
I

I

UG470

~~:o4i,rL-0478
c.2

Computer strategy for
detecting line features on
simulated binary arrays in
support of radar feature
extraction

Frederick W. Rohde

November 1988

Approved for public release; distribution is unlimited.

U.S. Army Corps of Engineers
Engineer Topographic Laboratories
Fort Belvoir, Virginia 22060-5546

I

~
UNCLASSIFIED ; ·

llCURITY CLASSIFICATION OF THIS PAGE

. :. . "

.) '

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

1a. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION I AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

ETL-04 78

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
U.S. Army Engineer Topographic (If applicable)
Laboratories CEETL-RI-A U.S. Army Engineer Topographic Laboratorie:
RPS"""1rch In<:tituf'.i:>

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Fort Belvoir, VA 22060-5546
Fort Belvoir, VA 22060-5546

8a. NAME OF FUNDING I SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION U.S. Army Enginee1 (If applicable)

Topographic Laboratories CEETL
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT

Fort Belvoir, VA 22060-5546 ELEMENT NO. NO. NO. ACCESSION NO.
4J 161102B52C B 015

11. TITLE (lndud9 Security Oauification)

Computer Strategy for Detecting Line Features on Simulated Binary Arrays
in Support of Radar Feature Extraction (U)

12. PERSONAL AUTHOR(S)

Frederick W. Rohde
13a. TYPE OF REPORT r 3b. TIME COVERED f4. DATE OF REPORT (Y.ar,Month,Day) rs. PAGE COUNT

Technical FROM Ma~ aa TO Hax 88 November 198 29
16. SUPPLEMENTARY NOTATION

-
._!7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Radar Image Analysis
~ Terrain Feature- Extraction
~ Terrain Analysis
19. ABSTRACT (Continue on reverse if necesury and ithntify by block number)

Line search techniques for linear features in digital radar images are
developed and described. It is shown that the search techniques can be
represented by codes. The codes determine the major directions of search
and the removal of side hranchPs. The testbed that is necessary to
investigate and test the search techniques is described.

'

20. DISTRIBUTION I AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
liJ UNCLASSIFIED/UNLIMITED IJ SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) I 22c. OFFICE SYMBOL

- E. James Books (202) 355-2774 CEETL-IM-T
DO Form 1473, JUN 86 . .

Previous ~1t1ons are obsolete . SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

PREFACE

This work in this report was performed under DA Project, 4Al61102B52C, Task B, Work
Unit 015, "Automated Radar Feature Extraction Research."

The work was performed under the supervision of Mr. Lawrence A. Gambino, Director,
Research Institute, U.S. Army Engineer Topographic Laboratories (ETL).

COL David F. Maune, EN, was Commander and Director, and Mr. Walter E. Boge was
Technical Director of ETL during the report preparation.

iii

CONTENTS

TITLE PAGE

PREFACE 111

ILLUSTRATIONS vi

INTRODUCTION

LINE FEATURES IN RADAR IMAGERY

INVESTIGATION 2

Simulation Testbed 2

Search Strategy 3

Discussion 5

Rules for Search Codes 6

Summary 7

CONCLUSIONS 7

v

ILLUSTRATIONS

FIGURE TITLE PAGE

Mountains and Valley with Cultural Features 9

2 Hilly Country with Cultural Features 9

3 City and River with Bridges 9

4 Coastal Area Vegetation and Manmade Terrain Features 10

5 Plain with Rivers and Ridged Mountain 10

6 Shore Line and Beach Ridges IO

7 Window Array with One Path Going from the Left to 11
the Right Side (Obscured)

8 The Window Array from Figure 7 with the Unobscured Path 12

9 Array with Right Path 13

IO Array with Right-Down Path 13

11 Right-Down Path with Two Straight Dead-End Branches 14

12 Right-Down Path with Right-Down Dead-End Branch 14

13 Original Array 15

14 Transformed Array -- R Com'mand Applied to Original Array 16

15 Transformed Array -- RD Command Applied to 16
Original Array

16 Transformed Array -- RDL Command Applied to Original 17
Array

17 Transformed Array -- RDLU Commahd Applied to Original 17
Array

18 Original Array -- Dead End with Multiple Branches 18

19 Transformed Array -- RDLU Command Applied to Original 18
Array

20 Original Array -- Array with Paths Starting at the Left 19
Side and Ending at the Right and Bottom Side of the Array

21 Transformed Array -- RD Command Applied to Array in
Figure 20

20

vi

ILLUSTRATIONS

FIGURE TITLE PAGE

22 Transformed Array -- DR Command Applied to Array in 20
Figure 20

23 Binary Radar Image of Airport Runways 21

vii

COMPUTER STRATEGY FOR DETECTING LINE FEATURES
ON SIMULATED BINARY IMAGE ARRAYS

IN SUPPORT OF RADAR FEATURE EXTRACTION

INTRODUCTION

The purpose of this study is to develop meU1ods for line feature detection and analysis on digi­
tal radar imagery. Line features on radar images usually appear as a line of constant gray tone
or as boundaries between area features. They arc characterized by length, width, shape, orien­
tation, and gray tone. Linc features on radar imagery may represent, for example, highways,
railroads, bridges, canals, rivers, shorelines, mountain ridges, drainage patterns, boundaries
between agricultural fields, and other boundaries. For automated line feature extraction it is
useful to convert the radar image first into a binary image. This can be done with image pro­
cessing techniques such as edge detection, edge enhancement. thresholding and segmentation
The binary image has then to be searched for line features. One method to search for line
features on imagery is to search for line paths in windows of the image. An image can be
divided into windows of equal size; for example an image consisting of 512 by 512 pixels can
be divided into 1024 windows of the size 16 by 16 pixels. The line path of a window starts at
one side of the window and ends at another side of the window. A path of a window is a
string of pixels which are connected by 4-conncctivily except for the end points of the path.
The path Uuough U1e window can be approximated by a line clement characterized by its slope
and location coordinates in the window. The slopes of all line clemcnLc; of the image can be
organized into a slope histogram or registered as another image array. The window line cle­
ments can be analyzed for their properties of forming lines of definite length, shape, and for
line connections and parallelism. This investigation deals primarily with search strategics for
finding paths in image windows. The binary window arrays for the study were computer gen­
erated rather than derived from real images because they can be easily produced and modified
in a controlled manner.

LINE FEATURES IN RADAR IMAGES

Figures 1 through 6 show radar images that represent different landforms and cultural features,
including line features. The radar images of Figures 1 through 3 arc from locations in Ala­
bama; the images in Figures 4 through 6 arc from locations in Alaska.

Figure 1 shows a loc~1tion thaL contuins mountuins amt a valley with cultural features. AL the
left side of the image one cun recognize a dark line thut runs from the top to the bottom of the
image. This line feature is a road. In the mountain area one can detect at least two major line
features running from top to bouom and representing a v~1lley between mountain ranges. In the
valley portion of the image one can recognize many line features. Most of the line features
that arc short and fonn right angles arc boundaries between agricultural fields. The pro­
nounced bright line features in the valley arc lines of trees or shrubs along roads or creeks or
they arc boundaries between agricultural fields. The tree lines that arc along roads or fields arc
usually straight. Those along creeks arc usually not straight. The line features in Figure 2 are
produced primarily by valleys, ridges, and roads: The line features of this image are not ran­
domly distributed, but are structured according to the patterns of the landform.

l

In Figure 3 the most obvious line features are the two bridges across the river and shorelines
of the river. The shorelines appear on a macroscalc as stmight lines, but show many irregulari­
ties on a microscale. The city to the right of the river shows many line features, which arc
caused by lines of buildings and roads. These line features have preferred directions in accor­
dance with the city's street pattern.

Figure 4 shows line features representing shorelines, two runways of an airfield appearing as
black lines in the lower right comer of the image, and straight forest boundaries. The line
features in Figure 5 arc produced by rivers, mountain ridges, and shadows. In Figure 6 the
shoreline represents a relatively straight line feature, and the beach ridges arc shown as a fam­
ily of gently curved line features.

The above discussed examples of line features in radar imagery demonstrate that the lengths,
orientations, distribution, and geometric relationships of line features may be used in the pro­
cess of detecting, recognizing, and classifying natural and cultural tcmin f catures.

The fact that the orientation of line features on radar imagery arc not randomly distributed but
show nonnally only a few preferred orientations led to the idea to develop line feature search
strategics for preferred orientations.

INVESTIGATION

SIMULATION TESTBED. A digitized radar image can be partitioned into rectangular win­
dows that can be represented by arrays of pixels. In this investigation the windows were
selected as square arrays, where the number of rows and columns is equal. The digitized, pro­
cessed image is assumed to be binary, so that the array clements arc either zero or one. In
order to process and manipulate the array clements a computer simulation testbed was
developed.

-The testbed algorithm -can generate ~quarc al"ra-ys up tg the size -0f 32 by 32 elements. The
arrays can be displayed or printed. The testbed provides the capability to partition the army
into fields. The elements of a field can be selected so that they arc all O's, or l's, or O's and
l's in a random distribution. A field may also consist of a line or a path. The random distri­
bution of O's and l's is generated by a built-in random number generator. The value of indivi­
dual clements can be changed by entering zeros or ones from the keyboard.

With this capability one can generate paths consisting of ones that continue from one side of
the window to another side. All other clements of the window that do not belong to an esta­
blished path arc randomly distributed zeros and ones. Figure 7 shows an array of 32 by 32
clements with one path of ones going from the left side to the right side of the window. The
path cannot be readily recognized because it is obscured by randomly distributed zeros and
ones. In figure 8 all clements except the clements of the path arc set to zeros. The path
represented by the ones is easily recognized.

2

SEARCH STRATEGY. This investigation deals wilh the search for paths that begin at the
lcl't side of the array and end at the right side or the bottom of the array. The concepts of two
search codes and two backtrack codes arc developed and discussed. The search codes arc
called RIGHT and DOWN and arc represented by the code symbols R and D. The backtrack
codes arc called LEFf and UP and arc represented by the code symbols L and U. The codes
R, D, L, U can be combined and operated in the combinations R, RD, RDL, RDLU. Code
priorities and conditions to make decisions for search, backtrack, and switch are developed and
discussed.

The R code searches for l's in the first column at the left side of the array by moving from
clement (0,0) to the clements (1,0), (2,0) , ... until an clement (j,0) = 1 is found. At this point,
the R code triggered by the condition

{(j,0) = 1}

switches to search for l's along row j such that (j,O) = 1, (j,1) = l, ... until (j,k) reaches the
last column on the right side of the array and the path search is completed. If R finds an ele­
ment (j,k) = 0, R returns to the element (j+ 1,0) and starts the next search. The search strategy
of the R code is discussed using an example in the following paragraph.

Figure 9 shows a square array of 12 by 12 elements. The rows of this array are counted j = o.
l, 2, ... ,11 and the columns k = 0, l, 2, ... , 11. The array contains a path that begins on the left
side at the element (3,0) and ends on the right side at the element (3, 11). The R code starts at
clement (0,0) = 0 and moves to clement (3,0) = 1. The search for the row of l's starts at (3,0)
and continues along row j = 3 until the clement (3, 11) = I is reached. At this point the path
search is completed. The R search moves to (4,0) and searches for l's along the k = O column.
At (9,0) = l, R switches to search for l's along the j = 9 row until the clement (9,3) = O is
found. At this point the R search of the array is completed.

The RD code starts searching using the R code. If the clement (j,k) = 0 is found and the con­
dition

{(j,k) = 0 and (j,k-1) = I and (j+l,k-1) = 1}

is met, the R code switches to the D code. The D code searches for l's along the k-1 column
such that the conditions

{(j,k-1) = 1 and (j,k) = O}, (U+l,k-1) = I and (j+l,k) = O}.
{ (j+2,k-l) = 1 and (j+2,k) = 0}. ...

arc met until an clement (j+d,k) = 1 is found. At this point, triggered by the condition { (j+d,k)
= 1}, the D code switches back to the R code. R and D codes switch from one to the other if
the required conditions arc met. The R code has priority over the D code: Both search codes
arc combined into the symbol RD. The strategy of the RD code is discussed with an example
in the following paragraph.

Figure 10 shows a 12x 12 square array similar to that of Figure 9. The array contains a path
that begins on the left side at the clement (3,0) and ends on the right side at the element,
(7,11). The search for the path section (3,0), (3,1). (3,2), (3,3), (3,4), (3,5) is executed by the

3

R code and follows the row number 3. The search for the path section (4,5), (5,5), (6,5), (7,5)
is executed by the D code and follows the column number 5. The search of the path section
(7,6), (7,7), (7,8), (7,9), (7,10), (7,11) is executed by the R code and follows the row number
7. At (7, 11) the search for the path is completed. The search code RD begins with the R code
and starts at element (0,0). At (3,0) the condition { (j,0) = 1) is met and R switches to a
search for l's along the row j = 3. At (3,5) the condition

{ (3,6) = 0 and (3,5) = 1 and (4,5) = 1)

is met and R switches to D. The D code continues along the k = 5 column lo clement (7 ,5).
At this point, the condition

{(7,6) = 1)

is met and the D code switches back to R search. The R search continues until the right side
of the array at clement (7,11) is reached. At this point the path search is completed. The RD
search moves to element (4,0) and starts the next RD search.

The RDL code is used when horizontal dead end branches exist. The path in Figure 11 has
two dead-end branches. The clements (3,6), (3,7), (3,8), (3,9) form a horizontal dead-end
branch. The elements (8,5), (9,5), (10,5) form a vertical dead-end branch. If the RD code is
applied to the array in Figure 11, the search will stop at element (3,10). In order to find the
path, the search code RD has to be augmented by the backtrack code L. The RDL code
detects at (3,10) = 0 the condition

{(3,10) = 0 and (3,9) = 1 and (4,9) = 0)

which triggers the RDL code to switch to the backtrack code L. In general the RDL switches
to L if the condition

{(j,k) = _() and (j,k-1) = 1 and Jj+ l,k) = OJ

is met. The backtrack code L proceeds from clement (j,k) to the elements (j,k-1), (j,k-2), ... if
the conditions

{(j,k-1) = 1 and (j+l,k) = O}, {(j,k-2) = 1 and (j+l,k-2) = O}, ...

arc met. If the condition

{(j+l,k-1) = 1}

is found the backtrnck switches to the search code D of RDL. In Figure 11 the L code back­
tracks from (3,9) to (3,5) where the the condition { (3,5) = 1} is found and the switch from L
to D occurs. The RD code searches until the clement (7,11) is reached and the path search is
completed. The second dcad·cnd branch is ignored because R search has priority over D
search.

4

The RDLU code is used when a horizonlal-vcrtical dead ·end branch cxisls as shown in Figure
12. The array in Figure 12 has Lwo dead-end branches. The R code of RDLU slarts at (0,0),
moves to (3,0) and conlinucs along the row j = 3 Lo clement (3,8) = 0. The dead-end branch
formed by the clements (1,2) and (2,2) is i!,'llorcd by Lhc R code. At (3,8) the R code switches
to the D code. The D code moves down along the column k = 7 to the clement (6,7) = o
where the condition

{(6,7) = 0 and (5,7) = 1 and (5,6) = O}

is found. This condition triggers the RDLU code to switch to the U code. In general, the
RDLU code switches to the U code when the condition

{(j,k) = 0 and (f-1,k) = 1 and (j-l,k-1) = 0)}

is met. The backtrack code U proceeds from clement (j,k) to the clements (j-1,k), (j-2,k), ... if
the conditions

{(j-1,k) = 1 and (j-l,k-1) = O}, {(j-2,k) = 1 and (j-2,k-1) = O}, ...

arc met. If the condition

{(j-u,k-1) = l}

is found, the backtrack code U swilchcs to the backtrack L code. L and U codes switch from
one to another if the required conditions arc met. In Figure 12 the U code backtracks from
(5,7) to (3,7) where the condition { (3,7) = · 1} is found and the switch from U to L occurs.
The backtrack code L proceeds from (3,7) to (3,5) where the condition {(4,5) = 1} is found
and L switches to D. The RD code continues to track the path to the element (7,11) where the
search is completed.

The algorithm represented by the code RDLU provides 4 codes. The R code searches only in
the right direction and is trapped and terminated in right dead end branches. The RD code
searches for right-down paths, i!,'llores branches in the up and left direction, and is trapped and
terminated in dead-end branches starting in the righl or down direction. The RDL command
searches only right-down, ignores branches in the up and lcfl dirccLion, eliminates dead-end
branches extending in the right direction and is trapped and tcnninatcs in right-down dead-end
branches. The RDLU command eliminates most dead-end branches. This search strategy is
further demonstrated and discussed with a few examples.

DISCUSSION. Figure 13 shows an array of the size 12 by 12 with four paths starting at the
left side of the array and ending at the clement (9,11) at the right side of the array. The array
is called Original Array. The four codes of RDLU arc applied to this arrdy each leading to a
different path. All codes R, RD, RDL and RDLU start at the clement (0,0) and search for the
first clement (j,0) = 1. At this point the search for the path begins. '

The R starts at (2,0) = 1. The R code tests the clements (2,0) = 1, (2, 1) = 1, (2,2) = l, (2,3) =
1, (2,4) = 0. Each time a 1 is detected in the Original Array a 1 is cnterctl at the same loca­
tion of the Transfom1cd Array. The Transfo1mcd Array has the same size as the Original

5

Arrny but all clements arc initially set to zero. The R sc•1rch dctccL" (2,4) = 0 and terminates the search
in the Original Array. The termination of the search triggers the RL>LU algorithm to change all 1 's
entered into the Transfonncd Army back to zeros. The R search continues to search for the next (j,0) =
1 which is found at (7,0). The R search continues along row 7 and terminates at (7,9) = 0. The next
(j,O) = 1 is found at (8,0). The R search continues along row 8 and terminates at (8,7) = 0. The fourth
R search starts at (9,0) and ends at (9,11) where it is completed. The path from (9,0) to (9,11) is
entered into the Transformed Array. The search algorithm calculates the slope of the path. Figure 14
shows the path in the Transfonned Array after the R search of the Original Array is completed. The
extracted path is a horizontal line with a slope of zero. The path consists of 12 clements.

The RD code starts at (2,0). The search terminates at (5,8) = 0. The next RD search starts at (7,0) = 1
and terminates at (7,10) = 0. The third RD search starts at (8,0) = 1. At (8,7) the R code switches to
D code. At (9,7) the D code switches to the R code and completes the search at (9,11). Figure 15
shows the Transformed Array . If the path is replaced by a straight line from (8,0) to (9,11) the slope
of this line is 0.09. The path consists of 13 elements.

The RDL code starts at (2,0) and terminates at (5,8) of the right-down-right dead-end branch. The next
RDL search starts at (7,0). At (7,10) = 0 the RDL code switches to the L code. The L code backtracks
and removes the right dcad~nd branch (7,8), (7,9). At (7,7) the L code switches to the RD code. The
RD code continues to (9,11) where the path search is completed. Figure 16 shows the path in the
Transformed Array. The slope or the line clement approximating the path is 0.16. The path consists of
14 clements. The backtrack includes 2 clements.

The RDLU code starts at (2,0). The first right-down-right dead-end branch is backtracked by the LU
code and removed. The second right dead-end branch is backtracked by the L code and removed.
The RD code contineous to (9,11) where the path search is terminated. The Figure 17 shows the path
in the Transformed Array. The slope of the linearized path is 0.64. The path consists of 19 clements.
The backtrack includes 6 elements.

Figure 18 shows an example of a path having a dead end with multiple bmnches. The RDLU code is
applied to this array and the path is shown in Figure 19. The slope of the linearized path is 0.64. The
path consists of 19 elements. The two backtrack branches include 9 clements.

The RDLU code represents only one search strategy. Another code that also starts at the left side of
the array is the DRUL code. Ip this code D has priority over R and U priority over L. Figure 20
shows an array to which ihe ~ search oT lhc -mJI..:U coc.ic and lhc DR search of the DRUL code arc
applied. Figure 21 shows the path found with the RD search and Figure 22 the path found with the DR
search.

Figure 23 shows a processed, binary radar image of the airport at Eli,,.abcth City, North Carolina. The
binary im<ige consists of 480 x 320 pixels and is divided into 150 windows each of the size 32 x 32
pixels. The majority of windows have no paths that extend from the left side to the right side or bot­
tom of the windows. The application of the RDLU code to the windows produced 23 line clements
with a slope of 0.19 and 12 line clements with a slope of 1.15.

RULES FOR SEARCH CODES. The codes R, RD, RDL, RDLU start at the clement (0,0) and the ini­
tial column (j,O) of the array. The search begins at the clements (j,O) = 1. If the search of any code is
terminated or completed the code moves to the next (j,0) for the next search.

The R code searches for l's along in a row in the right direction. If an element (j,k) = 0 is detected the
search is terminated. The search is completed when the left column of the array is reached. The R
code ignores side branches.

6

The RD code combines the codes R and D. R has priority over D. The RD code searches for l's
along a row in the right dir~tio~ and along columns in the down direction. Specific conditions trigger
the RD code to switch from R to D, from D to R, to terminate the search, or to complete the path
search. These conditions are discussed in the section Search Strategy. The RD code ignores dead end
and side branches in the left and up direction.

The DRL code combines the codes R, D, and L. The R and D codes are the search codes of RDL, the
L code is the backtrack code of RDL. The L code backtracks along a row section of a dead end branch
in the left direction. Specific conditions trigger the RDL code lo switch from R to D, from D to R,
from R to L, from L to D, to terminate the search, or to complctc the path search. These conditions arc
discussed in the section Search Strategy. The RDL code ignores dead end branches in the up direction
and side branches in the left and up direction.

The RDLU code combines the codes R, D, L and U. The R and D codes arc the search codes of RDL,
the L and U codes are the backtrack codes of RDLU. L has priority over U. The U code backtracks
along a column section of a dead end branch in the up direction. Specific conditions trigger the RDLU
code to switch from R to D, from D to R, from R to L, from L to D, from L to U, from U to L, toter­
minate the search, or to complete the path search. These conditions are discussed in the section Search
Strategy. The RDLU code ignores side branches in the left and up direction.

The code RDLU can easily be changed to other search codes by permutations of the codes R, D, L, U
and defining the initial column or initial row. The search from the top to the bottom or to the right side
of the array can be accomplished by the code DRUL and the initial row {0,k). The search from the left
side to the right side or to the top of the array can be accomplished by the code LURD and the initial
column G,n-1), where n x n is the size of the array. Code priorities and conditions for search, back­
track and switch are different for each code.

SUMMARY. Cultural and natural terrain features frequently exhibit line features with preferred orienta­
tions. Algorithms for directional search of line features arc developed and discussed. The search stra­
tegy includes two forward search codes (R and D) and two backtrack codes (L and U). The codes can
be combined to RD, RDL and RDLU providing capabilities for determining paramclers such as line cle­
ment slope, path lengths, path end points and number of backtrack clements. These parameters arc
important to feature analysis and automated feaUJCc extraction.

CONCI::..l:JSI6NS-

The following conclusions are reached:

Using directional search strategies a binary image can be transformed into an array of windows that
contain only paths from one side to another side of the windows.

The path of a window can be approximatcd by a line element that is characterized by its slope and the
end points on the window sides.

The algorithms for the directional search stmtegy calculate the slope of the line elements, starting and
ending points of the path, lengths of the paths and dead end branches in terms of number of window
elements.

The Transformed Array provides quantitative information such as length and orientation of lines, paral­
lelism, angles of intersecting lines and branching.

7

Figure I. Mountains and Valley with Cultural Features.

Figure 2. Hilly Country with Cultural Features.

Figure 3. City and River with Bridges.

9

10

Figure 4. Coastal Area Vegetation and
Manmade Terrain Features.

Figure 5. Plain with Rivers and Ridged
Mountain.

Figure 6. Shore Line and Beach Ridges.

ORIGINAL ARRAY

" 1 1 j_ l.J 0 ll i i 0 O· l i i iJ 1.1 t i 0 l). 0 (J i ll (I l. 0 1

0 1 0 0 0 0 1 0 1 0 1 0 i u 1 i 1 1 i u IJ I) 1 u 0 0 0 1 ()

t 0 1 1. i 0 j 0 0 1 0 u 0 0 l. 0 0 0 i. i i i 1 i 1 0 i 0 0
u 0 1 0 1 u 1 i 1 0 u u 1 I) 1 0 t 0 I.I 1 \ t 0 0 0 1 1 1 0
0 0 0 0 u 0 0 1 l 0 0 1 u 1 0 I) i. 0 1 i) IJ 0 0 0 0 0 i 0

0 0 1 1 1 1 0 0 1 1 1 1 0 1 0 u u 0 0 0 1 1 1 l) 0 0 1 0 0

i 1 1 1 i 1. t 1 i 1 1. \. i 0 0 0 i 1.), j l. 1 l. 0 i 0 0 1 1
1 0 1 i 1 1 1 0 i 1 0 0 1 0 I) 1 l u i 1 0 l 1 1 1 0 I) i 0

0 1 0 1 0 1 ~i. 1 0 (J 0 0 1 0 u i i 1 1 1 1 1 i 0 1 0 1 0 0
1 1 1 1 1 0 0 0 0 1 1 :i 1 1 0 1 0 0 0 0 1 1 i 1 0 1 0 1 0

0 0 0 t 0 0 i 1 0 i 1 0 1 1 i 0 0 0 1 1 i. 0 1 0 0 1 1 0 0
1 0 0 1 0 1 1 1 0 0 0 0 1 1 0 1 t 1 0 0 0 1 0 1 1 0 1 1 0
1 0 0 i 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0
0 1 0 1 1 0 0 0 0 1 1 t 1 1 i 1 t 0 1 1 0 0 1 1 0 1 0 0 1
1 1 0 i i 0 0 1 0 i 0 0 1 0 1 0 i 1 1 0 0 0 0 1 1 1 0 1 1
1 1 0 1 1 IJ 1 0 0 i 0 0 1 1 1 0 I) 0 0 1 1 1 0 1 0 1 1 1 0
:\. 0 1 i 0 0 0 0 0 0 1 i 1 1 1 0 0 1 1 0 i 0 0 0 i 0 0 0 0
1 0 1 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 0
1 0 1 i 0 j, 0 1 i '.i. 1 0 i 1 1 j 0 1 1 1 0 l. 0 0 0 0 1 0 0
0 0 1 0 1 1 0 0 1 0 l 0 1 1 1 :1 1 1 1 1 1 l_I 0 0 1 1 1 0 j,

0 i 1 1 1. 3. 1 1 i (I 0 0 1 0 0 0 i 0 0 1 j l_I 0 0 1 0 0 0 i
1 0 0 0 0 0 0 0 0 u 0 1 0 0 1 1 1 i 1 1 i u I.) 1 1 j, 1 1 1
0 1 0 0 0 0 f. 1 1 t 1 1. 1 1 0 u 1 0 0 0 1 iJ (J 1 0 1 1 0 0
0 0 0 0 1 1 1 0 Q 0 1 1 i 0 1 1 1 0 0 0 1 li 0 1 1 1 0 1 1
1 1 0 t 0 1 0 0 1 1 0 i 1 0 0 0 0 1 0 0 i i 1 1 t f. i 1 1
1 0 1 0 0 l 1 1 1 0 u 1 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 i 0
1 i 1 t o· o 0 i i t 0 0 1 1 0 1 i 1 i 1 l 1 t 1 0 0 0 0 1
0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 i 1 0 1 0 0 0 i 1 0 1 1 1 0
t. 1 f 1 i 0- 0- i (t (j ! 0 o- 0 t t 0 o- 0 0 (J 1- 0 i- (} (} • • • J. J.- J.

l 1 0 i i 1 0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 i 1 I) 0 1 1
0 0 l ~- 1. 1 0 1 0 1 l. 0 0 0 0 0 0 1 0 i i. 0 (J 0 0 0 1 0 1
0 0 0 0 0 I) 0 I) 0 0 0 0 0 0 0 0 0 0 0 0 u Ii I) 0 I) 0 0 0 0

Figure 7. Window Array with One Path Going from the Left Side to the Right Side of
the Array. The path is obscured by randomly distributed O's and l's which may
be representative for other features or processing noise.

11

0 0 IJ
1 .i. ii

0 1 0
0 1

,,
i 1 (J

1 0 I)

0 0 0
1 1 (I

0 0 0
1 1 0
0 1 0
0 0 0
1 1 0
1 0 0
0 0 0
1 0 0
1 1 0
0 1 0
0 0 0
i 0 r)

1 0 0
I) 0 0
0 0 0
1 1 I)

1 1 1
0 1 0
0 1 0
0 1 0
• • o--J. J. -

() 1 0
1 0 0
I) l) 0

LINE STARTS: ROW I COL 7
LINE ENDS: ROW 32 COL 25

SLOPE OF THE LINE "" .58

TRANSFORMED ARRAY

ORDERED R D L U

0 0 0 0 0 (J I) 0 0 (J 0 I) 0 (J 0 0 0 0 0 (J iJ 0 0 0 0 0 0 0 (J 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 () 0 I) 0 0 0 . 0 0 0 0 0 0 0 0 0 I) I) 0
0 0 0 0 lJ 0 0 0 0 0 tJ 0 0 0 0 0 I) 0 0 0 iJ 0 0 0 0 0 0 0 0 0 0
0 I) 0 0 0 0 I) 0 0
0 (J 0 0 0
0 0 0 I) 0 0 0 0 0 0 l) lj 0 0 0 0 0 0 0 0 0 0 0 0 0 0 lj 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0
0 0 0 0 0 0 0 0 (J 0
0
0 0 0 (l 0
0 0 0 0 I) 0 0 0 0 0 fJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 t1 0 0 0 0 u 0 0 (} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 () 0
0 0 0 0 0 0 0 0 0 0 0 I) 0 0 0 0 I) 0 0 0 I) 0 () 0 0 t) 0 f) () 0
0 0 0 0 0 IJ 0 0 0 0 0 0 0 0 0 0 0 (J 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 t) 0 0 0 0 0 0 0 I) 0 t) 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I) 0 iJ 0 0 0 0 0 0 0 0 0 0
0 0 0 0 I) tJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I.I (I 0 0 t} 0 0 0 0 0
0 0 0 (l 0 0 0 0 0 (J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
l) 0 0 0 0 0 0 0 I) 0 I) 0 0 0 0 0 l) I) 0 0 t) 0 0 0 0
0 0 0 (l 0 0 0 0 0 0 0 0 0 0 0 u 0 0 0 (J 0 IJ 0 0 0 0 0 0 0 0
I) 0 0 0 0 I) 0 0 I) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I) 0
0 0 0 0 0 0 0 0 0 {J 0 0 0 (J 0 u 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0
0 IJ 0 0 IJ 0 0 0 (J 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 t) 0 t) 0 0 0 0 0 0 0 0 0 0 0 0 Ll 0 0 0 t} 0 0 0 0 0 0 0
0 0 0 0 0 0 (J 0
0 0 0 0 0 0 0 0 0 0 IJ u u -u 0 0 0 {) 0 {) 6 t) -o 1.1 1.1 -0 -0 0 0 0 lJ
() 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LI () 0 iJ 0 0 iJ 0 0 0 () 0
0 0 0 0 0 0 0 0 0 u 0 u 0 IJ I) t} IJ 0 lJ 0 0 0 0 0 0 {) 0 0 0 0 0
0 0 0 (l 0 iJ u 0 0 (J tJ 0 I) 0 0 0 IJ 0 {J 0 1) (J IJ 0 0 0 0 0 0 0 0
t) 0 0 0 0 0 0 lJ 0 0 u tl 0 () 0 ll IJ 0 () () 0 ll () 0 I) 0 u 0 0 0 IJ

Figure 8. The Same Window Array as in Figure 7 with the Unobscured Path. All path
elements are ones. All other elements are zeros.

12

ij

Ii

0
f)

0
f)

0
n
0
0
0
0
0
(.I

0
n
0
0
0
0
fJ
0
0
0

I)

0
fl

0
0
0
0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Figure 9. Array with Right Path.

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 ' 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.0 0 0 0 0 0 0 0 0

Figure 10. Array with Right-Down Path.

13

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Figure 11. Right-Down Path with Two Straight Dead-End Branches.

0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0
-0 0 -0 0 -0 -1 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1
() () () () 0 0 () 0 () () 0 ()

0 0 0 0 0 0 () 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Figure 12. Right-Down Path with Right-Down Dead-End Branch.

14

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0
0 1 1 1 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0
1 1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Figure 13. Original Array -- The Array Has Four Paths Starting at the Left Column and
Ending at the Right Column.

15

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Figure 14. Transformed Array -- R Command Applied to Original Array.

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
_o _o _o 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 l 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Figure IS. Transformed Array -- RD Command Applied to Original Array.

16

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 o. 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 . 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Figure 16. Transformed Array -- RDL Command Applied to Original Array.

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 , 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 Q Q 0 0 0
0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 l l I
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Figure 17. Transformed Array -- RDLU Command Applied to Original Array.

17

0 () () () () () () 0 () () () ()

0 0 0 0 0 l l 0 0 0 0 0
1 1 1 1 0 0 1 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 0 0
0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 () 0 0 0 0 0 0 0

Figure 18. Original Array -- Dead End with Multiple Branches.

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0 0 0 0
{\ -0 -0 J l -l l -1 _() 0 0 0 v 1

0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Figure 19. Transformed Array -- RDLU Command Applied to Original Array.

18

0 0 0 0 0 () 0 0 () 0 () 0
I 1 1 I 0 1 1 1 I 0 0 0
I 1 I I 1 I I 1 1 I 0 0
0 0 0 0 1 1 1 0 0 1 I 1
0 0 0 I 1 1 0 0 1 1 1 I
1 0 0 1 1 I 0 0 0 0 0 0
0 0 0 0 1 I 1 0 0 0 I 1
1 1 1 1 1 1 0 0 0 0 0 1
0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 I 0 0 () 0 () 0 0
0 0 0 0 I 0 0 0 () () 0 0

Figure 20. Original Array -- Array with Paths Starting at the Left Side and Ending at the
Right and Bottom Side of the Array.

19

0 0 0 0 0 0 0 0 0 () 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 () 0 I I 1
0 0 0 0 0 0 0 () 0 () 0 0
0 0 0 0 0 () 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

figure 21. Transformed Array -- RD Command Applied to Array in Figure 20.

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 1 I 1 I 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0 0 0 0
_{) _{) _o D J 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 l 0 0 0 0 0 0 0

Figure 22. Transformed Array -- DR Command Applied to Array in Figure 20.

20

Proce11ed by Richard A. Hevenor, USAETL

Figure 23. Binary Radar Image of Airport Run Ways.

21

