
UG470
U5d
no. TEC-0045 :-0045

A Parser for
the ISO 8211
Data Format

Michael McDonnell

January 1994

Approved for public release; distribution is unlimited.

U.S. Army Corps of Engineers
Topographic Engineering Certer
Fort Belvoir, Virginia 22060-5546

3J/o JI C::,,-/
//(G- .::'/ 'l 0

REPORT DOCUMENTATION PAGE Form Approv•d r Tl.c-tJ()<
~u. /

OMS No. 0 04-0188

,ubl•< ,.p0ntf"q bvtdfft fOf ttu1 <Ollf'<'t1on of •"fOfmltlOft" ftt•"'ltfd to '"''•9• 1 heur ~r rnQOt'IM. •ft<lvdtr'9 tt-it t•mt fOf '"~""'"9 1n1tn1Ct10ft\. warct""9 firitu'WJ data \OUfCft.

9•lllH•"9 and m1on111n1"9 IM dala llffdf<j, Ind C.)lft~•"9 Ind rtv1"'°1n9 II•• coll~1on of 1nforma11on. ~nd commtnts r~ard1n9 lho\ tNrdtn ftllmote Of any OlhH 1_, of lhl\
coH~tlOft of 1nf0<m111on, 1nclud•"9 wqlnllon\ fOf ·-•"9 '"" t>urdtn. 10 Wnh1nq1on "HdQu•ntf1 \e,..ocn. Dor~or11t Of 1nform111on ~ral!Oft\ Ind llfPOtU, 121s Hlffl'\On
Ol•I\ Hiqllw1y, \ullt 1204. Arhnq1on. V 22202~)02. -10 IM Olfoct Of llol1n1qt"'f"I Ind lud9tl. ''~""'ort llf<juctoon ''0!~(0704.0111), Wa.,,lnqlon. DC 20SO).

1. AGENCY USE ONLY (Luv• blink) 12. REPORT DATE I J. REPORT TYPE AND DA TES COVERED

J anuarv 1994 Technical Report
'· TITLE AND SUBTITLE 5. FUNDING NUMBERS

--·. ·- ··--- - ----

PR 4Al61102B52C
I A Parser for the ISO 8211 Data Forma~ ~

.. ,, . ~ ~.· . ,,., !'II"·~ TA CO
"'. '· ... -.. ;

6. AUTHOR(S) "' -.10 \.&'~ WU 014
t;ir,; J (.. '. .. J.. 'r· i··. ', , ,. - t

J •I~.~... "->VJ~·,_:;,.;,. ,,,i,_,·\,;·~ ... - ~,.;i,

Michael McDonnell
- -- ·--. -- '·- ·-. - -------·- --· ---· ,t . ., . -·

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION -
REPORT NUMBER

U.S. Army Topographic Engineering Center TEC-0045
7701 Telegraph Road
Alexandria, VA 22310-3864 -

!I. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING I MONITORING
AGENCY REPORT NUMBER

Office of the Chief of Engineers
i Washington, DC 20314-1000 !
'
I

11. SUPPLEMENTARY NOTES I

'

I 121. DISTRIBUTION I AVAILABILITY ST A TEMENT 12b. DISTRIBUTION CODE I
I
I

Approved for public release; distribution is unlimited.
'

1J. ABSTRACT (Muimum 200 words) I
I

This report describes a library of functions that parse an ISO 8211 file and convert the parsed data into a form
I

useful to other programs, which can then read user data from the file. The structure of ISO 8211 files will be
defined and then it will be shown how these programs interpret data in those files. Finally, an example program ,
will be presented that reads an ISO 8211 file by using this library .

.,c·,
" H: ,:_:., ' ' i.

USA.Rt:"~ ~:~;,:~.~ ·: .. ,.

.'.\!·: .. , •.. r.t'

[Xr~r.r1i. -~·~ l' STATl(Y~
V!r.;;-,;;;.riUHG, MlS.S:SSiPPI

·---··-·----... -------·....__·- ·-
1'. SUBJECT TERMS

ISO 8211, data parsing, data conversion

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 1!1. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE · OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
NSN 7540-01-280·5500

15. NUMBER OF PAGES

24
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UNLIMITED
Standard Form 298 {Rev. 2-89)
~~~,'~~by ANSI \Id Z39°ll 



CONTENTS 

TITLE PAGE 

PREFACE v 

THE ISO 8211 FILE FORMAT 

THE DDA 

THE UDA 2 

The Parser 2 

The Parser: DOR Section 2 

The Parser: DR Section 4 

Example 5 

Longer Example 6 

DISCUSSION 10 

APPENDIX 11 

REFERENCE 19 

iii 



PREFACE 

This study was conducted under DA Project 4Al61102B52C, Artificial Intelligence Concepts for 
Terrain Analysis. 

The study was conducted under the supervision of Mr. John Benton, Chief, Artificial Intelligence 
Division; and Mr. John Hansen, Director, Research Institute Laboratory, U.S. Army Topographic 
Engineering Center. 

Walter E. Boge was Director, and Lt. Col. Louis R. DeSanzo was the Commander and Deputy 
Director of the U.S. Army Topographic Engineering Center at the time of publication of this report. 

v 



A PARSER FOR THE ISO 8211 DATA FORMAT 

The ISO 8211 File Format 

The International Standards Organization (ISO) has defined standard 8211 as a "data 
descriptive file for information interchange" [IS085]. The ISO 8211 fonnat is hierarchical. 
Terms referred to in the standard document ISO 8211-1985(E) will be used to referto the sections 
of this hierarchy. Each file starts with a single Data Descriptive Record (DOR), which describes 
the formats of the Data Records (DR) that follow. There may be many DR sections. All user 
data is contained in the DR sections. 

Both the DOR and each of the DR have a similar internal structure. Each is divided into 
three sections. Each begins with a 24-byte leader that gives the sires of the sections that follow. 
The leaders are followed by a directory that gives the lengths and positions (offsets) of each of 
the data fields to be found in the final section. The final section is divided into fields, and each 
field is given a mnemonic alphanumeric tag for identification. These tags are defined in the direc
tory section. The DDR and each DR have a similar directory section, but the final section of each 
of these differs. The final section of the DOR is called the Data Descriptive Area (DOA), and the 
final section of each DR is called the User Data Area (UDA). As its name implies, it is in the 
UDA that the actual data being transmitted by the ISO 8211 file is stored. 

The appendix to this report contains a listing of the C programming language "include" file 
iso82l1.h which defines data structures used in the parser. Refer to this listing for definitions of 
structures and constants mentioned in the following discussion. 

TheDDA 

The DOA contains a succession of fields, which in turn have subfields. Fields are separated 
by afield terminator, which is the hexadecimal ASCII character le. Subfields are separated by a 
unit terminator, which is the hexadecimal ASCII character lf. The subfields are, in order, field 
controls, data field name, label, and format controls. Not all of these subfields need exist. Miss
ing subfields are indicated by a pair of consecutive field tenninators. The mnemonic tags from 
the DDR directory are assigned to each field in turn, so the number of tags in the directory must 
be the same as the number of fields in the DOA. The tags are then referred to in each DR to con
nect the data in the DR with the data in the DOR. 

Here is an example of a DOA field, which has been formatted for readability by breaking it 
into separate lines: 

1roo;& 
TEST_PATCH_IDENTIFIER_FIELD& 
PNM!DWV!REF!PUR!PIR!PIG!PIB& 
(A(7),l(6),R(5),R(5),l(3),I(3),l(3)); 

The first line, "1600;&", is the field controls. The number tells what type of field this refers to 

(here a mixed vector field) and the characters ";" and "&" tell us that these characters may be used 
as printed representations of the field terminator and the unit terminator respectively, as is done in 
the listing above. The second line is an identifying name terminated by a unit terminator. The 
third line is a label, which is in this case a vector label consisting of a series of subfield labels for 
the DR. Each subfield label is separated from its neighbor by a"!". The fourth and final line has 
the format controls subfield which specifies the format of data in the UDA by using a FOR
TRAN-like syntax. The format controls subfield is delimited by a field terminator. The DDA 
field as a whole is also delimited by a field terminator. 

1 



For a vector label such as this example, each vector subfield tag is associated with one of 
the data formats in the format control. Therefore, subfield tag "PNM" refers to an ASCII string 
that is seven characters (bytes) long; tag "DWV" refers to an integer that is encoded as a string of 
six ASCII numeric characters; and tag "REF" refers to a floating point number encoded as a string 
of five ASCII numeric characters with floating point characters such as "." also allowed. 

TheUDA 

The final section of each DR is called the User Data Area (UDA). It is here that the useful 
data being transmitted by the ISO 8211 file is stored. Following the leader, the directory section 
of each DR contains tags that must also appear in the DOR directory. These tags then index the 
corresponding entry in the ODA, which tells how to read the UDA by supplying formats. A 
given tag in the DOR may be referenced any number of times in a DR. 

For all the details of ISO 8211, refer to the standards document Enough oflSO 8211 has 
now been presented so that we can understand the important data structures used in this parser. 

The Parser 

This parser runs under the UNIX operating system, although it has been written to be 
portable to different environments. It works by building lists of structures that can then be inter
rogated by programs that need the data to read ISO 8211 files. The parser moves forward through 
the file being parsed. For example, when the parse of a DR directory is complete the file pointer 
is at the begirming of the associated UDA. Every parsing program takes a stream pointer to the 
file being read. In the C programming language this is declared as a (FILE *) type, such as 

FILE *fp; 

The parser turns input data into a set of lists. Lists are formed from C data structures linked 
together using a pointer that is part of the structure. This pointer is always named next. Lists are 
always terminated by a NULL pointer. Any type of list may then be traversed using C code such 
as the following, which traverses list "foo" by using a user-defined pointer named "foop": 

for (foop = foo; foop !=NULL; foop = foop->next) 
{ 

/*do something with elements of list foo •/ 

All data structures used by the parser are defined in file iso82 J l .h, which is listed in the 
appendix. Data from the DDR is parsed into a list based on a C structure called dda_entry and 
data from each DR is parsed into a list based on a C structure called uda_entry. These two lists 
are the things that a user of the library will be concerned with. 

To make the dda_entry list, call the function parse_ddr(), which returns a pointer to the 
head of the dda_entry list. Similarly, to parse the next DR, call function parse dr{), which 
returns a pointer to the head of a uda_entry list Each of these lists will now be disrussed in tum. 

The Parser: DDR Section 

The dda_entry list is only parsed once since there is only one DOR in an ISO 8211 file. 
Function parse_ ddr() takes a single argument, a pointer to the open ISO 8211 file being parsed, 
and returns a list of dda _entry structures. This list is then searched for matching tags when pars
ing each DR. The dda_entry structure is: 

2 



typedef structdda_entry 
{ 
int structure_type; 
int data_type; 
char •name; 
char •tag; 
int label_type; 
union label *label; 
struct fonnat •fonnat; 

/* ELEMENTARY, VECTOR, ARRAY */ 
!*INT, FLOAT, EXP_FLOAT, ... *I 
/*long descriptive name•/ 
/* same as in corresponding dclr_entry •/ 
/* VECT, CAITTESIAN, ARRAY _DESC */ 

struct fonnat •repeat; /*indicate repeating part of fonnat list•/ 
struct dda_entry •next; 

} dda_entry; 

The first two members of this structure, structure_type and data_type, hold enumerated types, 
which can be found in the iso8211.h file. The third and fourth members, name and tag, refer to 
the long name for the entry and the short tag by which it will be referenced. The fifth member, 
label_ type is an enumerated type code for the type of label found in the next member, label. The 
label member is a pointer to a union, which stores a type of data indexed by the label_type mem
ber: 

typedef union label 
{ 
structvector•vector. 
struct cartesian *cartesian; 
struct array _desc *desc; 

} label;_ 

/* a label will be one of three types • / 

the label union can contain pointers to structures representing the three types of label supported 
under ISO 8211: 

typedefstructvector 
{ 
char *tag; 
struct vector •next; 

} vector. 

typedef struct cartesian 
{ 
struct vector •rows; 
struct vector •cols; 
struct vectors •vecs; 

} cartesian; 

typedef struct array _desc 
{ 

/* higher dimensions if needed • / 

int length; /* length of a dimension • / 
struct array _desc •next; 

} array_desc; 

3 



The cartesian structure refers to a list of these snuctures: 

typedef struct vectors 
{ 

vector *vec; 
struct vectors *next; 

} vectors; 

/* needed for cartesian labels more than 
*2D */ 

The vectors snucture allows multidimensional arrays to be stored as lists of vector snuctures. 
Structure array_desc stores an a"ay descriptor; a rather strange label that indicates the dimen
sions of an array, which will follow in the UDA. See the standard for an explanation of array 
descriptors. 

The final two members of a dda_entry snucture are pointers to a list of format snuctures: 

typedef struct format 
{ 
int type; 
int length; 
char delimiter; 
structformat*nex4 

} format; 

/* INT, FLOAT, EXP _FLOAT, ... *! 
/*either this or delimiter must be \l)()() */ 

The UDA data may be delimited by either specifying its length or by specifying a delimiter char
acter, which may not appear in the data itself. The format snucture allows for each of these 
delimiting techniques, although at least one of the members length or delimiter must be zero (for 
this parser, binary zero is-therefore -not 1lllowed -as -a -delimiter). The 82 H standard says that if 
both length and delimiter are zero, the data elements are separated by unit terminators. 

There are two format pointers in the dda _entry structure because the format is defined to 
implicitly repeat the last parenthesized expression at its right end. A repeat pointer is needed to 
allow data to be read using this implicit repeating format. 

The Parser: DR Sections 

As mentioned, there is only one DDR in an ISO 8211 file; so the DDR section only needs to 
be parsed once. There may be many DR sections however, so parsing of the DR is done by a sep
arate program that is called as many times as needed. Program parse_ dr() has one argument; a 
pointer to the file being parsed. Parse_dr() returns a list ofuda_entry snuctures: 

typedefstructuda_entry 
{ 
char *field_tag; 
char *vec_tag; 
char type; 
union { 
char *cp; 
inti; 
doubled; 
int *bf; 
void *ignore; 

/* length is up to field terminator *I 
/* length is up to next vector item * / 
/* A,1,R,S,C,B, or X */ 

/* CHAR (actually a string) */ 
I* INT*/ 
!*FLOAT, EXP _FLOAT*/ 
/* BITFIELD, CHAR_BIT_STRING */ 

/*IGNORE*/ 

4 



}data; /*user data. */ 
struct uda_entry •next; 

} uda_entry; 

The field_ tag member corresponds to field tags in the dda_entry structure and is u..ed to find a 
corresponding entry in the dda_entry list Member vec _tag is one of the vector subfield tags men
tioned above in the discussion of the DDA and is used to find the exact match for a format from 
the format list associated with each item in the dda_entry list. The type member is a character 
indicating the data type, which will be stored in this instance of the uda_entry structure. The data 
member is a union whose type is indexed by the type member. 

Besides the high_level functions parse_ddr() and parse_dr(), there are lower level parsers 
available for those cases when more control is needed. These are 

extern struct ddr_leader •parse_ddr_leader(); 
extern struct ddr_entry •parse_ddr_directoryQ; 
extern struct dda_entry *parse_dda(); 

which separately parse the three main sections of the DDR, and 

extern struct dr_leader *parse_dr_leader(); 
extern struct dr_entry •parse_dr_directoryQ; 

which parse the first two sections of a DR. See file iso8211.h for definitions of the structures 
referred to in these function declarations. The UDA is too variable to support a parser in this 
library; the user of the library must define one. The code that follows gives an example of this. 

An Example 

Here is an example of C code that uses the programs parse_ ddr() and parse _dr( ): 

#include <stdio.h> 
#include <iso8211.h> 

main(argc, argv) 
int argc; 
char ••argv; 

{ 
struct dda_entry *dda = NULL; 
struct dr_entry *dr = NULL, *drp; 
FILE *fp; 

dda = parse_ddr(fp); 
while (1) !*do until EOF */ 
{ 
dr = parse_dr(fp); 

/* Do something in here with data from DR, if desired. •I 

/* last dr element has the seek information we need to go past uda */ 
for (drp = dr, drp->next !=NULL; drp = drp->next) 

5 



/* for now, seek past the uda •/ 
if (fseek(fp, (long)(drp->position + drp->length), 1) = -1) 

exit(O); 

I* 

} 
} 

• No parse_udaO function is defined here because the 
• user data area (uda) may contain many types of structures and the 
• parse is therefore data-dependent 
•/ 

A Longer Example 

As the last comment in the code above shows, there is no parse_uda() function defined in 
the library. The library takes care of those parts of ISO 8211 that are not data-dependent The 
user of this library should write UDA parsers, as needed, based upon the information retrieved by 
the parsers described here. A final, rather long, example showing such usage is this section of 
code from a parser of ARC Digitized Raster Graphics (ADRG), a product of the U.S. Defense 
Mapping Agency: 

f*•••••••••••• TRANSMITTAL HEADER FILE••••••••••••/ 
I* 
--*-Transmittal-Header-File always haS-the same_name, so just open 
• the one in the current directory. From the THF we want filenames 
• and the comers of the Distribution Rectangle in lat,lon. 
•/ 
if ((fp = fopen("TRANSHOl.THF', "r")) =NULL) 
{ 
fprintf(stderr, "File open error: %s'n", argv[l]); 
exit(l); 

} 
dda = parse_ddr(fp); /*parse the file directory•/ 

/* THF has 4 records. First record contains comer coords of image. •I 
uda = parse_next_dr(dda, fp); 
get_comers(&nw, &se, uda); 

/* Next two cir records contain nothing of interest 
• (security and test patch respectively) . . , 

parse_next_dr(dda, fp); 
parse_next_dr(dda, fp); 

/* Next (and last) cir record contains the filenames. Build and 
• return a ~irectory tree. 

6 



., 
uda = parse_next_dr(dda, fp); 
root= parse_directory(uda); 
fclose(fp); 

/*Do similar things with other files*/ 

The library function parse_ ddr() is used by this code, but the programmer has encapsulated 
the parse_ dr() function in a function of his own called parse_ next _dr( ): 

I* 
• return a uda list associated with current dr . . , 

#include <stdio.h> 
#include <iso82 l l .h> 

uda_entry • 
parse_next_dr(dda, fp) 

dda_entry *dda; 
FILE *fp; 

{ 
dr_entry *dr, *drp; 
dda_entry *dap; 
uda_entry *uda, *temp, *head = NULL; 
int c; 
extern uda_enoy llrparse_vecO; 
extern uda_entry •parse_cartQ; 
extern uda_entry •parse_desc(); 

dr = parse_dr(fp); /* parse leader and dr directory */ 
for (drp = dr; drp !=NULL; drp = drp->next) 
{ 
for (dap = dda; dap !=NULL && strcmp(drp->tag, dap->tag) != O; 

dap = dap->next) 

if (dap = NULL) 
{ 

/* find match in dda to get format * / 
/* no match; an error * / 

fprintf(stderr, "No match found for tag %s'n", drp->tag); 
break; 

} 
switch (dap->label_type) 
{ 
case 0: 

break; 
case VECT: 

/*no label; there should be a function. .. */ 

uda = parse_vec(drp, dap, fp); 
break; 

7 



} 

case CARTESIAN: 
uda = parse_can(drp, dap, fp); 
break; 

case ARRAY_DESC: 
uda = parse_desc(drp, dap, fp); 
break; 

default: 
fprintf(stderr, "No such label type:%d\n", dap->label_type); 
break: 

} 
if (head = NULL) 
{ 
head= uda; 
for(temp = uda; temp->next != NULL; temp = temp->next) 

} 
else 
for(temp->next = uda; temp->next != NULL; temp= temp->next) 

while ((c = getc(fp)) = UNIT_TERM II c = FIELD_TERM) 

ungetc(c, fp); 
} 
return head; 

/* test next char to see if should skip • / 

Functionparse_next_dr() in tum calls application-specific UDA parsers that were written to 
conform to the ADRG format. Here is one of them: 

uda_entry • 
parse_ vec(dr, dda, fp) 
dr_entry *dr; 
dda_entry *dda; 
FILE *fp; 

{ 
uda_entry *uda, •temp, *head =NULL; 
vector •vec; 
format •fmt; 
extern void get_ data_ valueO; 

for (vec = dda->label->vector, fmt = dda->format; 
fmt != NULL; fmt = fmt->next, vec = vec->next) 

{ 
temp = (uda_entry •) malloc(sizeof(uda_entry)); 
temp->vec_tag = malloc(strlen(vec->tag) + 1); 
strcpy(temp->vec_tag, vec->tag); 
temp->field_tag = malloc(strlen(dda->tag) + 1); 
strcpy(temp->field_tag, dda->tag); 

8 



} 

temp->next =NULL; 
get_data_value(fmt, temp, fp); 
if (head = NULL) 
head= temp; 

else 
uda->next = temp; 

uda=temp; 

r temp and fp changed */ 

return (head); 
} 

Function parse_vec() builds a list of structures specific to the ADRG fonnat. It uses the lists of 
dda_entry and of uda_entry structures from the library functions parse_ ddr() and parse_ dr() to 
help in finding UDA data. Obtaining the UDA data is done by function get_data_value(): 

void 
get_data_value(fmt, uda, fp) 

fonnat *fmt; 

{ 

uda_entry *uda; 
FILE *fp; 

int c; 
char *buf; 

buf = malloc(fmt->length + 1); 
while ((c = getc(fp)) = UNIT_TERM II c = FIELD_TERM) 

I* test next char to see Wsliould -skip * 7 · 
ungetc(c, fp); 
if (fread(buf, 1, fmt->length, fp) != fmt->length) 
{ 
fprintf(stderr, "Read error in get_data_value\n"); 
return; 

} 
buf[fmt->length] == ' ';r for string operations */ 
u<la->type = fmt->type; 
switch (fmt->type) 
{ 
case 'I': I* integer*/ 

uda->data.i = atoi(buf); 
break; 

case 'A': r (char*) */ 
uda->data.cp = malloc(fmt->length + l); 
strcpy(uda->data.cp, but); 
break; 

case 'R': /*real number*/ 
case 'S': r exponential real number*/ 

for (c = O; buf[c] != ' '; ++e) 
if (buf[c] = 'D') r FOIITRAN indicator of exponential*/ 

9 



buf[c] = 'e'; /* C indicator of exponential */ 
uda->data.d = atof(buf); 
break; 

default: /*no other data type legal in adrg */ 
fprintf(stderr, "Data type %d illegal'll", fmt->type); 
break; 

} 
} 

This completes the example. Study of this example will show at least one way of using the 
basic data structures returned by parse_ddr() andparse_dr() to read the UDA. It is not advisable 
to use uda_entry structures for all user data. Large arrays, for example, should be read directly 
once other information has been extracted from the ISO 8211 file. 

Discussion 

The parser is used by including file iso82l1.h in your program and linking the program with 
library iso8211. In a C program, this linking is done by a command such as: 

cc -o myprog myprog.c -liso8211 

The C programs to build the library are available from the author at the internet address of 
mike@tec.army.mil, or for anonymous ftp from pooh.tec.anny.mil as compressed tar file 
pub/iso8211.tar.Z. There is no charge for this code. The programs are all unrestricted and in the 
public domain. The code also includes an example parser written using the library. Some of the 
programs used in this report are from the example parser. 

10 



Appendix 

This is a listing of the include file iso8211.h. This file defines constants and data structures 
used in the parser and declares the functions available to a user in the iso library. The comments 
in the file explain each entry. 

#ifndef IS082 l l_H 
#define IS08211_H 

/* 
* This file and associated programs were written by Mike McDonnell 
•of the U.S. Anny Topographic Engineering Center (mike@tec.army.mil). 
• They are in the public domain. Please retain this comment. 
*/ 

/* ddr and dr leaders are of a fixed length; 24 bytes. */ 
#define LEADER_LENGTH 24 

/* 
* Field and unit terminators are used throughout IS08211 files. The 
• term "unit" means a subfield within a larger field. 
*I 

#define FIELD_TERM' 36' /* ctrl-" */ 
#define UNIT_TERM' 37' !* ctrl-_ */ 

/* 
* These are mnemonic macros showing what the various dda_entry.controls 
* data types are. Besides these numeric values, the trailing chars ' & ' 
* and/or ';' indicate that these printable chars may be used as 
*printed representations ofUNIT_TERM and FIELD_TERM respectively . 
• 
* The IS08211 document describes numeric data types as "implicit point" 
* for integers, "explicit point" for floats, and "scaled explicit 
* point" for floats in scientific notation. I have used the more 
* mnemonic names of "INr'', "FLOAT", and "EXP _FLOAT" for these numeric 
• types. 

*I 

/* The first char is the structure type * / 
enum structure_type 
{ 
ELEMENTARY, 
VECTOR, 
ARRAY 

}; 

/* The second char is the basic data type * / 

11 



enum data_type 
{ 
CHAR, 
INT, 
FLOAT, 
EXP_FLOAT, 
CHAR_BIT_STRING, 
BITFIELD, 
IGNORE 

}; 

/* label types; make numbers big to stay out of way of lex 's defaults */ 
enum label_type 
{ 
VECT=3, 
CARTESIAN= 4, 
ARRAY_DESC=5 

}; 

I* 
•The ISO 8211 file consists of a data descriptive record (ddr) 
• followed by data records (dr). This section describes the structures of 
• the ddr. The ddr in tum describes the structures of the dr . . , 

I* 
• The data definition record (ddr) leatler is of fixed fmmat. 24 bytes 
• long. I use a standard trick (for me) of defining an ascii struct to 
• overlay the data in the buffer as read and then define a 
• corresponding struct in which ascii elements are appropriately 
•convened . . , 

typedef struct ascii_ddr_leader 
{ 
char record_length[5]; /* total length of ddr including 

• terminator * / 
char interchange_level[l]; /* 3 levels are defined; l, 2, 3 •/ 
char leader_id[l]; /* 'L' for ddr leader*/ 
char extension_flag[l]; /* 'E' for extended char sets; else' ' •/ 
char resl[l]; /*reserved;'' foroow */ 
char application_flag[l]; /*reserved;'' for now•/ 
char field_control_length[2]; /* bytes in ddf for type and 

char dda_base[5]; 
char extended[3]; 

• struct codes; also used in 
• df? ., 

/* offset of dda in ddr • / 
/* specify extended char sets; else ' ... , 

char length_size[l]; /*see below•/ 

12 



char position_size[l); !*see below*/ 
char res2[1); !*reserved; 'O' for now*/ 
char tag_size[l); !*see below*/ 

} ascii_ddr_leader; 

typedef struct ddr_leader 
{ 
int record_length; !* total length of ddr including 

• terminator *I 
int interchange_level; !* 3 levels are defined; 1, 2, 3 */ 
char leader_id[2]; !* 'L' for ddr leader*/ 
char extension_flag[2); !* 'E' for extended char sets: else ' ' *I 
char res1[2]; !*reserved;'' for now*/ 
char application_ftag[2); !* reserved; ' ' for now */ 
int field_control_length; !* bytes in ddf for type and struct 

int dda_base; 
char extended[4]; 
int length_size; 
int position_size; 
int res2; 
int tag_size; 

} ddr_leader; 

,. 

*codes*/ 
!*offset of dda in ddr */ 
!* specify extended char sets; else ' ' •I 
!* see below *I 

!* see below *I 
!*reserved; 'O' for now*/ 

!* see below * / 

*Notice that many of these structs have a "next" pointer and so are 
• designed to make lists. As a convention, I do not store the length 
• of these lists. To find length of lists, just traverse them and 
* count the traversals. This is not a very expensive operation and it 
* keeps the data structures simple. 
*I 

,. 
*A linked list of these structs constitutes the ddr directory. There 
* is a one-to-one correspondence between the ddr_entry structs and the 
* corresponding dda structs as described below. The ddr region is 
*terminated with a FIELD_TERM (ctrl-"') . 
• 
* Field tags of 0 and 1 are reserved for the filename and the record ID 
• name respectively. 'length' is the total length of the dda field 
*(see below) including terminator characters. 'position' is the offset 
• of the dda field from the start of the dda area . . , 

typedef struct ddr_entry 
{ 
char *tag; 
int length; 

!* length gotten from tag_size in leader * / 
!* ascii length gotten from length_size 

• in leader * / 

13 



int position; /* ascii length gotten from 
• position_size in leader*/ 

struct ddr_entry *next; 
} ddr_entry; 

I* 
•This is the data descriptive area (dda) of the ddr . 
• 
• The length of the dda list will be the same as the length of the 
• ddr_directory list above . . , 

I* 
• Vector label tags are separated from each other by a '!' and fonnats 
• are in parentheses to be able to build up a tree structure as in 
• LISP. Fonnat specification is as in FORTRAN with repeat specs like 
• 41(7) to specify four integer fields of 7 ascii numeric characters 
• each. See the standard for the (messy) details of the fonnat spec . . , 

typedefstructvector 
{ 
char •tag; 
struct vector •next; 

} vector, 

typedef struct vectors 
{ 

vector •vec; 
struct vectors •next; 

} vectors; 

typedef struct cartesian 
{ 
struct vector •rows; 
struct vector *cols; 
struct vectors •vecs; 

} cartesian; 

typedef struct array _desc 
{ 

/* needed for cartesian labels more than 
•20•1 

/* higher dimensions if needed • / 

int length; /* length of a dimension • / 
struct array_desc •next; 

} array_desc; 

typedef union label 

14 



struct vector •vector; 
struct canesian •cartesian; 
struct array _desc *desc; 

} label; 

I* 

/* a label will be one of three types */ 

•The format list will be circular at its end since it must 
• automatically repeat within the last set of parens. Rather than 
• actually make the list circular, I define a pointer to the repeating 
• part of the list, which always repeats to the end . 
• 
• An interesting twist in fonnats is found here in that data may be 
• delimited as well as of a fixed length. Thus A(,) means a string of 
• ASCil characters delimited by a comma. Data may be either delimited 
• or have a fixed length. Therefore at least one of the members 
• "length" or "delimiter" must be zero. They may also both be zero for 
*data delimited by UNIT_TERM . . , 

typedef struct fonnat 
{ 
int type; /* INT, FLOAT, EXP _FLOAT, ... *I 
int length; /*either this or delimiter must be 00 */ 
char delimiter; 
structfonnat*nex4 

} fonna4 

typedef struct ascii_dda_entry 
{ 
char *controls; /* length is gotten from header 

• field_control_length */ 
char •name; /* length up to terminator • / 
char *label; /* length up to terminator • / 
char *fonnat; /*length up to terminator*/ 
struct ascii_dda_entry •nex4 

} ascii_dda_entry; 

typedef struct dda_entry 
{ 
int structure_type; 
int data_type; 
char •name; 
char •tag; 
int label_type; 
union label *label; 
struct fonnat *fonnat; 

I* ELEMENTARY, VECTOR, ARRAY*/ 
/* INT, FLOAT, EXP _FLOAT, ... *I 
/* long descriptive name */ 
/* same as in corresponding ddr_entry */ 
/* VECT, CARI'ESIAN, ARRAY_DESC */ 

struct fonnat •repea4 /* indicate repeating part of fonnat 
*list*/ 

15 



struct dda_entry •next; 
} dda_entry; 

,. 
• The ISO 8211 file consists of a data descriptive record (ddr) 
•followed by data records (dr). This section describes the basic 
• structure of all dr. The ddr describes the detailed structures of 
• each dr region. See above for data structures of the ddr . 
• 
•The data record (dr) leader is of fixed fonnat; 24 bytes long . 
• 
•Standard trick here; make an all-ascii struct to overlay on the input 
• buffer and pick up the fields, then have another struct with the same 
•field names which are now integers, etc as appropriate. Note that 
• even single-character fields are saved as strings so that stmcmp() 
• may be used consistently for all comparisons . . , 

typedef struct ascii_dr_leader 
{ 
char record_length[S]; I* total length of dr •/ 
char resl[l]; I* reserved; ' ' for now •/ 
char leader_id[l]; /* 'D' for once; 'R' for repeat•/ 
char res2[5]; /*reserved; 5 spaces ' ' for now•/ 
char data_base[S]; /* offset of user data area (uda) in dr •/ 
char res3[3]; /* reserved; 3 spaces ' ' for now•/ 
char length_size[l]; /* see below•/ 
char position_size[l); I* see below•/ 
char res4[1]; I* reserved; 'O' for now•/ 
char tag_size[l]; /*see below•/ 

} ascii_dr_leader; 

typedef struct dr_leader 
{ 
int record_length; 
char res1[2]; 
char leader_id[2]; 
char res2[6]; 
int data_base; 
char res3[4]; 
int length_size; 
int position_size; 
int res4; 
int tag_size; 

} dr_leader; 

I* total length of dr •/ 
r reserved; ' ' for now ., 

I* 'D' for once; 'R' for repeat * / 
r reserved; s spaces ' ' for now • , 

I* offset of user data area (uda) in dr •/ 
I* reserved; 3 spaces ' ' for now * / 

I* see below * / 
r see below • , 

I* reserved; 'O' for now*/ 
r see below • , 

16 



I* 
• A linked list of these structs constirutes the dr directory. There is 
• a correspondence between the dr_entry structs and the 
• uda (user data area) structs as described below. 
• Corresponding structs are matched by the "key" member in dr_entry 
• and the "field_tag" member in uda_entry. The 
•directory region is tenninated with a FIELD_TERM . 
• 
• 'length' is the total length of the uda field (see below) including 
• tenninator characters. 'position' is the offset of the uda field from 
• the start of the uda area . 
• 
• This is exactly the same as a ddr_entry struct I may combine them 
• some day, I just didn't realize that they were the same until I was 
• done with the parser. Keeping them separate makes it easier to 
• keep the names of things separate anyway . . , 

typedef struct dr_entry 
{ 
char •tag; 
int length; 

int position; 

struct dr_entry •next; 
} dr_entry; 

!* 

/* length gotten from tag_size in leader • / 
/* length of "length" is gotten from 

• length_size in leader • / 
!* length is gotten from position_size 

• in leader • / 

• This is the user data area (uda) of the dr. 
• The length of the uda list will be the same as the length of the 
• dr_entry list above. Each entry in the uda is also tenninated 
• with a FIELD_TERM (ctrl-") . 
• 
• The only thing that might have to be 
• handled specially in here is if arrays are defined by an array 
• descriptor in the uda; a strange beast that is just like an array 
• descriptor as may be found in the dda label field except that it 
•has its fields separated by UNIT_TERM (ctrl-_) instead of commas . . , 

typedef structuda_entry 
{ 
char *field_tag; 
char •vec_tag; 
char type; 
union { 
char •cp; 
inti; 
doubled; 

!*length is up to field terminator*/ 
!* length is up to next vector item * / 

!* A,1,R,S,C,B, or X */ 

!* CHAR (acrually a string) */ 
!*INT•/ 

!* FLOAT, EXP _FLOAT*/ 

17 



int *bf; /* BITFIELD, CHAR_BIT_STRING */ 
void *ignore; /*IGNORE•/ 

} data; /* user data • / 
struct uda_entry •next; 

} uda_entry; 

extern char •mallocQ; 
extern format •formatlist; 
extern format •repeatlist; 

,. 
• All the public functions ., 

/*Have to put this somewhere.•/ 
/* global pointer where format list goes•/ 
/*global pointer for format list repeat•/ 

extern struct ddr_leader •parse_ddr_leaderQ; 
extern struct ddr_entry •parse_ddr_directoryQ; 
extern struct dda_entry •parse_dda(); 
extern struct dda_entry •parse_ddt(); 
extern struct dr_leader •parse_dr_leaderQ; 
extern struct dr_entry •parse_dr_directoryQ; 
extern struct dr_entry •parse_dr(); 

#endif /* IS0821 l_H */ 

18 



REFERENCE 

Information Processing - Specification for a data descriptive file for information inter
change, International Organization for Standardization publication ISO 8211-1985(E), 
15 Dec 1985. 

19 


