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FOREWORD

This report is based on a thesis prepared by Mr. Robert W,
Crisp of the Concrete Divigion of the U. S. Army Engineer Waterways
Experiment Station (WEBS) in partial fulfillment of the requirements
for the degree of Master of Science in the Department of Civil
Engineering, Mississippi State University.

The investigation was conducted at the Concrete Division, WES,
from June 1970 to September 1970. Mr. C. R, Hallford performed the
petrographic analysis.

Directors of the WES during the conduct of the inveatigation
and the preparation and publication of this report were COL Levi A.
Brown, CE, and COL Ernest D. Peixotto, CE. Technical Director was

Y¥r. F. R. Brown.
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CHAPTER 1

INTRODUCTION

Background

Efforts exerted over the past several years to develop tech-
niques and standards to allow for the competent design and con-
struction of engineering structures in rock have led to the estab-
lishment of several particular mechanical rock properties in positions
of prominence. According to Obert (8)*, these "most important
physical properties for design purposes are density, Young'w moduluas,
compressive strength, and flexural atrength."

The determination of such phyaical properties, accomplished
through laboratory testing of samples of rock core and field testing
of portions of the in-situ rock mass, is, as a rule, quite time con-
suming and expensive. It is for thias reason that correlations of
physical properties of rock, and predictions of one property from an
already determined value of another property, should be tremendous
assets, provided the quality of the correlations is such that the
element of doubt regarding teat results and predicted properties is
not of a magnitude necessitating an increase in the factor of safety.

One particular situation in which such correlations iould prove

of value might be the site evaluation and selection program.

——————

*Numbers in parenthesis refer to references in the Bibliography.



Assuming several sites were being considered for a particular struc-
tural endeavor, preliminary elimination might well be facilitated if
one or two of the less time consuming and less expensive phyaical
testa would yield data from which one could reasomably predict other,
more difficult to determine, physical properties to be used in the
evaluation and elimination process. It is also possible that corre-
lations such as these, if of sufficient quality, would allow for
reduction in the variety of tests required to determine the physical
properties now deemed necessary for competent design and construc-
tion in rock media.

Another significant application of physical property correle-
tions might be the elimination of some destructive physical testing,
to be replaced by nondestructive testing. As indicated by Obert (8),
nondestructive tests can be repeated a number of times on the same
specimens, facilitating determination of and compensation for pro-
cedural and instrument errors. Thias would allow one to separate the
variations due to instrument error from the variations due to actual

differences in mechanical properties of the specimens tested.

Previous Studies

In the past, laboratory investigations and correlations of
pbysical properties of rock have generally been limited to intact
specimens, i.e., rock cores which are macroscopically homogeneous
and free of discontinuities such as seams, joints, fractures, and in-
clusions. However, even when these investigations have been restric-

ted to intact rock, thus eliminating the highly variable fracture



parameter, data plots have froqﬁontly been highly scattered in nature
resulting in cerrelatiens of questionable value.

Usually, investigations of this nature have encompassed many rock
types (3) (4) (8) (7), the determined physical properties for all
Fock types being lumped together and analyzed in wmass. This procedure
is oriented toward determining general relationships characteristic
of the entire group of specimens examined. But the implication here,
Bamely that large variations in mineral composition, geologic hiatory,
and grain size (which usually enter into the classification of rock
materiala) have little or no effect on the relationshipa between
physical properties, is dubious (10).

Thus, a definite need exists to investigate the relationships
between various rock properties, focusing attention on individual
rock types in an attempt to reduce the number of variables and elimi~
Date some of the scatter typical of previous investigations. Hope-
fully, the resulting correlations will be of a quality which will
allow for the elimination of repetitive testing and data reductionm,

faciliteting more economic design of engineering structures.

Objectives of This Investigation
This study will be prirarily directed toward determining the

influence of variation in rock type on the quality of correlations
obtained through linear correleation analysis of various physical rock
Properties. An attempt will also be made to determine the effect of
variation in grain size within s particular rock type on the nature

°f the correlations between physical properties determined for apeci-

Mens of this rock type.



Specimens of tonalite and granite will be prepared and tested,

the following physical properties being determined:

(a) density

(b) compressional pulse velocity

(c) shear pulse velocity

(d) Young's modulus of elasticity (static)

(e) ultimate uniaxial compressive strength.
Pulse velocities will be determined according to the ASTM proposed
Standard Method of Test for Laboratory Determination of Ultrasonic
Pulse Velocities and Elastic Constants of Rock. Ultrasonic elastic
constants will be computed from properties 1, 2, and 3. Static
Young's modulus will be computed from stress—strain curves deter-
mined during uniaxial compressive teats. Representative specimens
vill be subjected to petrographic examination (X-ray diffraction
enalysis, modal analysis, etc.). In as far as is posaible, the
specimens of tonalite and granite will represent samples of various
grain sizes, and mineral composition will be veried within the limits
of the classification system (11). All specimena will be intact,
i.e., free of macroscopic discontinuities such as fractures, joints,
seams, and vesicles,

The dufa accumulated will be grouped and analyzed according to
rock type, and then, for comparative purposes, analyzed in maas. Cor-
relations will be made between various pairs of the physical prop-
erties determined. In particular, ultimate uniaxial compressive
strength and static Young's modulus will each be correlated with ul-
trasonic pulse velocities and the various ultrasonic elastic con-

stants. Comparisons will be made of the quality of correlationa ob-

L



tained from the data grouped ucéording to rock type and from the
data treated in their entirety, and an effort made to determine the
influence of data analysis by rock type on quality of the correla-
tions obtained.

Correlations will be made using physical properties determined
for three groups of specimens within one particular rock type
(tonalite). These three groups will be easentially of the same
mineral composition and geologic history, the variable being grain
size. The intention will be to evaluate the contribution of vari-
stion in grain size to the nature of the physical property correla-

tions obtained within the particular rock type.



CHAPTER 2
EXPERIMENTAL TECHNIQUE

General
Seventy-nine samples of rock core representing two rock types
(granite and tonalite) were prepared and tested in the course of
- this investigation. Tﬁesegapecimens were removed from 10 drill sites
in 8ix geographic localities. Generally, eight specimens of one par-
ticular rock type, either granite or tonalite, were selected from the
core from each of the drill sites. All specimens tested were intact
(contained no macroscopic joints or fractures) and essentially homo-
geneous NX-size (mominal 2-1/8-inch diameter) cylindrical cores.
Teasts were conducted during this investigation to determine the
following:
(a) rock type and mineral compoaition
(b) bulk demsity
(¢) ultrasonic pulse velocities (compressional and shear)
(d) ultimate uniaxial compressive strength
(e) static stress—strain relations.
Ultrasonic elastic constants were computed from measured ultrasonic
pulse velocities and specific gravities. Static Young's moduli were
determined from the axial stress-strain relations observed and re-

corded during the uniaxial compreassive tests.

6



Petrographic Examination

One representative specimen from each of the 10 groups (10 drill
sites) was selected for limited petrographic examination. These
Specimens were sawed axially, one sawed surface of each specimen
being polished and photographed at normal size.

Composite samples were taken from the remaining portions of the
8elected specimens, and ground into a fine powder so as to pass a
No. 325 sieve (44u). X-ray diffraction patterns were made of each
sample., These patterns were then examined to make mineralogical
identifications and comparisons. Small portions of each of these
powdered samples were tested in dilute hydrochloric (HC1) acid and
with a magnetized needle to detect the presence of carbonate min-
erals and magnetic minerals, respectively. All X-ray patterna were
made with an XRD-5 diffractometer using nickel-filtered cooper
radiation.

Thin sections were prepared from each specimen and examined with
& Spencer polarizing microscope. A point-count modal analysis was
made on each thin section to determine the mineral composition by
Percent and grain size (13) of each of the rocks represented. The
number of counta per section was held constent (500), but spacing of
the counter was varied with grain size in an attempt to obtain a
representative statistical average (2).

A summary of the results of the petrographic examination of
representative samples from each of the 10 groups of core is given
below. Detailed results are given in Appendix 1.

(a) Tonalite (Vermilion granite formation, Minnesota). Brownish-

gray, medium— to coarse~grained. Sections were massive and

7



unwveathered. Biotite was broken and altered to chlorite. Micro-
cline vas unaltered and unbroken. Very few microfractures were
detected.

(v) Granite (Lucerne Pluton, Maine). Black and vwhite. Coarse-
grained porphyritic texture. Biotite was unaltered. Plagioclase
wes slightly altered to sericite. Specimens were unweathered and
contained very few microfractures.

(c) Granite (Granite Mountains Uplift, Wyoming). Unweathered,

_ brownish-gray, cosrse-grained. Microcline was unaltered. Plagio-
clase was altered to sericite. Biotite was slightly altered to
chlorite. MNicrofractures were somevhat common.

(d) Tonalite (Sierre Nevada Batholith, California). Fine-grained,
dark colored rock. Sections were fresh and conteined no macro-
fractureas. Contains principally plegioclase feldspar and biotite
mica with smaller amounts of quartz and hornblende.

(e) Tonalite (Sierra Nevada Batholith, California). Medium- to
coarse-grained igneous rock. Sections were fresh and intact. Simi-
lar in composition to fine-grained rock discussed above.

(£) Tonalite (Sierra Nevada Batholith, California). Medium-
grained igneous rock; much finer grained than medium- to coarse-
grained tonalite (e). Similar in mineral composition to the two
tonalites discussed immediately before (d and e) except slightly more
biotite and slightly less hornblende. Also contains very small
aﬁounts of magnetite.

(g) Granite (Northwest of Lome Grove Pluton and Enchanted Rock

Batholith, Texas). Medium—grained, red granite. Sections were

8



intact and unweathered. Slight'ultorction of microcline and plagio-
clase. More muscovite mica present than biotite mica.

(h) Granite (Sherman Granite Facies of Southern Laramie Range,
Wyoming). Coarse-grained, light-gray granite. No preexisting frac-
ture surfaces could be detected. Largely composed of quarts, potas-
sium feldspar, plagioclase feldspar, and biotite, with lesser amounta
of hornblende.

(i) Grenite (Laramie Range, Wyoming). Medium- to coarse—grained,
Pink granite. Porphyritic texture. Sections were macroacopically
free of fractures and were unveathered. Predominately composed of
quartz, plagioclase feldapar, potassium feldaspar with lesser amounts
of hornblende biotite and chlorite.

(3) Tonalite (Cedar City Tonalite, Utah). Medium-grained, gray
tonalite., Consisted primarily of plagioclase feldspar, quartz, and
hornblende with lesser amounts of potassium feldspar, biotite, and

magnetite. Biotite was slightly altered to chlorite.

Specimen Preparation

Test specimens were prepared as suggested in the ASTM proposed
"Standard Method of Test for Unconfined Compressive Strength of Rock
Core Specimens" and Corps of Engineers Standard Method of Test for
Triaxial Strength of Undrained Rock Core Specimens (12), CRD-C 147,
When prepared according to the above specifications, specimen toler-
ances were well within the limits required by the ASTM proposed

"Standard Method of Test for Laboratory Determination of Ultrasonic

Pulge Velocities and Elastic Constants of Rock.



All samples were cut to lengths of approximately 4.32 inches
with a Covington (Figure 1) alab saw (16~inch diameter diamond
blade). This specimen length wes selected in order to meet the
specified length to diameter ratio requirements (2.0 < L/D < 2.5).
Since specimen diameter ranged from 2.06 to 2.16 inches, probably
due to variation in rock type, bit wear, and drilling techmique,
the actual length to diameter ratios also varied slightly, but were
in all cases greater than 2.0 and less than 2.5.

During the cutting process, specimens were secured in a vise
(Figure 2) which aided in alignment and provided for cutting sur-
fiacgsgngg:lyApetpendiculdt to the axis of the core. A molution of
water and soluble oil was used as blade lubricant and coolant, All
specimens were thoroughly washed immediately subsequent to cutting
to remove any solution which might adhere to the specimen surface.
Feed rate was adjusted such that one cut across a diameter required
approximately 15 minutes.

After cutting, the ends of all specimens were ground amooth,
parallel to each other, and perpendicular to the axis of the core
with a Norton hydraulic surface grinder (Figure 3). This surface
finishing wes purasued in such a manner that npeéimen ends were flat
to within 0.001 inches and did not depart from perpendicularity to
the axis of the core by more than the allowable 0.0l inch in
2 inches (0.25 degreol). Subsequent to grinding, the specimens were
again thoroughly washed to remove any of the oil-water grinding wheel

coolant solution from the core surfaces.

10



i ' .

Figure 1, Diamond Blade Slab Saw.
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Figure 2. ’Viku?'l‘yp& Specimen Carriage For Diamond Blade Slab Sav.




i

Figure 3. Hydraulic Surface Grinder.
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Bulk Density
Bulk densities were determined according to U. S. Army Engineer

Waterwvays Experiment Station, Concrete Diviaion "T-2 Method of
Determining Bulk Density of Rock Cores." The test procedure con-
sisted of:

(a) wash the core to remove dust and other coatings from the
specimen

(») air dry the specimen to constant weight, and weigh
air-dried specimen to nearest 0.1 gram

(c) determine volume of specimen by liquid displacement in
s pycnometer chamber (Figure 4) containing distilled water

(d) calculate the density of the core in the air-dried con-

dition from the following formula:

Wo
o= Vo

G
vhere
G, = density of the air-dried core
Wo = weight of the air-dried core in grams
Vo = volume of the core in cubic centimeters.

Temperature of the distilled water in the pycnometer chamber was
teken into account when the volumes of the specimens were determinmed.
In this investigation, densities were computed from air-dried
specimens rether than oven-dried specimens to avoid possible changes
in physical properties due to oven—drying as have been observed in
several previous studies. Obert (9), noted that oven-drying often
produced pronounced end sometimes drastic changes in elastic con-

stantas, and that theae changes were frequently permanent.



Figure 4. Pycnometer Chamber.




Ultrasonic Pulse Velocities

Ultrasonic pulse velocities were determined according to the
ASTM proposed "Standard Method of Test for Laboratory Determination
of Ultrasonic Pulse Velocities and Elastic Constants of Rock." This
method is valid for determination of compressional and shear wave
velocities in both isotropic and anisotropic media.

Barium titanete crystels and PZT-5A high capacitance lead-
zirconate-titanate crystals were used to produce compressional and
shear pulses, respectively. These pulses were produced by applying
ghort duration, high voltage pulses to the appropriate crystals,
resulting in compressional or shear pulses, whichever the case may
b;, being generated in the specimen. The high voltage pulses,
when applied to the X-cut barium titanate crystal, caused the
crystal to expand and contract yielding compressional siress pulses,
whick were transmitted to one end of the specimen. when epplied to
the Y-cut lead-zirconate-titanate crystal, the pulses caused the
shear crystal to vibrete in a direction perpendicular to the axis of
the core creating shear pulses which were transmitted to one end of
the specimen, The arrival of the pulses at the other end of the
specimen were noted by a companion crystal affixed to that end, which
acted as & mechanical-electrical transducer and generated equivalent
electrical pulses. Pureline white petroleum jelly and phenyl
salicylate were used respectively, between the compressional trans—
ducers and the rock specimens, and between the shear transducers
and the rock specimens.

These electrical signals were recorded on an oscilloacope

(Figure 5) as stationary wave forms, which allowed rather accurate

16



Figure 5. Equipment For Measuring Ultrasonic Pulse Velocities.




measurement of the time of travél of the pulses through the in-
dividual specimens. .Stationury wvave forms, as displayed on a
Hewlett-Packard model 1780-A oscilloscope, were photographed

(Figure 6) and pulse travel times read directly from the time marked
photographs. These times were corrected to eliminate error due to
pulse travel time through the transducer leads, transducers, and
transducer—-specimen connection materiels (petroleum jelly or phenyl
salicylate), thus, yielding pulse travel times through the rock core
specimens above. Compressional and shear velocities were then

determined from

L L
Vp 8":;' and v. = t.

Vp = compressional pulse velocity
Vg = shear pulse velocity
tp = travel time of the compressional pulse through the
specimen alone
tg = travel time of the shear pulse through the specimen alone
L = length of the specimen.
Al]l compressional and shear pulse velocities determined in this

investigation were measured with zero load on the specimens,

Stetic Axisl Stress-Strain Messurements

To determine axial static stress-strain relations, Baldwin-
Lima-Hamilton SR-4, Type A3-S-6, electrical resistance strain gages
vere affixed vertically to opposite sides of each apecimen, The

goges were located in a manner such that the midpoint of the

18



Shear Pulse

Compressional Pulse

Figure 6. Typical Photographs of Ultrasonic Wave-Forms As Dis-
played on Hewlett-Packard Oscilloscope.
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resistance segment was at midheight of each specimen. The gage
length was 13/16 inches, such that no portion would be effected by
the nonuniform stress distributions noted by Fairhurst (5) to exist
over the upper and lower 1/12 length of each specimen, i.e., the
uppermost and lowermost 1/3 to 1/2 inches for all specimens used in
this study.

All gages were bonded directly to the rock specimens by using
SR~4 cement, a fast drying nitro-cellulose cement meanufactured by
Baldwin-Lima~Hamilton for the expreas purpose of application of SR-4
bonded strain gages. Prior to application of the cement, specimen
surfaces were cleaned to remove substances such as oil or dust which
might impede development of a secure bond between the specimen and
gege. A thin coat of cement was then applied both to the specimen
and to the gage, after which the gage was mounted under moderate
preasure and allowed to dry for 24 hours.

To determine stress—-strain relations, the two gages were wired
in series resulting in an output of the average strain registered
by the two gages. Stress and strain were continuously plotted
during the uniaxial compressive test by using o Moseley Autograf
x-y recorder. A photograph of the recording equipment is given in

Figure 7.

Uniaxial Compressive Test

All specimens were subjected to static compressive loading to
determine axial stress-strain relations, as previously mentioned,

and to determine ultimate uniaxial compressive strengths.



BB e i

Figure 7. Moseley Auﬁokgru.f‘, ‘x-'ykRecordar and Other Stress-Strain
~ Recording Equipment
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A 440,000-pound universal, Baldwin hydraulic felting machine was
used for loading the specimens. A photogreph of this machine is
given as Figure 8.

This test was conducted according to the ASTM proposed Standerd
Method of Test for Unconfined Compressive Strength of Rock Core
Specimens. All specimens were carefully aligned so that the axis
of each core tested was coincident with the center of thrust of the
spherically seated bearing block. 4n initial seating load of approx-
imately 100-200 pounds was applied very slowly while the aspherical
seated bearing block was adjusted. All tests were conducted at a
dlouding rate of 35 4+ 15 psi per second (conatant for & perticular
specimen) a0 that catestrophic failure occurred within 5 to 15
minutes of commencement of loading. As noted by the proposed
standerd, such a rate of load should provide velues of ultimate
uniaxial compressive strength which are relatively free from the
effects of rapid loading.

Ultimate uniaxial compressive strengths were calculated by
dividing the maximum loed cerried by the specimen during the test
by the average initial cross—sectional area of the apecimen deter-
mined as suggested in the ASTM proposed standard. All atrengths

were expressed to the neareat 10 psi.

N
o
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Figure 8. Baldwin 440,000-pound Universal Testing Machine
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CHAPTER 3

PRESENTATION AND DISCUSSION OF RESULTS

General

Physical properties of the various granite and tonalite speci-
mens tested were determined according to the procedures discussed
in Chapter 2 and are presented in tabular form in Tables 1 and 2.

The—a%atichnlugs‘of Young's moduli are tangent moduli of
elasticity and were computed at 50 percent of ultimate uniaxial
compressive strength. Static Young's moduli were determined for o
minimum of six specimens from each drill site represented (ten
sitea), thus exceeding the optimum number of four specimens and
minimum number of three recommended by the Bureau of Mines (1) for
adequate eveluation of this particular property within a represen-
tative group of specimens.

Ultrasonic elastic constants were computed from individual
velues of density, ultrasonic compressional pulse velocity, and
ultrasonic shear pulse velocity which were determined for each speci-
men by procedures as discussed in Chapter 2. The equations used in
the computation of ultrasonic elastic constants are as follows:

2 2 2
oVa"(3Vp~ - 4V,")

Vo2 - v,2

(1) Edyn -

2
(2) Gayn = oV4
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L9869

Specimen

No.

la
2a
3a
4a
Sa
Sa
Ta
8a

le
2e
de
4e
Se
e
Te
8e

1f
2f
af
4f

TABLE 1

Physical Property Test Results

Ultimate
Uniaxial Static
Petrographic Compressive Young's Ultrasonic Pulse Velocities
Description Strength Modulus fps
* psi psi_x 10-6 Compressional Shear

Tonalite (a 29,200 10.0 16,160 9,190
Tonalite (a 24,400 -k 15,240 8,830
Tonalite (a 25,200 — % 16,200 8,860
Tonalite (a 23,000 9.6 16,240 &,830
Tonalite (a 27,400 10.0 16,160 8,120
Tonalite (a 24,600 9.3 14,180 8,550
Tonalite ga. 20,800 10.0 15,960 8,950
Tonalite (a 20,6800 10.0 16,090 9,080
Tonalite (e 22,500 7.4 15,650 8,570
Tonalite (e 21,700 7.8 15,400 8,050
Tonalite (e 17,800 7.6 15,180 8,570
Tonalite (e 20,400 6.9 12,900 7,670
Tonalite (e 14,200 -k 14,790 8,030
Tonalite (e 20, 500 6.9 12,860 7,670
Tonalite (e 15,400 6.1 14,830 8,090
Tonalite (e 17,500 6.9 17,860 9,350
Tonalite (f 22,900 8.3 15,900 8,690
Tonalite (f 24,000 8.3 14,590 8,590
Tonalite (f 24,200 8.1 13,540 8,280
Tonalite (f 24,300 7.8 13,430 8,070

*Correaponds to petrographic descriptions given in Chapter 2, pages 7-9.
**xStatic Young's moduli not determined for these specimens.



TABLE 1 (Cont'd)

Ultimate
Uniaxial Stutif
Petrographic Compressive Young's Ultrasonic Pulse Velocities
Specimen Description Strength Modulus fps
No, ( )+ psi psi x 10-6 Compressional Shear

5f Tonalite (f 23,600 8.6 14,880 8,510
6f Tonalite 2f 22,600 7.8 16,240 8,990
1f Tonalite (f 24,600 8.3 14,710 8,450
8f Tonalite (f 24,500 ~—kk 13,510 7,760
1d Tonalite gd 36,400 11.4 20,180 10,570
2d Tonalite (d 47,200 11.8 20,120 10,590
3d Tonalite (d 20,800 9.8 19,050 9,900
4d Tonalite (d 43,200 11.6 20,1790 10,700
5d Tonalite (d 45,500 11.6 21,160 10,870
8d Tonalite (d 43,900 11.9 20,510 10,620
1d Tonalite (d 45,700 11.9 20,460 10,650
1i Tonalite (i 9,800 4.2 12,590 6,560
2i Tonalite (i 18,900 5.3 12,340 6,790
3i Tonalite (i 15,100 4.7 12,230 6,650
4i Tonalite (i 17,800 5.4 12,750 6,730
5i Tonalite (i 12,500 4.3 12,610 7,050
6i Tonelite (i 19,000 5.6 13,240 7,080
7i Tonalite (i 12,300 4.5 12,860 8,950
8i Tonalite (i 12,800 4.4 13,020 6,890

*Corresponds to petrographic descriptions given in Chapter 2, pages 7-9.
**Static Young's moduli not determined for these specimens.



Lz

3h
4h

Petrographic
Deacription

*

Granite
Granite
Granite
Granite
Granite
Granite
Granite
Granite

Granite
Granite
Granite
Granite
Granite
Granite
Granite
Granite

Granite
Granite
Granite
Granite

SIS N NSNS TN NS P SN TN PN PN

FERD mmK KKK EN

O 00060000

Ultimate

Uniaxial
Compressive

Strength

psi

34,000
31,100
34,600
32,800
33,900
32,300
33,900
25,600

23,600
21,100
17,100
25,800
23,000
19,000
26,500
20,800

18,400
21,900
23,100
22, 200

TABLE 1 (Cont'd)

Static
Young's Ultrasonic Pulse Velocities
Modulus

pei_x 10~6 Compressional Shear
9.4 17,430 9,200
8.6 16,360 8,750
9.3 18,830 9,340
9.4 18,130 9,560
9.6 19,340 9,860
9.8 18,100 9,530
9.6 17,430 9,200
10.0 18,120 9,400
9.6 17,900 9,530
9.6 18,620 9,210
ek 18,040 9,690
10.2 17,860 9,450
10.0 18,350 9,630
10.3 17,800 9,720
9.6 18,270 9,580
—=k 18,510 9,820

- Yk 17,870 9,220
9.3 17,790 9,110
9.4 19,070 9,640
8.3 18,370 9,540

*Correasponds to petrographic descriptions given in Chapter 2, pages 7-9.
*Static Young's moduli not determined for these specimens.
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Specimen

No.

5h
6h
7h
gh

1b
2b
3b
4b
5h
6b
T
tb

13
23
33
4]
5]
6]
13
83

TABLE 1 (Cont'a)

Ultimate ,
Uniaxial Static
Petrographic Comprecsive Young*s
Description Strength Modulus
‘ g* psi psi x {Q:E
Granite (h 22,000 ek
Granite ﬁh 22,600 9.3
Granite (h 24,300 9.4
Granite (h 23,400 9.4
Granite (b 15,300 5.0
Granite (b 16,800 6.9
Granite (b 14,700 6.0
Granite (b 16,900 5.8
Granite (b 14,700 6.0
Granite (b 15,000 5.4
Granite (b 17,600 5.1
Grenite (b 14,900 5.4
Granite (j 13,100 7.8
Granite (j 15,000 8.3
Granite (j 13,000 7.4
Granite (j 13,500 7.6
Granite (j 13,400 8.3
Granite (j 13,100 7.8
Granite (j 11,600 7.6
Granite (j 12,400 1.4

Ultrasonic Pulse Velocities

fps
Compresaional Shear
18,530 9,630
17,370 8,970
17,900 9,180
18,320 8,930
10,950 1,070
11,390 7,000
11,700 17,290
1¢,940 7,310
10,880 7,490
9,870 6,870
10,070 €,500
11,100 7,370
17,180 8,260
16,780 8,680
16,880 8,500
17,090 8,670
18,480 9,340
17,180 8,570
18,130 9,070
17,070 8,670

*Corresponds to petrographic descriptions given in Chapter 2, pages 7-9.
**Static Young's moduli not determined for these specimens.
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Computed Ultrasonic Properties
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TABLE 2 (Cont'd)

Ultrasonic
Poiason's
Ratio

Ul trasonic Moduli, psi x 10~5

Specimen

Bulk

e t—

Young's

No.

Shear
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TABLE 2 (Cont'd)

Ultrasonic
Poisson's
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Ul trasonic Moduli

Young's

Specimen

Ratio

Shear

Bulk

No.
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3
i v, 2 _ gv,2
vdyn = 2
yn ( 2 _ vl )
where
Edyn = ultrasonic Young's modulus of elasticity in psi
Gdyn = ultrasonic shear modulus or modulus of rigidity in psi
Kd = ultrasonic bulk modulus in psi
yo
v = ultresonic Poisson's ratio
dyn

P = density in pound—aecond2 per inch4
V, = ultrasonic compressional pulse velocity in inches per
second
V' = ultrasonic shear pulse velocity in inches per second.
The number of specimena for which these constants were determined in
all cases exceeded both the minimum and optimum number of tests per
group (3 and 6, respectively) recommended by the Bureau of Mines (1),
Typical modes of failure exhibited by the seventy-nine rock core
specimens tested in uniaxial compression are illustrated in the
photographs in Figure 9. Explosive type failures yielding the
fragments illustrated in Figure 9(&) were typical of failures in the
stronger tonalites, i.e., those yielding ultimate uniaxial compres-
sive strengths greater than 35,000 psi. The conical type failure
surfaces illuatrated in Figure 9(b) were typical of the nature of
failure exhibited by the remainder of the specimens tested.
In order to evaluate the linear degree of association between

the various pairs of physical properties of interest in this inves-

tigation, correlation coefficients were computed for each of the

32
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a. Twoical Exwlosive Tyone Failure Surfaces

b. Typical Conical Type Failure Surfaces

Figure 9., Typical Failures of Rock Cores in Uniaxial Compression
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groups of data. A least-squares line was also fitted to each data
group, the intention being to give a visual representation of the
degree of linear correlation between the particular physical prop-
erties of interest.

The correlation coefficient (r) is a measure of the degree of
interdependence between the particular veriables under study, with
a coefficient of 1.0 or -1.0 indicating a perfect association, i.e.,
a perfect straight line relation, and a coefficient of 0.0 indi-
cating no relation whatsoever, a completely random association.

The algebraic sign of the correlation coefficient reflects only the
slope of the relationship, i.e., whether there is a trend toward
increase or decrease in magnitude of one variable accompanying an
increase in the magnitude of other variables.

Once the correlation coefficients for the various groups of
data were determined, it remained to evaluate the significance of
these correlations, i.e., determine the probability of getting a
correlation coefficient as large as the onme actually obtained from
the statistical sample if, in actuality, no correlation of this
nature existed in the universe from which the statistical sample was
taken. In this study, the probability level used to determine the
minimum magnitude of a significant correlation coefficient for a
given statistical sample size was 0.995. Thus, there would be only
a 0.5 percent probability of obtaining a correlation coefficient of
a magnitude greater than or equal to the predetermined value from a
statistical sample teken from a universe in which no correlation of

this nature actually existed. A table of critical values for

3k



correlation coefficienta corresponding to this chosen probability
level and the various atatistical sample sizes used in this study
is presented as Appendix II.

The actual mathematical determination of the individual corre-
lation coefficients and equations for least-squares lineas was, for

each data group, performed on a General Electric 400 computer.

Discusaion of Correlations

The remaining portion of this chapter will conasist of the pre-
sentation of scatter diagrams (data plots) representing the various
physical property correlations attempted. For each pair of physical
properties examined, four data groups were arranged and correlated.
These groups were comprised as followa:

Group 1; All tonalite specimens tested from the Sierra Nevada
Batholith, California.

Group 2: All tonalite specimens tested.

Group 33 All granite specimenas teated.

Group 4: All specimens tested.

Thus, for each pair of physical properties discussed, there will be
four scatter diagrams, one for each group.

The correlations and scatter diagrams resulting from analysis
of the data yielded by specimens comprising Group 1 (Sierra Navada
Batholith tonalites) were compared to those resulting from analysis
of the data yielded by the specimens compriasing Group 2 (all tona-
lites). The objective of this comparison was to evaluate the degree

of acatter which might be attributed to variation in grain sixe alone



within the particular rock type. Variation in percentage mineral
composition and geologic history were kept to a practical minimum
for the Group 1 date (al1 specimens come from three holes within
very close proximity of each other) and, for the Group 2 data, were
allowed to vary within the confines imposed by restriction to the
one particular rock type (tonalite). Therefore, close similarity
between the correlation coefficients and scatter diagrams yielded
for the two groups of data would suggest, for the particuler pair
of variables undgr consideration, that variation in grain size was
of primary importance in the determination of degree of scatter
typical of the association between those two phyiical properties for
that rock type. On the other hand, significant dissimilarity in
nature of the physical property correlations and correlation coef-
ficients (i.e., a larger amount of scatter and lesser degree of
linear association for the Group 2 data than for the Group 1 data)
would indicate, for the particuler pair of physical properties being
examined, that variation in grain size, as opposed to variation in
percentage mineral composition and geologic history as confined to
the limits imposed by the particular rock type, was of lesser
significance in the determination of the degree of scatter charac-
teristic of the particular rock property correlation in question.
The correlations and ascatter diagrams resulting from analysis
of the dats yielded by specimens comprising Groups 2 and 3 were
compared to those resulting from analysis of the data yielded by
specimens comprising Group 4 (all specimens in Groups 2 and 3 com-
binéd), the objective being to evaluate the effects of minimal vari-

ation in rock type on the nature of physical property correlations
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obtained for statistical data l;mplel involving more than one
igneous rock type. As data Groups 2 and 3 represented individual
rock types (tonalite and granite, respectively) while data Group 4
represented both rock types, significant differences in the quality
and orientation of the correlations determined for the three data
groups should indicate the effects of slight variation in rock type
on the nature of the resulting physical property correlations.
Moreover, since the granites and tonalites involved in this inves-
tigation were relatively homogeneous and isotropic intrusive igneous
rocks, and since the percentage mineral compositions of the two rock
types are not extremely removed from one another (11), the rock
property correlations determined for the data comprising Group 4
should indicate a reasonable maximum degree of linear association
and minimum degree of scatter to be expected for the particular
pairs of physical properties exemined and for a statiastical data
sample which includes specimens representing more than ome rock type.

Co Verasus Ultrasonic Pulse Velocities (Vp end V,). Scatter dia-
grams developed to illustrate the relationships between uniaxial
compressive strength and ultrasonic compressional pulse velocity are
presented in Figures 10 through 13. Figures 14 through 17 graph-
ically illustrate the relationships found to exist between ultimate
uniaxial compressive strength and ultrasonic shear pulse velocity as
determined in thias inveatigation.

The degrees of correlation characteristic of these two pairs of
physical properties (Co versus Vp and Co versus Vg) were noticeably
higher for the data yielded by the tonalite apecimens alone than for

the data yielded by the granite apecimens alone. In particular, the
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correlation coefficients (Table 3) (r) determined for the Group 2
tonalites were considerably larger than the corresponding critical
values (given in Appendix II), vhile the correlation coefficients
determined for the granites alone were only 0.44 and 0.49 for C,
versus Vb and Co versus Vg, respectively, low enough to be of
questionable significance.

When the date yielded by the tonalites and granites were com-
bined (for the particular pairs of physical properties) and examined
a8 a single data sample, the result, in both instances, was & rather
noticeable increase in scatter over and beyond the scatter typical
of either the granite or tonalite data alone. Also, while the
resulting correlation coefficients (for the Group 4 data) were
slightly higher than those yielded for the granite date alone, they
were substantially lower than the values determined for the tonalite
data alone, Thus the net effect, in these instances, appears to
have been a considerable sacrifice of quality of the better scatter
plots and physical property correlations (Group 2 tonalites) re-
sulting from the introduction of data exhibiting trends of a some-
vhat different character and lesser quality (Group 3 granites).

A comparison of the correlation coefficients (Table 8) deter-
mined for the Groups 1 and 2 tonalites and examination of the acatter
plots produced from date yielded by these two groups of specimens
revealed no significant differences in magnitude of the correlation
coefficients or quality of the scatter diagrams for either Cq4 versus
Vb or C, verasus Vg. Thuas, for these particular correlations, varia-

tion in grein sige, rather than substantial variation in percentage
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TABLE 3

Correlation Coefficients Obtained For Various Pairs
of Physical Properties

Correlation Coefficients Obtained For;

All
Sierra Granites
Nevada All All and
Physical Batholith Tonalites Granites Tonalites
Properties Tonalites Teated Teated Tested
Correlated (Group 1) (Group 2) (Group 8) (Group 4)
Co vs Vb 0.81 0.83 0.44 0.58
Co va V. 0.86 0.87 0.49 0.69
Co vs Edyn 0.86 0087 0.49 0071
. . 8 . ]
Co ve Gdyn 0.87 0.8 0.50 0.73
Co vs Kdyn 0.81 0.89 0.39 0.58.
C° va vhyn 0.49 0.20 0.33 0.24
E va V 0.88 0.86 0.80 0.86
tan P
E va V 0.92 0.92 0.91 0.22
tan 8
Y c9 [} .
Etun vs Edyn 0.92 0.90 0.90 0.90
L ] L ] 1' 0.9 [ 1
Etan vs Gdyn 0.93 0.9 0 0.9
Etun ve xdyn 0.88 0.79 0.85 0.80
. .11 .8 ')
Etan vs vdyn 0.58 0 0.80 0.45



mineral composition and geologic history as allowed within the con-
fines of the smpecific rock type, appeared to be the primary factor
contributing to the degree of scatter in the tomalite data plots.

Co Versus Ultrasonic Moduli (Egyp, Gdyns ond Kdyn)' Scatter
diagrams illustrating the general relationships existing between
ultimate uniaxial compreasive strength (Co) and ultrasonic Young's
modulus (Ejyn), ultrasonic shear modulus (Ggyn), and ultrasonic bulk
modulus (Kdyn) are given in Figures 18 through 29. Correlations and
date plots for comparable groups for each of the above three pairs
of variables w;re generally aimilar, probably a reflection upon the
similar origin of the various values of the three different ultra-
.sonic moduli (all were computed from values of ultrasonic shear and
compressional pulse velocities and specific gravities determined for
the individual specimens).

0f particular interest was the fact that no appreciable changes
in magnitudes of coefficients of limear correlation (un opposed to
the magnitudea of those values determined for Co versus V? and Cq
versus V') were effected by the use of ultrasonic elastic moduli inmn
correlations with ultimate strength instead of the easier to deter-
mine pulse velocities (previously discussed). While correlations
of ultimate uniaxial compressive strength (Co) with ultrasonic shear
modulus (Gdyn) yielded the highest correlation coefficients of any
of the correlations in which ultimate strength was involved as a
variable (0.87, 0.88, 0.50, and 0.73 for Groups i, 2, 3, and 4,
respectively), these coefficients were not sufficiently greater than

those yielded by correlations of ultimate strength with ultrasonic

L8
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shear pulse velocity (0.86, o.sé, 0.49, and 0.69 for Groups 1, 2, 3,
and 4, respectively) to alone justify the additional testing and com-
putation necessary to the determination of ultrasonic shear moduli.
This is not to say, however, that determination of ultrasonic elastic
moduli would be undesirable.

The same generel trends prevalent in the correlations discussed
previously (C, versus ALY Co, versus Vg) were also common to correla-
tions of ultimate astrength versus the various ultrasonic moduli. In
particular, both groups of tonalite data yielded correlation coeffi-
cients of similar magnitudes (Table 3) and scatter diagrams of a
similar nature. This apparently reinforces the previous indication
that variation in grain aize, rather than variation in mineral com-
position and geologic history as allowed within the confines of a
specific rock type, appears to be of primary importance in the de-
termination of the amount of scatter typical of correlations between
various properties of this particular rock type.

Furthermore, examination of the correlation coefficients and
scatter diagrams determined for the number 2, 3, and 4 data groups
indicated, for all three physical property comparisons invelving
ultimate strength and ultrasonic elastic moduli, that the correla-
tion of data for both rock types as a single statistical sample was
undesirable from the point of view that such a procedure resulted in
an unneceasary sacrifice in quality of the scatter'diugfum and de-
gree of correlation typical of the tonalite data alone without
yielding an accompanying acceptable increase in quality of the scat-
ter diagram and nature of correlation above those exhibited by the

granite data alone.



Co Versus vdyn‘ Scatter di;grunl illustrating the relation-
ships observed to exist between ultimate uniaxial compressive
strength and ultrasonic Poisson's ratio for the four data groups
used in this investigation are given in Figures 30 through 33.

Correlation coefficients determined for these data groups (Table
3), were in general, very low, and in all cases but one, were leas
than the critical values (given in Appendix II), indicating no sig-
nificant degree of linear association between the two variubleq.

The coefficients were 0.49, 0.20, 0.33, and 0.24 for data groups
1, 2, 3, and 4, respectively.

Figures 30 through.aa further indicate the lack of linear as-

" sociation between the two variables under exemination, and, in
addition, reveal that the higher of the four correlation coeffi-
cients owe their larger magnitudes solely to the presemce of a few
points (eight) of questionable velidity (unusually low values of
ultrasonic Poisson's ratio) without which these coefficients would
be even less significant.

E ., Versus Ultrasonic Pulse Velocities (Vb and V.). Figures
34 through 37 physically illustrate the relationshipa existing
between values of tangent Young's modulus of elasticity (static) and
values of ultrasonic compressional pulase velocity as determined in
this study. Figures 38 through 41 depict the relationships existing
between values of tangent Young's modulus and values of ultrasonic
shear pulse velocity.

Interestingly, the eight correlations (four data groups) deter-

mined for these two particular pairs of variables were all quite

62
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significant (correlation coefficients were much larger than the
corresponding critical values as given in Appendix II) and very
similar in nature, the quality and orientation of the relationships
determined for the granite data alone being very nearly the same aa
those determined for the tonalite data alone, for comparable pairs
of properties. This trend of similarity, which incidentally will be
observed to exist gemerally throughout the correlations of tangent
Young's modulus with the other various ultrasonic properties, was
somewhat of a reversal of the earlier trend noted for correlations
of ultimate uniaxial compressive strength with the various ultra-
sonic properties wherein the correlations for the granite rela-
tionships were frequently insignificant and noticeably inferior to
those of the tonalite data. This "change'" would appear to be a
significant indication that the factors which contribute to ulti-
mate uniaxial compressive strength characteristics and to the nature
of the values of tangent Young's modulus of elasticity typical of a
particular rock type do not neceasarily contribute to the same
properties of a similar rock type in the same manner.

A comparison of the ascatter diagrams and correlation coefficients
(Table 3) determined for the four groups of data representing each
pair of physical properties resulted in two additional general
observations; (1) correlations determined for the Group 1 and Group
2 tonalite data were similar both in orientation and degree of
scatter, reinforcing the previous indication that variation in grain
size within the particular rock type, rather than variation in
mineral composition and geologic history as allowed within the

confines of the specific rock type, was & primary influence upon the

&



degree of acatter typical of the data plots for this rock type, and
(2) amalgamation of the data for the tonalifes and granites into a
single group (Group 4) and ;orrelation of thia date as such yielded
a scatter diagram and correlation coefficient which were of a nature
and quality very similar to those determined for the parent data
groups (Groups 2 and 3). This would appear to indicate, for the
particular variables being examined, that such an amalgamation of
data for such geologically similar rock types would not necessarily
result in correlations of a quality substantially lower than the
correlations determined for data grouped and correlated by individual
rock type. _

Eian Versus Ultrasonic Moduli (Edyn’ Gdyn s Kdyn)- Scatter dia-
grams illustrating the general relationships found to exist between
tangent Young's modulus of elasticity (Etan) and ultrasonic values
of Young's modulus of elasticity (Egyn), shear modulus (Gdyn)’ and
bulk modulus (K4y,) are given in Figures 42 through 45, 48 through
49, end 50 through 53, reapectively.

Nature and degree of linear correlations obtained for correspond-
ing data groups yielded for all three pairs of variables were quite
similar, probably due, as was the case with ultimate uniaxial com-
pressive strength, to similarity in origin of the various values of
the three ultrasonic elastic moduli (Edyn’ Gdyn! and Kdyn)' All
were compnted from equations involving values of ultrasonic shear
and compressional pulse velocities and apecific gravities of the
individual aspecimena.

The physical property correlations determined for those pairs of
variables involving ultrasonic moduli were generally quite good.

76
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Correlation coefficients determined for two of these pairs (Etan
versus Egy, and Ei,, versus Gdyn) were among the highest yielded

by correlation of any of the pairs of variables examined during the
course of this investigation (Table 3). These two groups of corre-
lations were not sufficiently superior to those involving the easier
to determine values of shear and compressional pulse velocity, how-
ever, to alone justify the additional time and money which is
necessary to the computation of ultrasonic elastic moduli. This is
not to say, however, that computation of ultrasonic moduli might not
be desirable for purposes other than phyaical property correlations.

The general trends characteristic of the physical property
correlations discussed in the section immediately prior to this one
(Etan versus Vb and V.) were also noted to exist for these correla-~
tions. Specifically, degrees of correlation determined for the
Group 1 tonalite data groups were only alightly larger in magni-
tude than those yielded by the Group 2 tonalite data groupa for
corresponding pairs of physical properties, subatantiating previous
indications that variation in grain size, as opposed to significant
variation in mineral composition and geologic history as allowed
within the confines of a specific rock type, appears to be of pri-
mary significance in the determination of the degree of ascatter
typical of various physical property correlations within the par-
ticular rock type.

As was mentioned in the previous section, combination of the
data for both rock typea, granite and tonalite, into a single sta-
tiatical sample and correlation of this single mass of data did not,
for either of the three pairas of physical properties considered in

89



this section, result in an appr;ciable sacrifice in quality of the
correlations obtained for the granite data aione or the tenalite
data alone. Thus, for these pairs of physical properties and these
rock types, variation in rock type appeared to have no significant
effect on the quality of the correlations obtained.

Etan Vorlun\;dyn. Figures 354 through 57 graphically illustrate
the general lack of linear aasociation observed to exist between
tangent Young's modulus of elasticity and ultrasonic Poisson's ratio.

Correlation coefficients determined for this peir of variables
(four data groups) were, in most cases, appreciably larger than the
ones obtained for the plots of ultimate uniaxial compressive strength
" versus Poigson's ratio. Examination of the scatter plota {Figures
54 through 57), however, revealed no significant trends to exist
between the two variablea. The higher correlation coefficient
(yielded by the Group 3 data) had resulted solely from the location
of eight date points, in this instance, pointa of queationable
validity (values of Poisson's ratio were felt to be unreprolontative)
in a manner 80 as to give definite orientation to the least-squares
line without increasing the quality of the plot to one of actual
significance (See Figure 56).

Thus, as was the case with the correletion of ultimate uni-
exial compressive strength with ultrasonic Poisson's ratio, the
correlations determined for tangent Young's modulus of elasticity
versus ultrasonic Poisson's ratio were all of little or no practical

value from a property prediction point of view.
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CHAPTER 4
CONCLUSIONS AND RECOMMENDATIONS

Concluaions

Based upon results of the physical property tests conducted
during this inveatigation, and on linear correlations of the various
physical properties determined for these granites and tonalites, the
following conclusions appear justified.

(a) Variation in grain sigze rather than substantial varistion in
percentage mineral composition and geologic history as allowed with-
in the confines of the apecific rock type (tonalite) appears to be
the primary factor responsible for the degree of scatter typical of
data plots for the various pairs of physical rock properties exam-
ined for a specific intact rock type. It muat be kept in mind, how-
ever, that the two rock types used in this investigation were both
intrusive igneous rocks and were essentially of a homogeneous and
isotropic nature. Thus, the above conclusion should be restricted
basically te igneous rocks. It is felt that variation in geologic
history would have substantial influence on the degree of ascatter
typical ef rock property correlations for metamorphic and sedimen-
tary rocks, particularly where there are wide variations in angles of
inclination of planes of shistosity and sedimentation, and in

degrees of cementation and recrystalization.



(b) Variation in rock type ﬁppear- to have a generally unde-
sirable influence on the quality of the correlation obtained for
various pairs of rock properties. Where correlations between two
paerticular physical properties determined for various individual
rock types are quite different in degree of linear association, amal-
gamation of the smaller individual correlations into a single lerger
relationship inevitably results in a sacrifice of quality and use-
fullness of the good relationships due to introduction of date
exhibiting lesser degrees of correlation. This type of situation
was found to exist when the correasponding Group 2 and Group 3 cor-
relations which involved ultimate uniaxial compressive strength aa
. -one -variable wer feomﬁinadfandfe¥alueiedAal single groupa (Group 4).
A similar gituation would result if the various physical proeperty
correlations for the individual reck types were of a differing
nature (inclination or orientation) such that amalgamation of the
individual correlations for a single pair of properties into one
large group would produce a large degree of acatter and thus a
leaser degree of linear association. This would probably be more
likely to occur when greatly different rock typea were involved.

(c¢) A comparison of linear correlations involving ultrasonic
pulse velocities with theose involving ultrasonic elastic moduli
indicated that linear relationships in which either ultirasonic shear
moduli or ultrasonic Young's moduli were esmployed as one variable
were slightly superior in quality to gimilar relationships in which
one of the ultrasonic pulse velocities was involved. The degree

of superiority did not appear great enough, however, to alome
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warrant the additional time and'effort necessary to the determi-
nation of the ultrasonic elastic constants.

(d) Correlations wvhich employ ultrasonic shear pulase velocity as
one variable appear to be superior in quality to similar correla-
tiona inveolving ultrasonic compressional pulse velocity as one
variable, Shear pulse velocity appears to he the ultrasonic phys-
ical property of those examined in this study, which offers the beat
poasibility for linear correlation with and preliminary prediction
of ultimate uniaxial compressive strength and tengent (ltatic)
Young's medulus of elasmticity.

(e) It does mot appear likely that ultrasonic values of Poigson's
ratio have any appreciable value in the area rock property correla-

tion and prediction.

Recommendations

As indicated previously, this investigation was confined to
two types of igneous rocks. It is suggeated that several varieties
of metamorphic and sedimentary rocks be studied in & gimilar manner
to determine whether or not the trends observed in this investiga-
tion are typical of all rocks or are merely typical of igneous rock
types. In particular, the effects of variation in grain size on
the degree of scatter typical of physical property correlations for
metamorphic and sedimentary rocks should be investigated, am it is
felt that variation geologic hiatory may here he of primary impor-
tance rather than variation in grain aize.

An investigation should be made to determine the extent to which

physical property relations such as those investigated here might be
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better represented by curvilinear correlations rather than linear
correlations. Several of the scatter diagrams in this study ap-
peared to be of a nature that might be better represented by a
second degree curve. In addition, a more extensive statistical
analysis (determine confidence limits, etc.) might be perfermed to
determine the practical value of such physical property correla-
tions for property prediction purpoases.

Ultrasonic shear pulse velocity and ultrasonic shear modulus
should be more thoroughly examined for use in such physical prop-
erty correlations. It would appear that these twe ultrasonic
properties offer the best possibilities of any of the ultrasonic

' properties used in this investigation.
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Correlations of physical proportica of rock and predictions of
one property from a previously determined value of another property
should be of tremendous value in the field of civil engineering. In
particular, such correlations and rock property predictions would
expedite multiple site evaluation and selection programs, and
possibly allov for reduction in the number of various tests required
to determine the physical properties now deemed necessary for com-
petent design and construction in rock media.

Previous rock property correlations have generally encompassed
many rock types, the objective being to determine general relation-
ships typical of all rock types. The data, however, have frequently

exhibited such a great degree of acatter that subsequent correlations
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were of questionable value. Thus, in an effort to eliminate some

of the scatter typical of many previous rock property correlations,
this investigation was conducted to determine the influence of vari-
etion in grain size and minimal variation in rock type on the
quality of rock property correlations for intact igneous rock types.

Physical property tests were conducted on 79 cylinderical speci-
meng of granite and tonalite representing 10 drill sites. Values
of ultimate uniaxial compressive strength and static Young'as mod-
ulus of elesticity (tangent) were correlated with values of ultra-
sonic compressional pulse velocity, ultrasonic shear pulse velocity,
ultrasonic Young's modulus, ultrasonic shear modulus, ultrasonic
bulk modulus, and ultrasonic Poisson's ratio for each of the four
following groupa of specimena:

Group 13 All tonalite specimens tested from the Sierra Nevada
Batholith, California.

Group 2: All tonalite apecimens tested.

Group 3; All granite specimens teasted.

Group 43 All apecimens tested.

Comparison of the nature and quality of these linear correla-
tions revesled that variation in grain size, as opposed to varia-
tion in mineral composition and geologic history as allowed within
the confines of a particular rock type, appears to have primary
influence oﬁ the degree of acatter typical of rock property correla-
tions for a particular intact igneous reck type. Moreover, rock
property correlations invelving only one igneous rock type are gen-

erally superior to those involving severel igneous rock types, the
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latter case frequently suffering frem an overall lack ef quality due
to a larger degree of scatter brought about by the amalgamatien ef
data relatienships exhibiting different trends and different de-

grees of linear asseciation.
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APPENDIX I

PETROGRAPHIC DESCRIPTIONS
AND

POLISHED SFCTION PHOTOGRAPHS
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 (s) Tonalite (Vermilion granite formation, Minnesots).

Brownish-gray medium- to coarse-gray tonalite. Biotite was broken

and altered to chlorite., Microcline was unaltered and unbroken.
compdnad of 20% quartz, 48% plagioclase feldspar, 18% potassium
feldspar (microcline), and 2% biotite with traces of magnitite,
apatite, sphene, zircon, and calcite. Very few microfractures were

,detected.
104




(b) Granite (Lucerne Pluton, Maine). Black and white, coarse-
grained granite. Porphyritic texture. Specimens were unweathered

and contained very few microfractures. Contained 26% quartz, 30%

plagioclase feldspar, 30% potassium feldspar (microcline), and 11%
biotite with traces of magnitite, apatite, chlerite, epidete, and
hematite. Plagioclase was slightly altered to sericite.
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(c) Grenite (Granite Mount&iﬁukUplift;kWyéming), ‘Uhtiuthorad

brévnisbwgfuy, coaraaugruiﬁcd granif;. Microfructurél were somevhat
conmon. Cahtuinad 30% quartz, 30% plagioaiuoé faldnfar, 33% potas-
sium feldspar (ﬁicroolint)§u5$ biotite, 1% chlotit&,;un& 1% mag-
~ne£ite and~£rac¢t of epidete, apatite, and zircen. Lnorthitekcon~
tent of the plagioclase was 15%. Plagioclase was slightly altered
to mericite. Biotite was slightly altered to chlerite.
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(d) Tonalite (Sierra Nevade Batholith, California). Fine-

grained, dark colored rock. Sections were fresh and contained ne
macrofractures. Contained 18% quartz, 42% plagicclase feldspar,

19% hornblende, 16% biotite, 4% chlorite and traces of microcline
and other accessery minerals. The biotite was slightly altered to

chlorite.
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(e) Tonalite (Sierra Nevada Batholith, Culifarnia), Medium— to
cauragwgraindd, black and vhite tonalite. Sections were fresh and

intact. Percentage mineral compositions were 21% quartz, 45% plagi-

oclultkfwldppar, 13% hornbinndk, 20% biotite, and 1% chlerite.

Traces of microcline were alse detected. The biotite was aslightly

altered t¢ ch1orit¢.




(f) Tonalite (Sierrs Nevads Batholith, California). Medium-

grained, black and white tonalite; muéh finer grained than the
medium- to coarse-grained tonalite (e). Sections were unweathered.
Percentage mineral compositions were 19% quartz, 46% plagioclase
feldspar, 2% microcline, 12% hornblende, and 21% hiotite. Traces of
chlorite end magnetite were also detected. The biotite had been

slightly altered te chlerite. Ne macrofractures were detected.
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~ (g) Granite (Northwest of Lone Grove Pluton and Enchanted Rock

Bathelith, Ttxu:); Medium—grained, red gr&nite.’ Sections were
iiﬁtacﬁkgnﬁ unw@dthercd, More muscovite mica present than bistit
mica. Percentage mineral composition is 30% gﬁartn, 28% plugiocl@lc
feldspar, 33% potassium feldspar (microcline), and 9% biotite with

traces of hornblende and chlorite,




(h) Granite (Sherman Granite Facies of Southern Laramie Range).

Light-gray, coarse—grained granite, Composed of 24% quaftz, 30%
plagioclase feldspar, 32% potassium feldspar (micrecline), 10%
bietite, 4% hornblende, and & trace of chlorite. Ne preexisting

fracture surfaces could be detected,
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(1) Grnnitd“(Seuthorn‘Larumit‘Range, Wyoming). Medium- te

coarse graiuod;;pink gruniﬁo,kpciphyritiﬁkt&xtura. ‘P&fctntugq
~ mineral compesition is 20% quartz, 30% plagieclase feldspar, 34%
petessium feldspar (minioéiin.), 5% biotité, 1% harnbiéndq, eand 1%
kchlcéiti;‘:Sictionl‘i¢rd unw¢athdr§d‘an& macroscopically free of

fractures.




(3) Tonalite (Cedar City Tonalite, Utah). Light-gray, medium-

grained tonalite. Mineral compesition is 20% quartz, 44% plagio-
clase feldspar, 3% potessium feldspar (micrecline), 21% hornblende,
5% biotite, 6% magnetite wiﬁh traces of chlerite and other acces~
sary minersls. Biotite was slightly altered te chlerite. Specimens

were unweathered and macroscepically free of fractures.
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APPENDIX II

CRITICAL VALUES
OF
CORRELATION COEFFICIENTS
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Critical Values (rcr) of Correlation Coefficients

Statistical
Sample Critical
Sige (mn) Value (rcr)
21 0.55
35 0.43
36 0.39
39 0.40
40 0.40
71 0.30
79 0.29
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