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called "prototypes" and are defined in part by human perception and experience. Categories range 
from general or superordinate, at the uppermost level, to specific or subordinate, at the bottom level. 

Central to the system proposed by Rosch et al. (1976) are basic-level categories and objects. 
Basic-level objects are basic in perception, function, communication and knowledge organization 
(Lakoff, 1987). 

In general, objects that are atypical or differ greatly from the prototype are more difficult to 
classify than those that closely resemble the category prototype (Jolicoeur et al., 1984). The 
classification difficulties are significant when identifying terrain features that differ greatly from the 
textbook examples and from each other. 

In an attempt to simplify the complex and often subjective problem of terrain classification, 
this study employs a two-class approach to terrain classification. The basic-level terrain feature used 
in this study is a mmm.t. This feature is adapted from the U.S. Geological Survey's (USGS) proposed 
Digital Line Graph-Enhanced (DLG-E) definition of a mount as "a landmass that projects 
conspicuously above its surroundings" (Guptill et al., 1990, p. A-97). 

A mount is used in this study to represent elevated terrain features, such as hills, mountains 
and ranges. All remaining features, such as plains, basins and flats, are classified as "non-mount." 
The terrain classification system used in this study is shown in Table 1. 

This study is guided by a divide-and-conquer philosophy. Delineation of mounts from 
non-mount areas as an initial two-class classification system facilitates subsequent classification of 
subordinate-level geomorphologic landforms. Jolicoeur defines this to be the typical pattern of 
categorization, i.e., basic-level identification occurs first and is followed, some time later, by 
subordinate- and superordinate-level identification (Jolicoeur et al., 1984). 

To classify an object, one frequently employs knowledge and experience. For instance, when 
classifying terrain manually from aerial photographs, the boundaries between landforms are often 
apparent at breaks in slope that create apparent tonal and topographic changes (Mintzer and 

_Messmore, 1984). In_general, the bases of hills, as well as the tops, are more gentle in slope than the 
sides {Rinker, 1972). Information such as this can also be used to help delimit mount from 
non-mount areas in an automated classification scheme. In order to use digital data and computer 
capabilities to classify basic-level terrain features automatically, one must know and be able to 
measure the attributes associated with these features. 

Geomorphometry is a subdiscipline of geomorphology that attempts to determine the 
geometric measures required to define and describe the landscape. Evans (1972) distinguished two 
subclasses of geomorphometry: general and specific. General geomorphometry is the measurement of 
landform characteristics over a broad continuous surface. The measures used in general 
geomorphometry often rely on altitude measures and derivatives of altitude, such as slope, aspect and 
curvature (Evans, 1972; Mark, 1975; Pike 1988). In specific geomorphometry, the measures used 
rely on the geometry of specific landforms, such as drumlins and cirques. However, in order for 
specific geomorphometry to be realized, one must isolate the form to he identified from its 
surroundings (Evans, 1987). This study uses geomorphometric measures of altitude, and its 
derivative, slope, to isolate basic-level forms from their surroundings. 
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Table 1 

Terrain Categorization System 

Superordinate 

Terrain Mount 

Plain 

Basin 

Flat 

Note: This table was developed using the principles of Rosch et al. (1976). 

Subordinate 

Drumlin 
Dune 
Inselberg 

Alluvial Plain 
Outwash Plain 
Floodplain 

Kettle 
Drainage Basin 
Sinkhole 

Mud Flat 
Tidal Flat 
Play a 

In addition to geomorphometric measures, this research also draws upon studies that attempt 
to automaticaITy deflneate drainage networie:s and basins. These studies often reiy on tlie extraction of 
"critical points." Critical points are considered to be points that provide the maximum amount of 
information about a surface. Although called by different names, these points include peaks, pits, 
ridges, ravines, passes, slopes, break points, and flats (Peucker and Douglas, 1975). 

The majority of work performed in this area uses a bottom-up aggregative approach to define 
features such as drainage basins and watersheds. The initial analysis frequently relies on a local 
operation that~examines a relatively small (often a 3 x 3) neighborhood of elevation values to identify 
the critical pomts. Then, the more complex features are derived from these points. Dikau (1989) 
takes this approach in developing a digital geomorphological relief model (DGRM), which builds 
complex relief forms by combining low-level form elements and form facets. 

This research combines information and methods used in manual terrain classification with 
automated techniques used in geomorphometry and critical point analysis to create various data layers 
or files. These layers are combined and analyzed to partition the input DEM into mount and 
non-mount areas. 
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METHODS 

The focus of this research is on the automated delineation of mounts using digital elevation 
data as the sole data source. The data used are USGS 7 .5-minute-based DEMs, which correspond in 
coverage to 1:24,000-scale topographic maps (U.S. Geological Survey, 1990). These data have a 
30-meter spacing between X and Y locations and are comparable in resolution to OMA OTEO Level 
II products. 

In order to design test criteria that were suitable to a wide range of terrain features, five 
OEM's were chosen as training sites and five OEM's as test sites. The chosen sites are located 
throughout the United States, they have a wide range of local relief, and they contain both 
well-defined and poorly defined mounts. 

Well-defined mounts are considered to be those that most closely resemble the category 
prototype. They are often isolated, they have a definable boundary, and they possess a summit or 
peak. Poorly defined mounts are atypical members of the mount category and are frequently more 
difficult to classify. 

The selected training sites are Verona, Wisconsin; Gettysburg, Pennsylvania; Huntsville, 
Alabama; Mustang Mountains, Arizona; and Paradise Range, California. A shaded relief image, 
depicting the entire DEM, is presented for each training site as it is discussed. . The maximum 
elevation, minimum elevation, and local relief of each training site is shown in Table 2. 

Verona, Wisconsin, and Gettysburg, Pennsylvania, are relatively low-relief areas of 93 m and 
117 m, respectively. Figure 1 depicts a shaded relief image of Verona, Wisconsin and Figure 2 
shows Gettysburg, Pennsylvania. The shaded relief images of the 10 sites used in this research are 
portrayed with geographic north at the top of the image. Verona consists primarily of large areas of 
undulating hills separated by drainage divides with a few isolated, well-defined mounts. Gettysburg 
has an overall rolling terrain with several low-relief, isolated hills and a long linear ridge in the 
north-west comer. 

Huntsville, Alabama, has a moderate local relief of 346 meters and several isolated, 
weii"'1efmed1110unts-with cm -ex.tensive-range-along-the eastern half -Of the area {Figure 3). Mustang 
Mountains, Arizona, has a relatively high local relief at 641 m, and distinct, well-defined mounts. In 
addition to the more prevalent, well-defined conical mounts, Mustang Mountains also has several 
low-relief, poorly defined mounts in the southern quarter of the area (Figure 4). 

Paradise Range, California, has the highest local relief at 800 meters. This area has an 
overall rugged topography with the majority of the mounts well-defined and large in extent (Figure 
5). There are also a few small, isolated mounts scattered throughout the area. Numerous low-relief 
coalescing alluvial fans occupy the areas between the mounts. 

The five test sites were selected using the same criteria as the training sites. These sites are 
Oregon, Wisconsin; Post Oak Mountains, Texas; Madison, Alabama; Farley, Alabama; and West of 
Drinkwater Lake, California. Table 3 shows the maximum elevation, minimum elevation, and local 
relief of the chosen test sites. 

4 



TABLE2 

Terrain Parameters of Selected DEM Training Sites 

Location Max.. Elev. Min. Elev. Local Relief 

Verona, WI 351m 258m 93m 

Gettysburg, PA 230m 113m 117m 

Huntsville, AL 508m 162m 346m 

Mustang Mts., AZ 1,966m l,325m 641m 

Paradise Range, CA 1,382m 582m 800m 

TABLE3 

Terrain Parameters of Selected DEM Test Sites 

Location Max. Elev. Min. Elev. Local Relief 

Oregon, WI !@m ZOO-m 1091n 

Post Oak Mts., TX 320m 179m 141m 

Madison, AL 381m 161m 220m 

Farley, AL 461m 135m 326m 

West of Drinkwater 
Lake, CA l,476m 871m 605m 
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Figure 1. Shaded relief image of Verona, Wisconsin. Generated from a 7 .5-minute-based digital 
elevation model (DEM). 
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Figure 2. Shaded relief image of Gettysburg, Pennsylvania. Generated from a 7 .5-minute-based 
digital elevation model (DEM). 
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Figure 3. Shaded relief image of Huntsville, Alabama. Generated from a 7 .5-minute-based digital 
elevation model (DEM). 
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Figure 4. Shaded relief image of Mustang Mountains, Arizona. Generated from a 7 .S-minute-based 
digital elevation model (DEM). 
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Figure 5. Shaded relief image of Paradise Range, California. Generated from a 7 .5-minute-based 
digital elevation model (DEM). 
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The lowest relief site, at 109 m, is Oregon, Wisconsin. In addition to its low relief, this site 
was chosen because of its poorly defined mounts and overall rolling terrain (Figure 6). Post Oak 
Mountains, Texas, with a local relief of 140 m, was chosen because it has a few isolated, low-relief, 
flat-topped mounts, in addition to a broad, low-relief, flat-topped range in the south-east quadrant of 
the DEM (Figure 7). 

The Madison and Farley, Alabama, data sets have moderate local relief. The Madison site, 
with a local relief of 220 m, consists of several relatively isolated, well-defined mounts and has an 
overall irregular topography (Figure. 8). Farley, Alabama, which has a local relief of 325 m and is 
similar to Post Oak Mountains, was chosen because it has several isolated, well-defined mounts and 
an extensive, relatively flat-topped range (Figure 9). 

The final test site, West of Drinkwater Lake, California, has the highest local relief of 605 
meters. This site combines both low- and high-relief terrain features. In addition to several 
well-defined "prototypical" mounts and high-relief ranges with definite peaks, this site also possesses 
numerous lower relief topographic features such as alluvial fans and alluvial plains (Figure 10). 

In order to visualize the topography of the selected DEM's, synthetic stereo shaded relief 
images (Batson et al., 1976) were created using software written by scientists at the U.S. Army 
Topographic Engineering Center (TEC). Using red and cyan anaglyph glasses, four TEC scientists 
examined the synthetic stereo images. The TEC scientists were asked to identify the physical and 
perceptible attributes of the mounts in each area, as well as the cognitive attributes of mounts in 
general. 

The most common responses were (1) the mounts were identifiable because they were 
noticeably higher in relief than the surrounding terrain; (2) the boundary between "mount" 
and "non-mount" was placed at a noticeable break in slope; and (3) most mounts possess a summit or 
peak. It was further noted that most mounts have a definable shape, and many are more rugged than 
the surrounding terrain. 

The scientists were also asked which mounts were considered to be well-defined, which were 
poorly defined, and why. There tended to be overall agreement about the well-defined mounts, which 
were easiry distinguished by tfiefr obvious peaks or summits and the sharp breaks in slope at the 
boundary between mount and non-mount. These most closely represent the "best examples" or 
"prototypes" of the mount classification. The boundary between the poorly defmed mounts and the 
non-mount areas, on the other hand, was much more subjective and varied widely from scientist to 
scientist. 

Also, the software that displays the stereo images enables the user to plot polygons in a 
graphic plane overlaying the stereo images. Prior to developing the classification method, one set of 
boundaries was \plotted for each of the five training sites by the author. Four sets of boundaries were 
plotted by the scientists for all of the five test sites. In each case, the mount was identified as either 
well-defined or poorly defined. 

The manual classifications resulted in vector polygon files depicting the boundaries between 
mount and non-mount areas. After performing a vector-to-raster conversion on the vector polygon 
files, the manually derived boundaries were overlaid with the computed data layers and the 
automatically classified mounts. 
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Figure 6. Shaded relief image of Oregon, Wisconsin. Generated from a 7 .S-minute-based digital 
elevation model {DEM). 
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Figure 7. Shaded relief image of Post Oak Mountains, Texas. Generated from a 7 .5-minute-based 
digital elevation model (DEM). 
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Figure 8. Shaded relief image of Madison, Alabama. Generated from a 7 .5-minute-based digital 
elevation model (DEM). 
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Figure 9. Shaded relief image of Farley, Alabama. Generated from a 7 .5-minute-based digital 
elevation model (DEM). 
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Figure 10. Shaded relief image of West of Drinkwater Lake, California. Generated from a 
7 .5-minute-based digital elevation model (DEM). 
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The first attribute noted by the scientists was surface altitude. Since surface altitude is 
provided by the elevation values directly, additional attributes related to altitude were computed. 
These included the maximum, minimum, and median elevation, as well as the local relief of the entire 
area. 

The second attribute noted by the scientists was slope, or gradient. A Sobel operator was 
used to compute the gradient of a 3 by 3 neighborhood of elevation values (Rives and Besaw, 1990). 

By overlaying the manually derived boundaries with the computed slope file of a given site, it 
was possible to assess visually the correspondence between the two. An examination of the 10 sites 
shows that for those areas having a local relief of 250 m or greater, the slope value that corresponds 
most closely with the manually derived boundaries is 10 percent. However, in those areas with local 
relief less than 250 m, a lower slope of 6 percent provides a closer correspondence with the manually 
derived boundaries. The exact dividing line between these, if indeed any really exists, requires 
further investigation. 

In addition to slope, critical points were also computed. Critical points relate to the peak or 
summit attribute noted by the scientists. A simple procedure was used to find peaks, pits, ridge 
points and drain points. Peaks are considered to be any central point in a 3 by 3 neighborhood of 
values that is higher in elevation than any of its neighbors. The opposite is a pit. 

The algorithm used to determine ridge and drain points was adapted from Jenson (1985). 
Unlike a peak, which is a local maximum compared to all eight neighbors, a ridge point is considered 
in this analysis to be a local maximum compared to two neighbors in either cardinal direction (e.g. 
higher than its north-south neighbors or higher than its east-west neighbors). The opposite is true of 
a drain point. · 

The critical points were then overlaid with the manually derived boundaries of several training 
sites. It was determined that, using the criteria as defined for peaks, not all mounts have an 
associated peak. There are also several peaks located in the non-mount areas (Figure 1 lA). These 
may result from isolated highs in the topography or errors in the data. 

Because each mount did not have an associated peak, ridge points were examined in the same 
manner. Initially, ridge points were also computed between non-cardinal neighbors. This produced 
numerous ridge points, many located in areas identified as non-mount by the scientists. When only 
cardinal neighbors were used, the correspondence was higher than with peaks, and fewer points were 
identified in non-mount areas. However, there were still too many ridge points located in non-mount 
areas (Figure 1 lB). To minimize the delineation of mounts in non-mount areas, slope information 
was used to identify many ridge points located in areas not manually defined as mount. 

Prior to extracting slope and critical points, the elevation data were smoothed twice using a 3 
by 3 Gaussian smoothing mask. Previous studies using critical points show this to be the optimum 
number of times to smooth the data without losing excessive detail, while still removing excess noise 
(Seemuller, 1989). 

Noise in the elevation data may result from the data collection process, both manual and 
automatic, or from the data source used to produce the elevation matrix. Examples of linear 
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A 

B 

Figure 11. Automatically computed critical points and manually derived boundaries for Mustang 
Mountains, Arizona. A. Peaks and boundaries; B. Ridge points and boundaries. 

18 



anifacts can be seen in the shaded relief images of the Gettysburg, Pennsylvania; Oregon; Wisconsin; 
Madison, Alabama; and Farley, Alabama sites. 

To classify the mounts automatically in the input DEM's, a method was selected that uses 
three layers of information. Two of these layers were derived in the preprocessing step from the 
original elevation data and include percent slope and critical points (Figure 12). The third layer is the 
original elevation data file itself. 

Preprocessing 

Elevation Smoothed Elevation 

I 
Slope Critical Points 

Figure 12. Files Created from the Original Elevation Data in the Preprocessing Step. 

The developed method for mount classification has four steps with each step using the 
classification of the previous step as input (Figure 13). These steps are as follows: 

1. Reclass Ridges. Assign a boundary slope between mount and non-mount areas based on 
local relief, and classify all ridge point locations with a slope greater than the boundary slope 
as mounts and all other points as non-mounts. 

2. Grow to Boundary. Examine- a-3 by 3 window of-percem-siope-and-moums-classifiechn
Step 1 to "grow" the mounts from the ridge points to the boundary slope as follows: if the 
center of the 3 by 3 window is a non-mount and its slope is greater than the boundary slope 
and any of its eight neighbors are a mount, then reclassify the center as mount. 

3. Grow Uphill. Continue to "grow" the mounts, classified in Step 2, by looking for uphill 
trends in the data. If a non-mount is encountered after an uphill trend is established, then it is 
reclassed as mount. The entire area is processed first from left to right, then from right to 
left. 

4. Fill-in Flats. Apply a region-growing algorithm to a 3 by 3 window of original elevation 
data and mounts classified in Step 3 to fill in remaining non-mounts located in mounts. This 
algorithm states that if all three neighbors to any side of the center non-mount value are 
classed as mount and the elevation of the central value is greater than its closest mount 
neighbor, then reclassify the center from non-mount to mount. 
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Critical Points 

Slope 

Elevation 

Result1 

Slope 

Reclass Ridges 

Grow to Boundary 

Result2 

Elevation 

Grow Uphill 

Result3 

Elevation 
Fill-in Flats 

MOUNTS 

Figure 13. Steps in Automated Classification Method. 
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Several routines from the Earth Resources Data Analysis System (ERDAS) were used to 
compare, visually and numerically, the automatic and manual classifications. Visual map comparison 
was performed between the automatically classified mounts and the boundaries obtained in the manual 
classification. The automatic classification of the five training sites was overlaid 
and compared to mounts manually classified by the author. The five test site results were visually 
compared to each of the four scientists' classification of the same site. 

A visual map comparison shows noticeable differences between the manual and automated 
classifications. The following differences were noted: (1) some mounts that were separated manually 
were merged in the automated process; (2) in many cases, the automated process produced more 
small, isolated mounts than those identified manually; and (3) the boundaries on the manually derived 
mounts tend to be less detailed than those derived automatically. To eliminate the small, isolated 
clumps, ERDAS routines were used to sieve all mounts less than 25 cells (5 cells x 5 cells) from the 
final classification (Figure 14). 

Numerical comparison consisted of the following: the total area (hectares) of all mounts as 
determined automatically and manually; the total area of all mounts determined to be well-defined 
manually compared to similar mounts determined automatically; and the application of the coefficient 
of areal correspondence, which evaluates the correspondence between areal patterns (Unwin, 1981). 

Training Sites 

Postprocessing 

Mounts 

Remove Clumps 

Sieved Mounts 

Figure 14. Postprocessing Removal of Small, Isolated Clumps. 

RESULT-S-

Visual comparison of the mount file shows that, in each case, the well-defined mounts that 
were identified manually were also identified automatically, with the closest overlap appearing in the 
high-relief areas. In general, the correspondence is much lower where the mounts are poorly defined. 
This can be seen in the figures that follow where a more detailed analysis is provided. 

A numerical comparison of all training sites shows an overall coefficient of areal 
correspondences that ranges from a low of 0.26 to a high of 0.81 (fable 4). As would be expected, 
the sites with a large percentage of well-defined mounts produce higher correspondences than those 
with a small percentage. In general, those sites with greater local relief also produce higher 
correspondences, both overall and well-defined, than do the sites with lower local relief (fables 4 and 
5). 
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Location 

Verona, WI 

Gettysburg, PA 

Huntsville, AL 

Mustang Mts., AZ 

Paradise Range, CA 

'Area in hectares. 

Table 4. 

Statistics for Selected DEM Training Sites for 
ALL MOUNTS 

Area of Mounts' 

Auto Manual 

5,843 7,198 .65 

699 576 .26 

6,038 5,781 .81 

5,143 5,063 .74 

5,195 5,387 .81 

2Ca = coefficient of areal correspondence. 

Location 

Verona, WI 

Gettysburg, PA 

Huntsville, AL 

Mustang Mts., AZ 

Paradise Range, CA 

'Area in hectares. 

Table 5. 

Statistics for Selected DEM Training Sites for 
WELL DEFINED MOUNTS 

Area of Mounts' 

AY1Q Manual 

5,228 6,575 

125 95 

5,483 5,625 

4,286 3,979 

4,()6() 4,898 

2Ca = coefficient of areal correspondence. 
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An analysis of Verona, Wisconsin, the site with the lowest local relief, shows an overall 
correspondence of 0.65 (fable 4). This is a fairly high correspondence for such a low-relief area. 
However, as can be seen in Figure 15, 91 percent of the total area of the mounts identified manually 
was considered to be well-defined, which accounts for this high value. Examination of the 
well-defined mounts raised the correspondence by only 0.03 to a value of 0.68 (fable 5). 

The site at Gettysburg, Pennsylvania, with its rolling terrain, linear ridges, and few isolated, 
well-defined mounts, produced the lowest overall correspondence, 0.26 (fable 4). One reason for 
this very low value is that a ridge that was quite obvious in the manual identification was totally 
missed in the automatic classification (Figure 16). This ridge does not possess the required ridge 
points with slope greater than the boundary class in order for it to be extracted. Consequently, other 
criteria are required to extract automatically a feature such as this. 

This low overall correspondence is not surprising because only 16 percent of the area of the 
manually defined mounts was considered to be well-defined (Figure 16). The correspondence more 
than doubled to 0.58 when only the well-defined mounts were considered. This increase in 
correspondence suggests that the automatic procedures classified more locations as mount than were 
classified manually. 

Fairly high overall correspondences were obtained for the remaining sites -- Huntsville, 
Alabama; Mustang Mountains, Arizona; and Paradise Range, California (fable 4). Mustang 
Mountains was the lowest of the three at 0.74, and both Huntsville and Paradise Range had a value of 
0.81. 

Huntsville, Alabama, with a moderate local relief, produced overall results comparable to 
those of the highest relief site (fable 4). The correspondence, when only well-defined mounts were 
considered, was 0.87, which is the highest for any of the training sites (fable 5). This suggests that 
local relief does not affect the results as much as the percent of well-defined mounts in the area. 
Ninety-seven percent of the total area of mounts classified automatically were considered to be 
well-defined, which is the highest for any of the training sites (Figure 17). 

The Mustang Mountains, Arizona, site has an overall correspondence of 0.74 (fable 4). This 
is less than the lower relief site of Huntsville because Mustang Mountains has a greater percentage of 
poorly defined mounts (Figure 18). The percent of total area-of mounts-c-0nsiderea to be-well-defined. 
was 83 percent for Mustang Mountains and 97 percent for Huntsville. Most of the poorly defined 
mounts are located in the southern quarter of the area where the mounts have lower relief and the 
boundaries are less distinct. The correspondence rose to 0.83 when only the well-defined mounts 
were considered (fable 5). 

Paradise Range, California, is the training site with the highest local relief. The overall 
correspondence is high at 0.81 which is equivalent to that of Huntsville (fable 4). Ninety-one 
percent of the total area of all mounts classified automatically were considered to be well-defined by 
the scientists (Figure 19). As would be expected, the correspondence also is high, 0.82, when only 
the well-defined mounts are considered (fable 5). 
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figure 15. Correspondence between manually and automatically classified mounts for Verona, 
Wisconsin. Manually classified mounts are in light gray, automatically classified mounts are in 
medium gray, and overlap is in dark gray. A. All mounts; B. Well-defined mounts only. 
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Figure 16. Correspondence between manually and automatically classified mounts for Gettysburg, 
Pennsylvania. Manually classified mounts are in light gray, automatically classified mounts are in 
medium gray, and overlap is in dark gray. A. All mounts; B. Well-defined mounts only. 

25 



A 

B 

Figure 17. Correspondence between manually and automatically classified mounts for Huntsville, 
Alabama. Manually classified mounts are in light gray, automatically classified mounts are in 
medium gray, and overlap is in dark gray. A. All mounts; B. Well-defined mounts only. 
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Figure 18. Correspondence between manually and automatically classified mounts for Mustang 
Mountains, Arizona. Manually classified mounts are in light gray, automatically classified mounts 
are in medium gray, and overlap is in dark gray. A. All mounts; B. Well-defined mounts only. 
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Figure 19. Correspondence between manually and automatically classified mounts for Paradise Range, 
California. Manually classified mounts are in light gray, automatically classified mounts are in 
medium gray, and overlap is in dark gray. A. All mounts; B. Well-defined mounts only. 
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Test Sites 

There is general agreement among the four TEC scientists over which areas in the DEM are 
considered to be mounts. In all cases containing well-defined, or "prototypical", mounts, the 
correspondence between the scientists is readily apparent. However, where the mounts are poorly 
defined and less obvious, the determination of their location and extent is much more subjective and 
varies considerably from scientist to scientist. 

The results of the test sites substantiate those found in the training sites. Visually, there 
appears to be a high correspondence with the well-defined mounts and a much lower correspondence 
with the poorly defined mounts, especially in the high-relief areas. 

The coefficient of areal correspondence further supports the findings of the visual comparison. 
As can be seen in Tables 6 and 7, the overall correspondences are better in higher relief areas; 
however, the overall correspondences also vary widely from scientist to scientist. The 
correspondences of the well-defined mounts are fairly consistent for the three low-relief sites: Oregon, 
Wisconsin; Post Oak Mountains, Texas; and Madison, Alabama. The well-defined correspondences 
are much greater for the two higher relief areas of Farley, Alabama, and West of Drinkwater Lake, 
California. 

The lowest relief site, Oregon, Wisconsin, shows overall correspondences that range between 
scientists from 0.38 to 0.52 (fable 6). These are relatively high correspondences considering much 
of the area is irregular or undulating, and very few of the mounts were considered to be well-defined 
(in many instances only certain boundaries of a particular mount were considered by the scientists to 
be well-defined) (Figures 20 and 21). The correspondences did not improve dramatically when only 
the well-defined mounts were considered (fable 7). This is because it is much more difficult to 
establish a boundary between mount and non-mount in low-relief areas, even if the mounts are 
considered to be well-defined. · 

The Post Oak Mountains, Texas, site shows the lowest overall correspondences and the lowest 
correspondences of well-defined mounts (fables 6 and 7). In addition to its low relief, another factor 
that contributes to the low correspondences is the inability of the algorithms to deal with the large 
flat-topped range in the south-east quadrant of the site~ The_ boundacy between-the_range_and_the_ 
non-mount area visually matches in both the manual and automated identifications; however, only 
1,581 hectares were identified automatically, while the manual classifications ranged from 2,667 to 
3,186 hectares (Figures 22 and 23). The problem lies in filling in the flat-top using the automated 
method. This is an issue that requires further investigation. 

The Madison, Alabama, site has a moderate local relief and shows low overall 
correspondences for all four scientists; however, it was under 0.2 for two of the test subjects (table 
6). Like the other low-relief sites, this area has a few isolated, well-defined mounts with an overall 
irregular topography. The correspondences increased, and more than doubled in some cases, when 
only the well-defined mounts were considered (fable 7 and Figures 24 and 25). 

Relatively high correspondences, both for all mounts and well-defined mounts only, were 
obtained from the Farley, Alabama, site (fables 6 and 7). This largely results from the fact that most 
of the mounts extracted manually are considered to be well-defined. Like Post Oak Mountains, this 
site has a large, relatively flat-topped range along its eastern side. However, because the flat area on 
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Table 6 

Statistics for Selected DEM Test Sites for ALL Mounts 

Location Scientist! Scientist2 Scientist3 Scientist4 

Oregon. WI 

Total Area1 3,386 7,423 5,915 4,693 6,197 
Ca2 .38 .40 .52 .41 

Post Oak Mts .. TX 

Total Area 5,738 9,817 12,493 5,275 4,148 
Ca .38 .38 .37 .37 

Madison. AL 

Total Area 1,793 8,322 7,333 3,701 4,060 
Ca .18 .19 .36 .38 

Farley. AL. 

Total Area 6,491 7,533 7,465 6,694 6,987 
Ca .70 .63 .75 .72 

West of Drinkwater Lake. CA 

Total Area 5,738 10,672 8,325 7,740 7,540 
Ca .44 .58 .66 .71 

1Area in hectares. 
2Ca = coefficient of areal correspondence. 
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Table 7 

Statistics for Selected DEM Test Sites for WELL DEFINED Mounts 

Location Scientist! Scientist2 Scientist3 Scientist4 

Oregon. WI 

Total Area1 2,175 1,619 2,363 2,603 3,233 
Ca2 .45 .55 .57 .47 

Post Oak Mts .. TX 

Total Area 4,125 3,656 4,034 3,925 4,148 
Ca .38 .43 .37 .45 

Madison. AL 

Total Area 1,608 1,913 1,864 1,983 2,736 
Ca .63 .56 .63 .56 

Farley. AL. 

Total Area 5,794 6,305 5,438 5,979 5,985 
Ca .80 .77 .82 .82 

West of Drinkwater Lake. CA 

Total Area 5,587 5,260 5,362 5,614 6,499 
Ca .82 .81 .84 .79 

1Area in hectares. 
2Ca = coefficient of areal correspondence. 
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Scientist 1 Scientist 2 

Scientist 3 Scientist 4 

Figure 20. Co:respondence between All manually and automatically classified mounts for Oregon, 
Wisconsin. Manually classified mounts are in light gray, automatically classified mounts are in 
medium gray, and overlap is in dark gray. 
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Scientist 1 Scientist 2 

Scientist 3 Scientist 4 

Figure 21. Correspondence between manually and automatically classified Well-Defined mounts for 
Oregon, Wisconsin. Manually classified mounts are in light gray, automatically classified mounts are 
in medium gray, and overlap is in dark gray. 
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Scientist 1 Scientist 2 

Scientist 3 Scientist 4 

Figure 22. Correspondence between All manually and automatically classified mounts for Post Oak 
Mountains, Texas. Manually classified mounts are in light gray, automatically classified mounts are 
in medium gray, and overlap is in dark gray. 
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Scientist 1 Scientist 2 

Scientist 3 Scientist 4 

Figure 23. Correspondence between manually and automatically classified Well-Defined mounts for 
Post Oak Mountains, Texas. Manually classified mounts are in light gray, automatically classified 
mounts are in medium gray, and overlap is in dark gray. 
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Scientist 1 Scientist 2 

'· 

Scientist 3 Scientist 4 

Figure 24. Correspondence between All manually and automatically classified mounts for Madison, 
Alabama. Manually classified mounts are in light gray, automatically classified mounts are in 
medium gray, and overlap is in dark gray. 
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Figure 25. Correspondence between manually and automatically classified Well-Defined mounts for 
Madison, Alabama. Manually classified mounts are in light gray, automatically classified mounts are 
in medium gray, and overlap is in dark gray. 
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and others only extracted the high-relief features (Figures 28 and 29). When only the well-defined 
mounts are considered, the correspondences are high, ranging from 0.79 to 0.84 (Table 7). 

ANALYSIS 

This study attempts to simplify a complex and subjective classification problem by initially 
aggregating all terrain features into two major categories, mounts and non-mounts. A method was 
then developed to automatically partition digital elevation models into mount and non-mount areas. 

It appears that this two-class approach to terrain classification is useful in some areas but not 
in others. The classification into mount and non-mount areas is most successful in moderate- or 
high-relief areas where the mounts are well-defined and have ridge points with the required slope 
characteristics. The classification does not work as well in low-relief areas or where the mount has a 
broad, relatively flat top, such as that present in the Post Oak Mountains, Texas, site or a narrow 
linear shape such as that near Gettysburg, Pennsylvania. 

The results of the classification, however, are highly dependent on the developed method. 
For this reason, it is difficult to separate the usefulness of the classification scheme from the methods 
used to extract the mounts. 

The developed method heavily relies on a universal approach, local neighborhood operators, 
and "critical values," such as the boundary slope between mount and non-mount. Each of these pose 
possible limitations to the current approach and will be addressed in turn. 

First, application of a universal approach, which applies the same procedures to each DEM 
regardless of geographic location, may not be desirable. If the methods of mount identification can 
be tailored to the area covered by the DEM, it is possible that this classification would be useful in 
more areas than suggested by this research. However, it is likely that many areas require a much 
deeper model of terrain classification than the two-class approach used in this study. 

Second, it appears that local neighborhood operators can provide valuable information, as a 
first look at the terrain. In many cases, however, a 3 by 3 window may be too small and restrictive 
for terrain features. Application of more regional operations, that examine the feature as a whole, 
may be required for accurate classification. This will become especially important when a specific 
classification is desired. 

Finally, the results of this research suggest that a boundary slope exists between mount and 
non-mount. As used in this study, this "critical value" is a function of the local relief of the area. 
Further investigation with additional DEMs is required to determine if there is a unique local relief 
cut off relating to a slope boundary between mount and non-mount areas, or, if this too is dependent 
on the area under consideration. 

38 



Scientist 1 Scientist 2 

Scientist 3 Scientist 4 

Figure 26. Correspondence between All manually and automatically classified mounts for Farley, 
Alabama. Manually classified mounts are in light gray, automatically classified mounts are in 
medium gray, and overlap is in dark gray. 
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Scientist 1 Scientist 2 

Scientist 3 Scientist 4 

Figure 27. Correspondence between manually and automatically classified Well-Defined mounts for 
Farley, Alabama. Manually classified mounts are in light gray, automatically classified mounts are in 
medium gray, and overlap is in dark gray. 
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Scientist 1 Scientist 2 

Scientist 3 Scientist 4 

Figure 28. Correspondence between All manually and automatically classified mounts for West of 
Drinkwater Lake, California. Manually classified mounts are in light gray, automatically classified 
mounts are in- medium gray, and overlap is in dark gray. 
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Scientist 1 Scientist 2 

Scientist 3 Scientist 4 

Figure 29. Correspondence between manually and automatically classified Well-Defined mounts for 
West of Drinkwater Lake, California. Manually classified mounts are in light gray, automatically 
classified mounts are in medium gray, and overlap is in dark gray. 
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Incorporation of knowledge-based procedures may help constrain and simplify the 
classification problem, reducing the limitations of the current approach. These procedures can include 
regional knowledge about the area, such as the physiographic region and climate, or local knowledge, 
such as vegetation and land-use. Relationships between knowledge, such as this, and terrain features 
have been studied by terrain analysts for many years. This knowledge can be used in a top-down 
approach to tailor the classification methods used in a certain area to the features that are expected to 
be present. 

Examination of the 10 sites used in this research suggests that knowledge about the 
physiographic region of a DEM can be used to predict the success of the classification scheme and the 
developed method (fable 8). Physiographic regions (provinces) for each of the 10 DEMs were 
established using Fenneman's physical divisions of the United States (1931, 1938). 

The developed method worked well on all the high-relief sites in the Basin and Range 
province - Mustang Mountains, Arizona; West of Drinkwater Lake, California; and Paradise Range, 
California. Mixed results were obtained for the three Alabama sites - Madison, Farley, and 
Huntsville. These sites are located in the Interior Low Plateau and have moderate local relief. 

Low correspondences, both overall and well-defined, were obtained for most of the sites in 
low-relief physiographic regions. These sites include Gettysburg, Pennsylvania, located in the 
Piedmont province; Oregon, Wisconsin, located in a glaciated portion of the Central Lowlands; and 
Post Oak Mountains, Texas, located in the Great Plains. However, the lowest relief site, Verona, 
Wisconsin, which also is located in the Central Lowlands, had moderate overall and well-defined 
correspondences. 

In an attempt to understand the differences in correspondence between the two Wisconsin 
sites, the 7.5-minute topographic maps of Oregon and Verona (US Geological Survey 1982a, 1982b) 
were manually examined. The Oregon map shows many signs of continental glaciation, such as 
lakes, gravel pits, and linear ridges. The map of the Verona area, to the west, shows much less 
evidence of the erosional and depositional effects of glaciation. This area most likely lies in the 
transition zone between the glaciated portion of Wisconsin to the east and the driftless area to the 
west. This suggests that continental glaciation tends to blur the boundaries between mount and 
non-mount areas resulting in more poorly defined mounts and lower correspondences. Thus, 
knowledge regarding the geomorphic history of an area may also be used to tailor the classification 
methods. 

Regional and !ccal !mcwlooge, such as- that described· above, could ·assist·in the-automatic · 
classification of poorly defined mounts and other basic-level terrain features such as basins, plains, 
and flats. Once these features have been partitioned from the surrounding terrain, a more specific 
classification of the feature may be possible by applying operations tailored to the expected landforms. 

Additional limitations to the current work may be imposed by the data source in terms of 
quality and resolution. Studies have shown that the data used in this study are sufficient for providing 
small-scale information to extract large terrain features, such as drainage basins, lakes and, in certain 
cases, mounts. However, it provides insufficient detail to extract detailed, local information, such as 
gully shape. Information such as this is frequently used by terrain analysts when performing a 
classification of a given area. 
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Table 8 

Relationship Between Sites, Physiographic Region 
and Correspondence of Automatic and Manual Classification 

Location Physiographic Region 

Verona, WI Central Lowlands 

Oregon, WI Central Lowlands 

Gettysburg, PA Piedmont 

Post Oak Mts, TX Great Plains 

Madison, AL Interior Low Plateau 

Farley, AL Interior Low Plateau 

Huntsville, AL Interior Low Plateau 

Mustang Mts, AZ Basin and Range 

West of Drinkwater 
Lake, CA Basin and Range 

Paradise Range, CA Basin and Range 

1Ca = coefficient of areai corresponcien-c-eior 11.li -mounts. 
(individual value for training sites, range for test sites) 

2Ca = coefficient of areal correspondence for well-defined mounts. 
(individual value for training sites, range for test sites) 
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.65 

.38-.52 

.26 

.37-.38 

.18-.38 

.63-.75 

.81 

.74 

.44-.71 

.81 

Qa2 

.68 

.45-.57 

.58 

.37-.45 

.56-.63 

.77-.82 

.87 

.83 

.79-.84 

.82 



It may be possible to extract information, such as gully shape, from higher quality and 
resolution data. However, until better data becomes readily available, it may be possible to extract 
similar detailed information, such as hydrography and vegetation, from other digital data sources. 
These sources can include US Geological Survey Digital Line Graph (DLG) data or Defense Mapping 
Agency Tactical Terrain Data (TI'D), where available. 

CONCLUSIONS 

1. Manual terrain classification heavily relies on perception, learned skills and experience. To 
classify terrain features with computers, an attempt must be made to quantify the attributes associated 
with the chosen features. 

2. This study simplifies the terrain classification process by employing a divide-and-conquer 
philosophy. Initially, the terrain is partitioned into two classes. These classes include mounts, which 
are considered to be elevated terrain features such as hills and mountains, and non-mounts. 

3. This study suggests a method for automatically classifying mount and non-mount areas in a digital 
elevation model (DEM). Performance of the developed method is compared to results obtained by a 
manual classification of synthetic stereo images generated from the same DEM. 

4. The results suggest that, using the developed method, mount is a useful classification in moderate 
or high-relief areas where the mounts are well-defined, i.e., they are easily distinguished from the 
non-mount areas by a sharp break in slope. 

5. These procedures do not work as well where the mounts are poorly defined, have extensive 
low-slope tops, and/or do not have ridge points with the required slope. The variability among the 
scientists for the test sites suggests that manual classification of poorly defined mounts is also more 
difficult than the classification of well-defined mounts using elevation data alone. 

6. Limitations of the current method, due to reliance on a universal approach, local neighborhood 
operators and critical values, may be minimized by incorporating knowledge-based procedures to 
constrain and simplify the classification problem. These procedures could include regional knowledge 
about the area, such as the physiographic region or climate. 

7. Results of the study suggest that a relationship exists between the physiographic region of the 
DEM and the success of the developed method. The method had good success in high-relief 
physiographic regions and poor results in low-relief regions._ Knowledge-such as-this-could be used to -
develop local classification procedures that attempt to identify different types of features based on 
those expected to be present in a particular region. 

8. Other local knowledge, such as that used in manual terrain classification, could also be 
incorporated into an automated terrain classification system in order to assist in feature identification. 
This knowledge could include such things as vegetation, drainage, and land-use where they are 
available in digital form. 
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9. Regional and local knowledge, such as that described above, could assist in the automatic 
classification of other basic-level terrain features, such as basins, plains, and flats, as well as more 
specific subordinate-level geomorphologic landforms. 

10. Limitations to the current study are also imposed by the resolution and quality of the data source; 
however, many military systems will have to rely on DMA standard products which have similar 
resolution and quality. 
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