






























































4.2 IMPLEMENTATION 

J. Bernal and s. E. Howe have implemented the above algorithm on a Control Data 

Cyber 205 at NBS. The implementation consists of about 5,000 FORTRAN 

statements. It requires as input a tolerance E, and a list of the x and y 

coordinates of the points in the set for which a Voronoi diagram is desired. 

This list of points must be free of duplication, that is, the distance between 

any two points must always be above the tolerance E. The execution of the 

package requires approximately 34N words of memory, where N is the number of 

points to be triangulated. Versions of this package were successfully trans­

ferred first to a VAX 11/750 and then to a VAX 11/780 at ETL. This required 

adaptations which are described below. 

One of the main objectives of our work was to demonstrate the feasibility of 

triangulating data sets of about 40,000 to 70,000 points. Two difficulties 

arose in the course of the demonstration. The first difficulty was that of 

furnishing the package with the ability to deal with data sets whose members are 

not all necessarily distinct. The second difficulty had to do with memory 

restrictions that would not allow the execution of the package for more than 

50,000 points at a time. 

The "check for duplication" posed a difficulty because it was not possible to 

consider every pair of points in view of their large number. In the case of a 

40,000 point set this would have amounted to the examination of about 

800,000,000 pairs. Fortunately, it was discovered that a portion of the Voronoi 

triangulation package already provided a useful tool for the solution of this 

problem, namely the cell structure set up by the implementation of the first 

step of the algorithm. Thus, a procedure was developed which takes advantage of 

this structure to check for the duplication of points. Given a point P in a set 

S, use a spiral search through each of the layers of cells surrounding P to 

search for other points in s. Eliminate any point found through the search 

whose distance from P does not exceed the tolerance£. 
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Terminate the search as soon as every cell that intersects the closed circular 

disk with center P and radius has been searched. In general, the disk defined 

above is contained in the cell that contains P, so that this is the only cell 

that has to be searched. This procedure was incorporated into the package, and 

was able to identify and remove duplications for data sets of 25,000 points in 

less than 30 seconds of CPU time. 

The restrictions on available memory mentioned above required the development of 

a "decomposition procedure" which allows the separate triangulation of a finite 

number of subsets of a data set in such a way that the correct total triangula­

tion results. This procedure will now be described. 

Given a positive integer k we select numbers x0 , xk, y0 , y1 , such that x0 < xk, 

Yo < Y1, and the rectangle 

contains the data set. We select numbers 

such that 

For each i, i=l, 2, ••• , k, we- define rectangles R1 ' and R1 by: 

R ' = i 

It follows that R1 c Ri' for each i, i=l, 2, ... , k, and R 
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We also assume that the points (xo, Yo), (xo, y1), (xl, Yo), (x1, Y1), ••• , 

(xk-l' y0), (xk-l' y1), (xk, y0), (xk, y1), that is, the corner points of the 

rectangles Ri, i=i, ••• , k, belong to the data set (Figure 14). Furthermore, 

we define Si to be the set of points in the data set that belong to Ri' for 

each i, i=l, ••• , k. Assuming that k and the numbers x0L' x1L, x1 , x1R, ••• , 

Xit-l,L' xk-1' xk-1,R' xkR have been properly selected, the decomposition 

procedure consists of obtaining separate triangulations Ti, i=l, ••• , k, for the 

sets Si, i=l, ••• , k, respectively (Figure 15). The correct triangulation of 

the entire data set is then given by: 

k 
u ~ t E Ti : Ri intersects the interior of t r· 

i=l 

In order to properly select k and the numbers x0L' xlL' xl, xlR'"""' xk-1 L' 
' 

xk-l' xk-l,R' xkR' a separate procedure was developed. In what follows, we 

define, for a given triangle t in a Voronoi triangulation, x(t) and y(t) to be 

the x,y-coordinates of the vertex in the Voronoi diagram that corresponds to t. 

Accordingly, we define d(t) to be the distance from (x(t), y(t)) to any one of 

the vertices of t. Since (x(t), y(t)) is equidistant from the vertices of t, 

d(t) is well defined. In the following procedure, m denotes the maximum number 

of points that can be triangulated with a single run of the package: 

Step 1. Let k 1 and obtain R1 , R1
1 and s1 • Let j = 1. 

Step 2. If the number of points in Sj does not exceed m go to step 3. 

Else increase k to the next positive integer for which xoL' xlL' xl, 

x1R, ••• , xk-l,L' xk-l' -xk-l,R' xkR' can be defined with:-x0<x1< ••• <xk_1<xk; 

x1L<x1<xlR'"'"' xk-l,L<xk_1<xk-l,R; x0=x0L; xkR=xk; and the corresponding 

Ri, Ri', Si, i=l, ••• , k, can be obtained with the number of points in each 

Si, i=l, ••• , k, not exceeding m. Let j = 1. 

Step 3. Obtain the Voronoi triangulation Tj for Sj. If j is equal to 1 

Else define xL by: 

xL =min~ x(t) - d(t): t ~ Tj, 2 vertices of t lie in Rj-l' 

1 vertex of t lies in the interior of Rj r· 
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Figure 14. Decomposition of a Rectangular Point Set for Voronoi Triangulation. 
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Figure 15. Voronoi Triangulations of Three Sections Superimposed Over the 

Voronoi Triangulation of the Entire Set. 
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If j is equal to k, let xR=xkR" Else define xR by: 

Else, 

xR =maxi x(t) + d(t): t E Tj, 2 vertices of t lie in Rj+l' 

1 vertex of t lies in the interior of Rj t· 

If xj-l,L does not exceed xL and xR does not exceed xjR go to step 4. 

if xj-l,L exceeds xL let xj-l,L=xL, and if xR exceeds xjR let xjR=xR. 

Obtain Rj' Rj', Sj and go to step 2. 

Step 4. If j equals k, stop. Else let j = j + 1 and go to step 3. 

This procedure was incorporated into the triangulation package and is currently 

operational. 

4.3 RESULTS OF A COMPUTATIONAL EXPERIMENT 

A Voronoi triangulation package that includes the adaptations described above 

was implemented at ETL and NBS. The feasibility of performing a triangulation 

with large sets of data was demonstrated. For a specific experiment conducted 

on the VAX 11/750, we divided the triangles into three classes: 

Class 1: Those whose vertices lie exactly on one contour line of the map. 

Class 2: Those whose vertices lie exactly on two contour lines of the map. 

Class 3: And those whose vertices lie exactly on three contour lines. 

Each class may contain triangles that are intersected by contour lines other 

than those containing their vertices, and any given triangle belongs to one and 

only one class.· 

A first data set contained 39,645 points and was decomposed into two subsets. A 

second data set contained 70,249 points and was decomposed into four subsets. 

The tables below illustrate some of the results obtained when triangulating 

these data sets with the Voronoi triangulation package. The times, given in CPU 

seconds, indicate the rate at which the package ran per point. 
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Element of 

Decomposition 

1 

2 

Element of 

Decomposition 

1 

2 

3 

4 

% Class 1 

Triangles 

17.20 

17.05 

% Class 1 

Triangles 

22.58 

22.65 

18.74 

26.00 

TABLE FOR N • 39,645 

% Class 2 

Triangles 

49.96 

48.09 

% Class 3 

Triangles 

32.84 

34.86 

TABLE FOR N • 70,249 

% Class 2 

Triangles 

59.58 

58.65 

59.53 

55.76 
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% Class 3 

Triangles 

17.84 

18.70 

21.73 

18.24 

Number of 

Triangles 

41,875 

36,451 

Number of 

Triangles 

41,134 

32,824 

33, 715 

31,755 

CPU Time 

Sec/Point 

0.044175 

0.046810 

CPU Time 

Sec/Point 

0.048542 

0.043350 

0.044793 

0.052509 



5. SURFACE GENERATION WITH CLOUGH-TOCHER ELEMENTS 

In this section we discuss the construction of a surface function passing 

through irregularly spaced given points for most of which both elevations and 

contour tangents are specified. The planar projections of all given points are 

triangulated, that is, the map area is tiled with triangles whose vertices are 

these points. The description of the surface is in terms of these triangles: in 

order to find the surface elevation for an arbitrary point in the map region, a 

triangle containing this point must be found. An evaluation formula or 

"element" is then invoked using triangle-specific parameters. The "Clough-Tocher 

element" employed in our work requires the determination of suitable tangent 

planes at the given points. For this purpose, "local" as well as more expensive 

"global" methods are available. A global method based on energy minimization 

has been implemented and tested for computational feasibility. 

5.1 THE CLOUGH-TOCHER ELEMENT 

Triangulation-based surface interpolation is a classical computational problem. 

Various versions of the Finite Element Method (see Zienkiewicz (71), Birkhoff 

and Mansfield (74)) are usually employed in its solution. The "linear element" 

represents linear interpolation by the plane through the vertices of the 

triangle at hand. It yields a surface of continuous elevation. However, this 

surface is not smooth since "creases", that is, tangential discontinuities, 

occur along the boundaries of the triangles. 

Nonlinear elements are needed for smooth surface interpolation. A major 

advantage of smooth surfaces is that their corresponding surface functions are 

uniquely differentiable at each point of their domain; in other words, there are 

unique gradients. The greater flexibility and information content of nonlinear 

elements also allows for a more precise representation of the original data than 

that provided by linear elements, given triangulations of comparable densities. 
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The "Clough-Tocher" element (see Clough and Tocher (65), Lawson (72, 76, 77)) is 

a particularly attractive tool for smooth surface interpolation. It requires 

that at each vertex i of the triangle over which it is defined, the elevation zi 

and the partial derivatives zix and ziy be given. The Clough-Tocher element 

then is described by a function z = f(x,y) on the given planar triangle. It 

represents a "surface patch" above this triangle (Figure 17, see also Figure 

16). The surface patch meets the prescribed elevation as well as th~ prescribed 

derivatives at each vertex. It is fully defined by these quantities, in other 

words, by the three elevations and the three tangential planes (gradients). 

The following considerations concern the construction of an entire surface from 

such surface patches. In order to ensure continuity of elevation between 

adjacent triangles, the Clough-Tocher element satisfies the following 

(S.1.1) Cubic Boundary Condition: Along each triangle edge, the 

Clough-Tocher element agrees with a cubic (degree 3 or less) 

polynomial in terms of a variable linearly traversing the edge. 

A cubic polynomial in one variable is completely determined by two elevations 

and two derivatives (in the direction of the edge). Since the tangential planes 

at the vertices agree, so do the derivatives in the direction of the edge. 

Therefore, the Clough-Tocher elements of two adjacent triangles determine the 

same cubic polynomial on the edge they share. It follows that not only the 

elevations, but also the derivatives in the direction of the edge agree along 

that common boundary. 

In order to ensure smoothness across the triangle boundaries, the Clough-Tocher 

element satisfies the following 

(5.1.2) 1'tnear Der-ivanve ~onoition: Along each triangle edge, the 

derivative taken in the direction perpendicular to the edge 

varies linearly between the values it assumes at the ends of the 

edge. 
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Figure 16. Linear Element. 
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Figure 17. Clough-Tocher Element. 
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The edge-perpendicular derivatives along an edge are thus uniquely determined by 

their location on the edge and the derivatives at the vertices at the ends of 

the edge. Since the latter agree for two adjacent triangles, the edge­

perpendicular derivatives along their common edge agree also. It was seen that, 

as a consequence of the cubic boundary condition, the edge-parallel derivatives 

agree. Hence, adjacent Clough-Tocher elements share tangential planes 

everywhere along their common boundary. 

Functions over triangles are best expressed in terms of their "barycentric 

coordinates", also called "triangle coordinates." These are three real numbers 

such that 

+ >..z 1 

where x, y are the planar coordinates of the point in question. The barycentric 

coordinates are functions of these planar coordinates. To express these 

functional relationships, we use Zienkiewicz notation: 

i,j = 1, 2, 3. 

We then have 

>..z (x, y) 
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where the denominator is given by the determinant 

1 1 

We also note that the partial derivatives of the barycentric coordinates with 

respect to x, y, are given by 

The advantage of barycentric coordinates lies in the symmetric way the vertices 

of the triangle are treated. Also, their signs indicate immediately whether the 

point (x,y) lies inside or outside the triangle: a negative barycentric 

coordinate indicates that the point lies outside the triangle. If all 

barycentric coordinates are positive, then the point lies in the interior of the 

triangle. On the boundary at least one barycentric coordinate vanishes. 

Vertices are characterized by single nonzero barycentric coordinates of value 1: 

(1, 0, 0) , (0, 1, 0) , (0, 0, 1). 

The barycenter of the triangle or "centroid" is given by 

( 1/3, 1/3, 1/3 ). 

It defines what we call a "barycentric partition" (Figure 18) of the triangle 

where 
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Figure 18. Barycentric Partition of Triangle. 
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Bl = -£(>..1,>..2,>..3): >..1 < >..2' >..1 ~ >..3}' 

B2 = '{(>..1,>..2,>..3): >..2 < >..3' >..2 ~ >..1 :r 

B3 = iC>..1,>..2,>..3): >..3 < >..1, >..3 ~ >..2 ]-

Bo = i (>..1 '>..2 '>..3) : >..1 = A.2 = >..3 = 1/3 }. 

In each of the major triangle regions Bi, i = 1,2,3, the corresponding 

barycentric coordinate is dominated by the remaining ones: 

Each function representing a Clough-Tocher element is a cubic polynomial of the 

barycentric coordinates in each of the major regions Bi of the barycentric 

partition of the triangle. The function is continous and smooth at the 

boundaries of these regions of the barycenter. We call such a function 

"piecewise cubic" with respect to the barycentric partition. 

In his seminal work, Lawson (76) introduces three "correction functions" 

1,2,3, 

with which to describe the Clough-Tocher element. They are piecewise cubic with 

respect to the barycentric partition, and given by 
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A1A2A3 + 5/6A2
3 - l/2A22 for (>..1 ,A2 ,>..3) £: B2 

3 I 2 -l/6AJ + 1 2h3 Al for (>..l >-2,>..3) ' B3 

92 = 
3 2 -l/6Al + l/2Al A3 for (Al ,A2 ,>..3) E Bl 

1/81 for <>..1,>..2,>..3) ~ B . 
0 

>-1>-2A3 + 5/ 6>-3 
3 - l/2A3 2 for (>-1,>..2 ,>..3) E B3 

3 I 2 -1/6>.1 + 1 2>..1 >..2 for (>-p>..2 ,A.3) E Bl 

93 = 
3 2 -1/61.2 + 1/2>..2 >..1 for (>..1,>-2,>..3) E B2 

1/81 for (1.1,>-2 ,1.3) € Bo· 

The motivation for the choice of the correction functions is given in Lawson 

(76). The partial derivatives of these correction functions are: 

(5.1.9) 
2 (>..2A3+5/2>..1 ->-1)Y23 + >..31.1Y31 + 1.11.2Y12 in Bl 

2 I 2 (-1/2A2 +>..2>..3)Y31 + 1 2>..2 Y12 in B2 

D•s>1x = 
2 I 2 (-1/21.3 +>..3>-2)Y12 + l 21.3 Y31 in B3 

-l/18Y23 in Bo 

2 
[ <>-2>-3+5/2>..1 ->..1)x32 + 1.31.1x13 + AlA2X21 in Bl 

2 I 2 <-112>-2 +>..2>-3)x13 + 1 2>-2 x21 in B2 

D•91y = 
2 2 (-l/2A3 +>..3A2)x21 + 1/2>..3 X13 in B3 

-l/18x32 in Bo 
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2 
(A1A2+S/2A3 -A3)Y12 + A2A3Y23 + A3A1Y31 in B3 

2 . 2 
(-l/2Al +X1A2)y23 + 1/2Al Y31 in Bl 

D·p3x = 
(-l/2Az2+A2A1)Y31 + 1/2A22Y23 in B2 

-l/18y12 in Bo 

. 2 
(A1A2+5/2A3 -A3)x21 + A2A3X32 + X3A1X13 in B3 

2 I 2 (-l/2Al +A1A2)x32 + 1 2X1 X13 in Bl 
D ·£3_y = 

l(-l/2A22+A2A1Jx13 + l/2A22x32 in B2 

-l/18x21 in Bo• 
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Now let 

These six quantities represent the directional derivatives at vertex i with 

respect to the direction vector (xji'Yji), which represents a directed edge of 

the triangle. It will be convenient to use the additional abreviations 

Note that for a linear function z = f(x,y), Mji = -Mij = zji' and for a 

quadratic function, Mji - Mij = 2zji" As a consequence, the coefficients Qij 

and Cij vanish for linear functions, and the coefficients Cij for quadratic 

functions. We also denote by 

(S.1.12) Li, i = 1, 2, 3, 

the euclidean length of the edge opposite to vertex i. The Clough-Tocher 

element is now of the form: 

(5.1.13) z = AlZl + A2Z2 + A3Z3 

+ Q23A2A3 + Q31A3Al + Q12A1A2 

+ C23V1 + C31V2 + C12V3, 

where the functions vi, i = 1,2,3, are given by 

Note that the expression 
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represents the linear element, namely the plane passing through the elevations 

given at the vertices of the triangle. The portion 

is a quadratic function in the entire triangle. Note that quadratic functions 

satisfy the Linear Derivative Condition (5.1.2). The remaining portion is a 

piecewise cubic function with respect to the barycentric partition. This 

function also satisfies the Linear Derivative Condition as a result of the 

choice of correction functions Pi• 

It is easy to derive various expressions for the gradient of the Clough-Tocher 

function. The gradient components are the partial derivatives with respect to 

x, y, and may be written as 

where 

(5.1.14) D·zx = Z1Y23 + Z2Y31 + Z3Y12 

+ Q23(A3Y31+A2Y12) + Q31(A1Y12+A3Y23) + Q12<A2Y23+A1Y31) 

+ C23D•V1x + C31D·V2x + C12D·V3x 

D·zy = z1x32 + z2x13 + z3x21 

+ Q23(A3X13+A2X21) + Q31(A1X21+A3X32) + Q12(A2X32+A1X13) 

+ C23D·V1y + C31D•V2y + C12D•V3y' 

D•V1x = A3(2A2-A3)Y31 - A2( 2A3-A2)Y12 

+ [J(L2+L3)(L2-L3)/L1
2

]D•p1x - D·P2x + D·p3x 

D •V2_x = A1(2A3-Al)_yl2 - A3(2A1-A3)Y23 

+ [3(L3+L1)(L3-L1)/L22 ]D•?2x - D·p3x + D•f1x 
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A more transparent formula for the gradient can be derived. For Xi = 1, 

i=l,2,3, that is, at the three corners of the triangle, 9ix = Piy = O. It thus 

follows from (5.1.14) that 

where zix, ziy, i=l,2,3, are the prescribed gradient components at the vertices 

of the triangle. It follows that 

A1D·z1x+A2D·z2x~A3D•z3x = Z1Y23+z2Y31+z3Y12 

+ Q23(X3Y31+A2Y12)+Q31(A1Y12+A3Y23)+Q12{X2Y23fA1Y31) 

- C23(X3Y31-A2Y12)-C31<X1Y12-X3Y23)-C12\A2Y23-A1Y31) 
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x1D·z1y+X2D·z2y+X3D•z3y = z1x32+z2x13+z3x21 

+ Q23(X3x13+X2x21)+Q31(X1x21+X3x32)+Q12(X2x32+X1x13) 

- C23(X3X13-X2X21)-C31<X1X21-X3X32)-C12<X2X32-X1X13)· 

Formula (5.1.14) can now be rewritten as 

where 

(5.l.l5) zx = Xlzlx + X2z2x + X3z3x + C23A1x + C31A2x + C12A3x 

zy Xlzly + X2z2y + X3z3y + C23A1y + C31A2y + Cl2A3y' 

To sum up, given three points with their elevations and gradients, that is, 

given 15 quantities 

i 1, 2, 3, 

the Clough-Tocher element defines a surface that assumes those prescribed 

elevations and derivatives (gradients). In order to calculate the elevation at 

an arbitrary specified point, we 

o compute the auxiliary quantities Qij' Cij and Li from the above 

15 quantities 

-0 - evaluare the eoI"r-ection functions 91 for the barycentric -co-ordinates 

x1 , x2 , x3 with respect to the three given points in the plane 

o determine the values Vi and enter them into the Clough-Tocher formula 

(5.1.13). The gradient components are computed analogously using 

formula (5.1.15). 
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5.2 SURFACE GENERATION OVER A TRIANGULATED REGION 

In order to pass a smooth surface through given elevations at irregularly spaced 

points, one may partition the region in which the surface is to be defined into 

triangles, specify gradients along with the evevations at the vertices of these 

triangles, and generate the resulting Clough-Tocher patch in every triangle. The 

Clough-Tocher patches are designed in such a fashion that th~y fit together 

smoothly along common boundary edges. However, there is still a missing link. 

In order to fully define our synthetic surface, we have yet to provide the 

gradients (tangential planes) at the vertices of the triangulation. There are 

several approaches to finding suitable gradient values. One is to examine 

neighboring elevations and to estimate a suitable position of the tangential 

plane at the point in question by using local interpolation or least squares 

regression. The success of spline techniques suggests a different approach. A 

spline can be interpreted as an idealized mechanical structure consisting of 

"thin beams" which, when forced through specified points, assume a position in 

which a surrogate elastic energy is minimized. Since oscillatory behavior is 

associated with high elastic energy, minimizing elastic energy tends to minimize 

oscillations. In this work, we extend this approach to two dimensions. We 

consider a mechnical structure consisting of thin beams of equal "thickness" 

along the edges. They are joined together at vertices by small "thin plates" 

which represent tangential planes forced to be met by the adjacent thin beams. 

The sum of the surrogate energies of all thin beams is then minimized. This is 

achieved by varying the positions of the thin plates to which the adjacent thin 

beams must be tangential while passing through prescribed elevations and 

satisfying other side conditions that may have been specified for selected 

vertices. Once the idealized mechanical structure has found its optimal, that 

is, energy-minimal position, the gradient at each vertex is defined by the tilt 

of its thin plate. The resulting surface is supported by thin beams much as the 

fabric of an umbrella is spanned by its ribs. 

Mathematically, the surrogate elastic energy is a positive definite quadratic 

form in those parameters that are permitted to vary. Setting the partial 
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derivatives of the energy with respect to these variables to zero yields the 

optimality conditions in the form of a large system of equations. 

The classic Gauss-Seidel method for solving a system of linear equations is an 

iterative procedure where each iteration consists of passing in sequence through 

all the equations of the system. Each equation is used for determining a new 

value for a particular unknown variable while keeping the other unknowns fixed. 

The method thus requires an initial value for each unknown. To start, the first 

equation is transformed into a linear equation of only the first unknown by 

substituting into this equation the initial values of all remaining variables. 

This equation then yields an improved value for the first unknown variable. This 

value, along with initial values for the third and subsequent variables, enters 

the second equation, which then yields an equation for the second variable 

alone, and so on. 

We modify the Gauss-Seidel procedure slightly. To this end we observe that each 

variable of the system of linear equations is "associated" with a particular 

vertex. The associated variables at each vertex satisfy "local optimality 

conditions". These optimality conditions have a structural interpretation: They 

express the conditions for the structural parameters represented by the 

associated variables to assume minimum energy values, supposing that the 

structural parameters at all other vertices remain fixed. The local optimality 

conditions again take the form of linear equations in the variables associated 

with the vertex. In a typical case, the thin plate at the vertex is tilted into 

the best position it can assume, given the tilts and elevations at neighboring 

vertices. The local optimality conditions then define this locally optimal 

tilt. It can be shown that: 

(5.2.1) THEOREM: The linear system of equations for optimizing the 

-vostti--on --o-f -the -hleali-zed mechanical -structure i£ -equivalent to 

the combination of all local optimality conditions. 

Our variation of the Gauss-Seidel method now is to pass through all vertices in 

sequence, solving at each vertex the local optimality conditions. It was a 
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major concern at the start of this project whether this procedure was 

computationally feasible. We found that the time needed for a Gauss-Seidel 

iteration of the kind described above was well within an acceptable time frame. 

As discussed in Section 6, this marks a main accomplishment of this feasibility 

study. 

In what follows, we will list the local optimality conditions for various sets 

of associated variables. We distinguish several "types of vertices" according 

to their kinds of associated variables. A particularly important case is the 

one in which the tangent to the contour curve is given along with its elevation. 

In this case, the direction of the gradient is given -- it is perpendicular to 

the contour tangent -- and the only variable to be determined is the length or, 

rather, a positive or negative "gradient multiplier" J· It represents the only 

variable associated with a vertex of this type. 

-~. 

We use a three letter code to characterize vertex types. The first letter of 

the code refers to elevation: it is 'E' if the elevation is given, and 'N' 

otherwise. In the latter case, the elevation is an associated variable. The 

second and third letters refer to gradient components zx and zy, respectively. 

Letter 'X' in the second position indicates that the x-component of the gradient 

is given, and 'N' in this position indicates that it is not. Analogously, letter 

'Y' in the third position indicates that the y-component of the gradient is 

given, and 'N' indicates that it is not. Finally, the combination 'RN' is found 

in positions two and three, if the gradient direction, but not the gradient 

itself, is specified. For example, 'ERN' signals the case in which both 

elevation and gradient direction are prescribed, leaving the gradient multiplier 

as the only associated variable. Any occurrence of 'N' indicates an unknown 

associated variable. In particular 'NNN' is used if all three quantities, 

elevation and gradient components, are to be determined. 

The surrogate energy of a thin beam of length L is given by 

(5.2.2) 

s=L 

E = J z"(s) 2ds. 

s=O 
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It is a well-known result of the theory of thin beams that the above expression 

is minimized by cubic functions of the distance s along the projection of the 

beams into the plane. These cubic functions are uniquely determined by the 

elevations and slopes at the end points ("Hermite interpolation"). The 

following local optimality conditions are derived using these facts. 

In describing local optimality conditions at vertex i, we let the vertices j run 

through the "star" of vertex i, namely the following set of vertices j: 

(5.2.3) S(i) { j j is connected by an edge to vertex i}. 

The abbreviations (5.1.10) and 

(5.2.4) 

are used to denote the edge-directional derivatives and the distances between 

vertices, respectively. In addition, we will need the quantities 

(5.2.5) 

where 

Pix• Piy• Pix2 + Piy2 = 1 

are the components of the gradient direction at ver~ex i normalized to length 1. 

The resulting optimality conditions for all types of vertices, except type 

'EXY', are displayed in Figure 19. 'EXY' represents the fully specified case in 

which there are no associated variables to be determined. 

To sum up, the vertices of the triangulation are divided prior to surface 

-generation -into -t)TF~s -depending on -which surface parameters are given and which 

have to be determined. These types are described by the letter codes 

(5.2.6) 'ERN', 'ENN', 'EXN', 'ENY', 'EXY', 

'NRN', 'NNN', 'NXN', 'NNY', 'NXY'. 
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For each of these ten types -- except the fully specified case 'EXY' -- there is 

an update formula by which the surf ace parameters at the triangulation vertices 

are calculated from the current values of the surface parameters at neighboring 

vertices. Sequentially updating every vertex in this fashion constitutes a 

Gauss-Seidel iteration. Such iterations are repeated until the changes in the 

variables remain within a given tolerance or a specified limit on the number of 

iterations is reached. 

5.3 FINDING THE RIGHT TRIANGLE 

Suppose a surface is specified in terms of triangular Clough-Tocher patches. In 

order to evaluate the elevation at a given point in that surface, a triangle 

containing that point needs to be found. In what follows we describe a method 

for finding such a triangle. This method is intended for applications in which 

not just one point, but sequences of such points are given, most of which are 

moreover close to each other. The sets of sequential contour points as they 

arise from digitized contour information are a case in point. A closely spaced 

regular grid is another. In these cases, a given point in the sequence will lie 

with high probability in the same triangle or in a triangle directly adjacent to 

the triangle of the previous point. 

The method we use for finding a triangle containing a given point relies for its 

efficiency on the above observation. Before searching for the triangle of a 

given point, the method requires that an arbitrary starting point be specified 

for which a triangle containing it is known. We then move from this starting 

point straight towards the given point until we reach the boundary of the 

starting triangle or the given point itself, whichever happens first. If the 

boundary is reached at a non-vertex point, that is, somewhere in the interior of 

a boundary edge, then the unique adjacent triangle can be readily identified 

using our triangulation data structure, and we continue moving in that triangle 

as far as possible or necessary. In the unlikely case that a vertex is 

encountered, all triangles adjacent to this vertex are examined in sequence 

until one is found in which progress can be made towards the given point. The 

processes are repeated until the given point is reached. The last triangle in 
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Case ERN: elevation Zi and gradient direction (µ;z,µ; 11 ) specified, gradient 
multiplier "Yi to be determined. 

Case EXN: elevation Zi and gradient component Ziz specified, gradient com­
ponent Zi11 to be determined. 

Case ENY: elevation Zi and gradient component Zi., specified, gradient com­
ponent Ziz to be determined . 

. ·Case ENN: elevation Zi specified, gradient (Ziz, Zi11 ) to be determined. 

z .. y·; (Y;;)2 ~ Y;i [ ) 
Ziz X 2 L (L'' .. )' 3 + Zi11 X 2 L (L .. )3 = ~ (L .. )3 3z;i + Mi; 

; ,. j ,. , ,. 

Case NRN: gradient direction (µ;z,µ; 11 ) specified, elevation Zi and iradient 
multiplier "Yi to be determined. 

1 
~ (L;i)3 [6z; + 3M;;J 

Figure 19. Optimality Conditions for ~ertices by Type. 
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Case NXN: gradient component Ziz specified, elevation Zi and gradient com­
ponent Zi 11 to be determined. 

1 
- ~ (L;i)3[6z; - 3x;iZi.~ + 3Mi;] 

Case NNY: gradient component Zi 11 specified, elevation Zi and gradient com­
ponent Ziz to be determined. 

"' Xji 2"' (z;i)2 
Xji 

Zi x 3 7 (L;i)3 + Ziz x 7 (L;i)3 - ~ (L;i)3 (3z; - 2Y;iZiz +Mi;] 

Case NNN: no parameters specified, elevation Zi and gradient (Zi~, Zi11) to 
be determined. 

"°' 1 "°' X;i · "' Y;i '°' 1 
Zi x6 .l:- (L ··)3 +Ziz x 3 .l:- (L ··)3) +Zi11 x3 ~ (L ··)3 = ~ (L ··)3 [6z;+3Mi;] , ,. , ,. ; ,. ; ,. 

Zi x 3"" -1!.i!_ + ,..z x 2"" X;iY;i + "·11x2"" (Y;i)2 "" Y;i (3 M. l 
L.J (L )3 -. ~ (L )3 -. L.J (L )3 = L.J,. (L,·,·)3 z; + i; ; ji j ji ; ji 

Case NXY: gradient (Ziz, Zi11 ) specified, elevation Zi to be determined. 

1 
~ (L;-) 3 [2z; - M;i + Mi; J 

,,- .- ·", 

Figure 19. (Continued) 
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the chain of triangles obtained in the course of this procedure will contain the 

given point (Figure 20). 

It is clear that this procedure will work best for a sequence of points in which 

the previous point can serve as a close starting point for the task of locating 

the given point in a triangle. For points in a regular grid arranged by 

sequential rows the following procedure is used. Locate the first point of the 

first row from an arbitrary starting point. Make a note of the first row and 

its triangle for further reference. Use it also as starting point for the 

second point in the first row. Then use the second point and its triangle as 

starters for locating the third point, and so on, until the end of the row is 

reached. Then retrieve the first point and its triangle and use them as 

starters for locating the first point in the second row. This point and its 

triangle are again kept for further reference, while the second row is traversed 

in the same manner as the first row. This process is repeated for the remaining 

rows. 
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Starting point 
with known triangle 

Specified point whose 
triangle is to be 
determined 

Figure 20. Line Search for a Triangle Containing a Specified Point. 
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6. RESULTS AND CONCLUSIONS 

In order to test the computational feasibility of the approach proposed in the 

previous sections, a pilot implementation was applied to the Mustang Mountain 

data set (see Section 2). CPU times were recorded and experience about memory 

requirements was gained. As a preliminary testing procedure the residuals 

obtained when trying to recover the contour elevations were gathered and 

analyzed. After describing the set-up of the experiment, we report its results 

and the observed computational effort. 

6.1 SETTING UP THE EXPERIMENT 

The pilot implementation consists of several independent modules whose output 

files serve as input files to subsequent modules. The interrelationship of 

these modules and their interconnecting files is schematically described in 

Figure 21. 

The original input file has the format (see Section 2) of Digital Graphic 

Recorder Data (DGR) and refers in our case to the Mustang Mountain, Fort 

Huachuca, area. These data are input into the module EDIT, which extracts and 

edits contour information as described in Section 2 of this report. The 

resulting edited digital contour file is then sampled and contour tangents are 

determined in module THIN. The sampling method is described in Section 3 of 

this report. The resulting sample is first fed to the module VORONOI (see 

Section 4), which determines a Voronoi triangulation of the sample points. 

Accordingly, the main output of this module is a "triangle table" that lists the 

vertices and neighbors of each triangle. In addition, duplicate sample points 

are identified and points that need to be added, such as map corners, are 

recorded. This information is utilized by the UPDATE module which creates the 

final "data base". This data base is needed along with the triangle table to 

generate the surface in module SURFACE. This module also provides options for 

evaluating the elevation of either random points or points in a regular 
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Digital Graphics Records Data<DGR) 

Edited Contour Data 

Point sample & Derivatives .__ ...... a 

UPDATE 

Add & Delete 
Led er 

Vertex Data Base 

Triangle Table 

Digital Terrain Elevation Data COTED) 

Figure 21. System Layout. 
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rectangular grid. The design of the testing procedure is based on the following 

observation. When the sample points enter the triangulation process they are 

considered as points in a plane. No longer do they hold any direct relationship 

to other points in the contour as such. Therefore, these original contour 

points are in essence independent of the sampled ones. The testing procedure 

consists of evaluating the surf ace at the original contour points and comparing 

the results to the given elevations, yielding a set of residuals. These 

residuals provide an indication of the ability of our algorithm to "recover" the 

original data. 

The full original data set contains features such as lake shores, lake 

hatchings, dams, and peak elevations, which the algorithm in its present state 

of development does not yet handle in an accurate fashion. Indeed, the primary 

goal of the effort reported here is to establish computational feasibility. Also 

some limitations of the testing procedure itself need to be pointed out. 

First, the digitized data themselves carry a "digitization error" so that it is 

not necessarily desirable to reproduce the digitized data precisely. Indeed, if 

the recovered contours represent a "smoothing" of the digitized lines, they may 

be more representative of the true surface than the given digitized contour 

points. 

Second, in flat terrain, the nonsampled digitized contour points tend to be 

close to the boundary of triangles, so that the behavior of the surface in their 

interior is monitored to a less extent than in steep terrain, where more contour 

lines cut through the interior of triangles. In order to retain interior 

monitoring, the sample was deliberately chosen somewhat smaller than indicated 

for the purpose of improved accuracy, but still large enough to test 

computational feasibility. 

Third, the vertical deviations measured by the residuals tend to be dispropor­

tionally large in steep terrain. Ideally, the 3-dimensional distances from the 

true data points to the generated surface should be evaluated in order to 

determine the accuracy of the latter. In flat terrain the vertical 
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deviation, that is, the residual, provides a good approximation to the true 

distance. However, this is not the case for steep terrain. For this reason we 

introduce an 

(6.1.1) "adjusted residual" 
residual 

~ m2 + 1 

based on a measure m of "steepness" of terrain. The length of the gradient 

(5.1.16) appears to be a natural measure of steepness. However, the example of 

a mountain peak, where the slope is by definition zero, shows that the slope at 

a single point is not a good indicator of steepness. For the purposes of this 

report, we determine the triangle containing the point in question and then 

chose the vertex slope of largest magnitude, taking into account that the unit 

length in the plane is 20 feet (Section 2.1). The adjusted residual would 

represent the 3-dimensional surface precisely if the surface were linear, that 

is, a tilted plane in a suitable neighborhood of the data point. In general, 

however, it is still an approximation, but a better one than the unadjusted 

residual. For horizontal terrain, m = 0 and the adjusted residual equals the 

original one. In all other cases, the adjusted residual is smaller. In our 

experiment, we collected statistics on both types of residuals. 

In Mandel, Witzgall, and Bernal (86), the results of a first test run were 

reported. For this run, the unadjusted residuals for the full set of digitized 

contour points were collected, including lake hatchings and dams, even though 

the algorithm is not yet equipped to handle nonsmooth terrain, as pointed out 

above. Nevertheless, 95% of the residuals were between +12.5 feet, indicating 

that at least 90% did not deviate more than halfway to the next contour line. 

Furthermore, an analysis of the biggest residuals led to the discovery of 

several contour lines whose altitudes had been apparently miscoded. For the 

purpose of the more extensive experiments reported here, the original data set 

was purged of lake hatchings and the altitudes were recoded for the above 

contour lines. In addition, one contour line representing a dam was removed 

from consideration. In what follows, the results are based on this "sanitized" 

data set. 
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6.2 RESULTS 

The experiment reported here comprises three runs, all for the same "sanitized" 

Mustang mountain data set of about 38,000 sample points giving rise to about 

75,000 triangles. For the first and main run, a histogram of the (unadjusted) 

residuals is displayed in Figure 22. In addition, the standard statistical 

quantities such as expected value (=average), standard deviation, maximum and 

average absolute value are reported, the latter two also for the adjusted 

residuals (6.1.1). The second run did not utilize the contour tangent 

information and the third run used linear rather than Clough-Tocher 

interpolation on the given set of triangles. 

The timing of the procedure is broken down by major steps, including the 

generation of a 901 X 901 rectangular grid, which we expect to be of a size 

relevant to prospective applications. The calculations were timed and carried 

out on a VAX 11/780 system at the Engineer Topographic Laboratories. The 

observed CPU times for the different steps follow 

0 Step 1: Editing Digitized Input Data ......... 25 min 

0 Step 2: Thining and Tangent Determination .... 9 min 

0 Step 3: Voronoi Triangulation and Update ..... 21 min 

0 Step 4: Surface Generation ................... 20 min 

0 Step 5: Grid Determination (901 x 901) ....... 26 min 

Total CPU Time ....................... 101 min 

The timing of Step 5 represents an improvement over the one reported in Mandel, 

Witzgall, and Bernal (86). 

As discussed before, the testing procedure consisted of calculating and 

analysing the residuals of the elevation of the original contour points. The 

histogram of these residuals is displayed in Figure 22. Other statistics 

calculated include: 
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Figure 22. Histogram of Residuals. 
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o Expected Value (average residual) ••••••••••• 

o Standard Deviation •••.••••••••••••.••••••••• 

o Average Absolute Error ...................... 
o Maximum Absolute Error ...................... 
o Percent Absolute Values < 12.5 FT ........... 
o Number Absolute Values > 99.5 FT ........... 
o Number of 

Positive Residuals (overestimates) 

Negative Residuals(underestimates) 

Zero Residuals ....................... 

o Maximum Absolute Adjusted Residual 

o Average Absolute Adjusted Residual .......... 
o Percent Absolute Adjusted Values) 40 FT •••• 

0.294 FT 

5.934 FT 

3.595 FT 

99.610 FT 

95.141 % 

1 

222 417 

205 365 

38 678 

65.588 FT 

3.132 FT 

0.020 % 

The adjusted residuals are seen to be much smaller than the unadjusted ones. 

This indicates that big values of the (unadjusted) residuals are largely 

confined to steep terrain. Results for the second run are displayed below. It 

is seen that not to use tangential information results in a definite 

deterioration of accuracy: 

o Expected Value (average residual) ••••••••••• 

o Standard Deviation .•••••••.••••••••••••••••• 

o Average Absolute Error ...................... 
o Maximum Absolute Error 

o Percent Absolute Values < 12.5 FT 

o-Number Absolute -values-> 99.-5 FT 

o Number of 

0.209 FT 

6.034 FT 

3.657 FT 

160.619 FT 

95.044 % 

15 

Positive Residuals (overestimates) 221 420 

Negative Residuals(underestimates) 206 419 

Zero Residuals • • • • . • • • • • • • . • • • • • • • • • • 38 621 
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As expected, the third run, featuring linear interpolation, did not achieve the 

accuracy of the first run. It comes as somewhat of a surprise, however, that 

the loss of accuracy is not more pronounced. An analysis of the results shows 

that this is due to the extraordinary large number of zero residuals. This 

phenomenon, in turn, is an artefact of the digitization: digitized contour lines 

contain many groups of successive points that lie on a common line. If two of 

such points are vertices of the same triangle, then they and all intermediate 

points reproduce elevation under linear interpolation. As we pointed out 

earlier, the precise reproduction of digitized points is not necessarily 

desirable because the latter carry digitization errror. Below are the 

statistics for the linear run: 

0 Expected Value (average residual) ........... 0.326 FT 

0 Standard Deviation ............. ' ............ 5.856 FT 

0 Average Absolute Error ...................... 3.557 FT 

0 Maximum Absolute Error t t t t t I t t t t t t t t t t t t t t t t 106.557 FT 

o Percent Absolute Values < 12.5 FT ........... 95. 277 % 

o Number Absolute Values > 99.5 FT ........... 4 

o Number of 

Positive Residuals (overestimates) 190 778 

Negative Residuals(underestimates) 175 542 

Zero Residuals t t I t t t t t t t t t t t t t t t t I t t t '100 140 

6.3 CONCLUSIONS 

Two particular concerns were our capability of obtaining the Voronoi 

triangulation of a suffidently large s-et- of- sample- potnts- and- of- solving- the 

large linear system for the gradients at the sample points, using commonly 

available computer resources. With respect to these concerns we found that 

samples of up to 70,000 points could be triangulated within a reasonable time 

frame. In fact, CPU time has been less of a problem than memory space, a 

limitation that was overcome by developing a decomposition method. The 
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Gauss-Seidel method described in Section 5.2 was found to be faster than 

anticipated, both with respect to the CPU time required by a single iteration 

(approximately 150 CPU seconds/iteration) and the speed of convergence (ten 

iterations). Alternative methods will perform as well or faster. 

To sum up, we conclude that the computational effort of using nonlinear 

techniques for the generation of a smooth synthetic surface and subsequent 

regular grid is substantial, but within the bounds for routine calculations on a 

computer of medium size such as the VAX 11/780. Thus we were succesful in 

achieving the major goals of this feasibility study. 

The residuals obtained when trying to recover the original digitized contour 

points are by and large comparable to the resolution of the digitized data. 

However, there are instances of very large residuals which may well be 

unacceptable for subsequent applications. Such discrepancies were expected 

because our method at this point still lacks the capability to handle 

cartographic features at which the actual terrain surface is not smooth, that 

is, it exhibits discontinuities of slope. Such features include lake shores, 

river banks, as well as some ridge and drainage lines. Modeling by a smooth 

surface may not be sufficiently accurate at such locations. 

In order to achieve the full accuracy of our approach, the following measures 

need to be taken: 

o Cancel the smoothness requirements along lake shores, river banks, as 

well as along certain ridge and drainage lines. 

o Smooth digitized contour lines and determine tangent directions prior 

to thinning. 

o Investigate adaptive tolerance selection schemes for higher density 

sampling in rough terrain. 

o Compare local and global methods for specifying tangent planes. 
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