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1. INTRODUCTION 

This report concludes the second phase of a three-phase collaborative effort 

between the U.S. Army Engineer Topographic Laboratories (ETL) and the National 

Bureau of Standards (NBS). This phase is the object of Interagency Agreement 

E8786K041 covering the time period from January to September 1986. The first 

phase of this effort took place from May to December 1985 under Interagency 

Agreement E8785Kl37. The third phase of this effort is in the planning stage. 

The main objective of this effort is to develop and implement a "contour-to

grid" algorithm, that is, an algorithm capable of converting digitized contour 

data into Digital Terrain Elevation Data (DTED). The approach is to create a 

synthetic terrain surface based on digitized contour information and then to 

calculate any grid from that surface. Five tasks are to be performed: 

o Edit a digitized contour data set (input) 

o Thin (reduce, sample) the input data 

o Triangulate the selected points 

o Generate a smooth synthetic surface 

o Generate the desired grid. 

The first phase, which was completed in December 1985, addressed the first three 

tasks. A description of the work done and the results obtained appear in 

Witz gall, Bernal and Mandel (85). The second- phase, to which this report 

refers, elaborates on the previous results and includes work in all five areas. 

The effort demonstrates the feasibility of performing such tasks for large data 

sets, such as a Digital Graphic Recorder (DGR) data tape of roughly 500,000 

points. 

Details about the data structure used, the problems encountered, and the 

necessary transformations will be discussed in the second section of the report. 
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In the third section, we will describe a tolerance band algorithm for thinning 

the data set to a size suitable for triangulation and subsequent interpolation. 

This tolerance band algorithm is a one-pass version of the method by Reumann and 

Witkam (74) in analogy to techniques proposed by Williams (78,81). It was used 

to create sets of sample contour points, ranging from roughly 40,000 to 70,000 

points. An algorithm previously developed by NBS was then employed to determine 

the Voronoi triangulations of these sets of points in a plane as illustrated in 

Figure 1. This process required, however, the development of a decomposition 

algorithm for data sets consisting of more than 50,000 points. This and other 

necessary adaptations are discussed in the fourth section of this report. 

Section Five will include a detailed discussion of the methodology employed to 

generate the surface, including the algorithm developed to produce rectangular 

grids for any given unit sizes. The testing procedure, along with a description 

of the structural layout used while performing the different tasks appears in 

the sixth section. This section will also contain a discussion of additional 

issues that are expected to be relevant to further work in this area. 

Plots were obtained for the contour lines in their original form as well as in 

generalized form corresponding to 40,000 and 70,000 point samples using a Gerber 

Plotter. The Voronoi triangulation of a 40,000 point sample was also plotted. 

The surface generation software which was prepared as part of this effort, was 

applied to a a 40,000 point sample. The resulting surface was tested using the 

original data, independently of the sample data set. 

All computations were initially carried out on a VAX 11/750 system and later 

(July 1986) transported to a VAX 11/780 system at ETL. They were found to be in 

·the -range of extensiv€, imt -routine -eomputa-t-ions of the kiacl that ~an be 

expected as part of the normal load of such systems. 

Triangulation based surface modelling has been considered for some time, e.g. 

Peucker and Douglas (75). For other related work see Davis, Downing, and 

Zoraster (82), and Grotzinger, Danielson, Caldwell, and Mandel (84). 
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Figure 1. Portion of a Computer-Generated Plot of the Voronoi Triangulation 

of Selected Cont~ur Points for the Mustang Mountain Area. 
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2. DIGITAL DATA STRUCTURE 

The first task performed in this effort consisted of obtaining and editing a 

digital contour data set making it compatible with the software developed for 

the other tasks. All the necessary computations were performed originally in a 

VAX 11/750 system and then transported to a VAX 11/780 with a VMS operating 

system. Details of the modifications made to the particular data set used 

follow. 

2.1 DIGITAL GRAPHIC RECORDER DATA 

The process of digitizing cartographic information has been used for various 

purposes over the past decades. In particular, the Digital Graphic Recorder 

(DGR) has been employed to trace the lines of a map in order to generate 

sequences of coordinate pairs representing these lines. This digital data set 

is then stored on magnetic tape and is available in this form for computer 

processing. Specifically, we are interested in the problem of determining a 

computer internal terrain surface representation from this information. 

An example of a data tape generated by a DGR was made available by the Defense 

Mapping Agency Hydrographic/Topographic Center (DMAHTC) together with a graphic 

plot derived from this information. The information had been generated from a 

1:24,000 map of the Mustang Mountain area in Fort Huachuca, Arizona, -- an area 

which exhibits a large range of elevations and slopes. The digitizer resolution 

used, 0.01 inches, corresponds to a horizontal distance of 20 feet. 

Contour related data were extracted from this tape and the information was 

reformatted and installed in a VAX system. Two basic problems were encountered 

in this effort concerning the format of the data and the size of the files. 

First of all, the records in a DGR magnetic tape contain 192 CDC-1700 words. 

Each word contains 18 bits of which only the high order 16 bits are used. We 

were to install this data set in a VAX with a VMS operating system. The words 
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in this system are 32 bits long and the bytes are interchanged in each word. To 

solve this problem a program called DGR2TAPE was written based on an example 

provided by DMAHTC (85). This program interchanges the high order with the low 

order bytes in each word and then it regroups the bits into 16-bit words by 

extracting the high order 16 bits from each 18-bit group. 

The DGR data tape used included digitized contours, ridges, drains and 

neatlines. In the original file layout (DMAHTC, 85) that follows, segments of 

such traced lines are referred to as "scan lines": 

FIRST RECORD: HEADER 

WORD CONTENTS 

1- 5 
6-10 

11-20 
21-30 
31-40 
41-44 
45-50 

51 
52-60 
61-68 
69-192 

DATA RECORDS 

WORD 

1 
2 
3 
4 
5 
6 
* * * 3n+l 

3n+2 
3n+3 

Sheet Number 
$$$$$ 
Operator's !nitials 
Date (07/16/84) 
Scale (1:24000) 
Series 

iUU~n 
$$$$$$$$ 
Registration Marks in Binary (in 0.01 inches) 
Comments 

CONTENTS 

Scan 
Scan 
irpe 
Yl 
Zl 
* * * Xn 

Yn 
Zn 

Line Flag 
Line Numoer (_I. D. ) 
of Data 

(in 0.01 inches) 
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For each line or line segment that is digitized, the following information is 

recorded: a "Scan Line Starting Flag" (octal 200000) that indicates a new 

segment; a "Scan Line Number" that identifies the segment; a "Data Type Index" 

that classifies the segments as contours, neatlines, and ridges or drains; and 

one or more data points as illustrated in the Data Records Layout above. Each 

record may contain one or more traced lines, or depending on the size of the 

segment, it may contain only a portion of the segment. Note that a segment is 

any portion of a traced line, covering possibly the whole line, but more often 

dividing the traced line into several non-contiguous segments. 

The data file consisted of 9023 blocks of 192 words each. Special constraints 

on the amount of disk space available and data accessibility for the type of 

manipulation intended guided t?e design of the new file layout. It was 

necessary to eliminate all the data not useful at this point of our 

investigation. The first record or header record was eliminated and from the 

data records only the contour line segments were kept. The resulting data 

format is described below. 

DATA RECORDS 

WORD 

1 
2 
3 
4 
5 
* 
* * 2n+2 

2n+3 

CONTENTS 

Segment 
Segment 
Z-Value 
Xl 
Yl 
* 
* * -xn 

Yn 

Flag 
Number (I.D.) 
(Elevation or Contour Line) 
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2.2 EDITING THE INPUT DATA 

An examination of the data showed that the contour lines extended beyond the 

neatlines. Leaving the contours unedited caused some undesirable triangles to 

appear in the triangulation. These triangles are very long and narrow and can 

be the source of large errors when a surface is generated. They are caused by 

the fact that the VORONOI triangulation produces a convex hull. A program 

called CLOSCONT was written to solve this problem and to join "neighboring" 

segments. This program edits the contours of the input data to include only 

information that lies within a rectangular area that can be chosen arbitrarily. 

The contour points falling beyond this boundary are deleted, so that the 

boundary includes the last point of each contour which was intersecting it. The 

resulting boundary contains points that are closer together, eliminating the 

undesired triangles. For the effort reported here, the boundaries were chosen 

so that the number of points to be deleted was kept to a minimum. CLOSCONT 

then searches the digital contour segments that remain for adjoining segments 

(neighbors) and joins them. 

The nature of the digitized data is such that all points are in a grid with a 

point separation of 0.01 inches. Thus, neighboring points in a line are 

separated by either a vertical space, a horizontal space, or a diagonal, with a 

maximum separation between points of 0.01414 inches. An illustration of a 

digitized line appears in Figure 2. Integer numbers are used to identify each 

grid point although the distance between points is given in hundredths of an 

inch. Therefore, there is a finite number of points representing a line. It 

was also observed that there are suppressed contours in steep areas where the 

contour density is high. In these steep areas a small chang~ in the horizontal_ 

location of a point has greater impact on its elevation computation and the 

resolution of the digitizer becomes more important. The effects caused by this 

fact are discussed in Section 6.1. Recall that the resolution of the digitizer, 

0.01 inches, corresponds to a horizontal ground distance of 20 feet. 
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3. THINNING BY TOLERANCE BAND ALGORITHMS 

For the purpose of reducing or thinning digitized line data, the second task of 

this effort, we selected a tolerance band method. This approach permits the 

linking of the sampling process to the accuracy of the approximation, selecting 

more points in areas of high curvature than in those of lower ones. We also 

calculate the contour tangents at most selected points except at the ends of 

segments. A program called THIN that performs all these computations was 

developed. 

3.1 DEFINITIONS AND OVERVIEW 

In general, the task of tolerance band methods is to select a suitable sample of 

points from an initial line • The points in the selected sample are frequently 

called "critical points". Connecting successive critical points by straight 

lines leads to a "generalized line" often desired for cartographic purposes 

(Figure 3). 

The critical points are selected in such a fashion that the line points between 

two successive critical points are contained in a rectangular strip, the 

"tolerance band", whose bandwidth is determined from a given "tolerance"£. The 

deviation of the initial line from the general line can thus be bounded in terms 

of£. 

Several varieties of tolerance band methods hava been_ proposed by-Lang (b97, 

Douglas and Poiker (73), Reumann and Witkam (74) and Williams (78,81). For 

details the reader is asked to consult the comprehensive survey by Zoraster, 

Davis, and Hugus (84). For this project, we designed and used a one-pass 

algorithm for the method of Reumann and Witkam (74) in the spirit of Williams 

(78). It will be described below. 
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Figure 3. Covering of an Initial Line by Tolerance Bands • Solid Dots 

Represent Critical Points. Their Heavy Straight-Line Connections 

Define the Generalized Line. 
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3.2 A.ONE-PASS VERSION OF THE REUMANN AND WITKAM METHOD 

By 

(3.2.1) n > 1, 

we denote the sequence of points in the initial line. In what follows, we will 

describe an algorithm that implements the method of Reumann and Witkam (74). 

Inherent in this method is the convention that the first initial point P1 and 

the last initial point Pn are automatically selected as critical points. In 

addition we impose the condition that there should be no "doubling back" by the 

initial points within a tolerance band, that is, that 

(3.2.2) distances from the first (critical) point to subsequent points i 

the tolerance band do not decrease when considered in sequence. 

Furthermore we require that 

(3.2.3) two critical points have at least distance £ from each other, 

unless they represent the first and last initial points. 

With these conventions, the algorithm proceeds as follows. The point P1 is 

automatically selected as the first critical point. As to subsequent points Pi, 

we consider the following conditions: 

(3.2.4) (i) i < n 

{ii} dt~cance (Pi, Pit < c 
(iii) distance (Pl, Pi) < distance (Pl, Pi+l) 

(iv) there exists a tolerance band of the second kind anchored 

at P1 which contains the points Pk, 1 < k < i+l. 

The point Pi is then noncritical if, in terms of the conditions (3.2.4), 

(3.2.5) (i) and ((ii) or ((iii) and (iv))). 

11 



The algorithm checks P2, P3,••• successively until a first critical point Pj is 

encountered. If j(n, that critical point will play the role of P1 , that is, it 

will anchor the search for a third critical point, and so on. In Figure 4 we 

give a pseudo-code description of the algorithm. 

The major part of the algorithm concerns the verification of the tolerance band 

condition. Return to the two points P1 and P2 , and assume that n>2 and that P2 
satisfies the £-separation condition (3.2.4.ii). Then there exist unique 

left-most and right-most tolerance bands of width 2 anchored at P1 which also 

contain P2 (Figure 5). The flanks of these tolerance bands are tangent to the 

e-circle around Pl. In particular, the right flank of the right-most tolerance 

band touches that circle at. point R, whereas the left flank of the left-most 

tolerance band touches at point L. We are particularly interested in the area 

which lies to the right of the line from R to L, and which is bounded by rays 

extending from the points R to L in the direction of the right-most and 

left-most flanks, respectively (Figure 6). If the point P3 satisfies the 

no-doubling-back condition (3.2.4.iii), then the subsequent condition(3.2.4.iv) 

holds clearly if and only if P3 lies in this area. 

In general, suppose that Pj is the last critical point to have been determined, 

and that Pi, i(n, as well as the points between it and Pj, are contained in at 

least one suitable tolerance band. Then, there are left-most and right-most 

tolerance bands -- in extreme cases they may coincide which contain those 

points also. Suppose further that Pi+l is not closer to Pj than Pi is. Then, 

there exists a tolerance band containing Pi+l' and all previous points back to 

_ p j, _if _and _only _if _i>i+l lies in the area -indicated in _Figur~ 6. 

In this latter case, there exist again a left-most and a right-most tolerance 

band, each also covering the extended set i Pj, Pj+l, ..• , Pi, Pi+l r· These 

extremal positions are determined by the location of Pi+l with respect to the 

original extreme tolerance bands. To explain the situation, it is advantageous 

to introduce the notion of a "tolerance strip" associated with a tolerance band. 

By this we mean the infinite straight continuation of the 

12 



tolerance band in its direction. The tolerance strip thus is bounded by the 

origin-end of the tolerance band and the two infinite rays that extend the 

flanks of the band. We call those rays again the "flanks" of the tolerance 

strip. They are divided symmetrically by the "center line". In addition, we 

call the area described in Figure 6 the "area of flexibility" of Pi with respect 

to the anchor point Pj. This area of flexibility turns out to be the ~onvex 

hull of the two tolerance strips associated with the right-most and left-most 

tolerance bands, respectively~ 

The point Pi+l now lies in (1) both tolerance strips, (2) the right-most 

tolerance strip only, (3) the left-most tolerance strip only, or (4) none. Two 

of these four cases are illustrated in Figures 7 and 8. In case (1), the 

original extreme tolerance strips remain unchanged. However, the tolerance 

bands cut from these strips are now, in general, longer since Pi+l is to lie on 

their destination ends. In case (1), only the right-most tolerance strip 

remains the same, as the direction of the left-most strip must now be changed to 

cover Pi+l' The smallest adjustment that will achieve this is a rotation of the 

left-most strip until its right flank meets Pi+l· This then characterizes the 

new position of the left-most tolerance strip. Case (3) is like case (2), 

except that the roles of the right-most and left-most tolerance strips are 

reversed. In case (4) finally, both tolerance strips need to be adjusted. The 

adjustment is such that the right flank of the new left-most strip and the left 

flank of the new right-most strip both intersect at Pi+l" 

After a critical point Pj, j(n, has been established, and Pj+l has at least 

distance€ from Pj, the left-most and right-most tolerance strips are first 

established as if they were arisinK from case (4) above. This then establishes 

the area of flexibility. Each time a subsequent point is found to lie in this 

area, the tolerance strips are adjusted and the area of flexibility narrowed. If 

a subsequent point falls outside the area of flexibility, then its predecessor 

will be selected as a critical point. This also will be the case if doubling 

back occurs, or if there are no points left (compare the pseudo-code description 

in Figure 4). 
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define sets 

LS = LEFT-MOST TOLERANCE STRIP 

RS = RIGHT-MOST TOLERANCE STRIP 

AF = AREA OF FLEXIBILITY 

define variables 

N = NUMBER OF INITIAL POINTS (INPUT) 

P(I) = I-TH INITIAL POINT (INPUT) 

EPS = TOLERANCE PARAMETER (INPUT) 

M = NUMBER OF CRITICAL POINTS (OUTPUT) 

if N<2 abort 

K:=l; J:=l; C(l):=P(l) 

while J<N do 

LS:=EMPTY; RS:=EMPTY; I:=J; CRITICAL POINT:=FALSE 

while not CRITICAL POINT do 

M:=K 

I:=I+l 

if IP(J)-P(I)I )EPS then 

if P(I) ~ LS then ADJUST LS 

if P(I) t RS then ADJUST RS 

DETERMINE AF 

if I=N or IP(J)-P(I)l>IP(J)-P(I+l)\ or P(I+l) E AF then 

CRITICAL POINT:=TRUE 

K:=K+l; J:=I; C(K):=P(J) 

Figure 4. Pseudo-Code Description of the One-Pass Reumann and Witkam Algorithm. 
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Figure S. Left-Most and Right-Most Tolerance Bands Anchored at P1 and 

Containing P2 • 
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Figure 6. Area of Flexibility Defined by the Two Extreme Tolerance Bands 

Anchored at P1 and Containing P2 • 
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Original 
left-most 

tolerance-strip 

Adjusted 
left-most 

tolerance-strip 

Original 
right-most 

tolerance-strip 

Figure 7. CASE (3): The Subsequent Point Pi+l Lies in the Right-Most 

Tolerance Strip of the Initial Points iPj, Pj+1 , ••. , Pir 

but not in the Left-Most. 
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Original 
left-most 

tolerance-strip 

Adjusted 
left-most 

tolerance
strip 

Adjusted 
right-most 

tolerance-strip 

Original 
right-most 

tolerance-strip 

Figure 8. CASE (4): The Subsequent Point Pi+l Does Not Lie in any of the Two 

Extremal Tolerance Strips of the Initial Points {Pj, Pj+1 , .•• , Pi}· 
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3.3 DETERMINING CONTOUR TANGENTS 

Consider three subsequent contour points: 

We define the tangent to the contour at the second point as the tangent to the 

circle through these three points (Figure 9). A vector normal to the tangent at 

(x2 ,y2) then is given by 

(3.3.1) ( ) 

Y32 

where 

This formula is used to calculate an apriori estimate of the normal to the 

contour tangent at each point that lies in the interior of a contour segment. 

Note that the terrain gradient is parallel to this normal. The same will hold 

for the gradient of the subsequently generated synthetic surface. This will 

ensure a more faithful representation of the- terrain. 

At the endpoints of contour lines, the tangent was left undetermined. Also if 

the three points through which the circle is to be passed form an acute angle at 

the second point, then the above determination of the contour tangent has little 

meaning. In most of the later runs, the tangent was therefore left undetermined 

at such points. 
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Figure 9. Determining the Tangent at a Contour Point. 
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4. VORONOI .. TRIANGULATION OF LARGE SETS OF CONTOUR POINTS 

After a suitable sample of the contour points has been selected, the map area is 

partitioned into triangles whose corners are sample points. We speak of a 

"triangulation" of the map area. As will be described in the next section, a 

synthetic surface will be generated by defining a surface patch or "element" in 

each triangle of the triangulation. For this purpose, a triangulation method 

that captures the proximity relationships in the sample set is desired. One 

such method is the Voronoi triangulation, also called Delaunay triangulation, 

which is obtained from the Voronoi diagram by dualization in a fashion described 

below. 

4.1 DEFINITIONS AND ALGORITHMS 

Consider a finite set S of points in the plane. For any point P in S the 

"Voronoi polygon of P relative to S" is the set of all points in the plane, such 

that P is as close to any point in this set as is any other point in S. The 

Voronoi polygon of a point P in S is the intersection of the half-planes which 

contain P and which are determined by the perpendicular bisectors of the line 

segments connecting P and the other points in S. Thus, the Voronoi polygon of a 

point P is a convex polygon, possibly unbounded, which contains P in its 

interior. Given an arbitrary point X in the plane and the Voronoi polygons 

associated with a set S, then one and only one of the following statements is 

true: 

(1) X lies in the interior of one and only one Voronoi polygon. 

(2) X lies in the interior of an edge shared by two Voronoi polygons. 

(3) X is a vertex of three or more Voronoi polygons. 

It follows that the Voronoi polygons of the points in S cover the plane without 

overlapping, that is, without common interior points. The union of their edges 

forms a diagram, the "Voronoi diagram for S", which partitions the plane into 
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the Voronoi polygons. A point that lies in the plane and satisfies condition 

(3) above is said to be a "vertex" of the Voronoi diagram for S. It is called a 

"degenerate vertex" whenever it is a vertex.of more than three Voronoi polygons. 

Figure 10 iilustrates a Voronoi diagram that has a degenerate vertex. 

The "dual Voronoi diagram" for a finite set S of points in the plane is the 

diagram obtained by connecting with straight-line segments those pairs of points 

in S whose Voronoi polygons relative to S have an edge in common. Figure 11 

shows how such a dual diagram is obtained from a Voronoi diagram. The dual 

diagram defines a collection of non-overlapping convex polygons which cover the 

convex hull of s. Since each edge of the Voronoi diagram is a line segment 

whose end-points are vertices of the Voronoi diagram, it follows that there is a 

one-to-one correspondence between the vertices of the Voronoi diagram and the 

polygons determined by the dual diagram. In fact, it follows from the 

definition of a Voronoi polygon that a vertex of the Voronoi diagram is 

equidistant from the points in S that are vertices of the corresponding polygon 

determined by the dual diagram, and it is closer to these points than it is to 

any other point in s. In general, most vertices of the Voronoi diagram are 

non-degenerate, so that most of the polygons defined by the dual diagram are 

triangles. In the presence of degenerate vertices, the corresponding polygons 

determined by the dual diagram can be partitioned into non-overlapping triangles 

by introducing suitable diagonals. Thus a "Voronoi triangulation" results from 

the dual diagram for the set S. We note that, while the dual Voronoi diagram is 

uniquely determined, there are several compatible Voronoi triangulations in the 

presence of degeneracies. Figures 12 and 13, respectively, illustrate the dual 

diagram and a Voronoi triangulation that results from it. 

J. -B-ernal and-S. -E. -Howe -of -tire -Nattunal Bureau of Standards (N"BS) have 

generalized, extended and combined algorithms by Bentley, Weide and Yao (80), 

and Bowyer (81), to obtain an algorithm which constructs the Voronoi diagram 

and, therefore, a Voronoi triangulation, in "linear expected time" for a set S 

of points distributed uniformly in the interior of a rectangle in the plane. 

This material is being readied for publication under the title "Expected O(N) 

and O(N4 / 3 ) Algorithms for Constructing Voronoi Diagrams in Two and Three 
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Figure 10. Voronoi Diagram of Point Set Indicated by Small Circles. 
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Figure 11. Voronoi Diagram Supplemented by its Dual. 
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Figure 12. The Dual Voronoi Diagram or Delaunay Diagram Representing Neighbor 

Relations Between Points. 
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Figure 13. Voronoi Triangulation Obtained by Adding a Diagonal to 

a Non-Triangular Cell in the Dual Diagram in Figure 12. 
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Dimensions" by J. Bernal and S. E. Howe. A draft copy is available upon 

request. 

In the resulting algorithm, the set S which is to be triangulated is enclosed 

into a rectangle. The algorithm consists of three steps. The first step 

divides the rectangle into approximately N (number of points in S) equally sized 

square cells, and assigns each point in S its proper cell. On the average there 

will be one point per cell, although there may be empty cells as well as cells 

with more than one point. Each cell is of the form 

-{ ( x, y) : x ~ x ~ x+b, y ~ y ~ y+b }-, 

for some x, y, b, and a point in S is assigned that cell if it lies in that 

area. Cells within a distance of two cells from the boundary of the rectangle 

are called "outer cells" and all others, "inner cells." 

The second step constructs the Voronoi polygons of the points belonging to inner 

cells. Given a point P in an inner cell, a search for other points in S is 

conducted through each of the layers of cells surrounding P. This search 

procedure, called a "spiral search", starts with the cell that contains P, and 

then proceeds in outward direction to each of the layers of cells surrounding 

this cell. The Voronoi polygon of P is progressively built by intersecting the 

half planes which contain P and which are determined by the perpendicular 

bisectors of the line segments connecting P and the points in S found through 

the search. A geometrical test is available, which permits to ascertain whether 

the Voronoi polygon has achieved its final form. In most cases the Voronoi 

polygon of P is obtained after examining only a small number of cells and 

points. 

The third step, finally, builds the Voronoi polygons of points in the outer 

cells by applying a modified version of Bowyer's insertion algorithm to this set 

of points. 
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4.2 IMPLEMENTATION 

J. Bernal and s. E. Howe have implemented the above algorithm on a Control Data 

Cyber 205 at NBS. The implementation consists of about 5,000 FORTRAN 

statements. It requires as input a tolerance E, and a list of the x and y 

coordinates of the points in the set for which a Voronoi diagram is desired. 

This list of points must be free of duplication, that is, the distance between 

any two points must always be above the tolerance E. The execution of the 

package requires approximately 34N words of memory, where N is the number of 

points to be triangulated. Versions of this package were successfully trans

ferred first to a VAX 11/750 and then to a VAX 11/780 at ETL. This required 

adaptations which are described below. 

One of the main objectives of our work was to demonstrate the feasibility of 

triangulating data sets of about 40,000 to 70,000 points. Two difficulties 

arose in the course of the demonstration. The first difficulty was that of 

furnishing the package with the ability to deal with data sets whose members are 

not all necessarily distinct. The second difficulty had to do with memory 

restrictions that would not allow the execution of the package for more than 

50,000 points at a time. 

The "check for duplication" posed a difficulty because it was not possible to 

consider every pair of points in view of their large number. In the case of a 

40,000 point set this would have amounted to the examination of about 

800,000,000 pairs. Fortunately, it was discovered that a portion of the Voronoi 

triangulation package already provided a useful tool for the solution of this 

problem, namely the cell structure set up by the implementation of the first 

step of the algorithm. Thus, a procedure was developed which takes advantage of 

this structure to check for the duplication of points. Given a point P in a set 

S, use a spiral search through each of the layers of cells surrounding P to 

search for other points in s. Eliminate any point found through the search 

whose distance from P does not exceed the tolerance£. 
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Terminate the search as soon as every cell that intersects the closed circular 

disk with center P and radius has been searched. In general, the disk defined 

above is contained in the cell that contains P, so that this is the only cell 

that has to be searched. This procedure was incorporated into the package, and 

was able to identify and remove duplications for data sets of 25,000 points in 

less than 30 seconds of CPU time. 

The restrictions on available memory mentioned above required the development of 

a "decomposition procedure" which allows the separate triangulation of a finite 

number of subsets of a data set in such a way that the correct total triangula

tion results. This procedure will now be described. 

Given a positive integer k we select numbers x0 , xk, y0 , y1 , such that x0 < xk, 

Yo < Y1, and the rectangle 

contains the data set. We select numbers 

such that 

For each i, i=l, 2, ••• , k, we- define rectangles R1 ' and R1 by: 

R ' = i 

It follows that R1 c Ri' for each i, i=l, 2, ... , k, and R 
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We also assume that the points (xo, Yo), (xo, y1), (xl, Yo), (x1, Y1), ••• , 

(xk-l' y0), (xk-l' y1), (xk, y0), (xk, y1), that is, the corner points of the 

rectangles Ri, i=i, ••• , k, belong to the data set (Figure 14). Furthermore, 

we define Si to be the set of points in the data set that belong to Ri' for 

each i, i=l, ••• , k. Assuming that k and the numbers x0L' x1L, x1 , x1R, ••• , 

Xit-l,L' xk-1' xk-1,R' xkR have been properly selected, the decomposition 

procedure consists of obtaining separate triangulations Ti, i=l, ••• , k, for the 

sets Si, i=l, ••• , k, respectively (Figure 15). The correct triangulation of 

the entire data set is then given by: 

k 
u ~ t E Ti : Ri intersects the interior of t r· 

i=l 

In order to properly select k and the numbers x0L' xlL' xl, xlR'"""' xk-1 L' 
' 

xk-l' xk-l,R' xkR' a separate procedure was developed. In what follows, we 

define, for a given triangle t in a Voronoi triangulation, x(t) and y(t) to be 

the x,y-coordinates of the vertex in the Voronoi diagram that corresponds to t. 

Accordingly, we define d(t) to be the distance from (x(t), y(t)) to any one of 

the vertices of t. Since (x(t), y(t)) is equidistant from the vertices of t, 

d(t) is well defined. In the following procedure, m denotes the maximum number 

of points that can be triangulated with a single run of the package: 

Step 1. Let k 1 and obtain R1 , R1
1 and s1 • Let j = 1. 

Step 2. If the number of points in Sj does not exceed m go to step 3. 

Else increase k to the next positive integer for which xoL' xlL' xl, 

x1R, ••• , xk-l,L' xk-l' -xk-l,R' xkR' can be defined with:-x0<x1< ••• <xk_1<xk; 

x1L<x1<xlR'"'"' xk-l,L<xk_1<xk-l,R; x0=x0L; xkR=xk; and the corresponding 

Ri, Ri', Si, i=l, ••• , k, can be obtained with the number of points in each 

Si, i=l, ••• , k, not exceeding m. Let j = 1. 

Step 3. Obtain the Voronoi triangulation Tj for Sj. If j is equal to 1 

Else define xL by: 

xL =min~ x(t) - d(t): t ~ Tj, 2 vertices of t lie in Rj-l' 

1 vertex of t lies in the interior of Rj r· 
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Figure 14. Decomposition of a Rectangular Point Set for Voronoi Triangulation. 
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Figure 15. Voronoi Triangulations of Three Sections Superimposed Over the 

Voronoi Triangulation of the Entire Set. 
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If j is equal to k, let xR=xkR" Else define xR by: 

Else, 

xR =maxi x(t) + d(t): t E Tj, 2 vertices of t lie in Rj+l' 

1 vertex of t lies in the interior of Rj t· 

If xj-l,L does not exceed xL and xR does not exceed xjR go to step 4. 

if xj-l,L exceeds xL let xj-l,L=xL, and if xR exceeds xjR let xjR=xR. 

Obtain Rj' Rj', Sj and go to step 2. 

Step 4. If j equals k, stop. Else let j = j + 1 and go to step 3. 

This procedure was incorporated into the triangulation package and is currently 

operational. 

4.3 RESULTS OF A COMPUTATIONAL EXPERIMENT 

A Voronoi triangulation package that includes the adaptations described above 

was implemented at ETL and NBS. The feasibility of performing a triangulation 

with large sets of data was demonstrated. For a specific experiment conducted 

on the VAX 11/750, we divided the triangles into three classes: 

Class 1: Those whose vertices lie exactly on one contour line of the map. 

Class 2: Those whose vertices lie exactly on two contour lines of the map. 

Class 3: And those whose vertices lie exactly on three contour lines. 

Each class may contain triangles that are intersected by contour lines other 

than those containing their vertices, and any given triangle belongs to one and 

only one class.· 

A first data set contained 39,645 points and was decomposed into two subsets. A 

second data set contained 70,249 points and was decomposed into four subsets. 

The tables below illustrate some of the results obtained when triangulating 

these data sets with the Voronoi triangulation package. The times, given in CPU 

seconds, indicate the rate at which the package ran per point. 
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Element of 

Decomposition 

1 

2 

Element of 

Decomposition 

1 

2 

3 

4 

% Class 1 

Triangles 

17.20 

17.05 

% Class 1 

Triangles 

22.58 

22.65 

18.74 

26.00 

TABLE FOR N • 39,645 

% Class 2 

Triangles 

49.96 

48.09 

% Class 3 

Triangles 

32.84 

34.86 

TABLE FOR N • 70,249 

% Class 2 

Triangles 

59.58 

58.65 

59.53 

55.76 

34 

% Class 3 

Triangles 

17.84 

18.70 

21.73 

18.24 

Number of 

Triangles 

41,875 

36,451 

Number of 

Triangles 

41,134 

32,824 

33, 715 

31,755 

CPU Time 

Sec/Point 

0.044175 

0.046810 

CPU Time 

Sec/Point 

0.048542 

0.043350 

0.044793 

0.052509 



5. SURFACE GENERATION WITH CLOUGH-TOCHER ELEMENTS 

In this section we discuss the construction of a surface function passing 

through irregularly spaced given points for most of which both elevations and 

contour tangents are specified. The planar projections of all given points are 

triangulated, that is, the map area is tiled with triangles whose vertices are 

these points. The description of the surface is in terms of these triangles: in 

order to find the surface elevation for an arbitrary point in the map region, a 

triangle containing this point must be found. An evaluation formula or 

"element" is then invoked using triangle-specific parameters. The "Clough-Tocher 

element" employed in our work requires the determination of suitable tangent 

planes at the given points. For this purpose, "local" as well as more expensive 

"global" methods are available. A global method based on energy minimization 

has been implemented and tested for computational feasibility. 

5.1 THE CLOUGH-TOCHER ELEMENT 

Triangulation-based surface interpolation is a classical computational problem. 

Various versions of the Finite Element Method (see Zienkiewicz (71), Birkhoff 

and Mansfield (74)) are usually employed in its solution. The "linear element" 

represents linear interpolation by the plane through the vertices of the 

triangle at hand. It yields a surface of continuous elevation. However, this 

surface is not smooth since "creases", that is, tangential discontinuities, 

occur along the boundaries of the triangles. 

Nonlinear elements are needed for smooth surface interpolation. A major 

advantage of smooth surfaces is that their corresponding surface functions are 

uniquely differentiable at each point of their domain; in other words, there are 

unique gradients. The greater flexibility and information content of nonlinear 

elements also allows for a more precise representation of the original data than 

that provided by linear elements, given triangulations of comparable densities. 
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The "Clough-Tocher" element (see Clough and Tocher (65), Lawson (72, 76, 77)) is 

a particularly attractive tool for smooth surface interpolation. It requires 

that at each vertex i of the triangle over which it is defined, the elevation zi 

and the partial derivatives zix and ziy be given. The Clough-Tocher element 

then is described by a function z = f(x,y) on the given planar triangle. It 

represents a "surface patch" above this triangle (Figure 17, see also Figure 

16). The surface patch meets the prescribed elevation as well as th~ prescribed 

derivatives at each vertex. It is fully defined by these quantities, in other 

words, by the three elevations and the three tangential planes (gradients). 

The following considerations concern the construction of an entire surface from 

such surface patches. In order to ensure continuity of elevation between 

adjacent triangles, the Clough-Tocher element satisfies the following 

(S.1.1) Cubic Boundary Condition: Along each triangle edge, the 

Clough-Tocher element agrees with a cubic (degree 3 or less) 

polynomial in terms of a variable linearly traversing the edge. 

A cubic polynomial in one variable is completely determined by two elevations 

and two derivatives (in the direction of the edge). Since the tangential planes 

at the vertices agree, so do the derivatives in the direction of the edge. 

Therefore, the Clough-Tocher elements of two adjacent triangles determine the 

same cubic polynomial on the edge they share. It follows that not only the 

elevations, but also the derivatives in the direction of the edge agree along 

that common boundary. 

In order to ensure smoothness across the triangle boundaries, the Clough-Tocher 

element satisfies the following 

(5.1.2) 1'tnear Der-ivanve ~onoition: Along each triangle edge, the 

derivative taken in the direction perpendicular to the edge 

varies linearly between the values it assumes at the ends of the 

edge. 
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Figure 16. Linear Element. 
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Figure 17. Clough-Tocher Element. 
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The edge-perpendicular derivatives along an edge are thus uniquely determined by 

their location on the edge and the derivatives at the vertices at the ends of 

the edge. Since the latter agree for two adjacent triangles, the edge

perpendicular derivatives along their common edge agree also. It was seen that, 

as a consequence of the cubic boundary condition, the edge-parallel derivatives 

agree. Hence, adjacent Clough-Tocher elements share tangential planes 

everywhere along their common boundary. 

Functions over triangles are best expressed in terms of their "barycentric 

coordinates", also called "triangle coordinates." These are three real numbers 

such that 

+ >..z 1 

where x, y are the planar coordinates of the point in question. The barycentric 

coordinates are functions of these planar coordinates. To express these 

functional relationships, we use Zienkiewicz notation: 

i,j = 1, 2, 3. 

We then have 

>..z (x, y) 
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where the denominator is given by the determinant 

1 1 

We also note that the partial derivatives of the barycentric coordinates with 

respect to x, y, are given by 

The advantage of barycentric coordinates lies in the symmetric way the vertices 

of the triangle are treated. Also, their signs indicate immediately whether the 

point (x,y) lies inside or outside the triangle: a negative barycentric 

coordinate indicates that the point lies outside the triangle. If all 

barycentric coordinates are positive, then the point lies in the interior of the 

triangle. On the boundary at least one barycentric coordinate vanishes. 

Vertices are characterized by single nonzero barycentric coordinates of value 1: 

(1, 0, 0) , (0, 1, 0) , (0, 0, 1). 

The barycenter of the triangle or "centroid" is given by 

( 1/3, 1/3, 1/3 ). 

It defines what we call a "barycentric partition" (Figure 18) of the triangle 

where 

40 



Figure 18. Barycentric Partition of Triangle. 
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Bl = -£(>..1,>..2,>..3): >..1 < >..2' >..1 ~ >..3}' 

B2 = '{(>..1,>..2,>..3): >..2 < >..3' >..2 ~ >..1 :r 

B3 = iC>..1,>..2,>..3): >..3 < >..1, >..3 ~ >..2 ]-

Bo = i (>..1 '>..2 '>..3) : >..1 = A.2 = >..3 = 1/3 }. 

In each of the major triangle regions Bi, i = 1,2,3, the corresponding 

barycentric coordinate is dominated by the remaining ones: 

Each function representing a Clough-Tocher element is a cubic polynomial of the 

barycentric coordinates in each of the major regions Bi of the barycentric 

partition of the triangle. The function is continous and smooth at the 

boundaries of these regions of the barycenter. We call such a function 

"piecewise cubic" with respect to the barycentric partition. 

In his seminal work, Lawson (76) introduces three "correction functions" 

1,2,3, 

with which to describe the Clough-Tocher element. They are piecewise cubic with 

respect to the barycentric partition, and given by 
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A1A2A3 + 5/6A2
3 - l/2A22 for (>..1 ,A2 ,>..3) £: B2 

3 I 2 -l/6AJ + 1 2h3 Al for (>..l >-2,>..3) ' B3 

92 = 
3 2 -l/6Al + l/2Al A3 for (Al ,A2 ,>..3) E Bl 

1/81 for <>..1,>..2,>..3) ~ B . 
0 

>-1>-2A3 + 5/ 6>-3 
3 - l/2A3 2 for (>-1,>..2 ,>..3) E B3 

3 I 2 -1/6>.1 + 1 2>..1 >..2 for (>-p>..2 ,A.3) E Bl 

93 = 
3 2 -1/61.2 + 1/2>..2 >..1 for (>..1,>-2,>..3) E B2 

1/81 for (1.1,>-2 ,1.3) € Bo· 

The motivation for the choice of the correction functions is given in Lawson 

(76). The partial derivatives of these correction functions are: 

(5.1.9) 
2 (>..2A3+5/2>..1 ->-1)Y23 + >..31.1Y31 + 1.11.2Y12 in Bl 

2 I 2 (-1/2A2 +>..2>..3)Y31 + 1 2>..2 Y12 in B2 

D•s>1x = 
2 I 2 (-1/21.3 +>..3>-2)Y12 + l 21.3 Y31 in B3 

-l/18Y23 in Bo 

2 
[ <>-2>-3+5/2>..1 ->..1)x32 + 1.31.1x13 + AlA2X21 in Bl 

2 I 2 <-112>-2 +>..2>-3)x13 + 1 2>-2 x21 in B2 

D•91y = 
2 2 (-l/2A3 +>..3A2)x21 + 1/2>..3 X13 in B3 

-l/18x32 in Bo 
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2 
(A1A2+S/2A3 -A3)Y12 + A2A3Y23 + A3A1Y31 in B3 

2 . 2 
(-l/2Al +X1A2)y23 + 1/2Al Y31 in Bl 

D·p3x = 
(-l/2Az2+A2A1)Y31 + 1/2A22Y23 in B2 

-l/18y12 in Bo 

. 2 
(A1A2+5/2A3 -A3)x21 + A2A3X32 + X3A1X13 in B3 

2 I 2 (-l/2Al +A1A2)x32 + 1 2X1 X13 in Bl 
D ·£3_y = 

l(-l/2A22+A2A1Jx13 + l/2A22x32 in B2 

-l/18x21 in Bo• 
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Now let 

These six quantities represent the directional derivatives at vertex i with 

respect to the direction vector (xji'Yji), which represents a directed edge of 

the triangle. It will be convenient to use the additional abreviations 

Note that for a linear function z = f(x,y), Mji = -Mij = zji' and for a 

quadratic function, Mji - Mij = 2zji" As a consequence, the coefficients Qij 

and Cij vanish for linear functions, and the coefficients Cij for quadratic 

functions. We also denote by 

(S.1.12) Li, i = 1, 2, 3, 

the euclidean length of the edge opposite to vertex i. The Clough-Tocher 

element is now of the form: 

(5.1.13) z = AlZl + A2Z2 + A3Z3 

+ Q23A2A3 + Q31A3Al + Q12A1A2 

+ C23V1 + C31V2 + C12V3, 

where the functions vi, i = 1,2,3, are given by 

Note that the expression 
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represents the linear element, namely the plane passing through the elevations 

given at the vertices of the triangle. The portion 

is a quadratic function in the entire triangle. Note that quadratic functions 

satisfy the Linear Derivative Condition (5.1.2). The remaining portion is a 

piecewise cubic function with respect to the barycentric partition. This 

function also satisfies the Linear Derivative Condition as a result of the 

choice of correction functions Pi• 

It is easy to derive various expressions for the gradient of the Clough-Tocher 

function. The gradient components are the partial derivatives with respect to 

x, y, and may be written as 

where 

(5.1.14) D·zx = Z1Y23 + Z2Y31 + Z3Y12 

+ Q23(A3Y31+A2Y12) + Q31(A1Y12+A3Y23) + Q12<A2Y23+A1Y31) 

+ C23D•V1x + C31D·V2x + C12D·V3x 

D·zy = z1x32 + z2x13 + z3x21 

+ Q23(A3X13+A2X21) + Q31(A1X21+A3X32) + Q12(A2X32+A1X13) 

+ C23D·V1y + C31D•V2y + C12D•V3y' 

D•V1x = A3(2A2-A3)Y31 - A2( 2A3-A2)Y12 

+ [J(L2+L3)(L2-L3)/L1
2

]D•p1x - D·P2x + D·p3x 

D •V2_x = A1(2A3-Al)_yl2 - A3(2A1-A3)Y23 

+ [3(L3+L1)(L3-L1)/L22 ]D•?2x - D·p3x + D•f1x 
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A more transparent formula for the gradient can be derived. For Xi = 1, 

i=l,2,3, that is, at the three corners of the triangle, 9ix = Piy = O. It thus 

follows from (5.1.14) that 

where zix, ziy, i=l,2,3, are the prescribed gradient components at the vertices 

of the triangle. It follows that 

A1D·z1x+A2D·z2x~A3D•z3x = Z1Y23+z2Y31+z3Y12 

+ Q23(X3Y31+A2Y12)+Q31(A1Y12+A3Y23)+Q12{X2Y23fA1Y31) 

- C23(X3Y31-A2Y12)-C31<X1Y12-X3Y23)-C12\A2Y23-A1Y31) 
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x1D·z1y+X2D·z2y+X3D•z3y = z1x32+z2x13+z3x21 

+ Q23(X3x13+X2x21)+Q31(X1x21+X3x32)+Q12(X2x32+X1x13) 

- C23(X3X13-X2X21)-C31<X1X21-X3X32)-C12<X2X32-X1X13)· 

Formula (5.1.14) can now be rewritten as 

where 

(5.l.l5) zx = Xlzlx + X2z2x + X3z3x + C23A1x + C31A2x + C12A3x 

zy Xlzly + X2z2y + X3z3y + C23A1y + C31A2y + Cl2A3y' 

To sum up, given three points with their elevations and gradients, that is, 

given 15 quantities 

i 1, 2, 3, 

the Clough-Tocher element defines a surface that assumes those prescribed 

elevations and derivatives (gradients). In order to calculate the elevation at 

an arbitrary specified point, we 

o compute the auxiliary quantities Qij' Cij and Li from the above 

15 quantities 

-0 - evaluare the eoI"r-ection functions 91 for the barycentric -co-ordinates 

x1 , x2 , x3 with respect to the three given points in the plane 

o determine the values Vi and enter them into the Clough-Tocher formula 

(5.1.13). The gradient components are computed analogously using 

formula (5.1.15). 
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5.2 SURFACE GENERATION OVER A TRIANGULATED REGION 

In order to pass a smooth surface through given elevations at irregularly spaced 

points, one may partition the region in which the surface is to be defined into 

triangles, specify gradients along with the evevations at the vertices of these 

triangles, and generate the resulting Clough-Tocher patch in every triangle. The 

Clough-Tocher patches are designed in such a fashion that th~y fit together 

smoothly along common boundary edges. However, there is still a missing link. 

In order to fully define our synthetic surface, we have yet to provide the 

gradients (tangential planes) at the vertices of the triangulation. There are 

several approaches to finding suitable gradient values. One is to examine 

neighboring elevations and to estimate a suitable position of the tangential 

plane at the point in question by using local interpolation or least squares 

regression. The success of spline techniques suggests a different approach. A 

spline can be interpreted as an idealized mechanical structure consisting of 

"thin beams" which, when forced through specified points, assume a position in 

which a surrogate elastic energy is minimized. Since oscillatory behavior is 

associated with high elastic energy, minimizing elastic energy tends to minimize 

oscillations. In this work, we extend this approach to two dimensions. We 

consider a mechnical structure consisting of thin beams of equal "thickness" 

along the edges. They are joined together at vertices by small "thin plates" 

which represent tangential planes forced to be met by the adjacent thin beams. 

The sum of the surrogate energies of all thin beams is then minimized. This is 

achieved by varying the positions of the thin plates to which the adjacent thin 

beams must be tangential while passing through prescribed elevations and 

satisfying other side conditions that may have been specified for selected 

vertices. Once the idealized mechanical structure has found its optimal, that 

is, energy-minimal position, the gradient at each vertex is defined by the tilt 

of its thin plate. The resulting surface is supported by thin beams much as the 

fabric of an umbrella is spanned by its ribs. 

Mathematically, the surrogate elastic energy is a positive definite quadratic 

form in those parameters that are permitted to vary. Setting the partial 
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derivatives of the energy with respect to these variables to zero yields the 

optimality conditions in the form of a large system of equations. 

The classic Gauss-Seidel method for solving a system of linear equations is an 

iterative procedure where each iteration consists of passing in sequence through 

all the equations of the system. Each equation is used for determining a new 

value for a particular unknown variable while keeping the other unknowns fixed. 

The method thus requires an initial value for each unknown. To start, the first 

equation is transformed into a linear equation of only the first unknown by 

substituting into this equation the initial values of all remaining variables. 

This equation then yields an improved value for the first unknown variable. This 

value, along with initial values for the third and subsequent variables, enters 

the second equation, which then yields an equation for the second variable 

alone, and so on. 

We modify the Gauss-Seidel procedure slightly. To this end we observe that each 

variable of the system of linear equations is "associated" with a particular 

vertex. The associated variables at each vertex satisfy "local optimality 

conditions". These optimality conditions have a structural interpretation: They 

express the conditions for the structural parameters represented by the 

associated variables to assume minimum energy values, supposing that the 

structural parameters at all other vertices remain fixed. The local optimality 

conditions again take the form of linear equations in the variables associated 

with the vertex. In a typical case, the thin plate at the vertex is tilted into 

the best position it can assume, given the tilts and elevations at neighboring 

vertices. The local optimality conditions then define this locally optimal 

tilt. It can be shown that: 

(5.2.1) THEOREM: The linear system of equations for optimizing the 

-vostti--on --o-f -the -hleali-zed mechanical -structure i£ -equivalent to 

the combination of all local optimality conditions. 

Our variation of the Gauss-Seidel method now is to pass through all vertices in 

sequence, solving at each vertex the local optimality conditions. It was a 
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major concern at the start of this project whether this procedure was 

computationally feasible. We found that the time needed for a Gauss-Seidel 

iteration of the kind described above was well within an acceptable time frame. 

As discussed in Section 6, this marks a main accomplishment of this feasibility 

study. 

In what follows, we will list the local optimality conditions for various sets 

of associated variables. We distinguish several "types of vertices" according 

to their kinds of associated variables. A particularly important case is the 

one in which the tangent to the contour curve is given along with its elevation. 

In this case, the direction of the gradient is given -- it is perpendicular to 

the contour tangent -- and the only variable to be determined is the length or, 

rather, a positive or negative "gradient multiplier" J· It represents the only 

variable associated with a vertex of this type. 

-~. 

We use a three letter code to characterize vertex types. The first letter of 

the code refers to elevation: it is 'E' if the elevation is given, and 'N' 

otherwise. In the latter case, the elevation is an associated variable. The 

second and third letters refer to gradient components zx and zy, respectively. 

Letter 'X' in the second position indicates that the x-component of the gradient 

is given, and 'N' in this position indicates that it is not. Analogously, letter 

'Y' in the third position indicates that the y-component of the gradient is 

given, and 'N' indicates that it is not. Finally, the combination 'RN' is found 

in positions two and three, if the gradient direction, but not the gradient 

itself, is specified. For example, 'ERN' signals the case in which both 

elevation and gradient direction are prescribed, leaving the gradient multiplier 

as the only associated variable. Any occurrence of 'N' indicates an unknown 

associated variable. In particular 'NNN' is used if all three quantities, 

elevation and gradient components, are to be determined. 

The surrogate energy of a thin beam of length L is given by 

(5.2.2) 

s=L 

E = J z"(s) 2ds. 

s=O 
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It is a well-known result of the theory of thin beams that the above expression 

is minimized by cubic functions of the distance s along the projection of the 

beams into the plane. These cubic functions are uniquely determined by the 

elevations and slopes at the end points ("Hermite interpolation"). The 

following local optimality conditions are derived using these facts. 

In describing local optimality conditions at vertex i, we let the vertices j run 

through the "star" of vertex i, namely the following set of vertices j: 

(5.2.3) S(i) { j j is connected by an edge to vertex i}. 

The abbreviations (5.1.10) and 

(5.2.4) 

are used to denote the edge-directional derivatives and the distances between 

vertices, respectively. In addition, we will need the quantities 

(5.2.5) 

where 

Pix• Piy• Pix2 + Piy2 = 1 

are the components of the gradient direction at ver~ex i normalized to length 1. 

The resulting optimality conditions for all types of vertices, except type 

'EXY', are displayed in Figure 19. 'EXY' represents the fully specified case in 

which there are no associated variables to be determined. 

To sum up, the vertices of the triangulation are divided prior to surface 

-generation -into -t)TF~s -depending on -which surface parameters are given and which 

have to be determined. These types are described by the letter codes 

(5.2.6) 'ERN', 'ENN', 'EXN', 'ENY', 'EXY', 

'NRN', 'NNN', 'NXN', 'NNY', 'NXY'. 
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For each of these ten types -- except the fully specified case 'EXY' -- there is 

an update formula by which the surf ace parameters at the triangulation vertices 

are calculated from the current values of the surface parameters at neighboring 

vertices. Sequentially updating every vertex in this fashion constitutes a 

Gauss-Seidel iteration. Such iterations are repeated until the changes in the 

variables remain within a given tolerance or a specified limit on the number of 

iterations is reached. 

5.3 FINDING THE RIGHT TRIANGLE 

Suppose a surface is specified in terms of triangular Clough-Tocher patches. In 

order to evaluate the elevation at a given point in that surface, a triangle 

containing that point needs to be found. In what follows we describe a method 

for finding such a triangle. This method is intended for applications in which 

not just one point, but sequences of such points are given, most of which are 

moreover close to each other. The sets of sequential contour points as they 

arise from digitized contour information are a case in point. A closely spaced 

regular grid is another. In these cases, a given point in the sequence will lie 

with high probability in the same triangle or in a triangle directly adjacent to 

the triangle of the previous point. 

The method we use for finding a triangle containing a given point relies for its 

efficiency on the above observation. Before searching for the triangle of a 

given point, the method requires that an arbitrary starting point be specified 

for which a triangle containing it is known. We then move from this starting 

point straight towards the given point until we reach the boundary of the 

starting triangle or the given point itself, whichever happens first. If the 

boundary is reached at a non-vertex point, that is, somewhere in the interior of 

a boundary edge, then the unique adjacent triangle can be readily identified 

using our triangulation data structure, and we continue moving in that triangle 

as far as possible or necessary. In the unlikely case that a vertex is 

encountered, all triangles adjacent to this vertex are examined in sequence 

until one is found in which progress can be made towards the given point. The 

processes are repeated until the given point is reached. The last triangle in 
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Case ERN: elevation Zi and gradient direction (µ;z,µ; 11 ) specified, gradient 
multiplier "Yi to be determined. 

Case EXN: elevation Zi and gradient component Ziz specified, gradient com
ponent Zi11 to be determined. 

Case ENY: elevation Zi and gradient component Zi., specified, gradient com
ponent Ziz to be determined . 

. ·Case ENN: elevation Zi specified, gradient (Ziz, Zi11 ) to be determined. 

z .. y·; (Y;;)2 ~ Y;i [ ) 
Ziz X 2 L (L'' .. )' 3 + Zi11 X 2 L (L .. )3 = ~ (L .. )3 3z;i + Mi; 

; ,. j ,. , ,. 

Case NRN: gradient direction (µ;z,µ; 11 ) specified, elevation Zi and iradient 
multiplier "Yi to be determined. 

1 
~ (L;i)3 [6z; + 3M;;J 

Figure 19. Optimality Conditions for ~ertices by Type. 
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Case NXN: gradient component Ziz specified, elevation Zi and gradient com
ponent Zi 11 to be determined. 

1 
- ~ (L;i)3[6z; - 3x;iZi.~ + 3Mi;] 

Case NNY: gradient component Zi 11 specified, elevation Zi and gradient com
ponent Ziz to be determined. 

"' Xji 2"' (z;i)2 
Xji 

Zi x 3 7 (L;i)3 + Ziz x 7 (L;i)3 - ~ (L;i)3 (3z; - 2Y;iZiz +Mi;] 

Case NNN: no parameters specified, elevation Zi and gradient (Zi~, Zi11) to 
be determined. 

"°' 1 "°' X;i · "' Y;i '°' 1 
Zi x6 .l:- (L ··)3 +Ziz x 3 .l:- (L ··)3) +Zi11 x3 ~ (L ··)3 = ~ (L ··)3 [6z;+3Mi;] , ,. , ,. ; ,. ; ,. 

Zi x 3"" -1!.i!_ + ,..z x 2"" X;iY;i + "·11x2"" (Y;i)2 "" Y;i (3 M. l 
L.J (L )3 -. ~ (L )3 -. L.J (L )3 = L.J,. (L,·,·)3 z; + i; ; ji j ji ; ji 

Case NXY: gradient (Ziz, Zi11 ) specified, elevation Zi to be determined. 

1 
~ (L;-) 3 [2z; - M;i + Mi; J 

,,- .- ·", 

Figure 19. (Continued) 
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the chain of triangles obtained in the course of this procedure will contain the 

given point (Figure 20). 

It is clear that this procedure will work best for a sequence of points in which 

the previous point can serve as a close starting point for the task of locating 

the given point in a triangle. For points in a regular grid arranged by 

sequential rows the following procedure is used. Locate the first point of the 

first row from an arbitrary starting point. Make a note of the first row and 

its triangle for further reference. Use it also as starting point for the 

second point in the first row. Then use the second point and its triangle as 

starters for locating the third point, and so on, until the end of the row is 

reached. Then retrieve the first point and its triangle and use them as 

starters for locating the first point in the second row. This point and its 

triangle are again kept for further reference, while the second row is traversed 

in the same manner as the first row. This process is repeated for the remaining 

rows. 
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Starting point 
with known triangle 

Specified point whose 
triangle is to be 
determined 

Figure 20. Line Search for a Triangle Containing a Specified Point. 
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6. RESULTS AND CONCLUSIONS 

In order to test the computational feasibility of the approach proposed in the 

previous sections, a pilot implementation was applied to the Mustang Mountain 

data set (see Section 2). CPU times were recorded and experience about memory 

requirements was gained. As a preliminary testing procedure the residuals 

obtained when trying to recover the contour elevations were gathered and 

analyzed. After describing the set-up of the experiment, we report its results 

and the observed computational effort. 

6.1 SETTING UP THE EXPERIMENT 

The pilot implementation consists of several independent modules whose output 

files serve as input files to subsequent modules. The interrelationship of 

these modules and their interconnecting files is schematically described in 

Figure 21. 

The original input file has the format (see Section 2) of Digital Graphic 

Recorder Data (DGR) and refers in our case to the Mustang Mountain, Fort 

Huachuca, area. These data are input into the module EDIT, which extracts and 

edits contour information as described in Section 2 of this report. The 

resulting edited digital contour file is then sampled and contour tangents are 

determined in module THIN. The sampling method is described in Section 3 of 

this report. The resulting sample is first fed to the module VORONOI (see 

Section 4), which determines a Voronoi triangulation of the sample points. 

Accordingly, the main output of this module is a "triangle table" that lists the 

vertices and neighbors of each triangle. In addition, duplicate sample points 

are identified and points that need to be added, such as map corners, are 

recorded. This information is utilized by the UPDATE module which creates the 

final "data base". This data base is needed along with the triangle table to 

generate the surface in module SURFACE. This module also provides options for 

evaluating the elevation of either random points or points in a regular 
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Digital Graphics Records Data<DGR) 

Edited Contour Data 

Point sample & Derivatives .__ ...... a 

UPDATE 

Add & Delete 
Led er 

Vertex Data Base 

Triangle Table 

Digital Terrain Elevation Data COTED) 

Figure 21. System Layout. 
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rectangular grid. The design of the testing procedure is based on the following 

observation. When the sample points enter the triangulation process they are 

considered as points in a plane. No longer do they hold any direct relationship 

to other points in the contour as such. Therefore, these original contour 

points are in essence independent of the sampled ones. The testing procedure 

consists of evaluating the surf ace at the original contour points and comparing 

the results to the given elevations, yielding a set of residuals. These 

residuals provide an indication of the ability of our algorithm to "recover" the 

original data. 

The full original data set contains features such as lake shores, lake 

hatchings, dams, and peak elevations, which the algorithm in its present state 

of development does not yet handle in an accurate fashion. Indeed, the primary 

goal of the effort reported here is to establish computational feasibility. Also 

some limitations of the testing procedure itself need to be pointed out. 

First, the digitized data themselves carry a "digitization error" so that it is 

not necessarily desirable to reproduce the digitized data precisely. Indeed, if 

the recovered contours represent a "smoothing" of the digitized lines, they may 

be more representative of the true surface than the given digitized contour 

points. 

Second, in flat terrain, the nonsampled digitized contour points tend to be 

close to the boundary of triangles, so that the behavior of the surface in their 

interior is monitored to a less extent than in steep terrain, where more contour 

lines cut through the interior of triangles. In order to retain interior 

monitoring, the sample was deliberately chosen somewhat smaller than indicated 

for the purpose of improved accuracy, but still large enough to test 

computational feasibility. 

Third, the vertical deviations measured by the residuals tend to be dispropor

tionally large in steep terrain. Ideally, the 3-dimensional distances from the 

true data points to the generated surface should be evaluated in order to 

determine the accuracy of the latter. In flat terrain the vertical 
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deviation, that is, the residual, provides a good approximation to the true 

distance. However, this is not the case for steep terrain. For this reason we 

introduce an 

(6.1.1) "adjusted residual" 
residual 

~ m2 + 1 

based on a measure m of "steepness" of terrain. The length of the gradient 

(5.1.16) appears to be a natural measure of steepness. However, the example of 

a mountain peak, where the slope is by definition zero, shows that the slope at 

a single point is not a good indicator of steepness. For the purposes of this 

report, we determine the triangle containing the point in question and then 

chose the vertex slope of largest magnitude, taking into account that the unit 

length in the plane is 20 feet (Section 2.1). The adjusted residual would 

represent the 3-dimensional surface precisely if the surface were linear, that 

is, a tilted plane in a suitable neighborhood of the data point. In general, 

however, it is still an approximation, but a better one than the unadjusted 

residual. For horizontal terrain, m = 0 and the adjusted residual equals the 

original one. In all other cases, the adjusted residual is smaller. In our 

experiment, we collected statistics on both types of residuals. 

In Mandel, Witzgall, and Bernal (86), the results of a first test run were 

reported. For this run, the unadjusted residuals for the full set of digitized 

contour points were collected, including lake hatchings and dams, even though 

the algorithm is not yet equipped to handle nonsmooth terrain, as pointed out 

above. Nevertheless, 95% of the residuals were between +12.5 feet, indicating 

that at least 90% did not deviate more than halfway to the next contour line. 

Furthermore, an analysis of the biggest residuals led to the discovery of 

several contour lines whose altitudes had been apparently miscoded. For the 

purpose of the more extensive experiments reported here, the original data set 

was purged of lake hatchings and the altitudes were recoded for the above 

contour lines. In addition, one contour line representing a dam was removed 

from consideration. In what follows, the results are based on this "sanitized" 

data set. 
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6.2 RESULTS 

The experiment reported here comprises three runs, all for the same "sanitized" 

Mustang mountain data set of about 38,000 sample points giving rise to about 

75,000 triangles. For the first and main run, a histogram of the (unadjusted) 

residuals is displayed in Figure 22. In addition, the standard statistical 

quantities such as expected value (=average), standard deviation, maximum and 

average absolute value are reported, the latter two also for the adjusted 

residuals (6.1.1). The second run did not utilize the contour tangent 

information and the third run used linear rather than Clough-Tocher 

interpolation on the given set of triangles. 

The timing of the procedure is broken down by major steps, including the 

generation of a 901 X 901 rectangular grid, which we expect to be of a size 

relevant to prospective applications. The calculations were timed and carried 

out on a VAX 11/780 system at the Engineer Topographic Laboratories. The 

observed CPU times for the different steps follow 

0 Step 1: Editing Digitized Input Data ......... 25 min 

0 Step 2: Thining and Tangent Determination .... 9 min 

0 Step 3: Voronoi Triangulation and Update ..... 21 min 

0 Step 4: Surface Generation ................... 20 min 

0 Step 5: Grid Determination (901 x 901) ....... 26 min 

Total CPU Time ....................... 101 min 

The timing of Step 5 represents an improvement over the one reported in Mandel, 

Witzgall, and Bernal (86). 

As discussed before, the testing procedure consisted of calculating and 

analysing the residuals of the elevation of the original contour points. The 

histogram of these residuals is displayed in Figure 22. Other statistics 

calculated include: 
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Figure 22. Histogram of Residuals. 
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o Expected Value (average residual) ••••••••••• 

o Standard Deviation •••.••••••••••••.••••••••• 

o Average Absolute Error ...................... 
o Maximum Absolute Error ...................... 
o Percent Absolute Values < 12.5 FT ........... 
o Number Absolute Values > 99.5 FT ........... 
o Number of 

Positive Residuals (overestimates) 

Negative Residuals(underestimates) 

Zero Residuals ....................... 

o Maximum Absolute Adjusted Residual 

o Average Absolute Adjusted Residual .......... 
o Percent Absolute Adjusted Values) 40 FT •••• 

0.294 FT 

5.934 FT 

3.595 FT 

99.610 FT 

95.141 % 

1 

222 417 

205 365 

38 678 

65.588 FT 

3.132 FT 

0.020 % 

The adjusted residuals are seen to be much smaller than the unadjusted ones. 

This indicates that big values of the (unadjusted) residuals are largely 

confined to steep terrain. Results for the second run are displayed below. It 

is seen that not to use tangential information results in a definite 

deterioration of accuracy: 

o Expected Value (average residual) ••••••••••• 

o Standard Deviation .•••••••.••••••••••••••••• 

o Average Absolute Error ...................... 
o Maximum Absolute Error 

o Percent Absolute Values < 12.5 FT 

o-Number Absolute -values-> 99.-5 FT 

o Number of 

0.209 FT 

6.034 FT 

3.657 FT 

160.619 FT 

95.044 % 

15 

Positive Residuals (overestimates) 221 420 

Negative Residuals(underestimates) 206 419 

Zero Residuals • • • • . • • • • • • • . • • • • • • • • • • 38 621 
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As expected, the third run, featuring linear interpolation, did not achieve the 

accuracy of the first run. It comes as somewhat of a surprise, however, that 

the loss of accuracy is not more pronounced. An analysis of the results shows 

that this is due to the extraordinary large number of zero residuals. This 

phenomenon, in turn, is an artefact of the digitization: digitized contour lines 

contain many groups of successive points that lie on a common line. If two of 

such points are vertices of the same triangle, then they and all intermediate 

points reproduce elevation under linear interpolation. As we pointed out 

earlier, the precise reproduction of digitized points is not necessarily 

desirable because the latter carry digitization errror. Below are the 

statistics for the linear run: 

0 Expected Value (average residual) ........... 0.326 FT 

0 Standard Deviation ............. ' ............ 5.856 FT 

0 Average Absolute Error ...................... 3.557 FT 

0 Maximum Absolute Error t t t t t I t t t t t t t t t t t t t t t t 106.557 FT 

o Percent Absolute Values < 12.5 FT ........... 95. 277 % 

o Number Absolute Values > 99.5 FT ........... 4 

o Number of 

Positive Residuals (overestimates) 190 778 

Negative Residuals(underestimates) 175 542 

Zero Residuals t t I t t t t t t t t t t t t t t t t I t t t '100 140 

6.3 CONCLUSIONS 

Two particular concerns were our capability of obtaining the Voronoi 

triangulation of a suffidently large s-et- of- sample- potnts- and- of- solving- the 

large linear system for the gradients at the sample points, using commonly 

available computer resources. With respect to these concerns we found that 

samples of up to 70,000 points could be triangulated within a reasonable time 

frame. In fact, CPU time has been less of a problem than memory space, a 

limitation that was overcome by developing a decomposition method. The 
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Gauss-Seidel method described in Section 5.2 was found to be faster than 

anticipated, both with respect to the CPU time required by a single iteration 

(approximately 150 CPU seconds/iteration) and the speed of convergence (ten 

iterations). Alternative methods will perform as well or faster. 

To sum up, we conclude that the computational effort of using nonlinear 

techniques for the generation of a smooth synthetic surface and subsequent 

regular grid is substantial, but within the bounds for routine calculations on a 

computer of medium size such as the VAX 11/780. Thus we were succesful in 

achieving the major goals of this feasibility study. 

The residuals obtained when trying to recover the original digitized contour 

points are by and large comparable to the resolution of the digitized data. 

However, there are instances of very large residuals which may well be 

unacceptable for subsequent applications. Such discrepancies were expected 

because our method at this point still lacks the capability to handle 

cartographic features at which the actual terrain surface is not smooth, that 

is, it exhibits discontinuities of slope. Such features include lake shores, 

river banks, as well as some ridge and drainage lines. Modeling by a smooth 

surface may not be sufficiently accurate at such locations. 

In order to achieve the full accuracy of our approach, the following measures 

need to be taken: 

o Cancel the smoothness requirements along lake shores, river banks, as 

well as along certain ridge and drainage lines. 

o Smooth digitized contour lines and determine tangent directions prior 

to thinning. 

o Investigate adaptive tolerance selection schemes for higher density 

sampling in rough terrain. 

o Compare local and global methods for specifying tangent planes. 
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