 5 per cent.

The silica solubility and reduction in alkalinity was determined on a composite sample taken fror particles determined as chalcedony. Duplicate tests gave $S_{c}=477$ and $R_{c}=46, S_{c} / R_{c}=10.4$.
b. Fine Aggregete. The fine eggregate is natural sand composed principally of quartz, with some feldspar and a small amount of other minerals, and chert which is particularly conspicuous in lerger sizes. According to information provided by the Nobile District, difficulty wes encountered in producing sand with the required amount of fines. The amount of fine sanc in the mortar was relatively srail, and consequently there are larger areas of cement paste in the mortar than there usually are in the mortar of concrete made with sand graded in accordance with the current Guide Specifications.
4. Condition of the Cores. All of the drilled surfeces showed white films or mounds of gel, on areas of mortar and on chert coarse aggregate, but not on coarse aggregate of other types. Frequently the gel entirely inclosed sawdust particles; mounds of gel rose up as muoh as $1 / 8$ in, above the core surface (Photograph le). These two facts make it plain that the deposition took place after the cores were drilled. All of the drilled surfaces cut air pockets and uncerside voids containing white or clear exudates with outer surfaces continuous with those of the adjacent paste and mortar, and accordingly older than the drilling of the core. A number of the drilled surfaces show cracks visible to the naked eye. A fow show such cracks filled or partly filled with exudate. (Photograph ib). The smoother surfaces produced by sawing with a diamond-edged blade reveal more cracks than appear on the outside of the core. When the concrete was broken open and the surfaces of the largest cracks examined, the surfaces were found to be covered with dessicated gel, which filled the crack and saturated the adjoining mortar. Some of the cirilled surfaces intersect empty pebble sockets where poorly-bonded aggregate was lost during drilling. Some of the surfaces intersect coarse eggregate particles containing cracks visible to the naked eye. Host of the cracked perticles are chert; a feriere quart$z i t e$ or sandstone. Cores fron holes $3-1,20-1,60-1,60-2,60-3$ appear fairly dense and free of large voids on the drilled and sawed surfaces. In those cores the concrete near the outside of the structure appears generally more dense than the concrete in the interior. The core from hole 60-4 is noticeably less dense than those mentioned above. Core from hole 5-1 is fairly dense to a depth of 7.5 ft , contains numerous large irregular voids from 7.5 to 13 ft , is conspicucusly honeycombed around 13 to 14 ft (Photograph 2); from 14 to 39.6 ft it contains many spherical to irregular voids (Fhotograph 3). In all of the concrete, megascopic voids are more common

	SThBOL:	SERTAL KOA	Ens:
FRTROGRAPHIC REPORT (CON'D)	1803-4 6078	yOB-4 $\begin{gathered}\text { CON-1 } \\ \text { CON- }\end{gathered}$	$\begin{gathered} 23 \text { \&u } \\ 1949 \end{gathered}$

near coarse aggregate particles than away from them (Photographs lb through 3). Kany of the pebbles have relatively narrow but extensive underside voids.
5. Relation of Chert and Gel Pockets. The gel which grew on the cores after they were stored in sewdust was located on chert particles or on mortir, not on other varieties of coarse aggregate. The gel intersected by the sawed surfaces adjoined coarse aggregate of all the types prosent, or occupied cracks or voids in the mortar. Although particles of all the types of coarse aggregate could be found with adjacent gel, gel within coarso eggregate vac confined almost entirely to chert pebbles. The exceptions were found in highly fractured quartaite pebbles. The essociation of gel with chert appeared to be more common than the asecciation of gel rith any of the other types of coarse aggregate (Photographs 4,5). To test this indication, megascopic counte were made of sawed euriaces to determine the number of chert particles with and without associatad gel, the number of other coarse aggregate particles with and without associated gel, and the number of gel pockets or linings With no visible association with a comese ageregate particle (Table 3). on 57 sawed surfaces counted, 57 per cent of the total coarse aggregato belonged to other varietias than chert, of that percentage 53 per cent did not have essociated gel and 4 per cent hed associated gel; 41 per cent was chert, of which 36 per cent did not have and 5 had associated gel. The total number of megascopic gel pockets kas 580, of which 110 were apparently isolated, 281 adjoined chert and 189 adjoined other types of coerse ageregate. These figures leave out of account the possible connections in depth of tho apparently isolated pockets. It is possible to calculate whether the observed distribution of gel pockets with respect to chalcedony and other types of aggregate is a random one, or whether the distribution indicates an asscciation betwen gel and chelcedony greater than that likely to arise by chance. (1) Those calculations were made for the totels of all the surfaces counted. The probability thet the association found would occur by chance is less then 1 in 2000.

Table 3 also indicetes that the percentage of gel pockets in core 3-1, containing Penn-Dixie cement, is lower then it is in any of the cored containing Alpha cement.
6. Exudates and Deposits in the Concrete. Examination of drilled, sawed, and broken surfaces of the concrete shows that eeveral types of deposits are present in voids and cracks and on agsregate particlos.
a. Gel. The exudates on the core surfaces which are later then the drilling of the cores are white to translucent bluish, leminated, often show shrinkags cracks, and are brittle when they are dry. The semples cama. ined in immersion media were isotropic gels of lower indices and with fewer

[^2]| | SYLECS | SERDIL LO. 3 | W. ${ }_{\text {L }}$ |
| :---: | :---: | :---: | :---: |
| FETROGRAPEIC FEPPORT (CON'D) | MOB-4 6078 | HOB-A CON-2 through CCLT-9 | $\begin{gathered} 23 \text { AuE } \\ 1949 \end{gathered}$ |

crystalline inclusionsthen the gels which grew in the structure. Two varietie of gel differing in efperance are found in fockets ard lining cracks. One is clear to translucent, rubbery to brittle, and usully forms the outer shell of the lining if tro varieties are preaert in one void. The other is white, opsy dull, rubbery to pordery to brittle, and usually forms the inner core if both varieties are preaent in one void. Two exemples were found where the translucent gel occupied the interior end the opaque gel the periphery of the filline Under the petrographic microccope, threc structural verioties Fere found. One variety was enisotrcpic, with aggregate polerizetion, low birefringence, and wary extinction of the type developed in strained glass. The second varioty under croseed nichole had a very fine-grained "pepper-and-salt" appearance resembling chert or fine-grained calciun hydroxide; it was interpreted as inclusions of minute crystals of colcium hydroxide in gel. Sore of the gel vith the pepper-and-salt inclusions also contains irregular or rhombic inclusions of caloikm cerbonato. Calcium carbonate is the only inclusion in some of the gel samples. The third variety was clear, isctropic, and usually contained fewer inclusions than the other typee. Exemples of all three types were found in the same pocket in some casee. The indices of refraction of all three varieties ranced; the range observed in the salt-and-pepper type was 1.478 to 1.511 ; in the tope shewing ageregate polerization from 1.480 to 1.502 Isotropic gol leter then the drilling of the cores hed indices from 1.465 to 1.487. All of the veriations found suegest that gels of differing compositice may form within a relatively smell volume of concrete with changing conditicre and at different times. There are many voids which were entirely filled with gel, or which evidently were once entirely filled but the filling shrank. However, most of the void space in the concrete is still empty, even in areac close to gel-filled cracks. Keny voicis contain no gel, or a thin partial lining of clear brittio gel. Gel was found in all sections of all the ccres, regardless of type of cement or distance from the outer s urface of the structure. The most abundant gel, end the greatest amount of gel-permeated and gel-whitened pasto is found near cracks in the upper or outer sections. In the longest core, $5-1$, gel and crecking decrease frcm top to bottom in the core, but gel is present in the bottom section.
b. Calcium Carbonete. Carbonation of the cement paste adjoinins crecks was found in thin sections from depths up to 20 feot from the extericr. A small emount of cartonation wes found in one thin eeotion from core 5-1, depth about 39 feet. It is believed that this cerbonation tock place after the core was drilled. The arount and extent of cerbonation did not appear to be unueval, and is not regarded as significant except that it indicates that concrete as deop as 20 feet kas acceesible to air.
c. Celcium Sulfoaluminete. Calcium sulfoaluminate van found in voids in every section of every core, regardiess of distance from the surface of the structure. It was most ebumdant in each core near the outer or upper surface of the structure. In the top section of $3-1$, which was represented

PETROGRAFEIC EEFOET (CON'D)	STMEOL: $1505-46078$	SERICL LiO. 8 HOSM CON-1 through COL: -9	$\begin{gathered} 414: \\ 2341: 3 \cdot \\ 1942 \end{gathered}$

by a series of chunis axd fragments, sulfoaluminate was very abunant in voids and in pebble sockets. In the cracked outer section of $60-3$, ebout 8 in. frcm the surfaces, mate, rosettec, and spherulites of sulfoaluminate filled voids, lined pebble sockete, and coated sand grains. With increasine denths, tho sulfoaluninate hes found in turts, rosettes, end linings in the roids, but not as linings of pebble cockets.
d. Celciun Hydroxide. Core 5-2 from depths 38.4 to $4 C_{0} 2$ ft contained well-dr feloped furis end rosettes of sulicalumineto in voids. In como of the voids, the sulforluminate mas associated with clear colordess plates of calcium hyjroxide. The calcium hyoroxide is iese abundant than the sulfoQluminate, but is not uncomon. This is the first example of celcium hydrom xide in crystis in voids found in ficld concrete exumined by this office. Since accessible calcium hydrcxide is feirly easily converted to calcium carbonate by rioclerately dry air containing carbon dioxide(1) the significanco of the calcike hydroxide crystals in voids may be interpreted as follows: At some perice in its history, the concrete contained enough circulating solutions to lsach some of hydroxide fron the paste and redeposit it as crystals in voids. The crystals persisted becelve tho concrets never dried out enough to permit the crystals to be exposed to reiatively ery air containing CO_{2}.
(1) F. M. Lea and \approx. H. Desch, The Chemistry of Cementi and Concrete, London, 2935, p. 328.

Table 1

Condition of $43 / 4-1 n$. cores from Tuscaloosa Look (MOB-4 CON-1 through CON-7)

Monolith and Holo Number	Coment	$\begin{aligned} & \text { Visible } \\ & \text { Cracks } \end{aligned}$	- Gol		Sulfoaluninato
			Exudod on Drillod Surfacos	In Pockets and Cracles	
3-1	$\begin{aligned} & \text { Penn-Dixie } \\ & \text { Alpha } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & 11 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { "1 } \end{aligned}$	$\begin{gathered} \text { Yos } \\ n \end{gathered}$
5-1	Alpha	(a)	Yes	Yos	Yes
20-1	Alpha	Yes	Yos	Yos	Yes
$\begin{aligned} & 60-1, \\ & 2,3,4, \end{aligned}$	Alpha	Ye3	Yes	Yes	Yes

(a) Cracks visible in sections from 0.0 to 7.5 ft in depth only.

Comporition of Coarse Ageregete in Tusceloose Lock, as Determinsd by Courts of Farticlec intersected on Sarred Surfaces

(E) Celauleted as a percentage of the total muber of comerse efgregeto Ferticles intersecteci on the sawed suriace.
(b) Chert detaranaed by megascopic exani intica, without eny distinction mede betwen chert consisting of quartz axd chert coneisting of chsics jogy.
(c) The comrise asjrefste constituents other than chertare quartz, צus:
(d) in:itractic avorages, besed on a tots 1 of 5515 coarse agoregeto perticles.

Distribution of Gol Pockoto on Snwod Surfacos of Conorets Srm Tuscsionsa Lock

FIG. I-DISTRIBUTION OF CHALCEDONIC CHERT COARSE AGGREGATE PARTICLES SELECTED FROM CONCRETE FROM TUSCALOOSA LOCK, WITH RESPECT TO INDEX OF REFRACTION

A. FLECKS OF GEL WITH INCLUDED SAWDUST (A) AND MOUND OF GEL (B) WHICH GREW ON CORE SURFACE AFTER DRILLING. ABOUT NATURAL SIZE. CORE 5-I, DEPTH 7.5-9.0

B. OPEN CRACK. (A-A). PARTIALLY FILLED WITH GEL (ARROWS). THE CRACK REACHES ITS GREATEST WIDTH IN THE CHERT PEBBLE NEAR THE CENTER OF THE PHOTOGRAPH. ABOUT NATURAL SIZE. CORE $60-1,7$ IN. FROM FORMED SURFACE.

A. FLECKS OF GEL WITH INCLUDED SAWDUST (A) AND MOUND OF GEL (B) WHICH GREW ON CORE SURFACE AFTER DRILLING. ABOUT NATURAL SIZE. CORE 5-I, DEPTH 7.5-9.0

B. OPEN CRACK. (A-A). PARTIALLY FILLED WITH GEL (ARROWS). THE CRACK REACHES ITS GREATEST WIDTH IN THE CHERT PEBBLE NEAR THE CENTER OF THE PHOTOGRAPH. ABOUT NATURAL SIZE. CORE $60-1,7$ IN. FROM FORMED SURFACE.

CONCRETE WITH NUMEROUS LARGE VOIDS, DEPTH ABOUT 33 FT., CORE $5-1$. THE SURFACE IS TYPICAL OF THE CORE FROM 14.5 FT. TO 39.6 FT. DIRECTION OF PLACEMENT TOWARDS BOTTOM OF PHOTOGRAPH. THE VOIDS ARE MORE FREQUENT ADJACENT TO COARSE AGGREGATE PARTICLES.

SAWED SURFACE OF CORE CUT LONGITUDINALLY. THE DIRECTION OF PLACEMENT IS TOWARD THE TOP OF THE PHOTOGRAPH. A -A INDICATES THE ENDS OF A CRACK SYSTEM WHICH CAN BE TRACED ACROSS THE CORE, PASSING THROUGH TWO CHERT PEBBLES (I AND 2). THE WHITE CHERT PEBBLE, I, HAS AN OUTER ZONE VERY FIRMLY BONDED TO THE MATRIX AND THE CENTER OF THE PEBBLE SEPARATED BY CRACKS FROM THE OUTER ZONE. THE CHERT PEBBLES INDICATED BY ARROWS (2 THROUGH 7) SHOW THE WIDE CRACKS COMMON IN CHERT PARTICLES IN THIS CONCRETE. IN PEBBLE 2 tHè GEL FILLING OF PARTS OF THE CRACK SYSTEM CAN BE SEEN AT THE LEFT AND RIGHT. G INDICATES GEL POCKETS.

CORE FROM TUSCALOOSA LOCK, HOLE 5-I, DEPTHS 1.5-2.0 FT.

PART OF AREA SHOWN IN PHOTOGRAPH $1, \times 3.4$. ARROWS AT MARGIN MARK ENDS OF CRACK. I,2,3 ARE CHERT PEBBLES WITH WELL-DEVELOPED WIDE CRACKS; THOSE IN 3 ARE LOCALLY GEL-FILLED. 4,5, ARE CRACKED PEBBLES; THE CRACKS ARE NARROWER THAN THOSE IN $1,2,3$.

CORE FROM TUSCALOOSA LOCK, HOLE 5-I, DEPTHS I.5-2.0 FT.

1. Reference is made to the potrographic report included in "Disintegration of Concrete from Tuscalcosa Lock and Dam". The last paragraph of the summary mentions a thin section blank from the 7.5 9.0 ft section of core 5-1. This blanic was impregrated with resin, ground amooth, and exposed to narm humid air for about 36 hr . During this exposuro, three gel pookots and coe chelcedony particle on the ground surface took up meter from the air and Ewelled. Photograph 1 is a photograph of the specimen at a magnification of $4 x$, taken about 23 August 1949.
2. About 24 August 1949 the blanl: was stored in a closed container over water, and loft until 17 October 1949. It was then re-examined and photograph 2 was mado at the same magnification.
3. Cortain corments on the rapid and obvious development of the reaction-produats in this specimen suggest themselves. In the first place, the specimen has been heated rell abore 100 F (probably to 200 F at least) in the process of impregnating it with resin. During that heating, a more abrupt thormal change took place in it than it had ever umdergone before. The cerment paste lost some mater which it would not have lost in laboratory storage at ambient temperatures. Probably the thermal shocic and partial dehydration suddenly opened up the general structure and particularly the mortar-coarse aggregate boumdarios to a degree unusual in conorete undergoing mild reathering. Thus the specimen may have beon rendored unusually suscoptible to a later addition of moisturo. In the second place, while the resin apparently did not thoroughly penetrate the interior, it formod a coating around all the surfaces including that from which it was later remored by grinding. All the manifestations of activity aro probably therefore concentrated on the one ground surface.
4. The comments in 3 above are mide because other pieces of Tuscaloosa concrete have been stored int the same closed container aince July 1948 without devoloping any risible changes except fairly minor incresses in gel doposits. Therefore it is not believed or suggested that deterioration of the concrete in Tuscciooss lock may be expected to procood at the rapid rate suggested by the tmo photographs and dates. It is beliersd that the photographs do tend to confirm the suspicion that the reactive potential in the conorote has not been exhausted.

2 Incls

1. 2. Photographs 1, 2

THIN SECTION BLANK IMPREGNATED WITH RESIN, GROUND, EXPOSED TO WARM HUMID AIR FOR ABOUT 36 HRS. MAGNIFICATION $4 X$, PHOTOGRARHED ABOUT 23 AUGUST 1949. TWO LARGE GEL POCKETS (UPPER RIGHT AND UPPER CENTER) HAD TAKEN UP MOISTURE AND SWELLED. THE CHALCEDONIC PEBBLE (LOWER LEFT CENTER) HAD TAKEN UP MOISTURE, AND THERE WAS A WET SPOT ON A SAND GRAIN AT THE LOWER LEFT.

THIN SECTION BLANK, CORE 5-1, 7.5-9.0 FT SECTION, tuscaloosa lock.

SAME SPECIMEN AFTER STORAGE OVER WATER AT ROOM TEMPERATURE BETWEEN 24 AUGUST 1949 AND 18 OCTOBER 1949. THE GEL POCKETS SHOWN IN THE PREVIOUS PHOTOGRAPH HAVE ENLARGED; MANY MORE HAVE APPEARED; CRACKS WHICH WERE NOT OBVIOUS BEFORE ARE NOW TRACED IN REACTION PRODUCT.

THIN SECTION BLANK, CORE 5-I, 7.5-9.0 FT SECTION, TUSCALOOSA LOCK.

APPENDIX E
BOARD OF CONSULTANTS REPORT
OCTOBER 1949

SUBJLCT: Invertigetion of Lieintegration of the Concrete in fuscaloosa Lock and 5 rem

TO: The Eistrint Encineer
Wotile District
Corps of t-zingers
MOBILE, : A., EELKA
FROX:
The Eoarci of Consultents

The mader: pned corvened on the morning of October 24th in accorienco rith previous arrayrenents anc reviewad the fícid date assembled by the lobilo Listrict eince the dest board keeting. inepected the condition of crackine in the locl walle, ane ciscusaed the elkell-ageregete problen involved in tiis and similer structures.

FIELD IE: SECUED EIACE THE LSETVEFTINA OF THE BURD

There is attected hereto a typeã tibulation of elevations of selecied pointe on the lock valls taken at different dates between Jenuery 1545 and September 1849, a eming ehoring an outiine of the upper enc of the lock wall ic plan rith e tebustion ohoxing horizontal distencec neacured betwece rarked points on the tope $6:$ various monolithe taken betreen Jenuary 1548 and Scpterbel 1949. Comperison 6 neximum, minimun, end everege differences in meacurenarts, both between the Eving of 1548 anc the Spring of 1949 end the rall of 1548 and the Fall of 1949. .nis the overall cifferences between denuary 1548 and septembe 1849 indicetes thet rrowth has continued at varying rates with the maximur, hori sontal distence betreen certein points of . 028 feet. beny points ehow only e difference of 0.001 ft. It Is therefore concluded that internal expencion and external cracking ene continuing throughout the verious monolitins of the locis walls, Elthouch et a cecreasing rate as compered to the Calancier Year $15 \leq 7$ and probably 2946.

Careful examinttion of Lonolith Fo. 5, including an inspoction of the $3 e^{\prime \prime}$ hole adjacent to tis pintle beering, did not indicate eny ereat change in the conaition of the rarolith since the last meting of the boerc. although it is stated that the pinilo has moved a aistence of .015 feet. There is some cria of cisplacement ir osnnection kith the operating mechenism for the gate in
 any concern other wan to emphesize the cesirnbility of keepirif track of euch indicatione for posible future corrcetion if the wspleeenert ehould cortizue to increase. The cescking in konolith lio. El hat increaseci cprreciakly eince the last neeting ais it hae feer necersary to discontinue use of the mooring bit located at the wastrean end of this monolitio. Crachire in the top of and lith lio. 20 hes erymently increaced somewhat eince the lect inspection. leflection towerd tie lock of the top of honolith to. 74, and elso in a counctre
direction fren yonolith Ho. 73, appeared to heve increased since the last inepection but a rough check of previous data indicated that the increase, if any, was of rinor anount and probably in line with increabed erackine in general only.

An Interesting observation was made on Konoliths Nos. 70, 71, 72, 73 and 74. Lenoliths 71 end 75 ebove the water surfece are made of Penn-Dizie cerrent enc crackinf. in these monoliths is reletively negilgitle, ospecielly on the 45° bevel on the river ei do of the lock wall. In contrast to this apparent leck of deflection, attern cracking on the beveled portion of the river eide of the lock wall in tonoliths 70,72 and 74 is very naticeatle and the top of these monoliths heve defiected tovard the lock an appreciable anount, veryine from the orier ois $1 / 2^{n}$ to the order of $1 i^{\dagger n}$ in honolith 74 . It seems erident that the internal rowth-mepparently ceused by the higher alkali content-aof the Lipha cement in the beveled portion of vonoliths 70,72 and 74 hes been responsible for this tipping action.

There is attached a copy of the report entitied "ifantegretion of Concrete from 'wesicoss iock und lam" dated 25 dugust 1949 . The purpose of the studies anc tests concuctea by the Concrete fesearch Livision was to cefinitely determine, it possible, the ceuse of the extencive cracing in Tusceloosa iock. The principal conclueion of the Concrete fiescurch Division is that "Chelcecionsc chert is the only constituent found in the coarse or fins aggregate rhich is known to be capable of deleterious reaction rith the ainor alkelis of fortland cement. Such cinert is a more important conetituent of the course egeregete then of the fine cigrregate." In the last peragraph of the sumary it is noted that "inile reactio in in tine etructure had only gone fer enough to crack the concrete near the suriace, ell the necessery ingredients for reaction are present in the deeper concrete and thet the production of gel in thi conerete is accelereted wicil a source of moisture is provicied." In the closing sentence in thes sumary, the following is noted: "The concrete containing Alpha cement shows core sinn of reaction than that oontained by Fonn-ijide cement, but the concrete cortsinigg Pem-lizie does contain cracks in the upper section and en throughout tic core." It is believed that the clinton leboratory report is sufficiently exhaustive to serve the purpose of this investigation and that any further invercigational work in connection with the cores evailable should be
 ection beine conductec by the Concrete Eesearch fivieion uncer Chi Test No. 6US.

FUTAE PENLL: OF invisitgations

It xer fereed hy all nelibers of the Boara that eny further investigetion of alkali-E, regate reaction in cornection with Tuscaloosa Lock was not recesbury insofer tis the maintenance anc operation of the lock for future use is
concerned, but all concurred in tio decirability or semi-annuel meacuremerts to be tuken in sertember end drril of exch year for trie purpoee of checining the loo cetion of all four piatle bearing as well as other prominent points on top of the lock well that are being watcisc. It was elso concluded that it would be aesiratle to cinck the horisontel cietence across the lock between pintlo bearinge as a continuine check on ery ossible novement of the pintles in a lock-ward direction. It would eppear thet cry movenent that would be detrimental to the meintengec and operstion of the iock in the future would have to be torerd the lock. It 2 s also suecerted that a close check on the operating mechanisn in. Honolith Fo. 5 be refnteined. From observation curirs the inspection on the 24th it rould appear that indications of the sten guice reiative to defiections, either in e herizontal or pertical direction, and the diatanue between the guide and the roller, as measurec ky feeler gange et cefinite peints, nifint be se setisfactory an indication of erorth anc movement as any place such meacurements could be wace on the operating machinery.

Er. Tyler sugceeted that ther would be interestec in makinc wave velocity measurements at the points previc:asly meacurd in dune 1948 whenever they vere in this territory for the purpose of makine weve velocity meacurements on other structures. It was the unanimous opinion of the board taet F.C.i. should be encouragei to continue reve velocity weaeuremente previously mace at least until such time tiat the Clinton laboratory has evailable wave velocity apraratus of its own for beeping treck of grovith anc novement in certain structures such as Tuscaloose Lack.

WIrt TiGCL ATI EEESTSS

It Fas the unarimous opinior of all present at this meeting that due to continued internel erowh and external shrinksge, even though at a elower rate, it is highiy izpracticeble to mele any extensire repairs et this time, or probebly at any tige in the coures of the next year or tro. Unless Iusceloose Look concrete performs differentiv, then other etructures eimilerly affeoted, growth rill continue for un undeteroined period and until it ceases it would not eppear iesirable to reve extensive repeire except to specific points that reciurt some mefntenare, as in the case of Lonolith ko. 61 where the concrete around the mooring bit has already deteriorated to such an extent as to make it dangerous to uet. it therefore appears that sometining wust be done to recondition the
 For thi purpose onc for the purpse of obtaining some cata on pocsizle future repeirs for the top of the lock wisl monolitis tast are exteasively crecked, the Board reconcucs tinat the concretie in the top of konolith lio. 51 be removed and a reinforceci concrete cap block ceft on top oil this monolith. The extent of the corcerete to be removec can be determinec only efter its excevation is sitartet It is believed that some reinforcine will be necessary to prevent imuecate cracking cue to frovith of the concrete uncer the cep and it is eugeested trat l-inch or $1-1 /$ einch scuere bere st epproximately 1 foinch centers toth reys bo imbeciec about 3 inches below the surface of the new concrete oap block. The
small coct oi tic reintorcing abouic provide en excellent jllustration of viset cen be accomplis a in thie respect and vather it vill be decireicie in future reptirs to uec miniorcizg steel.

Ne further metings of the josrd are under consideration dit thit tine. It is afeumed ti: when concitions cievelop triat would necessitate turther consiouration by tagrd, tice wobile Bistrict will call such e netting.

An invitati an wes extendec to tin Portland Coment leseciation to be present at thit meting fiskr. Ivan i.e iyler, Eenager of Field Research, was present tiroughout the j.inection axi later discussions.

> H. K. COOK
C. D. MLSTOK
T. C. SPRACW
E. M. ETELLD
f.ttached:

1. I'abulatior et elevations of selectea rints on loci walls.
c. Drawing zining outline of upper ead of ler: walls in plan vith a tebulatice shovines rorizontel distances he eeen marled points on tope of r-ious nonolithe.
2. Report "is:-ntegration ci Concrete from Tuse woea lock ura les. deci 25 सиеиะ: 3949.

APPENDIX F
PETROGRAPHIC REPORT
DECEMBER 1976

Corps of Engineers, USAE Waterways Experiment Station	Petrographic Report	Concrete Laboratory P. o. Box 631 Vicksburg, Mississippi
Project Condition Survey and Stress Analysis, Date 20 December 1976 Oliver Lock and Dam ADB		
Background		

1. The structure was built between 1937 and 1939 as Tuscaloosa Lock and Dam. It was later named Oliver Lock and Daq. A report by the U. S. Army Engineer Waterways Experiment Station (WLS) ${ }^{\perp}$ dated August 1949 identified the deleterious chemical reaction that had occurred in about 10 years as the alkali-silica reaction.
2. Approximately 25 years later two more cores have been examined. The questions that were to be answered were:
a. Does the entire length of each concrete core show evidence of alkali-silica reaction?
b. If present, has the reaction exhausted its expansive potential?

Samples

3. Two cores of nominal 4-in. diameter were received in November 1976 from the U. S. Army Engineer District, Mobile, for examination and testing They are identified below:

Concrete Laboratory Serial No.
MOB-4 CON-15 (concrete) and MOB-4 DC-1 (rock)

MOB-4 CON-16

Field Data
One core consisting of approximately 63 ft of concrete and 28 ft of foundation rock from monolith 5 (land wall). It was located at Sta $0+01.5 \mathrm{~B}$ and 27.5 ft from the chamber wall.

One concrete core approximately 25 ft long from monolith 16 (land wall). It was located at Sta $4+31 B$ and 27.5 ft from the chamber wall.

Test procedure

4. Each core was logged. Some of the pieces of concrete in each core and all of the pieces of foundation rock from monolith 5 had been sealed in a wrapping of cheesecloth and wax to preserve them at field moisture conditions. Since the concrete appeared to be generally uniform in appearance, these pieces were not unwrapped during the logging. The sealed pieces of foundation rock were opened, inspected quickly, and immediately resealed.
5. Petrographic samples were taken from the following portions of the cores.

Sample	Monolith	Depth Interval, ft
Concrete	5	3.5-4.2
Alkali-silica gel		20.7
Concrete		30.9-32.7
Concrete		53.3-54.3
Concrete		59.9-60.6
Foundation rock (shale, sandstone)		70.3-71.0
Foundation rock (shale)		85.5-85.9
Concrete	16	0.0-0.9
Concrete		1.2-1.4
Concrete		3.3-4.0
Concrete		5.6-6.9
Concrete		21.5-21.9
Concrete		24.5-25.3

Drilling was discontinued in monolith 16 when the hole was 25.3 ft deep. The color of the rock samples was determined. ${ }^{2}$
6. Samples of concrete from the above pieces were selected for lengthchange measurements from the top, middle, and bottom concrete portions of the monolith 5 core and from the top and bottom portions of the monolith 16 core. Each piece was sawed to a length ranging from about 6 to 11 in. and fitted with metal inserts. The five pieces of core were measured, stored in water overnight, and remeasured; this latter value was taken as the reference length. The specimens were then stored over water at 100 percent relative humidity (RH) and $100^{\circ} \mathrm{F}$ in general accordance with CRD-C $123-72^{3}$ and measured weekly. The intent of storage at the high moisture and temperature conditions is to determine if any expansive potential remains in the concrete. It is not intended to simulate field conditions.
7. The remainder of the petrographic samples were examined with a stereomicroscope. This included examination of broken surfaces and of some surfaces that had been sawed and then ground to enhance detail.
8. Thin sections of the foundation rock from the 70.3 to 71.0 ft interval were prepared and examined with a polarizing microscope.
9. Selected portions of the foundation rock were examined by X-ray diffraction to determine their mineralogical composition. Saturation with glycerol and heat treatment were used along with X-ray diffraction to assist in characterization of the $14 \AA$ clay mineral in the shale.
10. The sample of alkali-silica gel from the 20.7 -ft depth of the monolith 5 core was ground and X-rayed as a tightly-packed powder; powder immersion mounts of it were examined with a polarizing microscope.
11. All of the X-ray patterns were made with an X-ray diffractometer using nickel-filtered copper radiation.

Results

12. The logs of the two cores are attached (Figures 1, 2). Inspection of the core during the logging and of other data showed:
a. There is evidence of alkali-silica reaction from top to bottom of the concrete in each core. This is seen as white alkali-silica gel in voids and on broken surfaces, as rimmed chert particles, and as cracks that traverse mortar or aggregates or both.
b. The evidence of alkali-silica reaction decreases with depth. The major effects of the reaction appear to be concentrated in the upper few feet of each core. This observation is not unusual and probably is connected with the increase in restraint with depth.
c. Breaks in the concrete that appeared to have been present before the cores were drilled are listed below:

Monolith 5 - 2.2, 2.8, 3.3, 3.5, 4.5, 9.3, 9.7, 10.4, 15.4, 19.3, $39.7(?)$, and a vertical crack between 53.3 and 54.3 ft .

Monolith 16 - 3.0, an almost vertical crack between 3.0 and 3.6 , fragmented between 3.6 and 4.0 , and 5.4 ft .
d. Aside from the difference in amount of alkali-silica reaction with depth the concrete appeared homogeneous. The coarse aggregate was chert, quartz, and quartzite of about l-l/2-in. maximum size; the fine aggregate was natural sand. There were scattered small areas of honeycomb due to poor consolidation. According to information on the Black Warrior, Warrior, and Tombigbee Rivers Concrete Progress Chart, the ${ }_{1}$ cement in all of both cores should be the higher alkali Alpha brand. ${ }^{1}$
e. The foundation fock in the lower 28 ft of the core from monolith 5 is dark gray (N3) ${ }^{2}$ shale and light gray (N7) fine-grained sandstone. Some areas of the core are all shale, others are all sandstone, and some are alternating thin layers of the two. The sandstone is identified as siltstone on Figure 1, but it is more properly called sandstone. Scattered small patches and layers of tan clay (dark yellowish brown, lOYR $4 / 2)^{2}$ are indicated on Figure 1. This material turned out to be clayey concentrations of siderite $\left(\mathrm{FeCO}_{3}\right)$ when examined by X-ray diffraction.
f. The foundation material also included 0.4 ft of coal between 79.9 and 80.3 ft . There were traces of coal at scattered intervals below this area.
g. All of the breaks in the foundation rock appeared to be fresh breaks that were associated with the drilling process.
h. Air drying of the shale sample from the 85 ft depth did not produce appreciable cracking.
13. Length-change data for five samples of concrete are shown in Table 1. The values for the three pieces from monolith 5 show an increase with time and with depth. The values for the two pieces from monolith 16 show these trends to a minor degree. However, all of the data indicate enough expansion to show that the potential for expansion due to the alkalisilica reaction is still present in the concrete represented under these conditions of high moisture and temperature. Similar data for cores stored at high moisture conditions and temperatures around $70^{\circ} \mathrm{F}$ would provide an interesting contrast since they would more nearly simulate possible field conditions.
14. Examination of the petrographic samples of concrete yerified the preliminary core inspection and agreed with previous data about the presence of alkali-silica reaction. The sample of alkali-silica gel showed varieties similar to those described before. The refractive index of the anisotropic types was above 1.486 while that for the isotropic type was below this value. All varieties had refractive indices below 1.544. The X-ray pattern of this gel showed spacings similar to those listed for other gel ${ }^{4}$ but no specific identification was made. The spacings are shown below:

Spacing, \AA		Relative Intensity
10.5		Medium
8.8		Weak
6.6	Very weak	
5.6	Very weak	
3.59	Weak	
3.07	Strong (probably	
3.03	Strong (probably	calcite)
2.81	Weak	
2.14	Weak	
1.98	Weak	
1.84	Weak	
1.67	Weak	
1.64	Very weak	
1.54	Very weak	

The X-ray pattern indicated that the gel was a mixture of crystalline phase(s) and amorphous material.
15. Petrographic examination of the samples of foundation rock showed that the shale and sandstone were composed of micaceous minerals (chlorite, muscovite, biotite), clays (kaolinite, clay-mica), and nonclays (quartz, feldspars). The shale contained detectable siderite and the sandstone showed detectable calcite. The shale contained more micaceous and clayey material while the sandstone contained more quartz and feldspar. The siderite mentioned earlier also contained small amounts of the same constituents as the shale and the sandstone.
16. Examination of the thin sections showed that the grain size of the rock was usually about 120 by $120 \mu \mathrm{~m}$ with some particles up to 250 by $250 \mu \mathrm{~m}$. These sizes meant that the rock should be classified as a finegrained sandstone rather than siltstone. The grain size was fairly uniform. Most of the quartz grains were anhedral in shape. There were both quartz grain to grain contacts and some instances of mica or clay between the sand grains. Therefore, the rock is fine-grained, micaceous sandstone cemented mainly by silica.

Conclusions

17. The full lengths of both concrete cores show evidence of alkalisilica reaction. The reaction is more pronounced in the upper few feet of the cores.
18. Length-changes of concrete specimens from both cores stored at 100 percent RH and $100^{\circ} \mathrm{F}$ show that the concrete still has expansive potential.
19. The foundation rock is shale, fine-grained sandstone, and closely spaced alternating layers of these materials.
20. There is a thin layer (0.4 ft) of coal at a depth of about 80 ft in the core from monolith 5.

Recommendations

21. It is recommended that the present length-change measurements be continued to determine how much expansion will occur under these conditions. It is further suggested that companion specimens be prepared for storage at 100 percent RH and about $75^{\circ} \mathrm{F}$ with periodic measurement to determine how much of the expansion is due to elevated temperature.
22. "Disintegration of Concrete from Tuscaloosa Lock and Dam,"
U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss., Aug 1949.
23. The Rock Color Chart Committee, National Research Council, RockColor Chart, Washington, D. C., 1963.
24. U. S. Army Engineer Waterways Experiment Station, CE, Handbook for Concrete and Cement, with quarterly supplements, Vicksburg, Miss., Aug 1949.
25. Buck, A. D., and Mather, Katharine, "Concrete Cores from Dry Dock No. 2, Charleston Naval Shipyard, S. C.," U. S. Army Engineer Waterways Experiment Station, Miscellaneous Paper C-69-6, Vicksburg, Miss., Jun 1969.

Table 1
Length-Change of Concrete Cores from Monoliths 5 and 16 ,
Oliver Lock and Dam

Monolith	Specimen	Approz:imate Depth, ft	Length-Change at Ages Shown Below, \% (a) (b)						
			7-day	14-day	21-day	28-day	56-day	84-day	271-day
5	3	4	0.058	0.115	0.130	0.188	0.231	0.246	(c)
	4	31	0.066	0.085	0.123	0.132	0.132	0.142	0.160
	5	60	0.140	0.218	0.249	0.249	0.280	0.312	(c)
16	1	1	0.062	0.072	0.062	0.103	0.145	0.176	0.280
	2	25	0.034	0.079	0.079	0.090	0.113	0.102	0.135

(a) All values are positive.
(b) Values in Reference 1 for three specimens from Monolith 5 showed that it took from 11 to 80 days to expand from 0.06 to 0.08 percent. The specimens did not show additional expansions when measurements were stopped at 1 year.
(c) Not determined.

Log of 4-in.-Diameter Core No. MOB-4 CON-15 (Concrete) and MOB-4 DC-1 (Rock) from Pliver Lock and Dam Monolith 5* (Land Wall)
ll, ft Depth, ft

140

Location: Sta $0+01.5 \mathrm{~B}$
27.5 ft from face of chamber wall

Coarse aggregate: Natural gravel (chert, quartzite, and quartz). Maximum size about 1-1/2 in.

Fine aggregate: Natural sand

Alkali-silica reaction gel in voids and on broken surfaces. Rims on some aggregate particles. Some chert is badly cracked. Evidence of reaction decreases with depth.

No lift contacts are evident.
01d break Old break

New break
Old break
P - Petrographic sample
$\Delta \mathrm{L}$ - Length-change sample
Gel is evident on the new breaks

Vertical scale:
$0.2 \mathrm{in} .=1 \mathrm{ft}$
No horizontal scale.

New break End box 1 Box indicates depth is 6.5 ft

New break
*Note: The first 63.1 ft is concrete (MOB-4 CON-15).
The rest is foundation rock (MOB-4 DC-1).

Depth, ft
32

New break
New break
End box 5

36

New break

New break

New break
About 12 in. of honeycomb
Loose rock

Loose rock

New break
New break

New break
End box 6

Depth, ft

50

End box 8

New break
01d vertical crack between
53.3 and 54.3

54
New break

New break
New break New break

Depth, ft

62

Tight contact of concrete with blackish shale foundation rock. Rock is flat lying interfingered black shale and gray siltstone.

Depth, ft

64

66

68

70

Same rock. Top 0.3 ft intact. Remainder split into thin layers.

End box 10
Intact flat lying rock from 64.7 to 66 ft . The rock is thin bedded interfingered black shale and gray siltstone.

Intact rock generally as above 66 to 66.7. Zones of shale and siltstone starting to show.

Thin layered shale and siltstone.

As above.

As above
68.5 to 66.2 . Top half largely siltstone with thin seam (about $1 / 4$ in.) tan clay at 68.7 . Bottom half is thin bedded as above.
66.2 to 66.6. Upper two-thirds siltstone. Remainder thin bedded as above.
66.6 to 70.3. Top half thin bedded shale and siltstone. Remainder is siltstone.
70.3 to 70.6 . Zoned shale and siltstone. 70.6 to 71 . Zoned shale and siltstone.

71 to 71.5. Siltstone with about 1/4-in. seam of tan clay near bottom of piece.
71.5 to 72.3 . Essentially all siltstone with scattered thin stringers of tan clay.

End box 11
72.3 to 72.6 . Largely siltstone with thin stringers of black shale.
72.6 to 73.2 . Siltstone with thin stringer of coal. Healed vertical crack.
73.2 to 73.7. Siltstone with some thin stringers of clay and shale.
73.7 to 74.2 . Black shale with some tan clay.
74.2 to 75.2. Intact flat bedded black shale with small areas of tan clay.
75.2 to 76 . Same as above piece.

76 to 76.7. As above piece.
76.7 to 77.2 . Top 0.2 ft interfingered thin bedded shale and siltstone.as before. Bottom portion is shale.
77.2 to 78. B1ack shale

78 to 78.8. Same as above piece.
78.8 to 79.4. Essentially as above; becoming thicker bedded. Crack at 79 ft .

Same as above.

End box 12

Depth, ft

Depth, ft

87.8 to 88.2 . As above piece.

As above piece. One thin stringer of coal 0.3 from top of piece.

Thin bedded black shale.

As above. Thin seam of siltstone near top of piece.

End box 14 End of hole

NOTE: The breaks in the foundation rock appeared to be new.

Log of 4-in.-Diameter Concrete Core No. MOB-4 CON-16
from Oliver Lock and Dam Monolith 16 (Land Wa11)

Location: Sta $4+31 B$ 27.5 ft from face of chamber wall

Same aggregate as in monolith 5.

The concrete shows white gel due to alkali-silica reaction.
New break
New break
New break
Portion of hollow pipe, about 2-in. diameter New break

New break
01d break
01d near vertical crack

Fragmented

End of vertical crack
New break
New break

Lift contacts were not evident.
P - Petrographic sample ΔL - Length-change sample

Vertical scale:

$$
0.2 \mathrm{in} .=1 \mathrm{ft}
$$

No horizontal scale.

01d break

Honeycomb area

New break End box 1
Pieces in the interval from 6.9 to 20.7 were sealed in wax. They were not opened.

Depth, ft

Top 62.3 ft of core is concrete. Not examined.

Location of hole. 4.75 ft downstream from dam face, 7.5 ft south of North Abutment.

Elevation at top of hole 124 ft .
Summary of foundation rock. 10.1 ft of grayish shale that appears to become blacker and more compact with increasing depth. 1.9 ft of alternating thin layers of shale and fine-grained sandstone.
2.8 ft of fine-grained sandstone. 1.1 ft of blackish shale.
0.9 ft of interlayered shale and sandstone as above. $\overline{16.8} \mathrm{ft}$ total

Thin seams (<0.1-ft thick) of coal at 63.1 and 63.7 ft .

Foundation rock starts at 62.3 ft

Vertical scale: 1 in. $=1 \mathrm{ft}$ No horizontal scale. P - Petrographic sample taken.

Rock is shale from 62.3 to 72.4 ft .
$0.05-\mathrm{ft}$ coal at 63.1 ft .

Seam of coal at 63.7 ft .

Depth, ft

All shale on this sheet

Bottom of Box 10

Vertical break, 70.8 - 71.0, probably old.

Page 2 of 3

APPENDIX G
field drilling logs

Hole No Mionelith 5

Hole No. Manolith 16

Hole No. Nererolit'ices

Hole No. MOnolith 72

In accordance with ER 70-2-3, paragraph $6 c(1)(b)$, dated 15 Pebruary 1973, a facsimile catalog card in Library of Congress format is reproduced below.

McDonald, James E

An investigation of concrete condition, William Bacon Oliver Lock and Spillway, by James E. McDonald tand, Roy L. Campbell. Vicksburg, U. S. Army Engineer Waterways Experiment Station, 1977.

1 v . (various pagings) illus. 27 cm. (U. S. Waterways Experiment Station. Miscellaneous paper C-77-5)

Prepared for U. S. Army Engineer District, Mobile, Mobile, Alabama.

Includes bibliography.

1. Alkali-aggregate reaction. 2. Concrete cracking.
2. Concrete deterioration. 4. Condition survey.
3. Navigation locks. 6. Overflow spillway. 7. Repair and rehabilitation. L. Campbell,- Roy L., joint author. II. U. S. Army Engineer District, Mobile. (Series: U. S. Waterways Experiment Station, Vicksburg, Miss. Miscellaneous paper C-77-5) TA7.W34m no.C-77-5

[^0]: * To obtain Celsius (C) temperature readings from Fahrenheit (E) readings, use the following equation: $C+(5 / 9)(F-32)$. To obtain Kelvin (K) readings, use: $K=(5 / 9)(F-32)+273.15$.

[^1]: * Parentheses around station numbers indicate that these stations were established in 1955 .
 ** No readings obtained at this station in 1953 and 1954.
 + Cracks up to 1 in wide were observed in Monolith 20 in 1963.
 No readable signal obtained

[^2]: (I) R. A. Fisher, Statistical Lethods for Research Workers, G. E. Stechert, 1946, pp 85-39.

