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1.EXECUTIVESUMMARY 

Advanced Decision Systems (ADS) is pleased to submit this final technical 
report on research undertaken during the Option I portion of this three part, two 
year effort (contract #DACA72-86-C-0004). The goal of this second portion is to 
develop and demonstrate prototype processing capabilities for a knowledge-based 
system to automatically extract and analyze linear features from synthetic aper­
ture radar (SAR) imagery. This effort constitutes Phase II funding through the 
Defense Small Business Innovative Research (SBIR) Program. The previous Phase 
I (contract DACA72-84-C-0014) work examined the feasibility of and technology 
issues involved in the development of an automated linear feature extraction sys­
tem. The current Option I extension of the base contract effort which was 
reported in [Conner - 87] continues this examination and is developing the techno­
logies involved in automating this image understanding task. 

1.1 BACKGROUND OF PROBLEM 

A vitally important problem facing the Department of Defense is the ability 
to quickly and efficiently analyze remotely sensed image data. This analysis is 
used for a variety of applications ranging from automated map making/updating 
to a variety of surveillance tasks, to o.ther military and commercial remote sensing 
applications. An increasingl?: imI?ortant and useful sensing capability is provided 
by synthetic aperture radar lSARJ imagery. 

Imaging radar sensors provide all-weather, cloud penetration capability !or a 
variety of applications. Technical capabilities now allow enormous volumes of 
such imagery to be automatically produced in relatively short periods or time. 
However, the current methods for analysis and interpretation of radar imagery 
largely consist of manual examination by human experts. As the quantity or 
imagery expands, the requirements for timely and efficient feature classification 
and the scarcity of radar image interpreters point to the need for an automated 
system for feature extraction and classification. 

Linea~ features such as- roads-, rivers, bridges, and- railroads--are-major-land­
marks in such imagery. Extracting and analyzing such features are prerequisites 
for most analysis applications. Traditional linear feature extraction techniques 
(edge detection and region segmentation) tend to perform adequately for low 
noise, high resolution visible imagery. However, the relatively poor quality and 
the complexity of the observed scenes in radar imagery make these feature extrac­
tion techniques less effective. 

The ability to automatically detect and analyze linear features will have a 
major payoff for numerous applications. Technology to provide such an 
automated capability is emerging from the fields of image understanding (IU) and 
artificial intelligence (AI). Such a system could incorporate knowledge about the 
scene and use context (from the image or external sources such as digital terrain 
maps or terrain object models) to intelligently guide and interpret the extraction 
process. The results of the Phase I SBffi effort were encouraging in showing the 
feasibility of this approach. An automated system would greatly enhance the 
Army's capability for aerial cartography, change detection, aerial surveillance, and 
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autonomous navigation. The goal of this effort is to pave the way for such a sys­
tem by developing a largely automated terrain/image analysis workstation proto­
type. 

There has been much work in artificial intelligence, computer vision, and 
graphics that satisfies the individual requirements for object modeling capabilities. 
Little has been done to integrate these diverse fields, especially for the domain of 
SAR imaging. To date, the only vision systems that can interpret natural scenes 
limit themselves to very restricted environments [Hanson - 78] while other systems 
are restricted to artificial objects and environments. A system which uses well 
defined shape attribute inheritance among a set of progressively more complex 
object models, and which generalizes affixment relations to handle uncertainty 
begins to fulfill the basic requirements. This system must also generate con­
straints on image features from object mod~ls. Care must be taken so that con­
straints on image structures generated from the abstract instances of object 
models are specific enough to generate initial correspondences between models and 
image structures. A rich set of image feature descriptions and robust object 
models that can adjust the segmentation process directly during their instantia­
tion are also crucial to an automated system. Object models will be produced by 
ADS during the Option II phase of this effort for a limited set of features. A 
minimal object model must be able to direct constrained searches against image 
data. Models must eventually be capable of supporting learning and handling 
uncertainty in the matching of image feature descriptions to multiple terrain 
features. 

The basic motivations for such a system stem from the poor results associ­
ated with the undirected application of low level image processing techniques. 
Environmental objects such as roads and rivers are semantic entities whose extrac­
tion requires contextual and object-specific knowledge which cannot be easily 
incorporated into, for example, low level filtering operations. In fact, it has 
become clear that a general and expandable system will have to incorporate pro­
cessing which reflects the actual reasoning involved in expert SAR image interpre­
tation. 

The purpose of the Phase II Effort is to complete the design of an 
automated linear feature extra~tion_ aystem- Cw SAR-imag-ery- and-t-0-demonstrate­
this design in a prototype software embodiment. 

1.2 APPROACH 

The major steps of the Phase II effort are as follows: 

1. Develop the appropriate working environment to manipulate and process 
imagery. 

2. Develop and experiment with various segmentation and feature extrac­
tion algorithms. 

3. Determine significant terrain object feature properties and construct 
representative object models. 
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4. Experiment and evaluate model to image feature matching schemes. 

5. Develop an approach for managing competing and conflicting hypothesis 
matches. 

6. Develop feature finders/predictors to support or contradict an expected 
terrain feature's existence. 

7. Implement a display interface to support the above processing steps. 

Once the proper environment is established, the system for determining and 
extracting terrain features can be extensively tested. These experiments will 
further establish the role of autonomous feature extraction from SAR imagery 
and, indeed, the importance of SAR imagery to map generation. 

1.3 PROGRESS TO DATE 

1.3.1 Phase I 

The major accomplishments of the Phase I effort were: 

• Reviewed and implemented several edge and region extraction routines 
from optical image processing on SAR aerial imagery. Routines were 
evaluated for their performance in order to determine which would be 
valuable for integration into the general system. 

• Obtained a better understanding of the nature of SAR aerial imagery and 
its requirements for interpretation. 

• Considered a variety of techniques for representing the properties of 
environmental objects such as roads and rivers in SAR imagery. 

•Designed and began component implementation of a model-based vision 
system for the extraction of linear features from SAR aerial imagery. In 
particular, ADS implemented an initial image structure data base and 
experimented with associated perceptual grouping rules and simple SAR 
object models . 

. A comprehensive report of Phase I results is available [Lawton - 85]. 
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1.3.2 Phase II - Base Contract 

The work performed by ADS under the Base Contract addressed three 
different problem areas. 

The primary work area focused on the continuation of the design produced 
in the Phase I SBffi effort. The results of that design are described in [Conner -
87]. 

The second major area in which ADS pursued the project goals was the 
development and the design of a software environment in which to perform exper­
iments and begin to build the eventual prototype system. The basic framework of 
this software was delivered to ETL in May 1987. The delivery emphasized neigh­
borhood and display operations. The software also contained the necessary 
software "hooks" for future expansion into the other system components. 

Finally, the last area of work undertaken as part of the Base Contract was 
the continued experimentation with the government provided radar imagery. 
Experimentation included algorithm surveys, hand processing sample imagery, 
and actual algorithm implementation. This work and ADS's general understand­
ing of machine vision, has been continually supporting the design and develop­
ment of the components of a model based vision system for linear feature extrac­
tion. 

1.3.3 Phase II • Option I 

The bulk of the work accomplished under this effort pertained to the con­
tinuing effort to embody the system design in software. A major software 
delivery to ETL of the processing framework ~$ made in September 1987. The 
software included the following: 

•Many of the relevant image processing routines used at ADS (see note 
below on operating system version compatibilit)"). 

• The software for creating, manipulating, accessing, and editing image 
structures (also called "perceptual structures"). 

• The preliminary framework of the hypotheses database. (This database 
contains hypotheses about extended image structures. Functions that 
provide for the creation of these structures are embodied in the "filter" 
functions.) . · 

•Enhanced user interface to display the image structures. 

The software was also accompanied by a "User's Guide." The guide was 
written with the expert Symbolics Lisp Machine user in mind. At the suggestion 
of ETL, a supplemental guide was issued to address the needs of those users not 
intimately familiar with the Symbolics environment. In addition to the documen­
tation, two sessions were held at ETL. The first session was a general 
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"demonstration" of the software delivered. The second session was oriented 
towards familiarizing the user with the software. Given the size and complexity 
of the development environment, a subsequent visit was scheduled in December 
1987 to further assist ETL personnel in the use of the system. During this visit 
some software "bug" fixes were also accomplished. 

As expected, the system design continues to evolve as more of the system 
becomes realized in software. An updated system design will be submitted in the 
Option II final report. 

Work was also initiated on the recognition procedures. The details of the 
various terrain features were studied. In addition to the standard properties of 
the individual features, of particular interest is both the internal and external 
structures of the features. For example, the apparent image-based structure of a 
patch of forest may be comprised of the textured area representing the bulk of the 
forest, the bright leading edge of the patch, and the trailing shadowed region. All 
three portions have entirely different "visual" characteristics, but each is an 
important component of the recognition of the forest patch. An example of exter­
nal structures is best illustrated by a bridge.· Typically, a bridge is detected as a 
long, thin bright region. Unfortunately however, this is not a unique signature by 
itself. If this bright region has roads extending from both ends and is surrounded 
on each side by water, then a unique signature for a bridge begins to form. 
Because this work in image object structure is only preliminary, details will not be 
provided until the final report for the Option II phase which will specifically 
address the area of recognition procedures. 

A continuing source of difficulty facing the Linear Feature II project is the 
compatibility of software environments at ADS and ETL. Much of the Linear 
Feature I work was performed on a Symbolics system running the Version 6 OS 
operating system. At the beginning of the Linear Feature II contract both ETL 
and ADS were running Version 6 OS. Since then ETL has installed Version 7 
while ADS has not. ADS made a commitment early on to deliver software in Ver­
sion 7 OS. This extra effort and overhead requires additional time and money to 
port software between versions, thus delaying delivery of important additions and 
bug fixes to ETL. 

1.4: ORGANIZATION OF TIDS DOCUMENT 

Section 2 provides the technical foundation for the framework in which the 
Linear FEature (LFE) system is being developed and prototyped. It begins with a 
general discussion of object oriented programming, and then continues with how 
these principles are applied to the Image Understanding problem. It concludes 
with details of the LFE framework implementation. 

Section 3 provides a discussion of Synthetic Aperture Radar (SAR) and its 
characteristics and capabilities. 

Section 4 is a depiction of the processing scenario presented to ETL with the 
software delivery. In addition to this some discussion/postulation as to the direc­
tion of the rem·aining effort is presented. 
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Section 5 closes with the status of the Phase II effort and a recap of the 
accomplishments of the effort to date. 

Section 6 provides a list of references used in the compilation of this docu­
ment. 
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2. OBJECT-ORIENTED IMAGE UNDERSTANDING 

This section discusses the concepts and merits of performing Image Under­
standing (IU) tasks within an object-oriented programming environment. We 
begin with a discussion of object-oriented programming. This is followed by a 
description of our realization of an object:.oriented programming environment. 
We close by discussing uses of this environment to perform the bottom-up process 
of recognizing significant image structures within a given scene. 

2.1 OBJECT-ORIENTED PROGRAMMING 

In object-oriented programming, a program is thought of as being built 
around a collection of objects. These objects represent conceptual or physical 
objects in the real world. For example, a text editing program might have objects 
such as "windows" and "words". Objects may be organized into homogeneous 
groups that all exhibit the same behavior and can perform the same operations, 
though each object may also have unique information associated with it. Object­
oriented programming provides a lucid and modular style of programming allow­
ing the user to perform generic operations on objects. 

Object-oriented programming is a programming methodology that is guided 
by well-defined software engineering principles. It is especially well suited for use 
in large programming projects. The software engineering principles of abstrac­
tion, information hiding, modularity, localization, uniformity, completeness, and 
confirmability are supported by object-oriented programming. Levels of speciali­
zation of objects contain the essential features at each level of abstraction of the 
software. Individual objects define local functions and storage that can be hidden 
from other objects. Objects localize all the pertinent code by defining all the pos­
sible operations on a given data type. In object-oriented programming, each 
object is a module that encapsulates the behavior of each data type as well as pro­
viding (and hiding) the representation of that type. A software system defined 
using such objects- wm e-mbedy the- unif~rmit-y of- the- object- notatimr. .Af 1- objects 
are of equal status. Completeness together with abstraction insures that each 
module is a necessary and sufficient solution to a component of the programming 
problem. Confirmability is supported by the modularity of programs written 
using an object-oriented methodology. Each module can be independently verified 
and tested. 

Object-oriented programming languages are characterized by the following 
features: · · 

• Data and procedures are encapsulated in modules called objects. Object 
implementations are (or can be) hidden so that the only permissible opera­
tions are those operations that the object itself defines. This facilitates 
easily changing an object's representation. Encapsulation of representa­
tion and operations in an object minimizes interdependence by defining a 
strict interface. 

• Computation occurs by means of messages sent between objects. Which 
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operation actually gets performed is specified by the combination of the 
message name and the object. 

• A hierarchy of objects permits specialization. Specialized objects inherit 
behavior from more general objects. Default behavior can be specified at 
the top of this inheritance to be overridden by specializations. Objects 
may inherit behavior from many other objects. 

2.1.1 Contrast with Functional Languages 

The current Linear FEature (LFE) System is implemented using Symbolics' 
ZetaLisp and an internally developed IU environment (POWERVISION). Both 
traditional functional programming (as in Lisp) and object-oriented programming 
are supported in this environment. 

In functional or procedural languages, where the emphasis is on activity 
rather than on the data abstraction, functions may be overloaded. Overloaded or 
generic functions may be applied to many different types of objects. A typical 
case of an overloaded function is the "plus" function. The same plus function can 
be called with two integers, two reals, or a real and an integer. In contrast, an 
object-oriented language might define integers and reals .to be two different objects 
that each responded differently to the plus message. 

Such a reorganization benefits the construction of large systems. All the 
behavior pertinent to a given data abstraction is available at the same place in an 
object-oriented language. In programming languages this is called an object. 
Objects define data abstractions and localize all the code which affects that object. 
Since only the specification (the format of acceptable messages) needs to be known 
by other objects or other programmers, the implementors responsible for an object 
are free to modify the implementation as they choose. 

2.1.2 Inheritance and Pro-to-types-

Traditional procedural languages define objects in terms of types. Many 
object-oriented languages define objects in terms of classes. First the characteris­
tics of the type or class are specified, then objects (called instances of the type or 
class) are created that have those characteristics. In procedural languages, func­
tions and procedures operate on instances of particular types. Many object­
oriented languages distinguish between two different levels of objects. They define 
class objects that specify the behavior of a set of instance objects of that class. 
To provide flexibility, those languages also usually define a third level of object 
(often called meta-class objects) that define behavior of class objects. 

One way to understand the characteristic of specialization is by analogy 
with set theory concepts. Figure 2-1 illustrates this comparison. Defining the 
behavior of instances of a class is equivalent to defining the behavior of members 
of a set. In disjoint inheritance, the "apple" class contributes a complete set of 
attributes (to· its instances) which are disjoint form those contributed by the 
"orange" class. Common behavior of two objects may be inherited from a third 
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Figure 2-1: Illustrating Object Classes using Set Theory 
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object, in this case a class object. "Specialization" allows common attributes for 
different classes to be shared since apples and oranges while different are both 
instances of "fruits". Common behavior of instances of two classes may be inher­
ited from an enclosing class. 

Objects may inherit behavior from the objects that they designate. The 
designated objects may in turn inherit their behavior from other objects. This 
may result in an object inheriting behavior from far away in the inheritance 
hierarchy. In complex programs that use far inheritance, care must be taken 
when defining or modifying the behavior of objects at the top of the hierarchy. 

2.1.3 A Simple Example of Object-Oriented Programming 

The specification of an object is the declaration of its message handlers and 
their arguments. Message handlers for objects perform two functions. They 
define the behavior with which an object will respond to a message, and they store 
the current state of the object. A handler may either store a value, or a Lisp 
function. Allowing handlers to store values is shorthand for using Lisp functions 
that return the same data. Function handlers may refer to other handlers as part 
of their definition. For instance, a rectangular object might define four handlers: 
height, width, perimeter, and area. The first two would likely be value handlers, 
the last two would be functions of the height and width handlers. 

Object Example 

'.CREATE-OBJECT 

:HEIGHT 
:WIDTH 
:PERIMETER 
:AREA 

rectangle 

4 
17 
(2 * (SEND(self, HEIGHT) + SEND(self, WIDTH))) 
(SEND(self, HEIGHT) * SEND(self, WIDTH)) 

A useful feature of object oriented languages iS tliat oojects may oe specia.iized-to 
form other objects. A specialization of a rectangle is a square. A square can be 
defined as a rectangle with height equal to width. Here is an example of that 
definition: 

Specfalized Object Example 

CREATE-OBJECT square INHERITS-FROM(rectangle) 

:SIDE 22 
:HEIGHT SEND(self, SIDE) 
:WIDTH SEND(self, SIDE) 
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Since square inherits from rectangle, it delegates any messages that it does 
not know how to handle to rectangle. If we were to send a square object the 
:AREA message, square would delegate the handling of that message to rectangle. 
These inherited handlers get executed in the context of the square system. This 
means that when the :AREA handler attempts to determine the width by sending 
a message to itself, the message gets sent to square instead of rectangle. Notice 
that both rectangle and square define handlers named :WIDTH and :HEIGHT. 
Square's definitions hide those made by rectangle. Another way this is described 
is by saying that the :WIDTH and :HEIGHT handlers of rectangle are "sha­
dowed" by square. 

2.2 LFE SYSTEM APPROACH 

Early image processing research focused on pixels as the primitive informa­
tion units. The bulk of image processing was concerned with enhancing the 
"visual" appearance of the image. Given the computing resources of the time, 
even this was a formidable task. The paradigm for image processing used indivi­
dual pixels (or small windows around pixels) to compute enhanced values, edges, 
and classifications based solely upon local neighbor properties. Edge operators 
processed an image and produced an image. Today this type of processing is 
referred to as "low-level" computer vision [Marr 1982]. 

As the field of computer vision matured, its progress was paralleled by a 
maturing computer hardware field. Additional computing power enabled 
researchers to explore new possibilities. The pixel images produced from low-level 
processes were transformed further via various segmentation and connected com­
ponent processes. This step, characterized by a progression away from pixel-based 
reasoning is .termed "medium-level" computer vision. 

A large part of the research community is still involved with these two areas 
of research. 

The next level of processing is termed "high-level." This level is character­
ized by relating extracted image structures ("perceptual" objects or "image" 
objects) to meaningful chunks of real-world objects. Sometimes individual percep­
tual objects can be mapped onto- world- objecb;- other-times, groups-or-colleeiions­
of perceptual objects must be mapped into world objects. The mapping between 
perceptual objects and world objects is accomplished through the use of a model. 
The model can describe the world objects, the sensor, the environment, or the 
imaging process. Models can be used to "measure" the match of perceptual 
objects to a particular object model. Using both a sensor and object model, 
predictive methods can be used to generate synthetic scenes. 

This method of object recognition will be referred to as "graphic modeling". 
It attempts to generate images using basic sensor physics and the image formation 
process. For example, in order to determine the reflectance of a particular truck 
panel, its appearance would be computed from the spectral properties of the 
material, the panel's orientation, the sensor's particular operating mode (polarity, 
wavelength, etc.), shadowing objects, distance/elevation, and multibounce effects. 
There has been a volume of good work in this area. Most, if not all of it dealing 
with manufactured objects in controlled settings (such as tanks positioned on a 
laboratory turntable). This work is encouraging for the small set of relatively 
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well-structured objects that have been examined. However, it does have 
significant shortcomings if extended to radar scenes of natural geographic features. 
These features do not have "cookie cutter" engineering type (CAD) models; 
therefore, graphics modeling is not directly applicable. People have tried to 
extend this approach to terrain by using abstract mathematical models such as 
fractals and Markov models to model natural features like mountains, forests, and 
fields. An argument offered for this approach says that if a human cannot distin­
guish the graphical version from the imaged scene, then a vision algorithm that 
matches the graphics function to the image data will extract image segments that 
a human would choose to label as the object for which the graphics were 
developed. 

There a.re several fundamental logical flaws in this argument. One is that 
even if the above statement is true about human performance, the fact that there 
may be multiple graphics models that match the same image segments from the 
point of view of human perception, does not imply that any of the models actu­
ally match quantitatively; so segments that a human might label are not neces­
sarily extracted by the default graphics model. The second and more basic flaw is 
that, just because two images are indistinguishable to a human does not imply 
that a machine algorithm can be developed that performs the match between the 
graphics model and the imaged instance. Naively, the ideal such algorithm dupli­
cates human perception, and this is clearly beyond the current state of the art. 
Finally, the purpose of a terrain feature extraction system is to create a database 
which corresponds to ground truth, not to a human performance baseline. 

The approach taken in the LFE system is closely related to the schema.­
based approach described by Lawton [Lawton - 87J. This approach is based on a 
general object model called a "schema." A schema ca.n represent perceived, but 
unrecognized visual events, as well as recognized objects and their relationships in 
natural scenes. Schemas are related to similar concepts found in [Hanson - 78] 
and [Ohta - 80]. Schemas can depict a continuum of hypotheses. At one extreme 
hypotheses may be as general as "a perceptual object has been detected" at a par­
ticular location. At the other extreme hypotheses may be as specific as "this per­
ceptual object is a portion of the left bank of the Potomac River." 

Object models are used to organize perceptual processing by integrating 
descriptive representations- with reeegnition and segmentation control. One-aspect­
of this is the use of different types of attributes and inheritance relations between 
generic schemas for representation in IS-A and PART-OF hierarchies. A particu­
lar object attribute relates world properties of an object in general qualitative 
terms. These attributes are inherited and modified according to different object 
types as described in the earlier section on object-oriented programming. Objects 
are treated as having lists of attributes that are matched against extracted image 
features. In addition to this feature description, objects may contain information 
specifying an active control process that directs image segmentation by specifying 
grouping procedures to extra.ct and organize image structures. 

2.3 LFE SYSTEM ARCWTECTURE 

The use of computational processes for perceptual organization is basic to 
computer vision. Researchers have discovered over the past decades that active, 
intelligent processing must occur at all levels of image understanding. Undirected 
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segmentation and feature extraction processes have proven to be too brittle and 
narrowly focused, resulting in a meagre structure for interpretation of the world. 
Early work reflected gestalt principles; e.g., in the line trackers and region growers 
which optimized curvature or compactness to form more complete contours and 
regions. More recent research in perceptual grouping has involved two major 
trends in computer vision. The first of these is the modern framework which 
stresses the fundamental role of symbolic and relational representations at all lev­
els of vision ([Marr - 82], [Binford - 81]). Perceptual organization in this frame­
work, is expressed as rule-based operations applied to a rich set of extracted sym­
bolic relations and objects. This is in contrast to earlier approaches where image 
processing was treated more or less as a sequence of pixel filtering operations 
which resulted in image-to-image transformations but not in an explicit structural 
database. This made the manipulations necessary for shape recognition, for 
example, quite difficult. Interestingly, psychologists working in perceptual organi­
zation are developing rule-based models independently of work in computer vision 
[Rock - 84]. . 

The second trend stresses the extraction of robust, qualitative information 
·from images as opposed to exact quantitative information about the environment. 
Researchers ([Witkin - 83], [Lowe - 86], [Binford - 81], and [Lawton - 87]) are 
attempting to establish more reliable, qualitative structures which can be 
extracted from images. The processes proposed for doing this are non-semantic 
grouping operations sensitive to such things as coincidence, symmetry, pattern 
repetition. This approach involves an object modeling methodology in which 
objects and events are represented in a form compatible with predictions of quali­
tative image structures. 

The LFE approach to perceptual processing is concerned with organizing 
images into meaningful chunks. From a data-driven perspective, the definition of 
"meaningful" and the development of explicit criteria to evaluate segmentation 
techniques requires the chunks to have characterizing properties, such as regular­
ity, connectedness, and fragmentation resistance. From a model-driven point of 
view, "meaningful" is defined as the extent that chunks can be matched to struc­
tures and predictions derived from object models. From either perspective, a basic 
requirement is that image segmentation procedures find significant image struc­
tures, independent of world semantics, in order to initialize and cue model match­
ing. This allows for the extraction of world events such as regions, boundaries, 
and interesting patterns independent of understanding perceptions in the context 
of a particular object. These, in turn, are useful abstractions of image informa­
tion to match against object models or describe the characteristics of novel 
objects. 

The Perceptual Structure Data Base (PSDB), depicted in Figure 2-2, con­
tains several different types of information .. These are classified as images, percep­
tual objects, and grouping (or groups). Images are the arrays of numbers 
obtained from the different sensors {SAR sensors for the LFE system) and the 
results of low level image processing (such as smoothing operators or median 
filters) that produce such arrays. It is difficult for the symbolic/relational 
representations used for object models, such as schemas, and the processing rules 
in computer vision systems, to work directly with an array of numbers. There­
fore, there are many spatially-tagged, symbolic representations used in image 
understanding· systems that describe extracted image structures. These include 
the primal sketch [Marr - 82], the RSV structure of the VISIONS system [Hanson 
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- 78], and the patchery data structure of Ohta [Ohta - 80]. The LFE representa­
tion has been built around a set of basic perceptual objects corresponding to 
points, curves, regions, and other basic shape descriptions. 

Groupings are recursively defined to be a related set of such objects. The 
relation may be exactly determined, as in representing which edges are directly 
adjacent to a region, or it may require a grouping procedure to determine the set 
of objects that satisfy the relationship. Groupings are typically defined spatially, 
e.g., linking texture elements under some shape criteria such as compactness and 
density. 

Whenever new sensor data are obtained, a default set of operations is per­
formed to initialize the PSDB. For example, edges could be extracted at multiple 
spatial frequencies and decomposed into linear subsegments. The edges could then 
be grouped into distinct connected curves, and general attributes such as average 
intensity, contrast, and variance of contrast are computed. Similar processing 
could be performed to extract regions. For example, thresholds could be selected 
with respect to a wide range of object-based and image-based characteristics (e.g., 
gray level, homogeneous intensity, homogeneous texture). Prespecified operations 
are used to initialize bottom-up grouping processes and schema instantiations to 
piece together lower level structures. These, in tum, determine significant struc­
tures using heuristic interestingness rules to prioritize the structures for the appli­
cation or grouping processes or object instantiations. 

2.3.1 Defined Perceptual Objects 

Several types of objects in the initial environment have been defined, includ­
ing images, points, curves, and regions. There are also composite objects, stacks, 
and groups that abstractly combine collections of other objects. These objects 
support common properties and additional properties particular to each class. 

Because objects are defined as abstract types, interesting combinations of 
these initial objects are possible. For example, a raster grid, structured as an 
image, can be created where each pixel is an object instance and is not restricted 
to being just & number.- This is called a- "label plane" and is- used extensively- for 
geometric reasoning. A grid consisting of histogram "pixels" can provide a 
representation for hierarchical segmentation. 

A general attribute of all non-image objects such as points, junctions, 
curves, and regions, is the representation of their spatial characteristics. Any 
representation should be compact, provide fast access, and should facilitate most 
common operations. However, there is no optimal format; each must trade off 
between time and space considerations. 

Thus, the primitive objects may have several possible predefined representa­
tions: arrays, segments and lists. These variations are possible in object-oriented 
programming. When a representation for an object is added, the object inherits 
the procedures which performed the operations associated with the relevant mes­
sages. Thus, any newly defined object can immediately be manipulated in the 
environmen,t. 
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In addition to spatial access, objects can be stored in a more conventional 
feature-based database. Database queries can then be performed on the objects 
such as sorting, ranking, attribute matches, and range queries. The objects are 
stored in the Perceptual Structure Database (PSDB). 

The Perceptual Structure Data Base stores extracted image structures such 
as curves and regions, as well as associated groupings of them. These structures 
result from processes as simple as low-level edge extraction or as complex as a 
multi-schema search and linking procedure. The structures can be formed from 
recursive algorithms. All of the objects are stored together with their inferred or 
measured attributes. 

Database queries are expressed in terms of "filter functions" and, in special 
cases, lists of objects. A filter function takes a list of objects as its first parameter 
and, optionally, some additional parameters. The function produces a list of 
objects as its result. The functions enabled by queries can range from simple 
attribute checking to complex search or pattern matching operations. The objects 
returned are usually a subset of the original objects. The filter functions are com­
bined by using the "filter" macro. The macro takes an input specification in 
terms of logical operations and other filter functions and generates the bindings 
and additional functions required to execute the query. A large library of general 
utility and special purpose filter functions have been written. 

A filter is a macro that generates LISP from filter functions and the logical 
combiners AND, OR, NOT. A filter function takes a list as its first parameter, 
and together with optional additional parameters, returns a list as its result. The 
logical combiners specify how the results of filter functions are piped into other 
filter functions. This includes the generation of temporary bindings and set union 
(OR), or difference (NOT) code. Filters are efficient because they expand into 
some optima.I, but, perhaps, harder-to-understand LISP code. They are very flexi­
ble because the only convention is that the first parameter and the result must be 
lists. There are no constraints on the elements of these lists, although they are 
usually objects. The objects returned are usually a subset of the original objects, 
but can be a superset or even a completely different set of objects. There are three 
different general classes of filter functions: selectors, transformers, and modifiers. 

"Selectors" produce a subset or tlie origiD.ar list as tlieir result. Tlii.S iS tlie 
most common type of filter function. "Transformers" take in a list and produce a 
list of completely different objects. '':Modifiers" change some aspect of the objects 
and then return the objects as their result. Side effects in a query can be very use­
ful. For example, long edges can be chosen, their orientation computed and 
stored, and then only the horizontal edges selected. 

2-10 



3. THE SAR ENVIRONMENT FOR FEATURE EXTRACTION 

This section briefly discusses some background on the history of Synthetic 
Aperture Radar, discusses the Model-based Reasoning paradigm in the SAR 
domain, and concludes with an overview of SAR features. 

3.1 SAR BACKGROUND 

Several good reference texts and introductory papers describing the process 
of synthetic aperture radar (SAR) imaging have been written over the years 
including [Skolnik - 62], [Brown - 67], and· [Brown - 69]. Synthetic aperture radar 
is sometimes referred to in older texts as synthetic array radar or simulated 
array/aperture radar. The first SAR systems were developed in the late fifties to 
early sixties. Prior to that, real-aperture imaging radar systems existed and are 
still used today for some applications [Stimson - 83]. SAR provides significant 
improvement in along track resolution over real-aperture systems. The SAR con­
cept employs a coherent radar system and a single moving antenna to simulate 
the function each antenna which would comprise a real linear array. This single 
antenna is used to occupy sequentially the spatial positions of the non-existent 
linear array. The received signals are stored and then processed at a later time to 
re-create the image of the illuminated area as seen by the radar [Eaves - 87]. This 
technique can be used to synthesize an antenna array which may be thousands of 
feet long, thereby increasing the effective resolution. 

Designers of early applications of radar technology whose objectives were to 
locate or determine speed and direction of man-made targets considered the back­
scattering from terrain as a nuisance. This attitude toward terrain backscatter 
coined the term "radar clutter." It was this clutter signal that was later used to 
perform radar remote sensing. "More specifically, the variation of the scattering 
coefficient with the physical properties of terrain and water surfaces is the key to 
extracting useful information from radar images'' [Ulaby - 82]. 

or particula~ interest tu remote- sensing- applications-was-the-introduc-tion-of­
spaceborne SAR. Seasat-A was the first spacecraft to carry an imaging radar into 
orbit. It was originally intended to detect and map ocean waves. However, it was 
subsequently used to generate large volumes of data covering land surfaces [Ula.by 
- 82]. Renewed interest in space-based remote sensing has been generated hy the 
highly successful Sffi-A and Sffi-B missions on the NASA space shuttle flights of 
1981 and 1984. The future promises additional Sffi-X missions, along with poten­
tial efforts by the European Space Agency(EAS) and the Japanese ERS-1 for free 
flying earth orbiting imaging radars [Leberl - 85]. 

Also of interest to those interested in the interpretation of radar imagery is 
an effort by AFW AL which is attempting to bring together the Image Under­
standing (symbolic reasoning) and the radar Signal Analysis {signal processing) 
communities lMilgram - 87]. 
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3.2 MODEL-BASED REASONING AND SAR 

Over the past twenty years, research in image processing has built up a 
large compendium of approaches and algorithms for extracting and interpreting 
structure from optical images. Any standard textbook (e.g., Rosenfeld and Kak 
[Rosenfeld - 82]) in the field will list dozens of methods for peak extraction, edge 
detection, region segmentation, line finding and the like. With modifications to 
account for the different characteristics of SAR, many of these techniques can 
apply to SAR image understanding. 

In attempting to apply existing algorithms to SAR, it is important to recog­
nize a significant characteristic of SAR; that a known system impulse response is 
convolved with every scattering center in the scene to form the complex image. 
Two situations should be considered: cultural features and terrain features. Cul­
tural features tend to be "hard" and scatter the radar energy in particular direc­
tions which are predictable Crom an analysis of the geometry. If scattering centers 
are separated by more than the system resolution, the image of the cultural 
feature takes on a blob-like appearance with blobs of known shape (the impulse 
response) but unknown location, ~hase, and height (radar cross section). If the 
scattering centers ·are unresolved i.e., no one scattering element dominates over 
the others), the image is again blo -like except that now the blobs are due to the 
mutual interference of complex returns. This causes the feature image to assume 
somewhat the nature of a Rayleigh distributed nonhomogeneous 2-d random pro­
cess. If resolved scatterers do not behave like stable point scatterers over the 
imaging interval, the image blobs are perturbed. Causes of instability include, 
specular scattering from slightly curved surfa~es, radar focusing imperfections, and 
complex multibounce scattering paths. The perturbations may form a useful sig­
nature for the cultural feature which may be extracted by processing of the com­
plex signal or image. 

Natural terrain features tend to scatter energy in a diffuse way. The degree 
of diffusion is related to the natural surface "texture" of the feature. Gravel will 
provide a more diffuse response than asphalt; bare soil is more diffusing than 
gravel, etc. Thus, the SAR image of natural terrain will tend to resemble an opti­
cal image of the same area. Texture-based processing is therefore appropriate in 
both sensor domains. However, the behavior of the imag_e at borders of regions 
may differ due to the imaging geometrics and specular conditions. Also, the image 
formation process of SAR is very different from optical imagery, artifacts such as 
slant range presentation, near range compression, layover, etc. must be taken into 
account. 

SAR image processing converts the SAR image (either real- or complex­
valued) into various spatial data structures. These describe image features by 
location and various shape and structural properties. These data structures can 
be stratified into a hierarchy typical for most systems which interpret mid-level 
image structures. The hierarchy and the discussion which follows is subdivided 
into five levels: 

• Pixel Grids 

• Point Features 
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•Linear Features 

• Region Features 

•Structures (Group Features) 

3.2.1 Pixel Grids 

Pixel grids are the spatial structures which most commonly represent input 
imagery. .A1?. part of the preparation of the imagery for feature extraction, it has 
been common to apply a number of operators to "clean up," restore or enhance 
the imagery. The operators range from simple gray level histogram transforma­
tions to local statistical smoothing to adaptive relaxation techniques. The result 
of this preprocessing step is another image which serves as the "real" input to the 
.system. 

In SAR, the input image is derived (or synthesized) from the radar signal 
history. In general, any reconstruction or restoration is more properly applied to 
the signal domain prior to or as part of the image formation. Nonetheless, situa­
tions arise which necessitate pixel grid operations. 

3.2.2 Point Features 

Many man-made objects or their components in SAR imagery are character­
ized by point features. These appear as image peaks with associated shape, loca­
tion, and intensity. These features can be reliably detected with a peak detector 
(e.g., local maximum) followed by extent and attribute measurements. 

3.2.3 Linear Features 

Generally, feature extraction work in the optical domain has focused on edge 
extraction and region extraction. Edge extraction techniques [Canny - 83) are 
based upon the bask concept that gre}' levels will chang_e radicall)" near regJon 
boundaries, and furthermore that these boundaries can be detected by derivatives 
operating on the image as though it were a 3-D surface. Starting with this basic 
concept, a great number of edge extraction techniques have been developed over 
the last three decades. Edges may occur in optical imagery because of occlusions 
between three-dimensional objects, because or folds and junctions that occur 
within an object, because or texture elements within a region, because or shadows, 
specular reflections, or because of spurious noise introduced during the propaga­
tion or energy through the atmosphere, during the image formation process, or 
during image preprocessing steps. Processing at the levels of boundary, junction, 
and surface interpretation, and limited relative height inference and recognition, 
must take into account the possible different interpretations of .these edges. 

Since'the amount of illumination of any given point is highly dependent on 
the angle of incidence, long linear features often appear to be broken into smaller 
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line segments or tend to fade completely as the linear feature becomes occluded, 
shadowed or changes direction with respect to the source of illumination. Image 
smoothing can sometimes connect the smaller segments together; however, this 
tends to become highly unreliable with unrelated segments being joined as well. 
The amount of smoothing is also extremely dependent on the scatterer spacing, 
material composition (dielectric properties) and radar cross section separations. A 
better strategy may be to group image structures (e.g., point, line and region) into 
linear groups rather than to attempt extracting linear features directly with con­
ventional edge detection operators. Hough transforms and line tracking are two 
traditional techniques for detecting and grouping together linear structures. 
Recent trends are towards extending/ replacing these techniques with perceptual 
grouping schemes [Lowe - 85] [Lawton - 87]. These approaches are discussed in 
the "Structures" section below. 

3.2.4: Region Features 

Region extraction operators look to segment the image into regions that are 
homogeneous according to some measure. The two basic sorts of homogeneity 
that regions may possess are intensity homogeneity and texture homogeneity. In 
intensity homogeneity the region operators look for areas whose pixels are nomi­
nally within the same grey level range as compared to surrounding regions. Tex­
ture operators rely on measures that characterize the textures such as statistics, 
micro edge densities, etc. These feature-based measurements in local neighbor­
hoods of pixels are then compared to see if their values are nominally within the 
same neighborhood compared to surrounding regions. 

The intensity of a SAR image typically varies rapidly and widely from pixel 
to pixel so that intensity homogeneity is practically limited to bright (above a 
threshold) and dark (below a threshold) regions. Bright regions can be used to 
segment entire objects from the scene or individual peaks (another technique for 
extracting point features). Dark regions, or regions of no-retum, can be caused by 
occlusion (image shadows), reflection away from the radar (common for water 
bodies and road surfaces, and parking lots), or absorption. 

Intensity homogeneous regions can be found by combinations of filtering, 
thresholding, and eonn~ted eompenents~ R~gfons-defined- by- multiple-thresholds_ 
can be integrated into so-called containment trees of connected components. 

Texture homogeneous regions should be especially useful in segmenting 
natural terrain regions such a forest canopies, fields, and orchards in low resolu­
tion SAR imagery. Within such regions, the SAR image tends to approximate 
homogeneous random processes. The process parameters define the "texture" of 
the region. See Rosenfeld [Rosenfeld - 81] for· relevant research papers applied to 
the optical domain . 

. Region extraction (and grouping below) are not bound by any fixed neigh­
borhood radius and so can respond to information at any distance. This is in 
contrast with window-based pixel processing which cannot respond to the true 
shape and extent of the data features. Measurements of the regions such as area, 
location and 2-D orientation, are made during the processing and attached as 
attributes to the region descriptors. Regions may also be related to other features 



and regions by explicit links. For example, thresholding a gray scale image at a 
sequence of values and linking the resulting region yields a containment tree [Mor­
gan - 87]. 

3.2.6 Structures 

Structures are collections of other features such as point, linear, region, and 
even other structures. Structures represent features or component structures 
linked by geometric relations. For example, a sequence of bright linear blobs 
along the leading edge of a forest form a linear structure. A set of lines which 
intersect form a junction structure. Structures may be adjacent (e.g., a mosaic of 
regions), connected (e.g., edges in a continuous edge), or disconnected (e.g., points 
in a dotted line; a series of power line support towers). Typically, only simple 
relations occur with sufficient frequency to make them worth searching for. These 
may result from image structures that are related by proximity, linearity, sym­
metry, and the like. 

Lowe [Lowe - 85] demonstrated the utility or perceptual organization or line 
structures within the SCERPO optical vision system. 

Lawton [Lawton - 86] has defined a set of grouping operators of this sort for 
ground level forward-looking color optical imagery. He has enlarged the CQncept 
to "notice" configurations based on a measure of "interestingness" and to tune 
the bottom up processing to discover repetitions of the interesting configurations. 
This grouping process aids linear feature extraction since terrain features often 
have unpredictable image level descriptions but are, nonetheless, regular (i.e., 
interesting) in structure. 

Other ~esearchers [Nevatia - 82] [Binford - 82] have also studied the extrac­
tion of extended image structures in optical data. 

3.3 LIMITATIONS OF CURRENT APPROACHES 
TO RECOGNITION 

It is approf}riate- te &ns.lyze the distinction betw~n-the-model-based_recogni­
tion approach and other formulations. Describing the statistical pattern recogni­
tion approach first will motivate the need ·for model-based vision. This section 
briefly describes the statistical approach and discusses its capabilities and failings. 

Statistical pattern recognition has been one of the traditional methods of 
identifying features in remotely sensed imagery for over twenty years. It rests on 
the assumption that structure can be recognized implicitly and characterized by 
limitations on statistical variability. Typically this method begins with a "train­
ing" set of imagery reflecting the expected variability. The targeted set of 
features to be recognized then have various descriptive properties measured. 
These feature properties are then used to characterize the target object classes in 
the set of images to be analyzed. This technique has had some success, particu­
larly in the domain of multi-spectral imagery. This technique has had limited 
success for SAR imagery, but proves not to be robust due to lack of structural 
descriptive capability. 
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Statistical pattern recognition uses measured feature values to directly relate 
the appearance of image features to object classes. A typical feature might be 
characterized by the statistical covariance of object classes and extracted image 
features. The parameters(ranges) of the feature values (such as the covariance) 
are established by training. Training may be done either on real data collected 
with ground truth or (less successfully) with simulated data from an object and 
sensor model. The approach is illustrated in Figure 3-1. 

The simplicity and apparent generality of statistical pattern recognition can 
be quite attractive: 

•Decision rules are usually easy to implement. 

• Training procedures are explicit and easy to follow. 

• Any apparent system failure to recognize an object class can be "patched 
up" with more and better training data. 

However, a closer look at the methodology for representing object features and the 
procedures for recognizing them statistically shows that there are fundamental 
drawbacks which cannot be remedied with simple patches. 

"Recognition adequacy" is a system's ability to use the stored object feature 
information to interpret the data. This information needs to be chosen and struc­
tured so that data can be processed within' time and accuracy constraints. The 
choice of features to model also affects recognition adequacy. For instance, recog­
nizing an object from the set of its pixel values a.lone may be impossible; recogniz­
ing it from its spatial structure may be relat~vely straightforward. 

Maintaining recognition adequacy depends on using the most useful data 
features at each stage of recognition. Choices of features include: 

• Individual pixels. 

• Low-level image !eatul'ea such_ as peaks and regions. 

• Structures of low-level image features. 

Each feature type provides its information to a portion of the analysis. For 
instance, statistical features of individual pixels tend to be useful at the outset or 
image exploitation; image structures provide strong information about scene lay­
out, and about specific object classes. Statistical pattern recognition generally 
exploits pixel level features. Since structural features often have many parame­
ters, their statistical models either become needlessly complex or are restricted to 
operating over fairly simple sets of features. 

The following list describes additional shortcomings of statistical pattern 
recognition:' 
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• Obtaining training data for a sufficient set of cases to span the real world 
is often quite difficult. The training set must have enough examples of 
each desired discrimination state to be statistically sound. Furthermore, 
the addition of new cases causes an inordinate requirement for new train­
ing data and verification. 

• The complex joint variability of factors in the real world is hard to cap­
ture statistically in a train/test paradigm. 

• The ability to completely train the system is uncertain at best since mul­
tidimensional statistical decision spaces are bard to visualize and explore. 
Incomplete training results in a system with limited and often unpredict­
able real world performance. 

• Statistical methods do not provide a means for incorporation of collateral 
(or map) information into the decision. This is a very serious shortcoming 
in systems whose performance is expected to improve as additional infor­
mation accumulates. 

• Feature discrimination does not improve as higher resolution imagery 
becomes available. In fact, performance often deteriorates. 

• Similarly, knowledge of the presence of other objects within the scene is 
not easily integrated with the statistical classification approach. 

3.4: SAR FEATURES 

This section describes the "meaning" of SAR imagery, the requirements for 
a processing system, and the features that are of interest. 

3.4:.1 Radar Signatures 

The value at a given pixel in &- S..A..R- image_ is_ dir_ectl~ RrORortional to 
amount of energy returning to the receiver/transmitter that results from the back­
scattering produced by the ground area corresponding to that pixel. According to 
Ula.by (Ula.by - 82], The received power is determined by: 1) system factors includ­
ing the transmitter power level and antenna gain; 2) propagation losses that 
account for propagation from the radar antenna to the ground and back; and 3) 
the reflectivity factor of the ground area. Gray level differences for features on the 
image (such as two agricultural fields) are due to differences in their individual 
refiectivities, since system and propagation factors are essentially the same for 
both features. The reflectivity factor of a terrain feature is called the backscatter­
ing radar cross section per unit area, and is abbreviated as "scattering 
coefficient"." Ula.by goes on to point out that the scattering coefficient for a 
region does not always contain enough information to discriminate between ter­
rain features, but when combined with textural information becomes increasingly 
powerful. 
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The return signal from terrain (i.e., backscatter) is composed of two primary 
components, surface and volume scattering. Surface scattering is due to the 
dielectric difference between air and the terrain surface. The incident wave is scat­
tered by the terrain in many directions (Figure 3-2) and the radar measures the 
part of the scattering pattern in the backscatter direction. The backscattering 
coefficient is strongly dependent upon surface roughness. "Volume scattering, e.g., 
as caused by foliage in a forest canopy, is caused by spatial inhomogeneity in a 
volume at a scale comparable to that of the wavelength of the incident wave" 
[Ulaby -82] (see Figure 3-3). 

The dielectric constant of the surface being imaged figures prominently in 
the volumetric component. For soils and vegetation, the dielectric constant is 
strongly dependent upon moisture content. This helps explain some of the effects 
seen on river and creek banks and irrigated vs. non-irrigated fields. 

Terrain feature models and segmentation strategies will have to incorporate 
knowledge of the physics or radar. The methodology chosen for the LFE system 
is a "heuristic modeling" scheme. In heuristic modeling the complicated underly­
ing physical and mathematical relationships are reduced in complexity and embo­
died into "general rules of thumb." These rules of thumb encapsulate complex 
interactions like volumetric and surface backscattering by relating the physics to 
recognizable image features or attributes. For example, a patch of forest may be 
characterized by a bright leading edge (a specular reflection from the dihedral 
effect of tree trunks), an area of rough texture (corresponding to the volumetric 
scattering of the canopy), and a trailing dark region (caused by the shadowing of 
the terrain surf ace by the tree canopy). While heuristic modeling avoids much of 
the complexity of mathematical SAR modeling, it does limit the descriptive power 
of the representation where explicit volumetric and surface material composition 
information exists. Nonetheless, heuristic modeling has the advantage of being 
more intuitive by depicting a model that can be "visualized" by a human and of 
providing a solution in the absence of material composition information. 

Similar conclusions were reached by Autometric, Inc., approaching a similar 
problem from a different direction. In 1984, Autometric performed a study [Pas­
cussi - 84] in which SAR imagery analysts ·were asked to describe various man­
made features in qualitative terms. The descriptions of what they saw were for­
malized in a number of tables which served as valuable inputs toward developing 
the requisite heuristic models- for- the- LFE system-. 

"The principle of least commitment" is an important perspective on the 
rules which perform feature extraction and segmentation that has been espoused 
most notably by Rosenfeld (UMd). It states the conservative position that 
transformations which compress information should avoid selecting a single choice 
from among the range of possible alternatives. In other words, each stage of pro­
cessing should make as little commitment to a single selection as is possible while 
remaining consistent with a goal directed strategy. The justification for this prin­
ciple is that confidence in a decisive choice rests on the accumulation of evidence 
which enters into the decision. In the early stages of processing, decisions about 
features (and their interpretations) are based mainly on local evidence and there­
fore are subject to greater risk of error than will be present later once processes 
with wider scope are employed. If close alternatives are eliminated too soon, it 
becomes impossible to recover from bad choices. Therefore, the principle of least 
commitment suggests that multiple alternatives be retained until interpretations 
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made in later stages can be shown to be well founded (e.g., are well supported by 
evidence or by conformance to applicable theories or heuristic models). The result 
is that information and alternatives are produced (in great volume) and carried 
forward with little need for algorithmic "backing up". Computationally, this 
increases memory requirements but otherwise simplifies the architecture. 
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4. PROCESSING SCENARIO 

This section describes a demonstration that was used to illustrate the capa­
bilities of the software delivered to ETL in September 1987. The demonstration 
illustrates the power of an object-oriented image understanding environment. The 
following example highlights only some of the display and database capabilities 
found in the LFE system. 

The example begins by displaying the image chip that will be used for pro­
cessing throughout this example, Figure 4-l. The image is a 256 X 256 pixel SAR 
image of an area near La Crosse, Wisconsin. The approximate resolution is 7.5 
meters per pixel. The upper and lower third of the picture depict areas that are 
largely undeveloped and primarily covered with forest. The middle portion of the 
image contains a river with a very large island in the middle. The two bright 
elongated regions to the left of center are bridges which connect the upper and 
lower land masses via the tip of the island. The direction of radar illumination is 
from the top of the image. · 

The original data can be transformed or processed by a number of routines 
that exist in the system. Images can be preprocessed using algorithms implement­
ing symmetric convolutions, median filters, edge preserving filters, and simple 
thresholds. In this example, the image is convolved repeatedly with a gaussian 
mask in order to remove some of the interference caused by the high frequency 
noise inherent in the image. This series of convolutions also removes some of 
information originally in the image. This information still remains in the original 
image from which it can later be extracted when needed. After this preprocessing 
is performed a region segmentation is performed. Figure 4-2 shows the boundaries 
of the segmented regions. 

After the segmentation procedure, the image regions undergo a process of 
extraction and description. The extraction process transforms the pixel data 
structure into an image object data structure. This process begins by performing 
connected-component analysis on the segmented image. The result is then used to 
create database objects for each region. Each region object- tlren- has-- a- number-of­
properties and features computed for it. This process is sometimes called the 
signal-to-symbol transformation. In this case, the signal is the two dimensional 
representation of the returned energy, i.e., a pixel intensity image; the symbols are 
image structures representing regions extracted from the imagery. The image 
structures are stored as objects in a data base. 

The image structureS have a number of properties that are computed and 
associated with them. Measurements such as the average and variance of the 
intensity of the pixels making up a region are readily computed using pointers 
back to the pixel locations that comprise the object. Also provided are measure­
ments describing the shape of the region. Shape descriptions can range from sim­
ple bounding boxes, (i.e., raster-oriented rectangles of minimum area which con­
tain the region) to minimum bounding rectangles (i.e., non-raster oriented bound­
ing boxes) to polygonal approximations. Spatial and topological relations are also 
stored with the object. These include contained regions, such as "holes", adjacent 
regions, and the line segments comprising the perimeter. An important advantage 
of the image structure data representation is the ease with which new properties 
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can be computed and added to the region description. In addition, the researcher 
has control over which features are computed and when they are computed. Stan­
dard functions describing the intensity properties and simple shape descriptions 
are computed by default during region extraction. Properties that are computa­
tionally expensive are usually reserved for only a few select regions. 

The extracted regions shown in Figure 4-2 have had the default set of pro­
perties calculated after their creation. These image structures are then stored in 
an image structure database that allows standard database queries to be 
answered. An example query is "Return all regions with area greater than X or 
with an average intensity of between Y and Z". Figure 4-3 shows a display of the 
top fifteen "brightest" regions. First, the average intensity was computed for 
each region. The regions were then sorted according to the value of the region's 
average intensity. The first fifteen elements. in the list were then selected resulting 
in the display of the fifteen brightest regions. 

The previous discussion has centered primarily on region extraction and the 
region image structure objects produced. Similar capabilities exist for line seg­
ments. Figure 4-4 shows the edges produced using an algorithm based on edge 
detection techniques developed by Canny [Canny - 83). One of the advantages of 
this technique is that it is extremely sensitive to weak edges. It may appear in 
Figure 4-4 that the technique actually produces too many edges. This concern 
would be justified if' the results of edge extraction were viewed as an 
undifferentiated set of edges. This is not, however, the case. Edges have a 
number of properties associated with them, such as edge strength, length, orienta­
tion, average and variance of underlying original image pixels, etc., that can be 
used to select and prioritize the extracted edges into more useful information. 

Each of the blue lines displayed in Figure 4-4 represents an entry in the 
image structure data base. The data structures representing edges share many of 
the properties of the region objects such as pixel count, average intensity, etc. 
Edge objects also have a number of additional unique properties such as endpoints 
and orientation. 

Figure 4-5 shows all of the edges resulting from the segmentation procedure. 
The lines in red represent the database oojects wlifoli iiave a count-of-between--ten­
and twenty pixels. This example shows the results of a simple query. A more 
complex query is depicted in Figure 4-6. The image structure database was asked 
to return all edges that are between 10 and 100 pixels long with an average inten­
sity of between 45 and 200. The results are displayed in green. Although not 
depicted in this example, an edge can also have an average edge strength (e.g., 
contrast) associated with it. 

The LFE system is designed to be extremely interactive. Figure 4-7 shows 
the manual selection of a single curve. Upon selecting the curve its database pro­
perties can be reviewed. For the remainder of this example the selected curve will 
act as the "model" curve. 

Figure 4-8 illustrates the results of querying the database for edges that 
have an orientation similar to the model curve. The model curve is represented in 
red, while the query results are displayed in yellow. Figure 4-9 show the results of 
querying the database for edges that are approximately the same size as the model 
curve. The actual query selected any edge that was within five pixels in length of 
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the model curve. 

It is clear that image structure objects defined by their attribute values can 
be found quickly and easily within this database. However, this facility also 
extends to queries embodying spatial relations, e.g., location and nearness. The 
next portion of this discussion will illustrate these aspects of the database. The 
conclusion of this section will show the power of combining different image struc­
ture databases generated using two different segmentation techniques. 

Figure 4-10 shows in yellow the edges that have an endpoint within ten pix­
els of one end of the model edge (red). Figure 4-11 shows the results of a more 
powerful search constraint. The results shown are derived from using the "cone" 
filter. The cone filter gets its name from the shape of the search space. A search 
space is generated by taking the line segment shown in red and extending it in 
both directions to infinity. The line is then rotated a.round the segment midpoint 
by plus and minus a fixed angle (five degrees in this case). The area swept out by 
the infinite line is then used as an area restriction in a data.base query. The 
results are shown in green. 

·The following discussion emphasizes the power which comes from combining 
the results of different segmentation algorithms. Figure 4-12 is the result of 
querying the image structure database for the "brightest" region. The results are 
displayed in red. Figure 4-13 shows an image where the intensity value of a pixel 
is proportional to its distance from an object. The technique used is called the 
distance transform, or "chamfering" [Barrow - 78]. Using this image as a measure 
of nearness, the database is requested to produce edges which are "near" the 
region (Figure 4-14). The discovery of relationships among objects derived using 
different segmentation techniques is a valuable tool. It permits guidance from 
different detection and extraction algorithms to be combined to strengthen the 
confidence in the correctness of the image interpretation. This combination is 
called "convergence or evidence". 

Data.base queries produce output that can easily be used as input to other 
queries. As a more refined interpretation is attached to an image structure, more 
powerful queries can be made. In this example, the "bridge segment" (elongated 
bright region) could serve as a startfog point for finding-the-roads-and-rh~rs-usu~ 
ally associated with a bridge. In this way, powerful algorithms can be constructed 
from simple primitives to reason about terrain features. It is beyond the resources 
available to this effort to seriously address this level of reasoning, although most 
of the requisite primitive capabilities are resident in the system. 

This example was generated in the absence of terrain object models. Work 
pertaining to object models and recognition procedures will be performed and 
reported on in the Option II portion of the contract. Because no object models 
are currently in the system, no labeling of perceptual objects as terrain features 
bas as yet been implemented. 
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Figure 4-4: Canny Edge Extrnction Results 
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6. PROJECT STATUS 

6.1 PROJECT PLAN 

The goal of the Linear Feature Extraction Phase II SBIR is to develop an 
automated linear feature extraction system for radar imagery. 

The major steps in achieving a capable linear feature extraction system are 
as follows: 

1. Develop the appropriate working environment to register, manipulate, 
and process imagery. 

2. Develop and experiment with various segmentation and feature extrac­
tion algorithms. 

3. Determine significant terrain object feature properties and construct 
representative object models. 

4. Experiment and evaluate model to image feature matching schemes. 

5. Develop an approach for managing the competing and conflicting 
hy~othesis matches. 

' 
6. Develop feature finders/predictors to support or contradict an expected 

terrain feature's existence. 
.. 

7. Implement a display interface to support the above processing steps. 

This proiect is divided into three parts. 

Base Contract - (6 months) Undertake and complete the design of an 
automated linear feature extraction system for SAR imagery. 

Option I - (9 months) Undertake and complete the development of all neces­
sary software for the core system components of such a system. Work will also 
begin for recognition technique development and the system development. {This 
option overlaps the previous phase by three months.) 

Option IT - (12 months) Complete the work on the recognition technique 
development and the system development work began in the previous effort. 
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6.2 REVIEW OF PROGRESS 

6.2.1 Base Contract 

The work performed by ADS under the Base Contract and continued under 
Option I has addressed three problem areas. 

The primary work performed under this contract has been the continuation 
of the design produced in the Phase I SBIR effort. The results of that design are 
described in the Linear Feature Extraction from Radar Imagery Base Contract 
Final Technical Report [Conner - 87]. 

The second major area in which ADS pursued the project goals was the 
development and design of a software environment in which to perform experi­
ments and begin to build the eventual prototype system. The basic framework of 
this software was delivered to ETL in May 1987. The delivery emphasized neigh­
borhood and .display operations. The software also contained the necessary 
software "hooks" for future expansion into the other system components. 

Finally, the last area of work undertaken as part of the Basic Contract was 
the continued experimentation with the government-provided radar imagery. 
Experimentation included algorithm surveys, hand processing of sample imagery, 
and actual algorithm implementation. This work and ADS's general understand­
ing of machine vision has continually supported the design and development of 
the components of a model based vision system for linear feature extraction. The 
work described above corresponds to significant progress in Steps 1, 2 and 7, and 
has established the infrastructure for continuing work on the other steps of the 
Project Plan. 

As the proper environment has been established, this system for determining 
and extracting terrain features is being developed and extensively tested. These 
experiments further establish the role of autonomous feature extraction from SAR 
imagery and, indeed, the importance of SAR imagery to map generation. 

5.2.2 Option I Contract 

The bulk of the work accomplished under this effort pertained to the con­
tinuing effort to embody the system design in software. A major software 
delivery to ETL of the processing framework was made in September 1987. The 
software included the following: 

• Many of the relevant image processing routines used at ADS (see note 
below on operating system version compatibility). 

• The software for creating, manipulating, accessing, and editing image 
structures (also called "perceptual structures"). 

•The preliminary framework of the hypotheses database. (This database 
contains hypotheses about extended image structures. Functions that 
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provide for the creation of these structures are embodied in the "filter" 
functions.) 

• Enhanced user interface to display the image structures. 

The software was also accompanied by a "User's Guide." The guide was 
written with the expert Symbolics Lisp Machine user in mind. At the suggestion 
of ETL, a supplemental guide was issued to address the needs of those users not 
intimately familiar with the Symbolics environment. In addition to the documen­
tation, two sessions were held at ETL. The first session was a general "demons­
tration 11 of the software delivered. The second session was oriented towards fami­
liarizing the user with the software. Given the size and complexity of the develop­
ment environment, a subsequent visit was scheduled in December igs7 to further 
assist ETL personnel in the use of the system. During this visit some software 
"bug" fixes were also accomplished. 

As expected, the system design continues to evolve as more of the system 
becomes realized in software. An updated system design will be submitted in the 
Option II final report. 

Work was also initiated on the recognition procedures. The details of the 
various terrain features were studied. In addition to the standard properties of 
the individual features, of particular interest is both the internal and external 
structures of the features. For example, the apparent image-based structure of a 
patch of forest may be comprised of the textured area representing the bulk of the 
forest, the bright lea.ding edge of the patch, and the trailing shadowed region. All 
three portions have entirely different "visual" characteristics, but each is an 
important component of the recognition of the forest patch. An example of exter­
nal structures is best illustrated by a bridge. Typically, a bridge is detected as a 
long, thin bright region. Unfortunately however, this is not a unique signature by 
itself. If this bright region has roads extending from both ends and is surrounded 
on each side by water, then a unique signature for a bridge begins to form. 
Because this work in image object structure is only preliminary, details will not be 
provided until the final report for the Option II phase which will specifically 
a.ddl'esa the_ area o! recognition procedures. 

A continuing source of difficulty facing the Linear Feature II project is the 
compatibility of software environments at ADS and ETL. Much of the Linear 
Feature I work was performed on a Symbolics system running the version 6 OS 
operating system. At the beginning of the Linear Feature II contra.ct both ETL 
and ADS were running Version 6 OS. Since then ETL has installed Version 7 
while ADS has not. ADS made a commitment early on to deliver software in Ver­
sion 7 OS. This extra effort and overhead requires additional time and money to 
port software between versions, thus delaying delivery of important additions and 
bug fixes to ETL. 

6-3 



[Barrow -

6. REFERENCES 

78! Barrow, H.G., Tenebaum, J.M., Bolles, R.C., and Wolf, H.C., 
'Parametric Correspondence and Chamfer Matching: Two New 

Techniques for Image Matching." Proceedings of the DARPA Image 
Understanding Workshop, May 1978. 

[Binford - 81] Binford, T.O., "Inferring Surfaces from Images", Artificial Intelli­
gence, Vol. 17, August 1981. 

[Binford - 82] Binford, T.O., "Survey of Model-Based Image Analysis Systems", 
The International Journal of Robotics Research, Vol. 1, No. 1, 
Spring 1982. 

[Brown - 67] Brown, W.M., "Synthetic Aperature Radar." IEEE Transactions on 
Aerospace and Electronics Systems, Vol. AES-3, No. 2, pp. 217-229, 
March 1967. 

[Brown - 69] Brown, W.M. and Porcello, L.J., "An Introduction to Synthetic 
Aperature Radar." IEEE Spectrum, pp. 52-62, September 1969. 

[Canny - 83] Canny, J., "A Variational Approach to Edge Detection." AAAI-89, 
pp. 54-58, August 1983. 

[Conner - 87] Conner, G.D., Lawton, D.T., McConnell, C.C., and Milgram, D.L., 
Linear Feature Extraction from Radar Imagery, Report No. ETL-
0469, U.S. Army Topographic Laboratories, Fort Belvoir, Virginia, 
July 1Q87. 

[Eaves - 87] Eaves, J.L. and Reedy, E.K., Principles of Modern Radar, Van Nos­
trand Reinhold Company, New York, New York, 1987. 

[Hanson - 78] Hanson, A.R. and Riseman, E.M., "VISIONS: A Computer System 
for Interpreting Scenes." Computer Vision Systems, Academic Press, 
New York, New- York, 19-78. 

[Lawton - 85] Lawton, D.T., Glicksman, J., Conner, G.D., and Drazovich, R.J., 
Linear Feature Extraction from Radar Imagery, Report No. TR-
3075-01, Advanced Decision Systems, Mountain View, California, 
August 1985. 

[Lawton - 86] Lawton, D.T., Glicksman, J., Levitt, T.S., and McConnell, C.C., 
"Terrain Models for an Autonomous Land Vehicle", IEEE Interna­
tional Conference on Robotics and Automation, California, April 
1986. 

[Lawton - 87] Lawton, D.T., Levitt, T.S., McConnell, C.C., Nelson, P.C., Black, 
M.J., Edelson, D.J., Koitzch, K. V., Dye, J.W., Binford, T.O., Chel­
berg, D.M., Kriegman, D., and Ponce, J., Knowledge-Based Vision 
Techniques, Report No. TR-1093-02, Advanced Decision Systems, 
Mountain View, California, November 1987. 

6-1 



[Leberl - 85] Leberl, F.W., Demik, G., and Kobrick, M., "Mapping with Aircraft 
and Satellite Radar Images." Photogrammetric Record, Vol. 11, No. 
66, pp. 647-665, October 1985. 

[Lowe - 85] Lowe, D.G., Perceptual Organization and Visual Recognition, Kluwer, 
Massachusetts, 1985. 

[Marr - 82J Marr, D., Vision, W.H. Freeman, San Francisco, California, 1982. 

[Martelli - 76J Martelli, A., "An Application of Heuristic Search Methods to Edge 
and Contour Detection." Communication of the ACM, Vol. 19, No. 
2, pp. 73-83, February 1976. 

[Milgram - 87] Milgram, D.L., Morgan, D.R., Miltonberger, T.W., and Binford, 
T.O., Symbolic RF Signature Prediction, Report No. TR-3145-01, 
Advanced Decision Systems, Mountain View, California, September 
1987. 

[Morgan - 87b Morgan, D.R., Chestek, R.A., Milton berger, T.W., Neveu, C.F ., 
razovich, R.J., Smith, F ., Mostafavi, H., and Freeberg, P ., Broad 

Area Search {BAS} System, Report No. 1055-01, Advanced Decision 
Systems, Mountain View, California, September 1987. 

[Nevatia - 82] Nevatia, R., Machine Perception, Prentice-Hall, Englewood Cliffs, 
New Jersey, 1982. 

[Ohta - 80] Ohta, Y., "A Region-Oriented Image Analysis System By Computer", 
Ph.D. Thesis, Kyoto University, Department of Information Science, 
Kyoto, Japan, 1980. 

[Pascussi - 84] Pascussi, R.F. and Huffman, E.T., Development of Description sets 
for the Unambiguous Characterization of Geographic Features on 
SAR Imagery, Report No. ETL-0369, U.S. Army Engineer Topo­
graphic Laboratories, Fort Belvoir, Virginia, August 1984. 

[Rocle - 84] Rocle, I., Perception, Scientific American Library, New York, 1984. 

[Rosenfeld - 81] Rosenfeld, A. (Editor), Image Modeling, Academic Press, New 
York, New York, 1981. 

[Rosenfeld - 82] Rosenfeld, A. and Kak, A.C., Digital Picture Processing (second 
eel.), Academic Press, New York, New York, 1982. 

[Skolnik - 62] Skolnik, M.I., Introduction to Radar Systems, McGraw Hill, New 
York, New York, 1962. 

[Stimson - 83] Stimson, G.W., Introduction to Airborne Radar, Hughes Aircraft 
Company, El Segundo, California, 1983. 

[Ulaby - 82] Ulaby, F.T., "Radar Signatures of Terrain: Useful Monitors of 
. Renewable Resources." Proceedings of the IEEE, Vol. 70, No. 12, 

December 1982. 

6-2 



[Witkin - 83] Witkin, A.P. and Tenebaum, J.M., "On the Role of Structure in 
Vision", Human and Machine Vision, Academic Press, New York, 
New York, 1983. 

[Wong - 79] Wong, R.Y. and Hall, E.L., Edge Extraction of Radar and Optical 
Images, IEEE Document Numbe.r CH1428 - 2/79/0000015000. 

6-3 



[Witkin - 83] Witkin, A.P. and Tenebaum, J.M., "On the Role of Structure in 
Vision", Human and Machine Vision, Academic Press, New York, 
New York, 1983. 

[Wong - 79] Wong, R.Y. and Hall, E.L., Edge Extraction of Radar and Optical 
Images, IEEE Document Number CH1428 - 2/79/0000015000. 

6-3 




