
! 

TA7 
W34 
no.SL-
86-35 
cop.2 

0,0 
0 8 

O S 

0.7 

' 0 . 

i 
; 

i 

1. • • s • ~o' ""''') 
• ' I J t • I t 10 U./• 
• ' I ) , I~ • ) I 10 IJI</t 

0.0 ~~=:1 

~0 . 
! a:. 

": '0 
1 
ft 

: '~ 
• • oo 

o.o 2.0 • o a o a .o 
.--... •'-••• D••'-h (t"') 

0 ~.......---......----~-----. 
o= o~ ooo ·~o •~ •~o 

lfl'r••••• \1•,_ O••' " ('"' 

US-CE-CProperty of the 
Urtited States n'lv~rnmr~~t 
TECHNICAL REPORT SL-86-35 

A STUDY OF EXPLOSIVE WAVE 
PROPAGATION IN GRANULAR MATERIALS 

WITH MICROSTRUCTURE 

by 

Martin H. Sadd, Mohammad Hossain 

Department of Mechanical Engineering 
and Applied Mechanics 

University of Rhode Island 
Kingston, Rhode Island 02881 

and 

Behzad Rohani 

DEPARTMENT OF THE ARMY 
Waterways Experiment Station, Corps of Engineers 

PO Box 631 , Vicksburg, Mississippi 39180-0631 

September 1986 

Final Report 

Approved For Public Release; Distribution Unlimited 

Library Branch 
Technical Information Center 

U.S. Army Engineer Waterways Experiment Station 
Vicksburg, Mississippi 

~ 

-LJ..J : • 
c:: 'i -
~ . . 

-(/) . ..... . 
( ") . 
c ; c 
w ,_ . -- ,. 

Prepared tor DEPARTMENT OF THE ARMY 
Assistant Secretary of the Army (R&D) 

Washington, DC 20310-1000 

Under Project No. 4A 161101 A91 D 



.. 

W31 

Unclassified 
\[(URI TY C:..ASSIFICA TION OF THIS PAGE 

}'\0 . 5L -8~-.3S 
c, . }.__ 

Form Approvl?d 
REPORT DOCUMENTATION PAGE OM B No 0704-0 188 

ld REPORT SECURITY CLASSIFICATION 
Exp Dat i? Jun 30 1986 

1 b RESTRICTIVE M ARKINGS 
Unclassified 

/a SECURITY CLASSIFICATION A UTHORITY 3 DISTRIBUTION I AVAILABILITY OF REPORT 

2h DECLASSIFICATION I DOW NGRADING SCHEDULE Approved for public release ; distribution 
unlimited . 

4 PERFORMING ORGANIZATION REPORT NUMBER($) S MONITORING ORGANIZATION REPORT NUMBER($) 

Technical Repor t SL- 86- 35 

6a NA M E OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION 

See reverse (If app licable) 

6c ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State. iJnd ZIP Code) 

Sa NAME OF FUNDING I SPONSORING Bb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 
ORGANIZATION Assistant (If applicable) 

Secretary of the Amy (R&D) 
Sc ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS 

\~ashington, DC 20310-1000 PROG RAM PROJECT TASK WORK UNIT 
ELEMENT NO. NO NO ACCESSION NO 

11 TITLE (Include Security Classification) 

A Study of Explosive Wave Propagation in Granular Materials with Microstructure 

12 PERSONAL A UTHOR(S) 

See reverse. 
13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT 

Final report FROM TO September 1986 134 
16 SUPPLEMENTARY NOTATION 

Available from National Technical Infomation Service, 5285 Port Royal Road, Springfield, 
VA 22161. 
17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse If necessary and identify by block number) 

FIELD GROUP SUB-GROUP Airblast loading Probabilistic analyses 
Constitutive relationship Microstructural model 
Granular material Wave oropa_g-ation 

19 ABSTRACT (Continue on reverse if necessary and 1dentify by block number) 

This report describes an i nvestigation into one-dimensional stress wave propagation in 
granular materials with microstructure . The study employs the distributed body concept ad-
vanced by Goodman and Cowin and the associated wave propagation studies conducted by 
Nunziato, Walsh, et al. A one-dimensional computer program, referred to as MIC1D, has been 
developed for studying wave propagation in granular materials due to airblast loading. The 

(2) depth-dependent computer program allows for (1) arbitrary surface airblast loading, 
volume distribution function simulating gravity effects in a granular mass, and (3) treat-
ment of grain size and local porosity as random variables. Three foms of depth-dependent 
volume distribution functions are incorporated in the program, i.e.' a periodic fom, an 
exponential fom, and a combined periodic-exponential fomulation. The user can select 

The probabilistic treatment of any of these forms for the particular application at hand. 
grain size and local porosity is accomplished by using a moment- generating procedure due 

(Continued) 

20 DISTRIBUTION I AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION 

0 UNCLASSIFIED/UNLIMITED 0CJ SAME AS RPT 0 OTIC USERS un~l~~~ified 

2Za NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL 

DO FORM 1473, 84 MAR 83 APR ed1t1on may be used until exhausted 

All other ed1t1ons are obsolete 

SECURITY CLASSIFICATION OF TH IS PAGE 

Unclassified 

l 



6a and c . NAME OF PERFORMING ORGANIZATION/ADDRESS (Continued) . 

Department of Mechanical Engineering and Applied Mechanics, University of 
Rhode Island, Kingston, RI 02881; and Structures Laboratory, US Army 
Engineer Waterways Experiment Station, PO Box 631, Vicksburg, MS 39180-0631 . 

1 0. SOURCE OF FUNDING NUMBERS (Continued) . 

Department of the Army Project No. 4A161101A91D, In-House Laboratory 
Independent Research Program. 

12. PERSONAL AUTHOR(S) (Continued). 

Martin H. Sadd, Mohammad Hossain (University of Rhode Island), and Behzad 
Rohani (US Army Engineer Waterways Experiment Station) . 

19 . ABSTRACT (Continued) . 

to Rosenblueth. The computer program calculates the expected value and the variance of 
the output quantities, such as stress and particle motion, due to the randomness in these 
variables . 

Application of the computer program is demonstrated by presenting the results of a 
series of parametric calculations dealing with propagation of acceleration waves in 
granular media . A documentation of MIC1D is provided in Appendix A. 



PREFACE 

This investigation was conducted by the US Army Engineer Waterways 

Experiment Station (WES) under Department of the Army Project 4Al61101A91D, 

In-House Laboratory Independent Research (ILIR) Program. It was carried out 

as a cooperative study with the University of Rhode Island (URI) under con

tract DACA39-85-C-0023 during the period June 1985 to September 1986. The 

principal investigator at URI was Dr. Martin H. Sadd. The principal investi

gator at WES was Dr. Behzad Rohani.vfThis report was typed by Mrs. P. A. 

Sullivan. This work was performed under the direct supervision of Dr. J. G. 

Jackson, Jr., Chief, Geomechanics Division, Structures Laboratory (SL), and 

under the general supervision ~f Mr. Bryant Mather, Chief, SL. 

COL Allen F. Grum, USA, was the previous Director of WES. COL Dwayne G. 

Lee, CE, is the present Commander and Director. Dr. Robert W. Whalin is 

Technical Director. 

i 



CONTENTS 

Page 

PREFACE .•.........•.....•.....•.•.• · · • • • • · · • • • • · · • • · • · · · · • • • • • • · • · • • · • • · i 

LIST OF' ILL USTRATIONS ......................... · · · · · · · · · · · · · · · · · · · · · · · · · · t i i 

CONVERSION F'ACTORS , NON-SI TO SI (METRIC) UNITS OF MEASUREMENT ..•....••• v i 

CHAPTER 1 INTRODUCTION . • . . . . . . . . . . • • . • . . . . . . . . • . . . . . . • . . . . . . • . • . . . . . . . . 1 

1 • 1 BACKGROUND . • • • • • . • . . . . . • • . • • • . • . . • • • . . • • • • • • • • . • • . . • • • • • • • • • . • • • • 1 
1 . 2 SCOPE . . . . . . . • . . . . . . . . • . . . . . . . • . . . . . . . . . • • . . • • • • . • . • . • • • . . • . . . . . . . 2 

CHAPTER 2 REVIEW OF PREVIOUS WORK...................................... 3 

2 . 1 GENERAL BAC KGROUND . . . . • . . . . . • . . . • . . . • . . . . . • • . . . . . . • . . . . • . • . . . . • . • 3 
2 .2 DISTRIBUTED BODY THEORY . ...... ... ....•.. .... . .......... .....••.•. 5 
2. 3 WAVE PROPAGATION WI THIN A DISTRIBUTED BOD Y ...... .. ...•......•.... 7 

CHAPTER 3 DEVELOPMENT OF' WAVE PROPAGATION THEOR Y ........•.........•.... 13 

3 . 1 GENERAL . . • . . . . • . • . . . • • • • . . • . • . . . . • . • . . . . . . • . • . . . . . . . • • . • . . • . • • • . . 1 3 
3. 2 VOLUME DISTRIBUTION F'UNCTIONS . . ...•..•..... . ... . ..••....•.....•.. 13 
3 . 3 WAVE PROPAGATION ANALYSIS ................................... .. ... 15 
3 . 4 WAVE PROF'ILE ANALYS I S . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . • 1 q 
3. 5 PROBABILISTIC CONSIDERATIONS ..... • ..................... . ......•.. 23 

CHAPTER 4 PARAMETRIC STUDIES ........... . ..................••........... 51 

4 . 1 GENERAL . . . . . . . . . . . . . . • . • . . . . . . . . • . . . • . • . . . . . . . . . . • . . • . . . . . . • . . . . . 51 
4. 2 DEPTH DEPENDENT BEHAVIOR . . . . . . . . • . • • . . . . . . . . . . . . . . . • . . . . • • • . . • . . . 51 

4. 2.1 Periodic Volume Distribution Case ......•................... . . 51 
4. 2. 2 Exp0nent i al Vol um e Dis t ribution Case . . . . . . . . . . . . • . . . . . . . . . . • . 52 
4.2 . 3 Periodic-Exponential Volume Distribution Case ............. .. . 52 

4 . 3 WAVE PROFILES . • • . • • . • • • • • • • • • • • • • . • • • • • . • • • • . • • . . . • • • • • • • • • • • • • • • 53 
it • 3. 1 U nco u pl ed Res ul ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 
4. 3.2 Coupled Results . • ...•......•. . .•.• . •.•........•.•.......•.... 53 

4. 4 PROBABILISTIC PROF'ILES ..... . ............... . ............... ~ ..... 54 

CHAPTER 5 SUMMARY AND RECOMMENDATIONS . . . . . . . . . . . • • • . . . . . . . • . . . . . • • . . . . . 81 

5 . 1 SUMMARY ..••.•. . .. • .••• • •. •• ••• . .•..•..••• • .•.•...••••••• • ..••...• 
5 . 2 RECOMMENDATIONS •.••.••. • ••. • • • •••.•••••••••••..•.•••••• • . • ••••••• 

REF'E RENCES • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ••••••• 

APPENDIX A WAVE PROPAGATI ON COMPUTER CODE 

. . 
11 

81 
81 

83 

' 



LIST OF ILLUSTRATIONS 

Figure Page 
2.1 Schematic of a propagating singular surface • • • . . . . . . • . . • . . • • • • . • 11 

2.2 Average wave speed versus distance: Reference 61 Data ••.•••••••. 12 

2.3 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

• Amplitude behavior versus distance: Reference 61 Data • • • • • • • • • • • 12 
Periodic volume distribution function 
( v a = 0. 8 , R. = 0. 0 5 .in) . • . • • . • • • • • • • • • . • • . • . . . . . • • • • • • . • • • • • • • • 27 

Typical two-dimensional Vorono.i cells .•.•..•••....•••.....•..•.• 

Exponential volume distribution function 
v0 = 0.6 , B = 5 in

2
/lb , Y = 7.2 x 10- 2 lb/in3

) 

Periodic-exponential volume distribution function 
"'a = O.?q , "'b = 0.6 , B - 5 in

2
/lb , 

• • • • • • • • • • • • • • • 

Y = 7.2 x 10-
2 

lb/in
3 

, R. = 0.10 in) .••..•.•.••••••.•..•..•.•.. 

Typical stress-strain behavior of granular materials 
under uniaxial strain conditions •.•••.•.•••••.•.••..••.•.••..•.• 

Actual wave speed versus distance for periodic volume 
distribution ................................................... . 

28 

30 

31 

32 

3.7 Average wave speed versus distance for periodic volume 
distribution . . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . . . .. . . . .. . . .. . . . .. . .. 33 

3.8 Amplitude attenuation versus distance for periodic volume 
distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 34 

3.9 Actual wave speed versus distance for exponential volume 
distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

3.10 Average wave speed versus distance for exponential volume 
distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . . .. 36 

3.11 Amplitude attenuation versus distance for exponential 
volume distri but.ion . . • . • • • . • • . • • . • • . • . • • . . • . . • • • . • • . . • . • . • . • • • • • 37 

3.12 Actual wave speed versus distance for combined periodic-
exponential volume distribution . •• . • • . •. • • • . . . • . • . • • • •• . . . • . • • .• 38 

3.13 Average wave speed versus distance for combined periodic-
exponential volume distribution • . • • . . • • • • • • • • • . . • • . . . • . . • . • . . . . . 39 

3.14 Amplitude attenuation versus distance for combined 
periodic-exponential volume distribution •..•••••••.•.•.••.•••.•. 40 

3.15 Wave profile construction ••..•......••...•.•.•..••••...•.•.•.•.• 41 

3.16 Four wave profile example ..•.•••.•.•.•••••.•••••••••.•.••.••.... 42 

3. 17 Postulated variation of material parameter "'a as a 
function of stress .•••..•..••••.••..•...•...••••...•.•••.••...•. 43 

3.18 Particle acceleration profile for a periodic volume 
distribution (Material P1) at X = 0.125 in • • . . . • . • • • . . . • . • • . . • . 44 

Stress profile for a periodic volume distribution 
(Material P1) at X = 0.125 in ••.•..•••••.••...••..••••...•• · • · · 45 

iii 



Figure 

3.20 

3. 21 

3.22 

3.23 

3.24 

4. 1 

4.2 

Particle velocity profile for a periodic volume 
distribution (Material P1) at X= 0.125 in •.•.••••••••.•••••••• 

Particle displacement profile for a periodic volume 
distribution (Material P1) at X = 0.125 in ••••••.•••••••..•••.• 

Probabilistic results for the particle acceleration 
profile at X= 0.125 in: mean response with ~ts one
standard-deviation bounds. Input variables: 1 = 0.059 in , 
a
1 

= 0.02 in , va = 0.85 , and ova= 0.1 ..••••••...•.•.••••••. 

Probabilistic results for the stress profile at 
X= 0.125 in: mP.an response with its one-standard-deviation 
bounds. Input variables: 1 = 0.059 in , a

1 
= 0.02 in , 

v = 0.8C1 , and a == 0.1 .................•.....•........•..... 
a - va 

Probabilistic results for the velocity profile at 
X= 0.125 in : mean response with its one-standard-deviation 
bounds. Input variables: 1 = 0.059 in , a

1 
= 0.02 in , 

v = 0 . 85 , and o = 0 • 1 ...•.••.....••....•.•.•......••.••..•. 
a va 

The effect of v on the average wave speed versus 
depth for a periSdic volume districution (Material P1 
w.i th 1 = 0 . 1 t n ) ........•......•.•...•..............•.......... 

The effect of 1 on the average wave speed versus 
depth for a periodic volume distribution (Material P1 
with v = 0.8) ........................................... ·. · · · · a 

4.3 Amplitude ratio versus depth for a periodic volume 
distribution (Material P1 with 1 = 0.1 in and 

Page 

46 

47 

48 

49 

50 

55 

56 

\) == 0.7) ....................................................... 57 a 
4.4 Amplitude rati o versus depth for a periodic volume 

distribution (Material P1 with 1 = 0.1 in and 
\) = 0. 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 a , 

4.5 Amplitude ratio versus depth for a periodic volume 
distribution (Material P1 with 1 = 0.1 in and 
va = 0.9) . • . . . . . . • . . . . . . . . . . . . . . . . . • . . . . . • . • . • . . . . • . . . . . . • . . • • . . 59 

4.6 Amplitude ratio versus depth for a periodic volume 
distribution (Material P1 with 1 = 0.2 in and 
v a = 0. 8) • . . . . • . • • • • • . • • • • • • . • • • • • . • • • • • • • . • • • • . • . • • . . • • . • • • • . • . 60 

4.7 Exponential volume distribution function with 
B = 10 in

2
/lb ...••••...••...•....••.••..•...•.•.••.•.••••..•.•.• 61 

4.8 Average wave speed versus depth for an exponential 
volume distribution (Material E1 with B = 10 in

2
/lb) . . . . . . • . • . . 62 

4.9 • 
Amplitude ratio versus depth for an exponential volume 
distribution (Material E1 with B = 10 in2 /lb and 
vb = 0.65) . • . . . . . . • . . . • . . • . . . . . . . . • • • • • • . • . . • . • • • . . • • . • • . • • • • . . . 63 

4.10 Ampl itude ratio versus depth for an exponential volume 
distribution (Material E1 with B = 10 in 2 /lb and 
vb = 0.75) •......•.......•...••.....••.•..••.....•.•••..•....•.. 64 

. 
l.V 



Figure Page 
4o11 Combined periodic-exponential

2
volume distribution function 

with va = Ooqq2 , B = 30 in /lb , and 2. = OolO in ooo• 0 0 0 0 0 0 0 65 

4o12 Average wave speed versus depth for a periodic-exponential 
volume distribution (Material PEl with 2. = 0.1 in) o••o•••••o••• 66 

4.13 Amplitude ratio versus depth for a periodic-exponential 
volume dlstribution (Material PE1 with 2. = 0.1 in and 
vb = 0.65) o •.. o •••• o. o ••••• o o. o. o o o •••••••••.•. o ••. o o o 0 o o o. o o •• 0 67 

4o14 Amplitude ratio versus depth for a periodic-exponential 
volume distribution (Material PE1 with 2. = 0.1 in and 
vb = 0.75) •••o••oooooooooo•ooooo••o•oooo•••o•o•o••••••o••o••o•o• 68 

4.15 

4. 16 

4 0 17 

4 0 18 

4o1q 

4o20 

4 0 21 

4.22 

4.23 

4.24 

4.25 

4.26 

Uncoupled particle 
(Material P1 with 

Uncoupled particle 
(Material P1 with 

Uncoupled particle 
(Material P1 with 

acceleration profiles at various depths 
v = Oo85 and 2. = 0.1 in) o••o•o•o••o•••oo•• a 
velocity profiles at various depths 
v = Oo85 and 2. = 0.1 in) •••o•o•ooooooooo•• a 
displacement profiles at various depths 
v = 0. 85 and 2. = 0 o 1 in) •• o • o o ••.•.• o •• o •• a 

Uncoupled stress 
with v = 0.85 a 

profiles at various depths (Material P1 
and i = 0 . 1 i n ) • . . . . • . . . . . . . . • • . . • . . . • . . . . . . . • 

Coupled particle acceleration profiles at various depths 
(Material P1 with va = 0.85 , 2. = 0.1 in, and 

M = Oo04 in
2
/lb) ••• o?. o .••••••••••• o o •••••••••• o. o. o •.••••• o. o •• 

Coupled particle velocity profiles at various depths 
(Material P1 with v = 0.85 , 2. = 0.1 in, and 

a 
M = ·0.04 in

2
/lb) ••• o?oooooooo••o••oo•ooooooooooooooooooooooo••o• 

Coupled particle displacement profiles at various depths 
(Material P1 with va = Oo85 , 1 = Oo1 in, and 

2 0 
M = 0.04 in /lb) ............................................... . 

Coupled stress profiles at various depths (Material P1 with 
= Oo85 , 1 = 0.1 in , and M = Oo04 in

2
/lb) o o o o o. o oo. o•. o o o va 

Pr8babilistic acceleration profiles at various depths: mean 
response with its one-standard-deviation bounds for 
.2. = 0 • 1 i. n and o

1 
= Oo03 in . 0 0 0 0. 0 o o o 0 o 0 0. o o o .• o o o. o. o o ••• o o o o 

Probabilistic velocity profiles at various depths: mean 
response with its one-standard-deviation bounds for -
1 = 0.1 in and o1 = 0.03 in ·••••o•o•••••o••••••••o••••••••o••o 

Probabilistic displacement profiles at various depths: 
mean response with its one-standard-deviation bounds for 
1 = 0 • 1 i n and a 

1 
= 0 • 0 3 i n . • • • • • • • • • • o o • • • • • . o • • o o • . • o • • • • • • • 

Probabilistic stress profiles at various depths: mean 
response with its one-standard-deviation bounds for 
-1 = 0. 1 i. n and a = 0.03 in · · · .. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1 

v 

6q 

70 

71 

72 

73 

74 

75 

76 

77 

78 

7q 

80 



CONVERSION FACTORS, NON-SI TO SI (METRIC) 
UNITS OF MEASUREMENT 

Non-SI units of measurement used in this report can be converted to SI 

(metric) units as follows: 

Multiply 

inches 

kips (force) per 
square inch 

pounds (force) per 
square inch 

pounds (mass) 

pounds (mass) per 
cubic foot 

square inches 

feet per second 

inches per second 

pounds (force)-
seconds squared 
per inches fourth 

By 

2t:i.4 

6.894757 

6.894757 

0.4535924 

16.01846 

6.4516 

0.3048 

0.0254 

10686893.0 

• 

vi 

To Obtain 

mLlli.meters 

mega pascals 

kilopascals 

kilograms 

kilograms per cubic meter 

square centimeters 

meters per second 

meters per second 

kilograms per cubic meter 



1 . 1 BACKGROUND 

A STUDY OF EXPLOSIVE WAVE PROPAGATION IN 

GRANULAR MATERIALS WITH MICROSTRUCTURE 

CHAPTER 1 
, 

INTRODUCTION 

Traditionally, in .engineering practice, all stress analyses are conducted 

within the framework of various branches of continuum mechanics. In doing so, 

it is tacitly assumed that the microstructural details of the material can be 

neglected. The material is then "replaced" by an equivalent continuum with 

gross, or "overall," properties. The continuum approach has indeed been very 
\ 

successful and has led to the development of many useful theories of material 

characterization. On the other hand, since these theories disregard the 

microstructural details of the materiaJs under study, they cannot be used to 

determine how local structure influences the gross behavior of the material. 

This is a real shortcoming of the continuum theories, especially when they are 

applied for characterization of geological materials such as sand, clay and/or 

rock. These types of materials are commonly classified as materials with 

microstructure since, at the micro level, the density, along with other 

important variables, are not continuous . Mod~ling of these materials using 

classical continuum mechanics (e.g., elasticity, plasticity, viscoelasticity, 

etc.) has progressed to a point where any fundamentally new information will 

probably have to come from a theory incorporating properties such as grain 

size, local porosity, packing, etc. Some advances have been made recently in 

developing analytical tools and models, which account for some of the struc

tural details of particulate materials such as sand. Two examples of such 

work are: (1) the so-called "distributed body" concept advanced by Goodman 

and Cowin (Reference 31) and (2) "discrete element" modeling pioneered by 

Cundall (Reference 20). The central theme of the distributed body concept is 

the introduction of the "volume distribution function" (a new kinematic 

variable) which accounts for local porosity and its spatial gradient. The 

discrete element concept is basically a numerical procedure requiring large · 

computer simulations of grain-to-grain interaction. 

1 



The objP.ctive of this investigation was to develop a theoretical fr~ne

work, and the associated computer software, based on the distributed body 

concept for studying plane wave propagation in granular materials due to 

airblas t loading. This theory will allow specific rel~tionships to be devel

oped between microstructure and wave propagation variablP-s. Wave propagation 

studies based on the distributed body concept were originally conductP.d by 

Nunziato, Walsh, et al. (References 57-63). The present investigation wil l 

extend their pioneering work to incorporate (1) a more realistic depth

dependent volume dist r ibution function simulating gravity effects in granular 

soil, (2) arbitrary surface input including finite times for loading and 

unloading waves, and (3) probabilistic considerations for treating non-un i.for'm 

grain size and random distribution of local porosity. 

1. 2 SCOPE 

Chapter 2 contains a literature study of previous work in micromechanic~ 

and a summary of the Nunziato, Walsh, et al., distributed body wave propaga

tion studies. Extension of this theory to include items 1 through 3 in the 

above paragraph is documented in Chapter 3. Parametric results from thP. 

extended theory are presented in Chapter 4. A summary and recommendations are 

given in Chapter 5. Finally, a user's guide for the microstructural wave 

propagation code MIC1D is given in Appendix A. 

, 
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CHAPTER 2 

REVIEW OF PREVIOUS WORK 

2.1 GENERAL BACKGROUND 

Studies of geological materials with microstructure started many years 
• 

ago with research on granular materials modeled as aggregate assemblies of 

discs or spheres. An excellent review article by Deresiewicz (Reference 22) 

presents both static and dynamic studies prior to 1958. Another more recent 

review article by Krizek (Reference 48) appeared in 1971, and presented 

basically the dynamic response of cohesionless granular soils. Three recent 

symposia on this subject (References 16, 45, and 83) have indicated renewed 

research interest. 

The concept of modeling granular media as an array of elastic particles 
\ 

(spheres or discs) lead to the initial attempts at predicting wave propagation 

through such media. Early work by !.ida (References 41 and 42), Takahashi and 

Sato (Reference 79), Hughes and Cross (Reference 39), Hughes and Kelly 

(Reference 40), Gassman (Reference 33) and Brandt (Reference 4) employed a 

normal granular contact force concept. This initial work investigated the 

propagation velocity as a function of confining pressure, particle size and 

aggregate geometry. 

It was discovered, however, that the classical theory of contact due only 

to normal forces does not, in general, accurately model real materials. With 

this in mind, Duffy and Mindlin (Reference 26) proposed a theory for granular 

media which included both normal and tangential contact forces. This theory 

produced a nonlinear and inelastic stress-strain relation. Hendron 

(Reference 34) has also done work in this area. 

More recent theories of granular media have included statistical

stochastic approaches, e.g., Hudpon (Reference 38), ~letcher (Reference 29), 

Fu (Reference 30), Chambre (Reference 9), Varadan, et al., (Reference 81) and 

Endley and Peyrot (Reference 28). Quite recently, Mroz (Reference 53) and Kuo 

(Reference 49) employed continuum plasticity concepts and general contact 

theory in an attempt to unify the treatment of granular materials at both the 

particulate and continuum levels. Cundall, et al., (References 20 and 21) 

proposed a numerical method called the discrete element technique for granular 

and rock assemblies, and Brown, et al., (Reference 5) have used this approach 

for Pubble screens. Morland (Reference 52) considered a rock/granular media 
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as a regularly jointed media and used an anisotropic elasticity approach. 

Particulate media has also been studied by Hill and Harr (Reference 36) based 

upon a diffusion equation der•i ved from probabilistic models, while Soo 

(Reference 78) has considered the dynamic interactions of granules. Rohani, 

et al., (References 43, 71, and 72) have been doing wave propagation research 

in this area for granular sands and layered soils using continuum models. 

Endochronic theories have also been applied to granular soils, e.g., Read and 

Valanis (Reference 70), Lin and Wu (Reference 50), and Bazant, et al., 

(Reference 2). Studies have been made of the propagatlon of waves through 

elastic materials containing spherical inclusions, e.g., Mal and Bose (Refer

ence 51). Bleich, et al., (Reference 3) employed an elastic-plastic consti tu

tive law to model a specific geomechanics boundary value problem. rluid 

saturated granular media have been studied by Garg, et al. (Reference 32), 

Hsieh and Yew (Reference 37), Vardoulakis and Beskos (Reference 82) and 

Zienkiewcz and Shiomi (Reference 84). Nachlinger and Nunziato (Reference 55) 

used an internal state variable approach to wave propagation problems. Modern 

mixture theories (References 25, 64-66, 68, and 69) also show some promise of 

modeling porous and/or granular media. 

With regard to experimental work, the method of photoelasticity has been 

used. This particular method is quite well suited for studying the detailed 

load transfer between individual granules as whole field data are obtained 

during the experiment. Photoelasticity has been used for granular media by 

Drescher and de Josselin de Jong (Reference 23), Drescher (Reference 24), and 

Durelli and Wu (Reference 27). This work was, however, only for static 

behavior. The only dynamic analysis of granular media employing photoelastLc

ity was performed by Rossmanith and Shukla (Reference 75). Their technique 

employed the use of high speed photography to record wave propagation through 

an assembly of birefringent discs. 

Of the previous work, three new constitutive theories which show special 

promise in modeling granular and porous media are: the so-called "pore

collapse" models (References 6-8, 33, 46, and 47): the microstructural models 

based upon "fabric tensors" (References 11, 44, 45, 56, and 67): and the 

Goodman-Cowin distributed body approach (References 1, 12-18, 31, and 80). 

The pore-collapse model, originally developed by Carrol and Holt, is based 

upon the collapse of a single pore within the media. Researchers at the 

Sandia National Laboratories have used this approach with some success to 
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model the dynamic response of porous and granular media. This theory, 

however, cannot relate the effects of neighboring pores on one another, and, 

hence, the effect of pore d.istribution cannot be accounted for. With regard 

to the Goodman-Cowin distributed body theory, the medium is assumed to be 

distributed in space by an independent kinematical function called the volume 
• 

distribution function. Nunziato, Walsh, et al., (References 57-63) have 

applied this theory to several wave propagat.ion studies and found success in 

modeling particular situations. Consequently, this particular theory looks 

qu.t te fruitful. The fabric tensor models proposed by Oda, Nemat-Nasser, et 

al., (Reference 67) also look promising; however, their application to 

specific boundary value problems appears to be several years away. At 

present, they are looking at the details of the microstructural fabric, and 

they eventually may give insight as to the nature of the volume distribution 

function ror a Goodman-Cowin body. 

2.2 DISTRIBUTED BODY THEORY 

The distributed body theory originally developed by Cowin and Goodman was 

constructed to allow a continuum theory to be applied to materials with 

noncontinuous fields of mass density, stress, body force, etc. Thus, the 

model could be used to describe the behavior of a wide variety of materials 

having granular and/or porous structures. Fundamental to the theory is the 

assumption that, at any point in the material, the overall mass density p 

may be written as 

p - vY ( 2. 1) 

where y is the density of the granules (or matrix material) and v = v (X,t) 

is referred to as the volume distribution function. This function describes 

the way the medium is distributed in space allowing for voids or other 

particular granular structures. Thus, the theory uncouples the mass density 

of the granules from the mass density of the entire material, and allows 

compressibility due to both granule compressibility and void compaction. In 

general, 0 < v < 1 , and v is related to the porosity n and void ratio 

e by the expression 

1 
v = 1 - n -

1+e 

5 
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Within a one-dimensional framework, the classical balance law of conser

vation of linear momentum reads 

•• 

p X 
0 

(2.3) 

where T is the stress, b is the body force, x is the particle position, 
•• 
x is the particle acceleration, X is the reference position coordinate, and 

subscript o denotes values in reference state. In addition to this 

classical balance law, the distributed body theory also requires an indepen

dent balance equation governing the volume distribution. In one dimension, 

this second equation governing void change is given by 

•• 

p k v 
0 

(2.4) 

where k is called the equilibrated inertia, h the equilibrated stress and 

g the intrinsic body force. Physical interpretation of the microstructural 

variables k , h and g is somewhat difficult to make. In general, these 

variables are related to the local contact mechanics at the granular level and 

can be related to particular self-equilibrated singular stress states from 

classical elasticity (e.g., double force systems, centers of dilatation). It 

has been proposed (Reference 63) that k is related to the void mean surface 

area and to the number of voids present, h is a result of the interaction 

forces between nieghboring voids and will vanlsh when the voids are suffi

ciently separated, and g is related to the coupling between the total 

deformation of the medium and the changes in void volume. 

For granular geological materials, we assume that the media is composed 

of compressible granules at relatively high confining pressures so as to 

prevent material flow. For this case, an appropriate constitutive formulation 

would read 

av 
T - T (v

0
, v, ax• £) (2.5) 

• 

and, hence, the stress depends upon the reference and current volume distri-

buttons, the gradient of the volume distribution, and the strain £ • An 

explicit form of Equation 2.5 which has been proposed (References 31 and 61) 

uses an even quadratic form in the gradient of v , 
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1 T - v [A(v
0

, v, £) + 2 a(v
0

, v, av 2 

£)<ax-> J 

where A and a are two material functions of the indicated variables. 

First and second order moduli defined by 
• 

• 

aT 
+ l ( av) 2 

E - - - v [A a J a£ £ 2 £ ax 
2 

- a T 1 (~) 
2 

E - 2 = v [A + - a J 
a£ ££ 2 ££ ax 

(2.6) 

(2.7) 

will be needed for subsequent wave analyses. Normally E > 0 , but the second 
-order modulus E may be positive or negative. 

2.3 WAVE PROPAGATION WITHIN A DISTRIBUTED BODY 

As previously mentioned, the wave propagation theories set forth by 

Nunziato, Walsh and coworkers for Goodman-Cowin d.tstri buted bodies appear to 

have excellent promise for application to granular geological materials. This 

section will briefly review some basic details and previous results about 
• 

these theories. 

The basic premise of this particular wave theory 1 ies in modeling the 

wave as a propagating singular surface across which there exists a jump 

discontinuity in a particular variable. Commonly dynamic loadings will 

produce second-order acceleration waves, hav.tng a jump discontinuity in the 

particle acceleration at the wave front. In some cases, however, the loading 

could produce a first-order shock wave, having a jump in the particle velocity 

at the wave front. Most modeling in these materials has been done for accel

eration waves, and this case will now be described. 

As mentioned, a wave is modeled as a propagating singular surface of zero 

thickness with speed U , see Figure 2.1. The jump of a quantity $ across 

this surface is defined by 

+ 
- $ (2.8) 

+ 
where $ and $ are the limiting values of $ immediately ahead of and 

behind the wave. An acceleration wave is therefore defined as a wave across 
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which the particle velocity , strain, and volume distri but i on are cont inu?us 

but their spatial and temporal derivatives are not. Thus , this t ype of motion 

carr i es propagating discontinuities in the particl e accel eratinn and var ious 

other gradients of the strai n and vol ume di stribution. The j ump in t he parti-
.. 

cle acce l er ation [x] is called the wave amplitude , and wil l be denoted by 

a(t) . Note that for compressive waves , a(t) > 0 , while for expansive 

waves, a(t) < 0 . 

Following singular surface analysis procedures which have now become 

somewhat standardized (Reference 10), Nunzi ato , et al ., developed t he f ol l ow

ing expressions for two dif f erent types of waves 

+ 4a ] 

+ 4a ] (2 . 9) 

where 

+ (h )+ (hf)+( T )+ 
2 (vT ) 2 vX + vX 

cl 
£ 

c2 a (~) (2 . 10) - , - , - 2 
povo p k \)0 

Po k 0 

with subscripts £ , v , and X meaning partial differentiation with respect 

( . ) 
+ to the indicated variable, and meaning immediately ahead of the wave . 

. 
The speed UF denotes the "fast" wave speed which is associated predominantly 

with the elasticity of the granules . The quantity Us is the "slow" wave 

speed and is connected to the compressibility of the mater i al due to consoli

dation . 

The wave amplitude a , which is equal to the jump discontinuity in the 

acceleration across the wave front, has also been studied . Nunziato, et al ., 

have found that the amplitude for one-dimensional wave propagatlon satLsfies 

the following nonlinear Bernoulli equation 

da 
dX 

• 

- K(X)a 
2 

- v(X)a (2 . 11) 

where ~(X) and K(X) are material coefficients given in general by rather 

lengthy expressions . The coefficient ~(X) is related to di spersive effects , 
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while K(X) reflects both the elastic response of the granules and dispersive 

effects. Depending on the nature of K and l.l , the theory can predict 

growth or decay of wave amplitude. 

Nunziato, et al., (Reference 61) presented an application of these 

general theoretical results to a specific granular medium, PBX-q4o4 (an explo-
.. 

sive powder). They chose a volume distribution to be periodic in nature, 
• 
l • e. , 

(2.12) 

where va is a material constant, and R. is a characteristic length presuma

bly related to the grain size. For PBX-9404, va - o.q84 and 

R. = 1.5 mm were chosen. The specific constitutive form for this application 

was selected as that given in Equation 2.6. 

Using the previous specific forms and assuming that the wave starts at 

X - 0 in a granule, the fast wave speed becomes 

2 

s.in 

where Ug is the wave speed in a granule and 

2 2 

2( 1 - v a) 1T 2 

M - - -- 2 2 

y u 
0 g R. 

(ae:)o 

(2. 13) 

(2 .14) 

In attempting to compare with experimental data, Nunziato, et al., 

(Reference 61) point out that what is actually measured is the transit time of 

the wave t • This quantity is a function of the propagation distance X , 

and is related to the average wave velocity U by the expression 

U (X) 
X 

- t(X) 

Applying this to the fast wave, one can write 

t(X) 
X 

- J 
0 

1 X 
--J 

ug o 

9 

2 

sin 

(2.15) 

(2 . 16) 



which can be expressed in terms of an elliptic integral of the first kind F , 

i .e., 

1 (X) - F ( 21T X/ Jl. , M ) (2.17) 

Using the boundary condition T(Jl.) = 1g , with known values of Ug , 1g , and 

Jl. yields an equation whose root gives the value of M • For PBX-9404, with 

ug- 3.71 km/s and 1g = 0.4934 ~s , Equation 2.17 yields M = 0.7525. 

The amplitude behavior is governed by Equation 2.11 and, for this 

specific case, the coefficients K and become 

2 

K(X) 
1 (fx) 

0 

- - -----:-.. 
2Y0 UF 

- + (~~) 
0 

~(X) -

Again, for the specific material PBX-9404, Nunz.iato, et al., using low

amplitude shock wave experiments, found that (A ) = -58 GPa and 
5 2 e:e: 0 

(a ) = 7.31 X 10 GPa- mm • 
e:e: 0 

(2.18) 

Further developments of this theory, along with a general purpose compu-

ter program, have been developed by Sadd (Reference 76), to evaluate the 

average wave speed and amplitude behavior. Typical results for the specific 

material values for PBX-9404 are shown in Figures 2.2 and 2.3. Figure 2.2 

illustrates the behavior of the average wave speed with propagation distance. 

It is evident that the microstructural effects predominate at initial dis

tances producing a large variation in wave speed. Gradually, as the wave 

moves further into the medium, the speed has less variation and approaches a 

constant value. The amplitude behavior with propagation distance is shown in 
2 

Figure 2.3 for the case of an initial pmplitude of 2. 7 Gm/s • For this 

case, the amplitude decays with a superimposed periodic oscillation. 

Nunziato, et al., (Reference 61) also presented actual speed and amplitude 

experimental data for this material and found fairly good agreement with the 

theory. 
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SINGULAR SURFACE WAVE 
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Figure 2 .1. Schematic of a propagating singular surface . 
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CHAPTER 3 

DEVELOPMENT OF WAVE PROPAGATION THEORY 

3. 1 GENERAL 

The major purpose of the research,. herein reported was to develop a one

dimensional wave propagation theory and associated computer code incorporating 

the distributed body theory to account for material microstructure. The 

developed theory is general in that it can handle a variety of volume distri

bution functions, and, thus, it can model several types of microstructure. In 

addition, the theory has been extended to include the wave motion description 

of more than simply one singular surface as discussed previously in 

Section 2.3. In this regard, a wave profile constructed of several singular 

surface waves has been analyzed. An uncoupled theory in which each wave 

propagates independently has been developed. In addition, a coupled theory 

incorporating microstructural changes with the passage of each wave in a 

profile has also been constructed. The finial step of the theoretical work 

was to construct a probabilistic analysis based upon the developed code using 

a moment-generating procedure due to Rosenblueth (Reference 73). The probabi

listic analysis allows for the treatment of grain size and local porosity as 

random variables. The following sections discuss in detail each of .these 

developments. 

3.2 VOLUME DISTRIBUTION FUNCTIONS 

In order to apply the distributed body theory and develop a wave propaga

tion analysis, it is necessary to have explicit constitutive forms, see for 

example Equation 2.6, and the initial volume distribution v (X) 
0 

must also be 

specified. Any proposed volume distribution function should reflect the 

density variations and other microstructural features within the material. It 

is difficult to construct such a function which characterizes thes e variations 

precisely and yet has the smoothness requirements to be compatible with the 

theory. We will follow the approach that v (X) 
0 

should be a continuous func-

tion in order to perform certain required differentiations and integrations 

and that it yield the correct average density. 

As discussed previously in Section 2.3, Nunziato, et al., (Reference 61) 

in constructing a wave propagation analysis, developed a specific volume 

distribution function. Their work was for a granular material, PBX-g4o4, an 
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explosive powder/binder system. They proposed a periodic structure of the 

form 

where 

Figure 

2nX v (X) = v + (1 - v ) cos 
1 o a a 

and 1 are material constants. 

versus the distance coordinate. 

This function is plotted in 

( 3. 1 ) 

The quantity va would be given by the overall density of the material 

divided by the granule density and is thus related to the average value of thP. 

volume distribution. The second material constant 1 is referred to as a 

characteristic length associated with this periodic structure. Clearly 

specifies the length of the repeating units of the microstructure. For 

sranular materials, 1 would be related, but not necessarily P.qual, to the 

average grain size. 

In regard to this characteristic length, the work of Shahinpoor (Refer

ence 77) is appropriate to consider. Shahinpoor did experiments of randomly 

packed spherical granules on a flat surface. His work demonstrated the 

concept of dis tinct packing geometries referred to as Voronoi cells, see 

~igure 3.2. It is evident that for some packing geometries, if a periodic 

structure is assumed, the characteristic length t , being equal to the 

Voronoi cell size, could be several grain diameters. 

Since the mechanical response of most geological materials like sand or 

gravel is affected by in situ conditions such as overburden, the microstruc

ture will be nonhomogeneous, t.e., be depth dependent. With this in mind, a 

new volume distribution function was developed which can predict such a struc

ture. One particular form uses an exponential factor and may be written as 

-BYX 
v (X) = 1 - ( 1 - v ) e 

0 b (3.2) 

where vb , B , and Y are material constants. A plot of this distribution 

function is shown in Figure 3.3. Clearly for this case, the material becomes 

more dense with depth X into the medium. The constant vb is the volume 

distribution at the free surface X = 0 , Y is the average density of the 

material, and the constant B determines the rate of consolidation with 

depth. It should be pointed out that this exponential form does not contain 
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any periodic structure: hence, it should produce monotonic results for the 

wave propagation characteristics. 

Another volume distribution function which was used involves the combina

tion of the periodic form given by Equation 3.1 and the exponential form from 

Equation 3.2. The combined form involves simply the product of these two 

relations , i . e . , • 

(3.3) 

and again va , vb , 1 , B and Y are material constants. It is evident 

that this form (shown in Figure 3.4) will thus produce a combined periodic

exponential depth dependent microstructure. 

During the course of this investigation, other forms of the volume 

distri buti'on function were developed including algebraic and additive 

periodic-exponential forms. However, the three forms given by Equations 3.1-

3.3 appear to provide a broad enough microstructure model for the objectives 

of this research. Consequently, only these three forms will be included in 

the remaining sections of this report. 

3.3 WAVE PROPAGATION ANALYSIS 

The wave propagation analysis and the development of an associated 

computer code was done based upon the previous fundamental work of Goodman and 

Cowin (Reference ~1) and Nunziato, et al. (Reference 61). The cons titutive 

form given by Equation 2.6 was also used in this work. Equation 2.6 was used 

by Nunziato, et al., but was originally proposed by Goodman and Cowin in 1g12. 

The constitutive dependence on the gradient of the volume distribution ~~ is 
av significant and allows an equilibrium stress to depe nd o n ax . Since Equa-

tion 2.6 invol ves the square of av it will be an isotropic form in that ax ' 
variable (required by material frame indifference) and, hence, the stres s 

response will be independent of the sign of the gradient. Al so, the pr 8sence 

of the gradient term al l ows the theory t o predict a general i zed Mohr-Coulomb 

failure criterion (Reference 31 ) . 

Obviously, the two material functions A and a defined in Equat i on 2 . 6 

will specify the response of the medium to deformat ion. Equation 2.6 indi

cates that the mat erial funct ion a , specifies the effect of the gra dient of 

the volume distribution. If a is small, then the stress wil l no t be 
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significantly influenced by 

strain state), 

av -ax · For a stress-free reference state (zero 

A(v
0

, v
0 

, 0) - 0 

a(v
0

, v
0 

, 0) - 0 (3.4) 

Considering the stress-strain behavior which could come from Equa-

tion 2. 6, Figure 3.5 illustrates some typical curves for various volume 

distribution functions. It should be pointed out that the shape of this curve 

could vary considerably for various types of geological materials· and is a 

function of rate of loading . This figure demonstrates the stress-strain 

behavior of the granular assembly medium accounting for the particular 

f 1 f (X) and ~ . re erence va ues o v ax , 1.e., 

T - T(X,£) = T(v , 
0 "o' (3.5) 

From such typical behavior as shown in Figure 3.5, it is apparent that 
-the two moduli E and E given by Equation 2.7 would satisfy the relations 

E - II. > 0 a£ 
2 

- a T :>! 0 E - 2 ~ (3 . 6) 
a£ 

\ 

In particular, from the theory, it can be shown that the fast wave speed 

given by Equation 2. 9, can also be written as 

(3.7) 

where is the density of the granules, and E is to be evaluated in the 

reference state. Consequently, for real wave speeds E > 0 , and from Equa-

tion 2.7, this means that • 

(3 . 8) 
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or since 0 < v < 1 , 

1 av 2 

A + - a {-) > 0 e: 2 e: ax (3.9) 

where subscripts on A and a mean partial differentiation. Equation 3.9 

then gives a condition that the material functions A and a must satisfy 

for a given volume distribution. 

W .i th regard to the amplitude behav.ior, .it was shown that the ampl t tude 

obeyed the differential equation given by Equat.ion 2.11. By combining Equa

tions 2.7 with 2.18, it becomes apparent that the coefficient K is related 

to E by 

-
E 

(3.10) 

\ 

and, hence, the curvature of the stress-strain curve will affect the amplitude 

behavior. 

In order to further elaboratA on the constitutive relationship of this 

theory, consider the following special cases: 

(1) Uniform Volume Distribution: 

For this case, v = v = constant, and so Equation 2.6 yields 

T - T(e:) - vA(v, v, e:) (3.11) 

which can be interpreted as a nonlinear elastic/plastic material. Conse

quently, the material parameter A is associated with constitutive behavior 

of the microstructural media based upon the local volume distribution but 

neglecting distribution gradients. Wave propagation studies for this case 

reduce to the classical one-dimensional plastic wave motion analyses (see 

Cristescu, Reference 19). 

(2) Homogeneous Elastic Case: 

For the reduction to linear elasticity, the volume distribution is taken 

to be unity, i.e., v = 1 • Hence, from Equation 3.11 

T- A(1, 1, e:) (3.12) 
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and for the 1 in ear elastic case, 

A ( 1 , 1 , e:) = Ee: (3.13) 

where E is the elastic modulus and is identical to the first order modulus 

previously defined in Equation 2.7 . Wave motion analysis for this case yields 

the well known results 

u - VE/p 

a - a
0 

- constant (3.14) 

Based upon this wave mot.ion analysis, a computer code* was developed to 

handle any of three volume distribution functions given by Equations 3. 1-3 . 3. 

The constitutive form incorporates Equation 2. 6, with specific values for the 

two material funct .ions A and a to be input by the user . The code uses 

general techniques of numerical i ntegration using four-point Gauss quadrature 

to calculate the necessary tntegrals for computation of the average wave 

speed, see Equations 2. 15 and 2. 16 . In addition, a fourth or der Runge-Kutta 

scheme is used to solve the nonlinear amplitude Equat i.on 2. 11. Thus , the 

basic features of the code were to calculate the wave speed and amplitude 

(particle acceleration) at various pos i tions and times. 

Typical results of the code are shown in Figures 3. 6-3 . 14 . The first set 

of figures (Pigures 3. 6-3.8) , illustrates results using the periodic volume 

distribution function given by Equation 3. 1. Recall this distribution func

tion was shown in Pigure 3.1 . The spec i fic material parameters for these 
_It 2 It 

results are va - 0. 85 , R. - 0 . 1 in , Yo - 2. 4 X 1 0 1 b-sec I in , 
9 5 2 

a - -450 lb , a - 1 X 10 lb , A - 3 X 10 1 b/ in , e: e:e: e: 
8 

A = -1 X 10 lb/in 2 
• This material will be referred to as Material P1 . 

e:e: 
The actual wave speed behavior shown in Figure 3. 6 varies periodically , as 

given by Equation 2. 13 . However, the average wave speed will oscillate 
• 

initially and then approach a constant value, as shown in Figure 3. 7. The 

behavior of the amplitude ratio (normalized by ao ) is shown in Figure 3 . 8 

* The computer code is referred to as MIC1D. 
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and illustrates the expected effect of the initial amplitude on the attenua

tion ratei i.e., the higher a
0 

, the larger the attenuation. 

Figures 3.9-3.11 show the corresponding results for the exponential 

volume distribution specified in Equation 3.2 and shown in Figure 3.3. 

Material parameters for th.is case are o 65 \)b - • , 
-4 2 .. 

Y 
0 

- 2. 4 x 1 0 1 b- sec I in 
• 6 

= -8 X 10 lb , 
5 2 2 

a 
EE 

2 

= 4.8 X 10 

A - 3 X 10 lb/.in 
E ' 

A 
EE 

- -1.0 1 b/ in , B = 10 in /lb, 
-2 3 

8 

1 b , 

Y = 7.2 x 10 lb/in • This material will be referred to as Material E1 . 

The wave speed (shown in Figures 3. 9 and 3.1 0) .is now a monotonically 

increasing function with depth X since the porosity is decreasing in that 

direction. Furthermore, the amplitude behav.ior shown in Figure 3.11 illus

trates a much less pronounced attenuation rate when compared with the periodic 

volume distribution results in Figure 3.8. The reason for this behavior is 

the fact that, for the exponential distribution function, the material 

response rapidly approaches with depth that of an elastic material. 

Finally, results of using the combined periodic-exponential volume 

distribution function given by Equation 3.3 are shown in Figures 3.12-3.14. 

Again, this particular distribution function was shown previously in 

Figure 3.4. Model parameters for this case are va = 0.992 , vb- 0.65 , 

R. -

B -

A 
EE 

0.06 in , Yo 
2 

30 in /lb 
' 

2 

= -750 1 b/in 

-

a 
E 

• 

10-4 2 

2.4 X lb-sec /in 
5 

- -3 X 10 lb , a 
EE 

It 

, y -

- 5 X 1 0 

7.2 X 

8 

lb , 

1 0-2 1 b/ in 
3 

, 

5 2 

A = 3 X 1 0 1 b/ in 
E 

This material will be referred to as Material PE1. 

, 

Results for wave speed and amplitude attenuation indicate combined features of 

each of the two previous distribution functions. 

Additional features to calculate particle velocity and displacement, 

stress, wave profile behavior, and probabilistic effects were also added to 

the basic code. These developments are discussed in the next two sections. 

3.4 WAVE PROFILE ANALYSIS 

This section describes the efforts to extend the basic theory to predict 

wave profile behavior where the wave would have a definite rise time. This 

situation requires that consideration be given to a train of waves moving 

together. The previous modeling of treating a wave as a singular surface of 

zero thickness and duration must be modified. Figure 3.15 illustrates the 
r 
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procedure of constructing a profile from a series of impulsive singular waves. 

The central complication in this procedure is the fact that wave analyses are 

required for the cases of waves traveling behind one another . What this means 

is that, with the exception of the leading wave, all waves will be moving into 

media which are undergoing non-stationary deformation. If the wave is mov.tng 

into a region which is not at rest in its reference configuration, then the 

analysis for the wave speed and the amplitude attenuation will be greatly 

complicated. 

A simple example of this complication may be seen from the wave speed 

relations given in Equation 2.9. The velocity of propagation was given by an 

equation containing terms 

)+ + )+ 
( vT )+ (h + 

(hf) (T 
2 2 vX 

(~) 
\)X 

cl 
e: 

c2 a (3.15) - , - , - - ·--2--
povo Po k \)0 k Po 

with T + , h + and T + being moduli. evaluated immedi. at ely in front of the 
e: vX \)X 

• and where T aT h ah , and T aT Clear•ly, g1ven wave - a£ , -
a\)x 

-
avx • £ vX \)X 

state of the material ahead of the wave as specified by the terms 
+ T , 
e: 

the 

+ T will have a complicating effect on the calculation of the wave speed. 
\)X 

Note that the quantity a will vanish if the wave is moving into a region 

which is stress free. The state of affairs is considerably worse for the case 

of the wave amplitude analysis where the coefficients of Equation 2.11 become 

quite long and complicated functions of the deformation state in front of the 

wave. 

It was decided that, in 1 ight of the time restrictions of the current 

investigation, the analysis of constructing a profile from a group of travel

ing waves be made under the simplifying assumption that the propagati.onal 

characteristics of each wave depend solely upon the volume distribution at the 
• 

wave front. This volume distribution, in turn, depends upon the current 

stress state at the wave front. What this means is that waves traveling 

behind the leading wave will feel a different material caused by the change of 

stress due to all previous waves. 
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In order to employ this modeling concept, a method to compute the stress 

associated with a singular surface wave must be developed. Recall that the 

amplitude of the wave was originally defined as the jump in the media acceler

ation, i.e., 

•• • •• - .• + 
(3.16) a - [x] = X - X 

•• 

where 
.. + 
X and x are the limiting values of the acceleration just ahead of 

and behind the singular surface wave. The equation of motion was given by 

•• 

p X 
0 

ar - ax + Pob (3.17) 

where T is the stress and b is the body force which is continuous every-

where. \ 

Using the basic definition for Equation 3.16, we evaluate the jump of 

Equation 3.17 across a typical wave 

•• 

P [x] 
0 

_ [ ar J + P [b J ax o 

which, if the body force is continuous, can be written as 

and, thus, we can write an expression for the stress gradient behind a given 

wave in terms of the gradient in front of the wave as 

(3.18) 

Next, by using a simple differencing scheme 

T - T 
n+1. n (3.19) 

(!J.X)n 

and so, 

(3.20 ) 

, 
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Finally, combining Equations 3.18 and 3.20 gives 

T = T + [v r a + (1!)+](6X) 
n+1 n 0 0 n ax n n 

( 3 0 21 ) 

Hence, if we know the stress at one wave Tn , we can compute the new value 

Tn+l at the next wave. 

As an example to implement this theory, consider the 4-wave profile as 

shown in Figure 3.16. The stress values for this case using Equation 3.21 

follow to be 

T 1 - T - 0 
0 

ar + 
T.. - T 3 + [ v 

0 
Y 

0 
a 3 + (ax) 3 ] ( !1X 3 ) 

v r a 1 (6X 1) 
0 0 

For the general case with n > 1 , the stress is given by 

(3.22) 

(3.23) 

Now, since it is expected that t~e stress will affect the microstructure, 

we postulate that there must be some relationship between the average volume 

distribution function v and the stress T , i.e., 

v = v(T) (3 . 24) 
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-With little or no stress v = vo 

positive), one would assume that 
and as the stress increases (compression 

v ~ 1 . Figure 3.17 illustrates such 
behavior for a typical sandy soil. Based upon these ideas, the quantity 

va in the periodic distribution forms was modified as a function of the stress 
by the relation 

• 

-MT - v ) e a 
0 

(3.25) 

where va is .its reference _value and M is a material constant. This 
0 

simplified approach is essentially varying porosity with stress to predict 

wave coupling effects. Th.is should be regarded as an approximate technique 

since Equation 3.25 might not be strictly compatible with the basic constitu

tive form (Equation 2.6). 

Equation 3.25 was then placed into the code to provide an approximate 

means to calculate the wave propagational characteristics of waves traveling 

behind each other. Of course, an uncoupled theory would be generated by 

specifying M ~ 0 which gives v = v and, thus, all waves will travel a a 
0 

independent of one another. By .input i ng a number of waves of various initial 

amplitudes with equal initial time spacings 

tion versus time) for various depths can be 

the stress profile can also be constructed. 

ll t , a wave profile (accel erao 
constructed. With Equation 3.23, 

Finally, from the acceleration 

profiles, the velocity and displacement profiles were calculated. These 

profile constructions are contained within the code. Figures 3.18-3.21 illus

trate some typical profiles for the periodic volume distribution case using 

model parameters of Material P1. These results are for the uncoupled case 

M = 0 • 

3.5 PROBABILISTIC CONSIDERATIONS 

The purpose of a probabilistic analysis is to develop a method by which 

the variability or uncertainties in the independent (input) parameters in a 

particul~ problem can be evaluated or estimated in terms of their effects on 

the dispersion of the dependent (output) variables. An extremely useful 

procedure for determining the moments of a dependent variable in terms of 

functions of the moments of its independent variables was developed by Rosen

blueth (Reference 73). The Rosenblueth procedure is quite versatile and is 

not pound by the restrictions often imposed on other moment generating 
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procedures, such as the method of partial derivatives. 

related to two random variables X1 and X2 , i.e., 

y - y (X 1 ' X 2) 

If Y is functionally 

(3.26) 

and, if X
1 

and X2 are uncorrelated and their probability distribution func

tions are symmetrical, then, according to the Rosenblueth procedure, the 

expected value of Y , E(Y) , and variance of Y , V(Y) , can be estimated 

from the following expressions 

E(Y)- (1/4) (Y++ + Y+- + Y-+ + Y ) (3.27) 

2 2 

V ( Y) - E ( Y ) - [E ( Y)] (3.28) 

where 

2 ++ 2 +- 2 -+ 2 -- 2 
E(Y ) - (1/4) [(Y ) + (Y ) + (Y ) + (Y ) ] 

and 

(3.30) 

In Equation 3.30, X1 and X2 are the expected values of the random 

variables X 1 and X2 , respectively. Similary, 

standard deviations of the random variables X1 

and ox
2 

are the 

It should be noted 

from Equations 3.27-3.30 that the expected value and the variance of Y can 

be calculated from four ( 22 ) "pot nt est tmates" of the function Y , as s t i pu

lated by Equation 3.30. Each of these point estimates can be viewed as a 

"deterministic calculation" using the dependent random variable Y • The 

above system of equations can readily be generalized to n random variables 

requiring 2n point estimates. 

A major advantage of the Rosenblueth procedure over the Monte Carlo 

method can now be realized when comparing the number of deterministic calcula

tions required to determine the moments of the random variable Y . For 

example, in the case of three random variables, the Rosenblueth procedure 
3 

requires 2 = 8 calculations. The Monte Carlo method, on the other hand, 

may require several hundred calculations. It should also be pointed out that 
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the Rosenblueth procedure is capable of handling correlated input random 

variables (Reference 73) and nonsymmetrical probability distribution functions 

(Reference 74), if such parameters are known .in a problem. 

For the purpose of the present investigation, it will be assumed that the 

input random variables are uncorrelated and their probability distribution 
• 

functions are symmetrical. The assumption is motivated by the fact that the 

exact nature of these parameters is seldom known. Therefore, .in the subse

quent analysis, Equations 3.27-3.30 will be used for probabilistic wave propa

gation analyses. 

W.ith E(Y) and V(Y) known, the value of the function at one standard 

deviation above (Y+) and below (Y-) its mean value can be determined from the 

following relation: 

y± - E(Y) + [V(Y)]~ (3.31) 

We can · now proceed to apply the Rosenblueth procedure to the wave propa

gat.ion theory developed in the previous sections in order to account for the 

randomness in the parameters t and va • In this connection, we will denote 

t and va as the expected values of these variables and at and av as 
a 

their standard deviat .ions. The values of these variables at one standard 

deviation above (P) and below (M) their mean values then become 

Four deterministic wave 

four possible combinations of 

tp -

t - a 
t 

p 
va - va + 

M 
v - va -

a 

propagation 
tp , tM , 

a 
v a 

a 
v 

(3.32 ) 
a 

calculations are conducted for the 

P and vM , as stipulated by 
va a 

Equation 3. 30. The output from these calculations is combined at successive 

times (at a selected depth) according to Equations 3.27-3.29 to calculate the 

expected value and the variance of each of the dependent variables (accelera

tion, velocity, stress, etc.). Equation 3.31 can then be used to construct 
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the time histories of the expected value and the one-standard-deviation bounds 

of these variables. The computer code has been developed to also allow such 

probabilistic calculations to be made. To process the results, the program 

first calculates an expected value for the arrival time of the wave at any 

selected depth using the arrival time data from the four individual determin

istic calculations. The program then translates (shifts) all the waveforms to 

this common arrival time for processing. Figures 3.22-3.24 illustrate some 

typical probabilistic results for the acceleration, stress and velocity. Each 

figure shows the expected value and the one-standard-deviation bounds for each 

wave form. 

' 

• 

26 



t:: 
0 .,.. 
+J 
(.) 

t:: 
;::l 
~ 

t:: 
0 .,.. 
+J 
;::l 

~ 
~ 
+J 
Cl) .,.. 
A 
<1) 

§ 
........ 
0 
:> 

1 .00 

0.95 

\ 

0.90 

0.85 

0.80 

0.75 

0.70 

0.65 

0.60 

0.55 

0.50 

0.00 

• 

0.50 1 .00 

Distance (in) 
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Some Typical Two-Dimensional Bulk "Voronoi Cells" 

Cellular 

Structure 

• 
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• 
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1 

2 
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5 

Figure 3.2. Typical two-dimensional Voronoi cells; Reference 77. 
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CHAPTER 4 

PARAMETRIC STUDIES 

4. 1 GENERAL 

This chapter will present a varieby of typical results from the developed 

computer code, MIC10. Depending upon which volume distribution function is 

used in the modeling, a wide variety of predicted output can result by varying 

particular constitutive, microstructural, and input 

tive parameters in the wave propagation theory are 

parameters. The cons t i tu-

a , a A , and e: e:e: , e: 
A • The m.icrostructural parameters are e:e: va ' vb ' 

The input parameters are a and 6t • Y , and M • 
0 0 

1 , B , Y
0 

, 

For the purpose of the 

parametric calculations, the numer.ical values of the constitutive parameters 

were kept ,constant for each of the three volume distribution functions that 

were u~ed. The parametric calculations concentrated only on the variation in 

the microstructural and input parameters. In principle, however, the const.i

tutive parameters would be a function of the microstructural parameters (see 

Equation 2.6). Explicit relationships for these parameters have not yet been 

determined. Space limitations in this report preclude presenting many cases: 

consequently, only major model parameters will be considered. The chapter is 

divided into three major sections dealing with (1) depth dependent behavior, 

(2) wave profiles, and (3) probabilistic profiles. Subsections within each of 

these sections then present specific effects of parametric variation. 

4.2 DEPTH DEPENDENT BEHAVIOR 

This section will present the effects of the microstructural and input 

parameters on the variation of the average wave speed and amplitude attenua

tion with depth. These wave propagational characteristics are for the case of 

a single wave moving into regions which are at rest in their reference config

urat i. on. 

4.2.1 Periodic Volume Distribution Case 

For the periodic distribution model, the microstructural parameters are 

the average porosity va and the grain or characteristic length 1 . The 

basic input parameter is the initial amplitude a0 • A typical volume distri

bution plot for this case is shown in Figure 3.1. Figures 4.1-4.6 illustrate 

typical code output for a variety of parametric variations. Figure 4.1 .. 

51 



presents the variation of average wave speed with va . As expected, the 

average wave speed decreases with increasing porosity (i.e., decreasing va ). 

Figure 4.2 shows that the wave speed will increase as i increases. This 

result is apparently related to the fact that, with an increase in i , the 

wave will see fewer microstructural changes per unit length of travel and, 

Figure 4.3 illustrates the amplitude behavior for hence, less dispersion. 

three different initial amplitudes , 
3 

a = 5 x 10 
0 

, 
~ ~ 

1 x 1 0 , and 5 x 1 0 
2 

in/s . Clearly, the expected result can be seen in 

that higher i.ni tial amplitudes decay faster than the lower amplitude waves. 

F'igure 4.3, in conjunction with Figures 4.4 and 4.5, portray the effect of 

va on amplitude attenuation. 

strongly dependent on va . As 

rate of attenuation increases. 

It is observed that the attenuation rate is 

va decreases (i.e., increasing porosity) the 

This result is also consistent with the varia-

ti on in wave speed with va shown in F'igure 4.1. Finally, Figures 4.6 and 

4.4 demonstrate the effect of i on amplitude attenuation. These figures 

.indicate that larger values of i result in less attenuation, which is 

consistent with the previous observation regarding the variation of wave speed 

with i . 

4.2.2 Exponential Volume Distribution Case 

The exponential volume distribution model contains the microstructural 

parameters of the free surface porosity vb and the depth rate of consolida

tion B . As before, the input parameter is the initial amplitude 

a
0 

• Figures 4.7-4.10 show typical results concerning the effects qf these 

parameters on the wave propagation variables. Figure 4.7 shows the variation 

of the volume distribution function with distance for two different values of 

vb . Figure 4.8 shows the effect of vb on the average wave speed. For this 

case, the wave speed increases with depth due to the overall decrease in 

porosity with depth. It is also apparent that an increase in porosity 

produces a slower wave speed. Figures 4.9 and 4.10 show the effect of vb 

and the initial amplitude on wave attenuation. These results give trends 

similar to the previous observations for the periodic distribution function. 

That is, higher initial amplitude waves attenuate faster and the attenuation 

rate increases with porosity. 

4.2.3 Periodic-Exponential Volume Distribution Case 

For the combined periodic-exponential distribution model, all four micro-
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structural parameters v v n and B t Th' 1 'th a ' b , "' , are pres en • 1s, a ong wt 

the initial ampl.itude a0 , provides considerable parameter variations. Only 

a portion of the possible parametric variations will be presented, and these 

are shown in Figures 4.11-4.14. Figure 4.11 illustrates the variation of 

volume distribution function with distance for this model for two different 

" values of vb . This combined function has both oscillatory and monotonic 

depth-dependent features, Figure 4.12 shows the effect of vb on the average 

wave speed. Figures 4.13 and 4.14 show the effect of the initial amplitude 

and vb on wave attentuation. These results portray the same trends as 

observed in the previous sections. 

4.3 WAVE PROFILES 

Time profiles of the particle acceleration, velocity, and displacement, 

along .wit~ the stress at selected depths into the medium, are presented in 

this section. The profile construction procedure was discussed earlier in 

Section 3.4. Only results from the periodic volume distribution case 

(corresponding to model Material P1) will be presented; however, the other 

volume distributions will produce similar results. Referring to the wave 

coupling aspects discussed in Section 3.4, see Equation 3.25, this section 

will present both uncoupled (M = 0) and coupled results (M ~ 0). The input 

acceleration profile used equal time spacing of 

cases presented here. 

4.3.1 Uncoupled Results 

_6 

6t = 4 X 10 s 
0 

for all 

Figures 4.15-4.18 illustrate uncoupled results f or the four prof i l es at 

two different depths, X = 0.0 in , X = 2.5 in , and X = 6 in . The input 

acceleration wave is shown in Figure 4.15 corresponding to X= 0.0 in. It 

should be pointed out that, for this case, all individual waves in a given 

profile propagate independently of each other. However, as discussed earlier, 

in a given profile higher amplitude waves attenuate faster than the l ower 

amplitude waves. 

4.3.2 Coupled Resul ts 

For the coupled case, Equation 3.25 is in effect and the parameter M 

plays a significant role in determining the amount of coupling. The wave 

profile results for the coupled case 
2 

value of M = 0.04 .in /lb and with 
' 

are shown in Figures 4,1q-4.22 for a 

= 0.85 . Coupling effects through 
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variation of v (see Equation 3.25) for the periodic distribution case will 
a 

produce less attenuation than the corresponding uncoupled results. This 

occurs since increases in va produce a material with less average porosity 

and, hence, dispersive effects will be reduced. 

4.4 PROBABILISTIC PROPILES 

This final section shows results of some typical probabilistic computer 

runs. The theoretical development was discussed previously in Section 3.5. 

The probabilistic results consisting of the expected value and the one

standard-deviation bounds of particle motion and stress are shown in 

Figures 4.23-4.26 for the case of zero coupling. These results correspond to 

model Material PE1 (the combined periodic-exponential volume distribution 

case). Only the parameter i was considered to be random for these 

calculations. Therefore, the dispersion in the output quantities is only due 

to uncertainties in i . 
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CHAPTER 5 

SUMMARY AND RECOMMENDATIONS 

5.1 SUMMARY 

A one-dimensional computer program~(referred to as MIC1D) has been 

developed for analyses of explosive wave propagation in granular materials 

with microstructure. The theoretical foundation of the computer program is 

based on the distributed body concept advanced by Goodman and Cowin 

(Reference 31) and the associated wave propagation studies conducted by 

Nunziato, Walsh, et al. (References 57-63). The computer program allows for 

(1) arbitrary surface airblast loading, (2) depth-dependent volume distribu

tion function simulating gravity effects in a granular mass, and (3) treatment 

of grain s~ze and local porosity as random variables. Three forms of depth

dependent volume distribution functions are incorporated in the program, i.e., 

a periodic form, an exponential form, and a combined periodic-exponential 

formulation. The user can select any of these forms for the particular 

application at hand. Probabilistic treatment of grain size and local porosity 

is accomplished by using a moment-generating procedure due to Rosenblueth 

(Reference 73). The computer program calculates the expected value and the 

variance of the output quantities, such as stress, particle motion, etc., due 

to the randomness in these variables. 

Application of the computer program is demonstrated by presenting the 

results of a series of parametric calculations dealing with propagation of 

acceleration waves in granular media. It is shown that, within the range of 

variables studied, local porosity and grain size characteristics (which are 

reflected in the microstructural parameters va , 

play an important role in wave attenuation in such 

vb , B , 

materials. The 
Yo ' Y) 
effect of 

grain size parameter i on wave attenuation during short propagation 

distances (less than a hundred grains) is interesting and requires experimen

tal verification. 

5.2 RECOMMENDATIONS 

several recommendations are made for further development in the analyti

cal aspects and for the experimental validation of the present work. First, 

the wave propagation model should be validated with an experimental setup that 

captl.¥'es the dynamic load transfer and wave motion across several grain 
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boundaries. This can be accomplished via dynamic photoelasttctty as descfibed 

by Rossmanith and Shukla (Reference 75). For example, the dynamic photoelas

tic laboratory at the University of Rhode Island can take data at a rate of 

106 frames/sec. It is possible to measure wave speed and amplitude attenua

tion as the dynamic loads are transferred across a finite number of particles. 

Second, the coupling effects for constructing wave profiles from a group of 

traveling waves should be examined further. In the present formulation, the 

coupling effects due to spatial redistribution of local porosity as the waves 

propagate through the medium were neglected. The consequence of this 

assumption needs to be examined. Third, in the present study the constitutive 

moduli were taken to be constant, but, in actuality, they depend on the basic 

microstructural parameters. Attempts should be made to relate these moduli to 

some basic microstructural variables of the granular medium. Studies in 

fabric tensor models proposed by Oda, Nemat-Nasser, et al., (Reference 67) may 

prov.ide some direct.ion for developing the desired relationships. Fourth, the 

probabilistic analysis in this study was only relevant to the periodic aspects 

of the volume distribution model since only 

v and 1 were treated as random variables. The present probabilistic a 
analysis should be extended to treat vb .tn the exponential distribution 

model also as a random variable. Finally, the wave propagation model should 

be extended to two-dimensional geometry. The variation in local porosity in 

two dimensions can then be incorporated in such a formulation without recourse 

to a probabilistic analysis. 

82 



REF'E RENCES 

1 • 
for 
Vol 

Atkin, R. J .• ' Cowin, S.C., and Fox, N. 1977. "On Boundary Conditions 
Polar Materlals," Journal of Applied Mathematics and Physics (ZAMP), 
28, pp 1017-1026. 

2. Bazant, Z. P., Krizek, R. J., and Sheih, c. L. 1983. "Hysetertic 
Endochronic Theory for Sand," Journal of Engineering Mechanics, Vol 109, 
pp 1073-1095. 

3. Bleich, H. H., Matthews, A. T., and Wright J. P. 
on the Surface of a Half-Space of Granular Material," 
Solids and Structures, Vol 4, pp 243-286. 

1968. "Mov.ing Step Load 
International Journal of 

4. Brandt, H. 1955. "A Study of the Speed of Sound of Porous Granular 
Media," Journal of Applied Mechanics, Vol 22, pp 479-486. 

5. Brown, J. W., Murnell, D. W., and Stout, J. H. July 1980. 
of Explos\ve Shock Through Rubble Screens," M.iscellaneous Paper 
Army Engineer Waterways Experiment Station, Vicksburg, MS. 

"Pro paga t.ion 
SL-80-7, US 

6. Butcher, B. M., Carroll, M. M., and Holt, A. C. 1974. "Shock Wave 
Compaction of Porous Alum.inum," Journal of Applied Physics, Vol 45, pp 3864-
3875. 

7. Carroll, M. M., and Holt, A. C. 1972. "Suggested Modification of the 
P-a Model for porous Materials," Journal of Applied Physics, Vol 43, pp 759-
761 . 

8. Carroll, M. M., and Holt, A. C. 1972. "Static and Dynamic Pore-Collapse 
Relations for Ductile Porous Materials," Journal of Applied Physics, Vol 43, 
pp 1626-1636. 

9. Chambre, P. L. 1984. "Speed of a Plane Wave in a Gross Mixture," Journal 
of the Acoustical Society of America, Vol 26, pp 329-331. 

10. Chen, P. J. 1984. "Growth and Decay of Waves in Solids," Mechanics of 
Solids, Vol III, Springer, pp 303-401. 

11. Christoffersen, J., Mehrabadi, M. M., and Nemat-Nasser, S. 1981. "A 
Micromechanical Description of Granular Material Behavior," Journal of Applied 
Mechanics, Vol 48, pp 339-344. 

12. Cowin, s. 1974. "A Theory for the Flow of Granular Materials," Powder 
Technology, Vol 9, pp 61-69. 

13. Cow.in, s. c. 1974. "Constitutive Relations That Imply a Generalized 
Mohr-Coulomb Criterion," Acta Mechanica, Vol 20, pp 41-46. 

14. Cowin, s., and Goodman, M. A. 1976. "A Variational Principle for 
Granular Materials," Journal of Applied Mathematics and Physics (ZAMP), 
Vol 56, pp 281-286. 

83 



1 5. Cow.i n, 
Materials," 
S tat i s t i cal 
170. 

s. 1978. "M.icrostructural Continuum Models for Granular 
Proceedings of US-Japan Seminar on Continuum Mechanical and 
Approaches in the Mechanics of Granular Materials, Tokyo, pp 162-

. 
./ 

16. Cowin, s. C., and Satake, M. June 1978. "Continuum Mechanical and 
Statistical Approaches in the Mechanics of Granular Materials," Proceedings of 
US-Japan Seminar, Gakujutsu Sunken Fukyu-Kai, Tokyo. 

17. Cowin, S. C., and Lesl te, F. M. 1980. "On Kinetic Energy and Momenta in 
Cosserat Continua," Journal of Appl ted Mathematics and Physics (ZAMP), Vol 31, 
pp 247-260. 

18. Cowin, S., and Nunziato, J. 1983. "L.inear Elastic Materials with 
Voids,'' Journal of Elasticity, Vol 13, pp 125-147. 

19. Cristescu, N. 1967. Dynamic Plasticity, North Holland. 

20. Cundall, P., Hartt, J., Beresford, P., Last, N., and Asgian, M. 
1978. "Computer Modelling of Jointed Rock Masses," Technical Report 
US Army Engineer Waterways Experiment Statton, Vicksburg, MS. 

August 
N-78-4, 

21. Cundall, P. A., and Strack, D. L. 1979. "A Discrete Numerical Model for 
Granular Assemblies," Geotechnique, Vol 29, pp 47-65. 

22. Deresiew.icz, H. 1958. "Mechanics of Granular Matter," Advances in 
Applied Mechanics, Vol V, Academic Press Inc • 

. 
23. Drescher, A., and De Josselin DeJong, G. 1972. "Photoelast.ic 
Verification of a Mechanical Model for the Flow of a Granular Material," 
Journal of the Mechanics and Physics of Solids, Vol 20, pp 337-351. 

24. Drescher, A. 1979. "Application of Photoelasticity to Investigation of 
Const.itutive Laws for Granular Materials," Procee dings of IUTAM-Symposium on 
Optical Methods in Solid Mechanics, Poltiers, France. 

25. Drumheller, D. s. 
Using a Mixture Theory," 
14, pp 441-456. 

1978. "The Theoretical Treatment of a Porous Solid 
International Journal of Solids and Structures, Vol 

26. Duffy, J., and M.indlin, R. D. 1957. "Stress-Strain Relations and 
Vibration of a Granular Medium," Journal of Applied Mechanics, pp 585-593. 

27. Durelli, A. J., and Wu, D. 1983. "Use of Coeffic.ients of Influence to 
Solve Some Inverse Problems in Plane Elasticity," Journal of Applied . 
Mechanics, Vol 50, pp 288-296. 

28. Endley, S. N., and Peyrot, H. 1977. "Load Distribution in Granular 
Med.ia," Journal of the Eng.ineering Mechanics Divis.ion, pp 99-111. 

29. Fletcher, E. H. 1971. "Random Walk Model of Ideal Granular Mass," 
Journal of the Soil Mechanics and Foundations Division, American Society of 
Civil Engineers, Vol 98, No. SMIO, Proceedings Paper 8444, pp 1379-1392. 

84 



30. Fu, L. S. 1?84. "A New Micro-Mechanical Theory for Randomly 
Inhomogeneous Med1a," Wave Propagation in Homogeneous Medi. a and Ultrasonic 
Non-Destructive Evaluation, AMD Vol 62 Ed G c J h A · · t 
of Mechanical Engineers. 

, , • • . o nson, mer1can Soc1e y 

31. Goodman, M.A., and Cowin, S.C. 1972. "A Cont.inuum Theory for Granular 
Materials," Archive for Rational Mechanics and Analysis, Vol 44, pp 249-266. 

32. Garg S. K., Brownell, D. H., Pritchett, J. W., and Hermann, R. G. 
1975. "Shock Wave Propagation in Flu.id-Saturated Porous Media," Journal of 
Applied Physics, Vol 46, pp 702-713. 

33. Gassman, F. 1951. "Elastic Waves Through a Packing of Spheres," 
Geophysics, Vol 16, pp 673-685. 

34. Hendron, A. J., Jr. July 1963. "The Behav.ior of Sand .in One-D.imensional 
Compression," Ph.D. Dissertation, University of Illinois. 

35. Herrmann, W. 1969. "Constitutive Equation for the Dynamic Compaction of 
Ductile Pqrous Materials," Journal of Applied Physics, Vol 40, pp 2490-2499. 

36. Hill, J. M., and Harr, M. E. 1982. "Elastic and Particulate Media," 
Journal of the Engineering Mechanics Division, American Society of Civil 
Engineers, Vol 108, pp 596-604. 

37. Hsieh, L., and Yew, C. H. 1973. "Wave Motions in a Fluid Saturated 
Porous Medi urn," American Society of Mechanical Engineers Paper No. 73-APMW-1 6. 

38. Hudson, J. A. 1968. "The Scattering of Elastic Waves by Granular 
Media," Quarterly J ournal of Mechanics and Applied Mathematics, Vol 21, 
pp 487-502. 

39. Hughes, D. S., and Cross, J. H. 1951. "Elastic Wave Velocities in Rocks 
at High Pressures and Temperatures," Geophysics, Vol XVI No. 4, pp 577-593. 

40. Hughes, D. S., and Kelly, J. L. 1952. "Variation of Elastic Wave 
Velocity with Saturation in Sandstone," Geophysics, Vol 17, pp 739-752. 

41. Iida, K. 1939. "The Velocity of Elastic Waves in Sand," Bulletin 
Earthquake Research Ins titute, Vol 17, pp 783-807. 

42. Iida, K. 1939. "Velocity of Elastic Waves in a Granular Substance," 
Bulletin Earthquake Research Institute, Japan, Vol 17, PP 783-808. 

G hr tt J. Q., and Rohani, B. 1980. "Loading Rate 43. Jackson, J. ., E go , 
Effects on Compressibility of Sand," Journal of the Geotechnical Engineering 
Division, American Society of Civil Engineers, Vol 106, PP 839-852. 

44. Jenkins, J. T. 1975. "Static Equilibrium of Granular Materials," 
Journal of Appl~ed Mechanics, Vol 42, pp 603-606. 

r 

' 

85 



45. Jenkins, J. T., and Satake, M. August 1982. "Mechanics of Granular 
Materials-New Models and Constitutive Relations,' Proceedings of US-Japan· 
Seminar on New Models and Constitutive Relations in the Mechanics of Granular 
Materials, Elsevier-; Cornell University. 

46. Junger, M. c. 1981. "Dilational Waves tn an Elastic Solid Containing 
Lined, Gas Filled, Spherical Cavities," Journal of the Acoustical Soc.iety of 
America, Vol 69, pp 1573-1576. 

47. Kipp, M. E., and Lawrence, R. J. June 1982. "WONDY V-A One-Dimensional 
Finite-Difference Wave Propagation Code," Sandia Laboratories Report SAND18-
0930. 

48. Krizek, R. J. 1971. "Rheolog.ic Behavior of Cohesionless Soils Subjected 
to Dynamic Load," Transactions. Society of Rheology, Vol 15, pp 491-540. 

49. Kuo, C. L. May 1983. "Modeling of Dynamic Deformation Mechanisms for 
Granular Material," Ph.D. Dissertation, University of Massachusetts. 

50. Lin, H. C., and Wu, H. C. 1976. "Strain Rate Effect in the Endochronic 
Theory of Viscoplasticity ," Journal of Applied Mechanics, Vol 43, pp 92-96. 

5 1 . M al , A • K • , and Bos e , S • K • 
Suspension of Imperfectly Bonded 
Philological Society, Vol 76, pp 

1974. "Dynamic Elastic Moduli of a 
Spheres," Proceedings of Cambridge 
587-600. 

52. Morland, L. W. 1976. "Elastic Anisotropy of Regularly Jointed Media," 
Rock Mechanics, Vol 8, pp 35-48. 

53. Mroz, A. 1980. "Deformation and Flow of Granular Materials," IUTAM 
Conference Proceedings, pp 119-132. 

54. Mullenger, G. 1978. "A Condition for a Continuum Model of Granular 
Structure," Proceedings of US-Japan Seminar on Continuum Mechanical and 
Statistical Approaches in the Mechanics of Granular Materials, Tokyo, pp 282-. 
290. 

55. Nachl inger, R. R., and Nunziato, J. W. 1976. "Wave Propagation and 
Uniqueness Theorems for El as tic Materials with Internal State V ari abl es," 
International Journal of Engineering Science, Vol 14, pp 31-38. 

56. Nemat-Nasser, S., and Mehrabad.i, M. M. 1984. "Micromechanically Based 
Rate Constitutive Descriptions for Granular Materials," Mechanics of 
Engineering Materials, ed. Desa.i, C. s., and Gallagher, R. H., John Wiley. 

57. Nunziato, J., Walsh, E. 1977. "On the Influence of Void Compaction and 
Material Non-uniformity on the Propagation of One-Dimensional Acceleration 
Waves in Granular Materials," Archive for Rational Mechanics and Analysis, 
Vol 64, pp 299-316. 

58. Nun z i at o , J • , and Walsh , E • 
One-Dimensional Granular Solids," 
559-564. 

1977. "Small-Amplitude Wave Behavior in 
Journal of Applied Mechanics, Vol 44, pp 

86 



59. Nunziato, J.'w., and Yarrington, P. 1977. "A Continuum 
Materials with Application to Wave Propagation Calculations" 
Laboratories Report. ' 

Theory of Porous 
Sandi a National 

60. Nunziato, J. 1978. "The Propagation of Plane Waves tn Granular Media" 
Proceedings of US-Japan Seminar on Continuum Mechanical and Statistical ' 
Approaches in the Mechan.ics of Granular Materials, Tokyo, pp 291-300. 

61. Nunziato, J., Kennedy, J. E., andWalsh, E. 1978. "The Behavior of One
Dimensional Acceleration Waves in an Inhomogeneous Granular Sol.id," 
International Journal of Engineering Science, Vol 16, pp 647-648. 

62. Nunziato, J., and Walsh, E. 1978. "One-Dimensional Shock Waves in 
Uniformly Distributed Granular Materials," International Journal of Solids and 
Structures, Vol 14, pp 681-689. 

63. Nunziato, 
Materials with 
175-201. 

J d C . s 1 97 9 " • , an ow1n, . • A Nonlinear Theory of Elastic 
Voids,'' Archive for Rational Mechanics and Analysis, Vol 72, pp 

64. Nunziato, J., and Walsh, E. 1980. "On Ideal Multiphase Mixtures with 
Chemical Reactions and Diffusion," Archive for Rational Mechanics and 
Analysis, Vol 73, pp 285-311. 

65. Nunziato, J. 1983. "A Multiphase Mixture Theory for Fluid-Particle 
Flows," Theory of Dispersive Multiphase Flow, Academic Press. 

66. Nunziato, J. W. 1983-84. "Initiation and Growth-to-Deformation in 
Reactive Mixtures," Shock Waves in Condensed Matter, Eds. Asay, J. R., Graham, 
G. K., and Straub, G. K., Elsevier, pp 581-588. 

67. Oda, M., Nemat-Nasser, S., and Mehrabadi, M. M. 1982. "A Statistical 
Study of Fabric in a Random Assembly of Spherical Granules," International 
tJournal for Numerical and Analytical Methods in Geomechanics, Vol 6, pp 77-94. 

68. Passman, S. 1983. "Consequences of a Theory for Flowing Granular 
Materials," Mechanics of Granular Materials: New Models and Constitutive 
Relations, ed. by Jenkins and Satake, Elsevier, pp 255-260. 

69. Passman, s. L., and Batra, R. C. August 1984. "A Three-Dimensional 
Model for a Porous Elastic Anisotropic Solid with Inclusions, Taking into 
Account Dissipation, Heat Flux, Radiation and Thermal Stress," Sandia National 
Laboratories Report SAND84-0847. 

70. Read, H. E., and Valanis, K. C. 1979. "An Endochronic Constitutive 
Model for General Hysteretic Response of Sol ids," Final Report Research 
Project 810, Electric Power Research Institute, Palo Alto, CA. 

71. Rohani, B. July 1970. "Theoretical Studies of Stress Wave Propagation 
in Laterally Confined Soils," US Army Engineer Waterways Experiment Station 
Working Draft Report. 

' j 

I 

87 



12. Rohani, B., and Cargile, J. D. April 1q84. "A Probabil tsttc One
Dimensional Ground Shock Code for Layered Nonlinear Hysteretic Materials,-+' 
Miscellaneous Paper SL-84-6, US Army Eng.ineer Waterways Experiment Statton, 
Vicksburg, MS. 

73. Rosenblueth, E. 1q75. "Po.tnt Est.imates for Probabil tty Manents," 
Proceedings. National Academy of Sciences (USA), Vol 72, No. 10, pp 3812-
381 4. 

74. Rosenblueth, E. 1q81. "Two-Point Estimates in ProbabiLities," Appl ted 
Mathematical Modelling, Vol 5, pp 32q-335. 

75. Rossmanith, H. P., and Shukla, A. 1982. "Photoelasttc Investigation of 
Dynamic Load Transfer in Granular Media," Acta Mechantca, Vol 42, pp 211-225. 

76. Sadd, M. H. October 1q84. "A Preliminary Investigation of Wave 
Propagation in Granular Materials with Microstructure," Final Report, US Army 
Engineer Waterways Experiment Station, Vicksburg, MS. 

77. Shahinpoor, M. 1983. "Frequency Distribution of Voids in Randomly 
Packed Monogranular Layers," Mechanics of Granular Materials: New Models and 
Constitutive Relations, ed by Jenkins, J. T., and Satake, M., Elsev.ier. 

78. Soo, S. L. 1983. "Dynamic Interact.ions of Granular Materials," Advances 
.in the Mechanics and Flow of Granular Materials, Ed. Shahinpoor, M., Vol II, 
Trans. Tech. Pub., pp 675-698. 

79. Takahashi, T., and Sato, Y. 1 94q. 
Granular Substance," Bulletin Earthquake 
pp 11-16. 

"On the Theory of Elastic Waves in 
Research Institute, Japan, Vol 27, 

80. Toupin, R. A. 1 q64. "Theor.i es of Elas ti city wt th Couple-S tress," 
Archive for Rational Mechanics and Analysis, Vol 17, pp 85-112. 

81. varadan, V. K., varadan, v. V., and Ma, Y. August 1983. "Propagation 
\ 

and Scattering of Elast.ic Waves in D.iscrete Random Media," Proceedings of the 
20th Annual Meeting of Society of Engineering Science, University of Delaware, 
p 310. 

82. Vardoulakis, I. G., and Beskos, D. E. 1983. "On the Dynam.ic Behav.ior of 
Nearly Saturated Granular Media," Geomechanics, AMD-Vol 57, American Society 
of Mechanical Engineers Publications. 

·83. Vermeer, P. A., and Luger, H. J. September 1982. "Deformat.ion and 
Failure of Granular Mater.i als," IUTAM Symposi. um on Deformation and Failure of 
Granular Materials, Delft, A. A. Balkema. 

84. Z.ienkiewicz, 0. c., and Sh.iomi, T. 1984. "Dynamic Behav.ior of Saturated 
Porous Med.ia; The Generalized Blot Formulation and Its Numer.ical Solution,' 
International Journal for Numerical and Analytical Methods in Geomechanics, 
Vol 8, pp 71-96. 

88 



\ 

APPENDIX A 

WAVE PROPAGATION COMPUTER CODE 

r • 

A-1 



APPENDIX A 

WAVE PROPAGATION 
COMPUTER CODE 

J 

GLOSSARY OF MAJOR VARIABLE NAMES 

NAME 

A(N,J) 

Al(N , J) 

A2(N,J) 

A3(N,J) 

A4(N,J) 

AB(2J) 

AFF 

AFFF 

AM(2J) 

AP(2J) 

DEFINITION 

Acceleration array for N depths and J waves 

Acceleration a r ray fo r probabilistic calculations 

Acceleration array for probabilistic calculations 

Acceleration array for probabilistic calculations 

Acceleration array for probabilistic calculations 

Amplitude array for acceleration plotting 

a£' material constant 

a , material parameter 
££ 

Acceleration profile minus one- s tandard-deviation 

Acceleration profile plus one-standar d-deviation 

APLOT(2J , . ) Acceleration array for probabilistic plotting 

AR(N,J) 

BB 

Cl(N,J) 

C2(N,J) 

C3(N,J) 

DD(J, . ) 

DELTR 

DELX(N , J) 

DISP(N,J) 

DM(J) 

Normalized amplitude array 

\ 

B, power of exponential volume distribution function 

~ coefficient in amplitude equation 

K coefficient in amplitude equation 

Array for volume distribution function 

Particle displacement array fo r pr obabilistic 
plotting 

Initial time increment between input acceleration 
waves 

Distance between two consecutive waves . 

Array for particle displacement 

Particle displacement profile minus one-standard
deviation 
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DP(J) 

DPLOT(J) 

Dl(N,J) 

D2(N,J) 

D3(N,J) 

D4(N,J) 

EA(2J) 

ED(J) 

ENUAA 

ENUB 

ES(J) 

EV(J) 

EX 

FLFF 

FLFFF 

GG 

GL 

GO 

H 

J 

L 

M 

N 

NR 
• . . 

\ 

Particle displacement profile plus one-standard
deviation 

Displacement array for plotting 

Displacement array for probabilistic calculations 

Displacement array for probabilistic calculations 

Displacement array for probabilistic calculations 

Displacement array for probabilistic calculations 

Expected acceleration profile array 

Expected particle displacement profile array 

(va) 0 value of va in the reference state 

vb material function for exponential volume distri
bution· function 

Expected stress profile array 

Expected particle velocity profile array 

M, material constant in equation (3.25) 

A , material constant 
£ 

A , material constant 
££ 

Y, specific weight of the material used in equation 
( 3. 2) 

i, characteristic length for periodic distribution 
form (3.1) 

y
0

, weight density of the material 

i/40, interval measure for numerical integration 

Looping index for number of input waves 

Maximum limit of the looping parameter N for propa
gation depth 

Looping index for probabilistic calculations 

Looping index for depth incrementing 

Maximum number of runs for probabilist i c 
calculations. (NR=l yields deterministic case) 
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NV Value of looping parameter at a desired depth 

NW Number of i~itial input wave amplitudes used to 
construct a profile 

PSTRES(J) Array used for plotting of stress profile 

' J 

SIGNUA ova• the standard deviation for volume distribution 
parameter va 

SGL ot' the standard deviation for characteristic length, 
~ 

SM(J) Stress profile minus one-standard-deviation 

SP(J) Stress profile plus one-standard-deviation 

SPLOT(J,.) Stress array for probabilistic plotting 

STRES(N,J) Wave front stress array 

Sl(N,J) Stress array for probabilistic calculations 

S2(N,J) Stress array for probabilistic calculations 

S3(N,J) Stress array for probabilistic calculations 

S4(N,J) Stress array for probabilistic calculations 

TAVG(J) Average time for probabilistic run 

T(N,J) Time of propagation 

TSUM(N,J) 

TP(J) 

TPLOT(J) 

Tl(N,J) 

T2(N,J) 

T3(N,J) 

T4(N,J) 

Arrival time increment 

Time array used for profile plotting 

Time array used for profile plotting 

Time array for probabilistic calculations 

Time array for probabilistic calculations 

Time array for probabilistic calculations 

Time array for probabilistic calculations 

\ 

UBAR Average wave speed as calculated in subroutine 
Gauss 

UF(N) 

UGRN 

, 

Fast wave speed 

Initial wave speed on the free surface of the medium 
at X=O. Also equal to granule wave speed. 
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U(N,J) Average wave speed 

UREAL(N,J) Actual wave speed 

V(N,J) Particle velocity 

VM(J) Particle velocity profile minus one-standard
deviation 

VP(J) Particle velocity profile plus one-standard
deviation 

VPART(J) Particle velocity for profile plotting 

VV(J,.) Particle velocity array for probabilistic plotting 

Vl(N,J) Particle velocity array for probabilistic calcula-
tions 

\ 

V2(N,J) Particle velocity array for probabilistic calcula-
tions 

V3(N,J) Particle velocity array for probabilistic calcula
tions 

V4(N,J) 

X(N) 

YAM(J) 

r • . 

Particle velocity array for probabilistic calcula
tions 

Depth into the media 

Initial input amplitudes 
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MIClD 
WAVE PROPAGATION CODE 

FLOW CHART 

Choose v-Function From Menu 

1. Periodic 

2. Exponential 

3. Periodic-Exponential 

Read Data From File 

AFF,AFFF,BB,DELTR,ENUAA,ENUB 

EX,FLFF,FLFFF,GG,GL,GO,L,NR,SIGNUA,SGL 

Input Number of Wave 

Amplitudes NW and Their Magnitudes 

Choose Type of Solution 

1. Deterministic, NR=l 

2. Probabilistic, NR=4 

Probabilistic 

Loop Starts 

M - l,NR 
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Inpu1; Wave 

Loop Starts 

J - 1, NW 

Depth Incremen1; 

Loop Starts 

N - 1, L 

No 

- J>l -

• .. 

Calculate 

Distance Between Waves, DELX(N,J) 

Stress, STRES(N,J) 

Time Array, T(N,J) 

Call Subroutine GAUSS 

- Calculate Average Wave .. 
Speed, U(N,J) 

r 
• 
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• • 

-

Call Subroutine RUNKUT to Calculate 

Particle Acceleration, A(N,J) 

~-Coefficient, 

K-Coefficient, 

Volume Distribution, 

Actual Wave Speed, 

Cl(N,J) 

C2(N,J) 

C3(N,J) 

UREAL(N,J) 

Calculate Particle Velocity, V(N,J) 

and Displacement, D(N,J) 

J, 

No NR=4 • 

Yes 

Calculate Probabilistic Profiles 

of Expected Value and One -Standard

Deviation Bounds 

Call Graphics for Output 
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EXAMPLE RUN 

As an example of the use of the program MIC1D, a typical run 

will now be presented. The first prompt from the program which 

will appear on the CRT screen will be a menu for the type of 

volume distribution to b d i e use , • e. 

-·------·------------------------------------- -·- --
I 
I 
I 

CHOOSE THE TYPE OF VOLUME DISTRIBLJTION 
FUNCTION TO BE USED IN THE ANALYSIS FOR 
THE GRANULAR MEDIUM IN CONSIDERATION 

I 
I 
I 

-----------------------------------------------· 
ENTER THE PROPER SELECTION NUMBER PLEASE 

------------------------------------------------
'I 1. PER IO[t IC VOLUME [t ISTR IBUTON FUNCTION I 
I I 
I 2. EXPONENTIAL VOLUME DISTRIBUTION FUNCTION I 
I I 
I 3. PERIODIC-EXPONENTIAL COMBINED FUNCTION I 
-------------- -··-- -·-- -----------------------------

The user should respond with the appropriate choice. 

The name of the input data file is requested next through 

the prompt 

eNTER NAME OF THE DATA FILE. <NAME.DAT> 
PEOAT. 

The program requires ~he input data AFF, AFFF, BB, DELTR, ENUAA, 

ENUB, EX, FLFF, FLFFF, GG, GL, GO, L, NR, SIGNUA, SGL (see 

glossary for description of each of these quantities). The data 

is read in an unformated fashion, and a typical data file would 

look like 

r 

·-3.E5.5.E8~30.0,4.E-6,0.996,0.7,0.0,3.E5,-750.0,7.2E-2,0.1, 
2.4E-4,1000,l,O.O,Ou03 
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Depending upon which volume distribution that is selected and 

whether the run is deterministic or not, some of the input data 

will not actually be used. 

Next the number of initial wave amplitudes are requested by 

[NPUT NUMBER OE' INITIAL WAVE AMPLITUDES TO BE USED 

Finally the code requests the values of each of the initial 

input waves 

eNTER INITIAL VALUES OF THE WAVE AMPLITUDES 

The input is now complete and the code will print out all of 

this data so that the user can check to see if the input has been 

done correctly. A typical output of this step is shown below for 

the case of the previous data file and with three initial 

amplitudes 

£NPUT DATA 

AFF = -300000.0 
AFFF = 5.0000000E+08 
BB = 30.00000 
DELIR = 4.0000000E-06 
ENUAA = 0.9960000 
ENUB = 0.7000000 
EX = O.OOOOOOOE+OO 
FLFF = 300000.0 
FLFFF = -750.0000 
GG = 
GI.. = 
GO = 
L = 

7.1999997£-02 
0.1000000 
2.3999999E-04 

1000 

AMPLITUDE< 1> = 
AMPLITUDE< 2) = 
AMPLITUDE< 3> = 

O.lOOOOE+04 
0.50000E+04 
O.lOOOOE+05 

PRESS RETURN TO CONTINUE ••• 
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Once the ''return k '' ey has been depressed, the program will 

start its computation and the following will typically be seen on 

the screen 

P~OGRAM IS NOW RUNNING 

COMPUTATION OF DELTA X BETWEEN WAVES ENDS 
J= 2 
N= 944 
T<N,J>= 7.32GOOGOE-05 
MAXIMUM LIMIT = 7.3219308E-05 

COMPUTATION OF DELTA X BETWEEN WAVES ENDS 
J= 3 
N= 888 
T<N,J>= 7.322G4G7E-05 
MAXIMUM LIMIT = 7.3219308E-05 

\ 

The message concerning the computation of DELTA X is related to 

the theory in section 3.4 dealing with the stress calculations. 

This computation will stop before the completion of the entire 

N-loop, and this comment lets the user know when this occurs. 

The above example is for the case of three initial wave 

amplitudes with L=lOOO. 

When the code is finished with its calculations, the user is 

prompted with the following menu for output results 

CHOOSE THE TYPE OF GRAPHICS OPTION 

1. DETERMINISTIC PROFILE PLOT 

2. PROBABILISTIC PROFILE PLOT 

3. DEPTH DEPENDENT PLOT 

A-11 



Selecting for example item #3, depth dependent plots, the 

final plotting menu will appear. 

BNTER ITEM NUMBER FOR DEPTH DEPENDENT PLOT 

1. ACTUAL WAVE SPEED 

2. AVERAGE WAVE SPEED 

3. AMPLITUDE BEHAVIOR WITH DEPTH 

4. VOLUME DISTRIBUTION FUNCTION 

5. MU-COEFFICIENT 

6. KAPPA-COEFFICIENT 

7. NO GRAPHICS i.e. DATA OUTPUT IN A FILE 

Specifics on the final stages of plotting will not be given 

since these will be system and software dependent and thus will 

vary from system to system. An example output corresponding to 

the example input data shown previously, is given in Figure A.l. 
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VOLUME DISTRIBUTION FUNCTION 

1.00 

0.95 
\ 

0.90 

0.85 

o.eo 

0.75 

0.70 

0.65 

0.60 

0.55 

0.50 
o.oo 0.50 1.00 1.50 2.00 

Dept.h (in) 

Figure A-1. Plotted output for example r~n (continued). 
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AVERAGE WAVE SPEED 

40. 

35. 

30. 

25 . 

20 . 

15. 

, o. 

5. 

0. 
0.00 0.50 1.00 1.50 2.00 

Propaaat.lon. D•pt.b (ln.) 

. 
Figure A-1. Plotted output for example run (continued). 
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AMPLITUDE BEHAVIOR WITH DEPTH 

:! 
.I 
-3 ::s 
= J 

1 .o 

0.9 

' o.a 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0., 
0.0 

0.00 0.50 1.00 , .so 2.00 

Prop&8at.lon. Dept.h (tn.) 

Figure A-1. Plotted output for example run (concluded). 
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C******************************************************************** 
c * 
C PROQRAM M I C 1 D * 
c * 
C ONE DIMENSIONAL WAVE PROPAQATION CODE FOR MICROSTRUCTURAL * 
c * 
C MATERIALS MODELLED BY GOODMAN-COWIN DISTRIBUTED BODY * 
c * 
C THEORY. CODE EMPLOYS SINQULAR SURFACE WAVE THEORY * 
c * 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

ORIGINALLY DEVELOPED BY NUNZIATO •t •1 . 

WRITTEN BY 

PROFESSOR MARTIN H. SADD 

AND 

MOHAMMAD N. HOSSAIN 

DEPARTMENT OF MECHANICAL 
********** ENGINEERING ~ APPLIED MECHANICS 
********** UNIVERSITY OF RHODE ISLAND 
********** KINQSTON,RI 02881 

SEPTEMBER, 1986 

WRITTEN FOR 

DR. BEHZAD ROHANI 

U .. S. ARMY ENGINEER 
• 

WATERWAYS EXPERIMENT STATION 
VICKSBURG, MS 39180 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

*********** 
*********** 
*********** 

* 
* 
* 
* 
* 
* .. * 
* 
* 
* 
* 

C******************************************************************** 
c 
c 
c 
c 
c 

DIMENSION SIZES 
NUMBER OF WAVES 
MAXIMUM J=15 

ARE RELATED TO DEPTH COUNTER "N" <t<N<L> AND 
COUNTER ".J" < 1 < .J<NW) ; MAX I MUM L =3000 AND , 

DIMENSION A<3000, 15>,A1<3000, 15>,A2<3000, 15),A3<3000, 15>,A4 
# <3000, 15>,AB<30),AMC30>,AP<30>,APLOTC30,3),AR<3000, 15),C1C3000, 
* 15),C2<3000, 15,C3C3000, 15),D1<3000, 1~),02<3000, 15),03<3000, 15), 
# 04(3000, 15>,DELX<3000, 1S>,DDC15,3),DISP<3000, 15>,0PLOTC15), 
# DPC15>,DM<15),EA<30>,EDC15),ES<15>,EVC15),NMAX<1S>, 
# PSTRE5C1S> , 5TRES<3000, 15),S1<3000, 15>,52<3000, 15),53<3000, 15>, 
# 54<3000, 15>,SM<1S>,SPC1S>,SPLOT<1S,3>,T<3000, 15), 
# TAVG<1S),T1C3000, 15>,T2C3000, 15>,T3C3000, 1S>,T4C3000, 15),TSUM 
# <3000, 15),TP<15>,TPLOTC30),V1C3000, 15>,V2<3000, 1S>,V3<3000, 15), 
# V4<3000, 15>,VC3000, 15>,VP<20>,VPART<1S>,VMC15),VVC15,3>,UREAL 
# <3000, 15),UC3000, 15),XC3000>,YAMC15> 

CHARACTER ANS•B,DATNAME*B,DATA•B,TITLE*SO,XLABEL*SO,YLABEL*SO, 
# LINLABELC10>•2S,LINE•2S,PANS•S 

INTEGER J.J,KK, IANS 
REAL ALO,AHI,AMP,H,U,UL,UH,X,Y,YAM,YO 
COMMON /GRAIN/ AFFO,AFFF,BB,DUM,ENUB,FLFFO,FLFFF,GG,GL,GO,TIME 
COMMON /CONTRL/ P,Pt , G,G1 
p = 1. 0 
P1 = 0 . 0 
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G = 1. 0 
01 = 0 . 0 
WRITE<6,2> 

2 FORMATC'l'///) 
PRINT*, '--------------------------- , 
PRINT*, 'l CHOOSE THE TYPE OF VOLU~~-~~;~;;;~~;~~----~, 
PRINT*, 'l FUNCTION TO BE USED IN THE ANALYSIS FOR 1

' 

PRINT*, 'I THE GRANULAR MEDIUM IN CONSIDERATION ; ' 
PRINT*, '----------------------------- - I - ----------------
PRINT*, I I 

1 PRINT*,' ENTER THE PROPER SELECTION NUMBER PLEASE' 
PRINT*, I I 

--------------PRINT*, '---------------------------------- I 

PRINT*, 'I 1. PERIODIC VOLUME DISTRIBUTON FUNCTION : 1 

PRINT*' I : I I I 

PRINT*, 'I 2 . EXPONENTIAL VOLUME DISTRIBUTION FUNCTION l' 
PRINT*' I : I I I 

PRINT*, 'I 3 . PERIODIC-EXPONENTIAL COMBINED FUNCTION I' 
PRINT*,'----------------------~-------------------------' 
PRINT*, I I 

READ<S,5> KK 
5 FORMAT<I2> 

IF< < KK. NE. 1 >. AND. < KK. NE. ~ >. AND. < KK. NE. 3 > > 
IF< KK. EO. 1 > THEN 

G = 0.0 
01 = 1. 0 

END IF 
IF<KK. EG.2> THEN 

p = 0 . 0 
P1 = 1.0 

• END IF . . 

GO TO 1 

• 

c 
C READ INPUT DATA FROM THE EXISTING DATA FILE 
c 

WRITE<6,*) 1 ENTER NAME OF THE DATA FILE, <NAME.DAT>' 
READ<S, 10> DATNAME 

10 FORMAT<1A8> 
OPEN<UNIT=2,FILE=DATNAME,STATUS='OLD 1 > 
READ<2,*> AFF,AFFF.BB,DELTR,ENUAA,ENUB,EX,FLFF,FLFFF,GG,GL,GO,L. 

# NR,SENUA,SGL 
15 CLOSE<UNIT=2> 

c 
C AMPLITUDE INPUT SECTION. ENTER THE <NW> INITIAL WAVE AMPLITUDES. 
C FINAL WAVE (~=NW> IS USED ONLY AS AN END MARKER AND WILL NOT 
C BE PLOTTED IN PROFILE RESULTS. 
c 

PRINT*' I I 

PRINT*• 'INPUT NUMBER OF INITIAL WAVE AMPLITUDES TO BE USED ' 
READ(S,*> NW 
PRINT*· I I 

PRINT*• 'ENTER INITIAL VALUES OF THE WAVE AMPLITUDES' 
READCS,*> <YAM<~>.~=l,NW> 
PRINT*· I 

PRINT*· I 

PRINT*· I I 

WRITE<6·*> 
WRITEC6,*) 
WRITEC6.*> 
WRITE(6,*> 
WRITE(6,*) 

I 

INPUT DATA' 

1 AFF = I I AFF 
I AFFF = I I AFFF 
'88 = 1 ,BB 
I DEL TR = I , DEL TR 
'ENUAA = 1 , ENUAA 
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c 

WRITE<6~*> 'ENUB = '~ENUB 
WRITE<61 *> 'EX ='~EX 
WRITE<6~*> 'FLFF = ',FLFF 
WRITE<6~*> 'FLFFF = '1FLFFF 
WRITE<6~*> 'QO = ',QQ 
WRITE<6~*> 'OL = '10L 
WRITE<6~*> 1 00 = ',GO 
WRITE ( 61 *) I L = I I L 
PRINT*, ' ' 
DO I=l,NW 
WRITE<6,800) I~YAM<I> 

END DO 
PR INT*I I I 

PRINT*, ' PRESS RETURN TO CONTINUE .. . 1 

READ<5~*> 

PRINT*~ ' ' 
PRINT*, 'PROGRAM IS NOW RUNNING' 
AFFO=AFF/GO 
FLFFO=FLFF/GO 
UGRN = SGRT<FLFFO) 
TAVG<1>=0. 0 
H=GL/40. 0 

C PROBABILISTIC LOOP STARTS 
c 

17 

IF < NR . EG. 1) GO TO 17 
PRINT*, I , 

PRINT*, ' PROBABILISTIC RUN WITH DATA' 
PRINT*, I I 

WRITE<6~*> 

WRITE<6~*> 

WRITE<6~*> 
WRITE<6~*> 

WRITE<6,* > 
PR INT*I I I 

1 ENUAA a 1 
1 ENUAA 

'EX =I I EX 
' NR =I I NR 
' SIGNUA = '1SENUA 
'SGL =,I SGL 

PRINT*~ ' PRESS RETURN TO CONTINUE . . . ' 
READ<S,*> 

ENUAP=ENUAA+SENUA 
ENUAM=ENUAA-SENUA 
GLP = GL + SGL 
GLM = GL - SOL 
DO 71 M=L NR 
IF <NR . EG. 1 > GO TO 18 
IF <M . EG. 1) THEN 

ENUAA=ENUAP 
GL = GLP 

END IF 
IF <M . EG. 2> THEN 

ENUAA=ENUAP 
GL = GLM 

END IF 
IF <M. EG. 3) THEN 

ENUAA = ENUAM 
GL = GLP 

END IF 
IF <M. E0.4> THJ:N 

ENUAA = ENUAM 
GL = GLM 

END IF 
18 ENUA = ENUAA 
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c 
c 
c 
c 

20 

30 
40 

NMAX<1>=L 
DO 70 ~ = 1,NW 
DUM=O.O 
YO=YAM<~> 
DO 65 N =- 1,L 
X< N > =N•GL/ 40. 
Y=X<N> 

PERFORM NUMERICAL INTEGRATION FOR THE TRANSIT TIME 
AND CALCULATE THE AVERAQE WAVE SPEED 

XL= INT < < N-1 > /20. > *OL/2. 0 
NN=INT < < L-20. > /20. > 
DO 20 I=l,NN 
LL=20.*I+1 
IF <N.EO.LL> GOTO 30 
CONTINUE 
QOTO 40 
DUM=TIME 
IF <N. EO. 1) TSUM< 1, ~) = H/UQRN 
IF <N. GT. 1) TSUM<N, ~> • TSUM<N-1, ~>+HI<U<N-1, ~>*1000. ) 
T<N.~> = <~-1>*DELTR+TSUM<N.~> 
IF ' (~. EO. 1> QO TO 50 
IF <T<N.~>.GT. T<L-1, 1>> THEN 

PRINT•, I I 

PRINT*• 'CAN NO LONGER COMPUTE DELTA X BETWEEN WAVES' 
p R I NT*, I~= I ' ~ 

p R I NT* I I N= I , N 
PRINT*, 1 T(N, ~)=I, T<N, ~) 
PRINT*, 'MAXIMUM LIMIT = I' T<L-1. 1) 
GO TO 70 

END IF 
DO NC=N,N+200 

NT=NC 
· IF <T<N, ~). LE. T<NC, ~-1> > QO TO 45 

END DO 
PRINT*· 1 M= I, M 
PRINT*, 'N= I' N 
PRINT*• '~=',~ 

• 

PRINT*• 'ERROR IN THE AMPLITUDE TIME-TEST' 
GO TO 630 

.. 

45 DELX<N.~-1>=<NT-1>*H+<T<N,~>-T<NT-1.~-1>>*<HI<T<NT.~-1) 
#-T<NT-1,~-1>>>-N*H 

NMAX<~> = NT 
MAXN=NMAX(~) 

ASUM=O.O 
DO ~K=l.~-1 

ASUM=ASUM+A<N.~K> 

END DO 
SIGMA=C3(N, 1>*GO*ASUM*DELX<N.~-1> 
STRES<N.~>=SIGMA+STRES<N.~-1> 
ENUA = 1.- (1. -ENUAA>*EXP<-EX*STRES<N.~>> 

50 CALL GAUSS <ENUA,J,KK,N,XL.Y,UBAR> 
U(N,J>=UBAR/1000. 

c 
C SOLUTION OF THE WAVE AMPLITUDE BY FOURTH ORDER RUNGE-KUTTA METHOD 
c 

CALL RUNKUT<AMP,ENUA,H.~.N.PKAPA,PMU,VDFUN,RWSPD,Y,YO> 
A<N.~> =AMP 
AR<N.~> = A<N,J)/YAM<J> 
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c 

c 1 ( N I J ) = p MU 
C2(N,J> = PKAPA 
C3(N,J> = VDFUN 
UREAL(N,J> = RWSPD 
ASUM=ASUM+A(N,J> 
IF <J. EG. 1> THEN 

STRES<N,J>=O. 0 
V<N,J>=O. O 
DISP<N,J>=O. 0 
GO TO 55 

END IF 
V<N,J>=V<N,J-1)+A(N,J-1>*<T<N,J>-T<N,J-1)) 
DISP<N,J>=. 5*<V<N,J>+V<N,J-1>>•<T<N,J>-T<N,J-1))+DISP<N,J-1) 

55 IF <NR . EG. 1> GO TO 65 
IF <M. EG. 1 > THEN 

A1<N,J) = A<N,J> 
T1 <N, J) = T<N, J) 
S1<N,J>=STRES<N,J> 
V1(N,J>=V<N,J> 
D1<N,J>=DISP<N,J> 

END IF 
IF <M. EG. 2> THEN 

A2<N,J) = A<N,J> 
T2 <N,J> = T<N,J> 
S2<N,J>=STRES<N,J) 
V2(N,J>=V<N,J> 
D2<N,J>=DISP<N,J> 

END IF 
IF <M.EG. 3> THEN 

A3<N,J) = A<N,J> 
· TJ~N,J> = T<N,J> 

53< N, J > =STRES < N,. J > 
V3(N,J>=V<N, J> 
D3<N,J>=DISP<N,J> 

END IF 
IF <M. EG. 4) THEN 

A4<N,J) = A<N, J) 
T4<N,J> ~ T<N,J> 
S4<N,J>=STRES<N,J> 
V4<N,J>=V<N,J> 
D4<N,J>=DISP<N,J> 

END IF 
65 CONTINUE 
70 CONTINUE 
71 CONTINUE 
72 PRINT•, I I 

• 

' 

C START OF FRIENDLY INTERACTIVE OPTIONS 
c 

PRINT*, ' CHOOSE THE TYPE OF GRAPHICS OPTION' 
PRINT*, I I 

PRINT*, I 1. DETERMINISTIC PROFILE PLOT I 

PRINT•, I I 

PRINT*, 1 2 . PROBABILISTIC PROFILE PLOT' 
PRINT*, I I 

PRINT*, 1 3. DEPTH DEPENDENT PLOT' 
PRINT*, I , 

READ ( 5 I * ) I ANS 
IF< IANS. EG. 1 >GO TO 75 
IF< IANS. EG. 2 >GO TO 135 
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75 

c 

IF< IANS.EG.3 >GO TO 80 
IF < < IANS. NE. 1 >.AND. < IANS. NE. 2>. AND. < IANS. NE. 3) > QO TO 72 
PRINT 760 · 
PRINT 600, MAXN 
READ<5,650) NV 
XCURNT=NV*GL/40 
PRINT 680, XCURNT 

C TIME PROFILE PLOTTING OPTIONS 
c 

c 

PRINT*, I I 

PRINT*, 'ENTER OPTION NUMBER FOR DETERMINISTIC PROFILE P.LOT' 
PRINT*, I I 

PRINT*, 1 1. PARTICLE-DISPLACEMENT PROFILE' 
PRINT*, I I 

PRINT*, '2. PARTICLE-VELOCITY PROFILE' 
PRINT*, I I 

PRINT*, '3. PARTICLE-ACCELERATION PROFILE' 
PRINT*, I I 

PRINT*, 1 4. STRESS PROFILE' 
PRINT*, I I 

READ<S, 580> .JF 
GO TO (112, 115,120, 125> .JF 

C DEPTH-DEPENDENT PLOTTING OPTIONS 
c 

c 

80 PRINT*• 'ENTER ITEM NUMBER FOR DEPTH DEPENDENT PLOT' 
PRINT*, I I 

PRINT*, I 1. ACTUAL WAVE SPEED I 

PRINT*, I I 

PRINT*,'~. AVERAGE WAVE SPEED' 
PRINT*· I I • 
PRINT*, '3. AMPLITUDE BEHAVIOR WITH DEPTH' 
PRINT*, I I 

PRINT*, ' 4. VOLUME DISTRIBUTION FUNCTION' 
PRINT*, I I 

PRINT*, ' 5. MU-COEFFICIENT 1 

PRINT*, I I 

PRINT*, '6. KAPPA-COEFFICIENT' 
PRINT*, I I 

PRINT*, '7. NO GRAPHICS i . e. DATA OUTPUT IN A FILE 1 

READ<5,580) .J.J 
GO TO <100, 105,110,130,140, 150,200) .J.J 

C CALL GRAPHICS SUBROUTINES TO DRAW THE COMPUTED OUTPUT 
c 
C PLOT THE ACTUAL WAVE SPEED 
c 

100 UMIN=200 . 
UMAX=O . 0 
DO .J=l,NW 

DO I=1,L 
IF <UREAL<I,.J> . LE.UMIN> UMIN=UREAL<I,.J) 
IF <UR~AL(I,.J>.GE.UMAX> UMAX=UREAL<I,J> 

END DO 
END DO 
WRITE<6,900) UMIN,UMAX 
PRINT*' 'ENTER LOWER ~ UPPER ORDINATES OF WAVE SPEED' 
READ(S,*> VL,VH 

TITLE= 1 $ACTUAL WAVE SPEEDS' 
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c 

XLABEL='SPropagation D•pth<in>S' 
YLABEL='SWave Spe•d <kin/s)S' 

CALL WAVGRAF<X,O.O,X<L>,UREAL,VL,VH,L, 1,3000, 15,LINLABEL, 
#X LABEL, YLABEL, TITLE, . TRUE. , . TRUE. > 

GO TO 500 

C PLOT THE AVERAGE WAVE SPEED 
c 

.... 
\.., 

10 5 UMAX=O. 0 
DO '"J=1, NW 

LINLABEL(J)=' I 

DO 1=1,L 
IF <U<I,J>. GE.UMAX) UMAX=U(J,J) 

END DO 
END DO 
WRITE<6, 1000) UMAX 
VL=O. 0 
PRINT* , 'ENTER UPPER ORDINATE OF AVERAGE WAVE SPEED' 
READ<5,*> VH 
J=1 
DO WHILE< J . NE . 0 > 

PRINT*, 'ENTER THE LINE # TO BE LABELED' 
PRINT*, I (TYPE 0 IF NO LABELS. NEEDED ) I 

READ(5,*) J 
IF < J . NE. 0 > THEN 

PRINT 640, J 
REA0(5,570> LINE 
LINLABEL<J>=LINE 

END IF 
END DO 
TITLE=~SAVERAGE WAVE SPEEDS' 
XLABEL= ' SPropagation Depth <in)~' 

YLABEL='SWave Speed (kin/s)$' • 
CALL WAVGRAF<X,O. O, X<L>,U,VL,VH,L, 1,3000, 15,LINLABEL, 

#X LABEL, YLABEL, TITLE, . TRUE. , . TRUE. > ' 
GO TO 500 

C PLOT THE AMPLITUDE BEHAVIOR WITH DEPTH 
c 

c 

110 TITLE= ' SAMPLITUDE BEHAVIOR WITH DEPTHS' 
XLABEL='SPropagation Depth (in)$' 
YLABEL= ' SAmplitude RatioS' 
DO J=L NW 

LINLABEL<J>=' I 

END DO 
J=1 
DO WHILE < J . NE. 0 > 

PRINT*, 'ENTER THE LINE # TO BE LABELED' 
PRINT*, I (TYPE 0 IF NO LABELS NEEDED ) I 

READ<5,*> J 
IF < J . NE. 0 > THEN 

PRINT 640, J 
READ<5,570) LINE 
LINLABEL<J>=LINE 

END IF 
END DO 
CALL WAVGRAF<X , O. O,X<L>,AR,O. , 1. ,L,NW,3000, 15,LINLABEL, 

#XLABEL, YLABEL, TITLE, . TRUE. , . TRUE. > 
GO TO 500 
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c 
·c 

c 
c 
c 

112 

115 

PLOT PARTICLE DISPLACEMENT TIME PROFILE 

IF < NW . EG. 1 > GO TO 1 t7 
DO I = 1.NW 

L I NLAB EL ( I ) = I I 

END DO 
~=1 

DO WHILE<~ . NE. 0 > 
PRINT*• 'ENTER THE LINE * TO BE LABELED' 
PRINT*, I (TYPE 0 IF NO LABELS NEEDED ) I 

READ<5,*> ~ 
IF<~ .NE. 0 >THEN 

PRINT 640, ~ 

READ<S~570> LINE 
LINLABEL<~>=LINE 

END IF 
END DO 

TITLE='SPARTICLE DISPLACEMENT PROFILES' 
XLABEL='$Time <secX1 . E6)$ 1 

YLABEL='$Displacement <inXl.E6)$' 
DPLOT<1>=0. 0 
TP < 1 > =T <NV~ 1 > * 1. E6 

\ 

DO 1=2~NW 

TP ( I ) = T ( NV I I ) * 1. E6 
DPLOT<I>=DISP<NV~ I>*1 . E6 

END DO 
DISPMAX=O. 0 
DO I=L NW 

IF <DPLOT<I> . GE. DISPMAX> DISPMAX=DPLOT<I> 
END DO 
WRITE < 6 ~ 1050) DISPMAX 
PR !NT*, ' ENTER MAX . ORDINATE OF DISPLACEMENT 1 

READ<5,*> DHI 
OLD = 0 . 0 
TMIN=O. 0 
TMAX=T<NV~NW > *1 . E06 

.. 

CALL WAVGRAF<TP , TMIN,TMAX~DPLOT,DLO,OHI~NW, 1, 15~ 1~LINLABEL, 
ttXLABEL, YLABEL, TITLE, . TRUE. 1 • TRUE. > 

GO TO 500 

PLOT PARTICLE-VELOCITY TIME PROFILE 

IF < NW . EG. 1 > GO TO 117 
DO I=l,NW 

L I NLABEL ( I ) = I I 

END DO 
J=l 
DO WHILE < J . NE. 0 > 

PRINT*, ' ENTER THE LINE # TO BE LABELED ' 
PR INT*I I (TYPE 0 IF NO LABELS NEEDED ) I 

READ ( S,*> ~ 

IF < J . NE . 0 > THEN 
PRINT 640, J 
READ<S,570> LINE 
LINLABEL<~>=LINE 

END IF 
END DO 
TITLE= ' $PARTICLE VELOCITY PROFILE$' 
XLABEL= ' $Time <secX1 . E6)$ ' 
YLABEL=' $Velocity <in / s)$ 1 
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c 
c 
c 

120 

VPART<1>=0.0 
TP < 1 > =T <NV, 1 > * 1 E6 
DO I=2,NW 

TP < I > = T <NV, I ) * 1 . E6 
VPART < I ) =V (NV, I ) 

END DO 
VMAX=O. O 
DO I=L NW 

' 

IF <VPARTCI> . GE. VMAX> VMAX•VPART<I> 
END DO 
WRITEC6,850> VMAX 
PRINT*, 'ENTER THE MAXIMUM ORDINATE OF VELOCITY' 
READC5,*) VHI 
VLO=O. 0 
TMIN=O. O 
TMAX=T<NV,NW>*1 . E6 
CALL WAVGRAFCTP,TMIN,TMAX,VPART,VLO,VHI,NW, 1, 15, l,LINLABEL, 

ttXLABEL, YLABEL, TITLE, . TRUE. , : TRUE. > 
PRINT*, 'INTERESTED IN ANOTHER PROFILE PLOT, ENTER Y OR N' 
READ<5, 510) ANS 
IF <ANS. EG. ' Y'> GO TO 75 
GO TO 500 

PLOT PARTICLE ACCELERATION PROFILE 

IF ( NW . EG. 1 > GO TO 117 
DO J=l,NW-1 

AB<2*J-1>=A<NV,J)/1000. 
AB<2*J>=A<NV,J)/1000. 
LINLABEL<J>= I , 

• END DO 
J=l 
DO WHILE < J . NE. 0 > 

. . 

PRINT*, 'ENTER THE LINE tt TO BE LABELED' 
PRINT*, I (TYPE 0 IF NO LABELS NEEDED ) I 

READ<5,*) J 
IF< J .NE. 0 >THEN 

PRINT 640, J 
READC5,570> LINE 
LINLABEL<J>=LINE 

END IF 
END DO 
TPLOT<1>=TCNV, 1)*1E6 
DO J=l,NW-2 

TPLOT<2*J>=T<NV,J+1>*1 . E6 
TPLOT<2*J+1>=T<NV,J+1>*1 . E6 

END DO 
TPLOT<2*NW-1>=<T<NV,NW-1>+DELTR>*1 . E6 
MNW=NW*2 
AMAX=O. 0 
DO I=l,MNW 

IF <AB<NV, I> . GE. AMAX> AMAX=ABCNV, I>/1000. 
END DO 
WRITEC6, 1100) AMAX 
PRINT*, ' ENTER THE MAXIMUM ORDINATE OF AMPLITUDE' 
REA0(5,*) AHI 
TITLE= ' SPARTICLE ACCELERATION PROFILE$' 
XLABEL='STim~ (secX1.E6>$' 
YLABEL= '$Acceleration Ckin/s/s)S' 
TMIN=O. 0 
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c 

TMAX=TCNV,NW>*1 . E6 
CALL WAVGRAF<TPLOT,TMIN,TMAX,AB,ALO,AHI,MNW, 1,40, l.LINLABEL, 

ttXLABEL, YLABEL, TITLE, . TRUE. , . TRUE. > 
PRINT*, 'INTERESTED IN ANOTHER PROFILE PLOT, ENTER y OR N' 
READC5,510) ANS 
IF < ANS. EG. 'Y' > GO TO 75 
GO TO 500 

117 WRITEC6,550> 
GO TO 500 

C PLOT THE STRESS TIME PROFILE 
c 

125 

c 

IF < NW. EQ. 1 > GO TO 117 
DO J=L NW 

LINLABEL<J>=' ' 
PSTRES<J>=STRES<NV,J> 
TP<J>=TCNV,J>*1.E6 

END DO 
STRMAX=O.O 
DO I=L NW 

IF <STRESCNV, I> . GE.STRMAX> STRMAX=STRESCNV, I> 
END DO 

\ 

WRITE(6,950> STRMAX 
STRLO=O.O 
PRINT*, 'ENTER THE MAXIMUM ORDINATE OF STRESS' 
READ<5,*> STRHI 
TITLE='$STRESS PROFILE$' 
XLABEL='$Time <secXl . E6)$' 
YLABEL='$Stress <psi)$' 
J=l 
DO WHILE < J . NE. Q > 

PRINT*, 'ENTER THE LINE # TO BE LABELED' 
PRINT*, I (TYPE 0 IF NO LABELS NEEDED ) I 

READ<5,*) J 
IF< J . NE. 0) THEN 

PRINT 640, J 
READ<5,570> LINE 
LINLABELCJ>=LINE 

END IF 
END DO 
TMIN=O . 0 
TMAX=T<NV,NW>*l.E6 
CALL WAVGRAF<TP ,TMIN,TMAX, PSTRES,STRLO,STRHI,NW, 1, 15, 1, 

#LINLABEL, XLABEL,YLABEL,TITLE,. TRUE.' · TRUE.> 
PRINT*, 'INTERESTED IN ANOTHER PROFILE PLOT, ENTER Y OR N' 
READ<S, 510) ANS 
IF ( ANS . EG. 'Y I) GO TO 75 
GO TO 500 

.. 

C PROBABILISTIC CALCULATIONS 
c 

135 1 F < NR. EG. 1 > THEN 
PRINT*, 'CANNOT REQUEST PROBABILISTIC CALCULATIONS WITH NR=l' 
GO TO 500 

END IF 
190 PRINT*• I I 

PRINT*, 'ENTER DEPTH PARAMTER < N > FOR THE PROBABILISTIC PLOTS' 
PRINT*, I I 

READ<S,*> NV 
XCURNT=NV*GL/ 40 . 
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c 

PRINT 680, XCURNT 
DO ,J = t,NW 

TAVG<..J>=< <Tl <NV, ,J)+T2<NV, ~>+T3<NV, ,J)+T4<NV, ~) )/4. >*1. E6 

C AMPLITUDE CALCULATIONS 
c 

c 

EA<..J>=<Al<NV,,J)+A2<NV,~>+A3<NV,~>+A4<NV,,J))/4. 
EA2=<Al<NV,..J>**2+A2<NV,,J>**2+A3<NV,~>**2+A4(NV,~>**2)/4. 
SA=SQRT<EA2-EA<..J>**2) 
AP<..J>=EA<..J>+SA 
AM<..J>=EA<..J>-SA 

C STRESS CALCULATIONS 
c 

ES<..J>=<Sl<NV,,J)+S2<NV,,J>+S3<NV,,J)+S4<NV,,J))/4. 
SPLOT(,J, 1>=ES<J> 
ES2=<Sl<NV,J>**2+S2<NV,..J>**2+S3<NV,~>**2+S4<NV,,J>**2>14 . 
SS=SGRT<ES2-ES<J>**2) 
SP<J>=ES<J>+SS 
SPLOT(J,2>=SP<J> 
SM<..J>=ES<J>-SS 
SPLOT(J,3>=SM<J> 

C VELOCITY CALCULATIONS 
c 

• 

c 

EV<..J>=<Vl<NV,,J)+V2<NV,,J)+V3<NV,~)+V4<NV,~>>I4. 
EV2=<Vl<NV,..J>**2+V2<NV,,J>**2+V3<NV,,J>**2+V4<NV,~>**2>14 . 0 
VV(,J, t>=EV <J> 
SV=SQRT<EV2-EV<J>**2> 
VP<J>=EV<..J>+SV 
VV<J,2>=VP<J> 
VM<J>=EV<..J>-SV 
VV<J,3>=VM<J> 

. . 

C DISPLACEMENT CALCULATIONS 
c 

c 

ED<J>=<Dl<NV,,J)+02<NV,J>+D3<NV,,J>+D4<NV,,J))/4. 0 
DD <J, 1>=ED<J>*1 . E6 
ED2=<Dl<NV,J>**2+02<NV,J>**2+D3<NV,,J>**2+D4<NV,,J)**2>14. 0 
SD=SQRT<ED2-ED<J>**2> 
DP <J>=ED<J>+SD 
DD<J,2>=DP<J>*l . E6 
DM <J> =ED<J>-SD 
DD<J,3>=DM<J >*1.E6 

END DO 

\ 

C MODIFY AND RE-ASSIGN THE AMPLITUDE AND TIME ARRAYS 
c 

DO I=L NW-1 
APLOT<2*I-1, l>=EA<I>/1000. 
APLOT<2*I, l>=EA<l)/1000. 
APLOT<2*I-1.2>=AP<I>/1000. 
APLOT<2*I,2>=AP<I>11000. 
APLOT<2*I-1,3>=AM<I>/1000. 
APLOT<2*I,3>=AM<I>/1000. 
L I NLABEL ( I ) = I I 

END DO 
TPLOT<1 >=TAVG<1> 
DO I=l ,NW-2 

TPLOT<2*I >=TAVG<I+l) 
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TPLOT<2*I+1>=TAVG<I+1> 
END DO 

TMIN=O. 0 
TMAX=T<NV,NW-1>*1.E06 
TPLOT<2*NW-1>=TAVGCNW-1>+DELTR*l.E6 
ALO=O. 0 
DLO=O. 0 
VLO=O. 0 
SLO=O. 0 
PRINT*, I I 

PRINT*, 'AVAILABLE PROBABILISTIC OPTIONS ARE' 
PRINT*, I I 

PRINT*, '1. AMPLITUDE PROFILE PLOT' 
PRINT*, I I 

PRINT*, '2. VELOCITY PROFILE PLOT' 
PRINT*, I I 

PRINT*, '3. STRESS PROFILE PLOT' 
PRINT*, , I 

PRINT*, '4. DISPLACEMENT PROFILE PLOT' 
PRINT•, I I 

PRINT*, 'ENTER THE OPTION NUMBER' 
READ<5,5BO> JF 

\ 

GO TO <210,220,230,235> JF 
210 TITLE= ' $PROBABILISTIC AMPLITUDE PROFILE$' 

XLABEL='STime <secX1 . E6>$' 
YLABEL= 1 SAMPLITUDE <kin/s/s)$' 
APL=O.O 
NNW=<NW-1>*2 
DO J=L 3 

DO I=l,NNW 
· IF'<APLOTCJ , J> . GE. APL> APL=APLOT<I,J) . 

END DO 
END DO 
PRINT 1110, APL 

• 

PRINT*, 'ENTER MAXIMUM ORDINATE OF PROBABILISTIC AMPLITUDE' 
READ<S,*> AHI 
J=l 
DO WHILE< J . NE. 0 > 

PRINT*, 'ENTER THE LINE # TO BE LABELED' 
PRINT*, ' <TYPE 0 IF NO LABELS NEEDED)' 
READ<5,*) J 
IF< J . NE. 0 >THEN 

PRINT 640, J 
READ<S,570> LINE 
LINLABEL<J>=LINE 

END IF 
END DO 

CALL WAVGRAF<TPLOT,TMIN,TMAX,APLOT,ALO,AHI,NNW,3,30,3, 
#LINLABEL,XLABEL,YLABEL,TITLE,. TRUE.' · TRUE.> 

GO TO 520 
c 
220 TITLE='$PROBABILISTIC VELOCITY PROFILES' 

XLABEL= ' $Time <secXl . Eo)$ ' 
YLABEL= ' $Velocity <in/sec)$ ' 
VPL=O.O 
DO J=L 3 

DO I=l,NW 
IF <VV(I,J> . GE. VPL> VPL=VV(J,J) 

END DO 
END DO 
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c 

PRINT 1120, VPL 
PRINT*, ' ENTER MAXIMUM ORDINATE OF PROBABILISTIC VELOCITY' 
READ(5,*> VHI 
J=1 
DO WHILE < J . NE. 0 > 

PRINT*, ' ENTER THE LINE * TO BE LABELED' 
PRINT*, ' <TYPE 0 IF NO LABELS NEEDED)' 
READ <S,*> J 
IF< J . NE. 0 >THEN 

PRINT 640, J 
READ<5,570> LINE 
LINLABEL<J>=LINE 

END IF 
END DO 

CALL WAVGRAF<TAVG,TMIN,TMAX,VV,VLO,VHI,NW,3, 15,3,LINLABEL 
*' XLABEL,YLABEL,TITLE, . TRUE.' · TRUE. ) 

GO TO 520 

230 TITLE= ' $PROBABILISTIC STRESS PROFILE$' 
XLABEL= ' STime <secX1 . E6)$' 
YLABEL= ' $Stress <ksi)$' 
SPL=O. 0 
DO J=1,3 

DO I=l , NW 
IF <SPLOT<I,J> . GE. SPL> SPL=SPLOT<I,J> 

END DO 
END DO 
PRINT 1130, SPL 
PRINT*, ' ENTER THE MAXIMUM ORDINATE OF STRESS' 
READ<5, *> SHI 
J=1 
DO WHILE < J . NE. 0 > · 

PRINT*, 'ENTER THE LINE * TO BE LABELED' 
PRINT*, I <TYPE 0 IF NO LABELS NEEDED ) I 

READ ( 5,*> J 
IF< J . NE. 0 >THEN 

PRINT 640, J 
READ(5,570> LINE 
LINLABEL<J>=LINE 

END IF 
END DO 

.. 

\ 

CALL WAVGRAF<TAVG,TMIN,TMAX,SPLOT,SLO,SHI,NW,3, 15,3,LINLABEL 
#,XLABEL, YLABEL,TITLE, . TRUE. ' · TRUE. > 

GO TO 520 
235 TITLE= ' $PROBABILISTIC DISPLACEMENT PROFILES' 

XLABEL= ' STime <secX1 . E6>S' 
YLABEL='$Displacement (inX1 . E6>$' 
DPL=O. 0 
DO J=1,3 

DO I=L NW 
IF <DD<I,J> . GE . DPL> DPL=DD<I,J> 

END DO 
END DO 
PRINT 1140, DPL 
PRINT* , ' ENTER THE MAXIMUM ORDINATE OF DISPLACEMENT' 
READ<S , *> DHI 
J=l 
DO WHILE< J . NE. 0 > 

PRINT*, 'ENTER THE LINE * TO BE LABELED' 
PRINT*, ' <TYPE 0 IF NO LABELS NEEDED)' 
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c 

READ<5,•> ~ 
IF< J .NE. 0 >THEN 

PRINT 640, J 
READ<5, 570> LINE 
LINLABELC~);LINE 

END IF 
END DO 

CALL WAVGRAFCTAVG,TMIN,TMAX,DD,DLO,DHI,NW,3, 15,3,LINLABEL 
#,XLABEL,YLABEL,TITLE,. TRUE.'· TRUE.) 

GO TO 520 

C PLOT THE VOLUME DISTRIBUTION FUNCTION 
c 
130 TITLE;'$VOLUME DISTRIBUTION FUNCTION$' 

XLABEL='$Depth <in)$' 

c 
c 
c 

YLABEL= ' $Nu Function$ ' 
J=1 
DO WHILE C ~ . NE. 0 > 

PRINT*, 'ENTER THE LINE tt TO BE LABELED' 
PRINT*, I (TYPE 0 IF NO LABELS NEEDED> I 

READ<5,*) .J 
IF< J . NE . 0 >THEN 

' PRINT 640, .J 
READ<5, 570> LINE 
LINLABEL<~>=LINE 

END IF 
END DO 
CALL WAVGRAFCX , O. O,X<L>,C3, . 5, 1.0,L, 1,3000, 15,LINLABEL, 

#X LABEL, YLABEL, TITLE, . TRUE. , . TRUE. ) 
GO TO 500 

• r 

PLOT THE MU COEFFICIENT OF AMPLITUDE 

140 C1MIN=200. 
C 1 MAX=-200. 
DO .J=L NW 

DO I=L L 
IF < C 1 < I, J > . LE. C 1M IN > C 1M I N=C 1 < L ~ > 
IF <Cl<LJ> . GE. C1MAX> C1MAX=C1<L.J> 

END DO 
END DO 
WRITE<6,700> C1MIN,C1MAX 

• 

PRINT*, -' ENTER LOWER & UPPER ¥-COORDINATES OF THE GRAPH 1 

READ<S . *> YLO,YHI 
TITLE='$MU-COEFFICIENT OF AMPLITUDE$' 
XLABEL= 1$Propagation Distance (in)$' 
YLABEL= ' $Mu-Coefficient (1/in)$ ' 

CALL WAVGRAF< X,O. O,X<L>,Cl,YLO~YHI,L, 1,3000, 15,LINLABEL, 
#XLABEL, YLABEL, T I TLE1 . TRUE. , . TRUE. ) 

GO TO 500 
c 
C PLOT THE KAPPA COEFFICIENT OF AMPLITUDE 
c 

150 C2MIN=200 . 
C2MAX=-200. 
DO J=L NW 

DO I=L L 
IF <C2CI , .J >. LE. C2MIN> C2MIN=C2(1,J) 
IF <C2CI,J> . GE. C2MAX> C2MAX=C2<I,J> 

END DO 
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c 

END DO 
WRITE<6,750) C2MIN.C2MAX 
PRINT* , 'ENTER LOWER ~ UPPER ¥-COORDINATES OF QRAPH' 
READ<S,*> VLO,VHI 

TITLE='SKAPPA-COEFFICIENT OF AMPLITUDES' · 
XLABEL='SPropagation DistancR <in>•' 
VLABEL='SK-Coefficient <sec 2/in 2>S' 

CALL WAVGRAF<X,Q.O,X<L>,C~.VLO,VHI,L, 1.3000, 15,LINLABEL, 
#XLABEL, VLABEL, TITLE, . TRUE. , . TRUE. ) 

GO TO 500 

C MAIN ROUTINE COMPUTATION AND GRAPHICS ENDS HERE 
c 
C WRITE OUTPUT ON A DATA FILE 
c 

200 OPEN<UNIT=l,FILE='DATA',STATUS='NEW'> 
WRITE< 1. 240 > 

240 FORMAT<lX, 'N',7X, 'X (N)',7X, 'UREAL',7X, 'U(N)',7X, 'A',7X,'AR', 
#7X, 'C 1<N,J) ' ,7X, ' C2<N,J)',7X, 'C3<N,J)') 

DO 400 J= L NW 
DO 300 N=L L 
WRITE(1,250) N, X<N>,UREAL(N,J>,U<N,J),A(N,J),AR<N,J),t1<N,J), 

#C2<N,J) , C3<N,J) 
250 FORMAT<lX, I4,8E13. 5/) 
300 CONTINUE 
400 CONTINUE 

CLOSE<UNIT=l> 
500 WRITE<6,*> 'WOULD LIKE TO CONTINUE, ENTER V OR N' 

READ<5,510> ANS 
510 FORMAT<A3) 

IF< ANS. EQ. 'VI) GO TO 72 • 
IF< ANS. EQ. ' N' > GO TO 630 
IF< ( ANS. NE. ' V') . AND. < ANS. NE. 'N' >) GOTO 500 

520 PRINT*, ' WOULD LIKE ANOTHER PROBABILISTIC PLOT' 
REA0(5,540> PANS 
IF<PANS. EG. ' V' > GO TO 190 
IF< PANS. EQ. ' N' > GO TO 500 
IF<<PANS. NE. 'V'> . AND. <PANS. NE. ' N')) GOTO 520 

540 FORMAT<A3> 
550 FORMAT<lX, 'MORE THAN 2 AMPLITUDES NEEDED TO MAKE THIS PLOT'> 
560 FORMAT<2I5) 
570 FORMAT <A20> 
580 FORMAT<1I2> 
600 FORMAT <lX , ' NOTE : MAX. ALLOWABLE N FOR THIS RUN IS= ', I4> 
630 STOP 
640 FORMAT ( 1 x. ' ENTER THE LABEL ( ·--$) OF LINE I I 12) 
650 FORMAT<1I5> 
680 FORMAT < 1 X, 'CURRENT DEPTH IS X = ', FB. 5, 'inch'> 
700 FORMAT ( 1 x. ' MINIMUM MU =I I FlO. 5/ 

#lX, ' MAXIMUM MU =',FlO. 5> 
750 FORMAT< 1 X, 'MINIMUM KAPA =',FlO. 5/ 

#lX, ' MAXIMUM KAPA =',F10. 5) 
760 FORMAT<lX, ' ENTER THE <N> VALUE CORRESPONDING TO DEPTH REGUIRED'> 
BOO FORMAT< lX. ' AMPLITUDE<' I 12. I) = I I E13. 5) 
850 FORMAT ( 1 x. ' MAX . PARTICLE VELOCITY =I I FlO. 5) 
900 FORMAT<1X, ' MINIMUM ACTUAL SPEED =',FlO. 5/ 

#1X, 'MAXIMUM ACTUAL SPEED =',FlO. 5) 
950 FORMAT< 1X, ' MAXIMUM STRESS ='I FlO. 4) 

1000 FORMAT<1X, 'MAXIMUM AVERAGE SPEED = ' ,FlO. 5,/) 
1050 FORMAT<lX, 'MAXIMUM PART ICLE DISPLACEMENT =',F8. 4/) 
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1100 FORMAT<lX, 'MAXIMUM DETERMINISTIC AMPLITUDE =',FlO. 5, /) 
1110 FORMAT<1X, 'MAXIMUM PROBABILISTIC AMPLITUDE =',F8.4/) 
1120 FORMAT< !X, 'MAXIMUM PROBABILISTIC VELOCITY ='• FB. 4/) 
1130 FORMAT ( 1 X, 'MAXIMUM PROBABILISTIC STRESS =', FS. 4/) 
1140 FORMAT<1X, 'MAXIMUM PROBABILISTIC DISPLACEMENT •',F8.4/) 

END 
SUBROUTINE GAUSS< ENUA,~F,KK,NF,ZL,X,UBAR) 

C********************************************************************* 
C GAUSS-LEGENDRE QUADRATURE FOR CALCULATION OF PROPAGATION TIME * 
C AND WAVE VELOCITY USING FOUR-POINT FORMULA FOR INTEGRATION * 
C********************************************************************* 
c 

REAL ETA,FKCH,ENUA,ENUB,NUZX,UF,FXCH,ENU,ENUX,X 
DIMENSION ETA<4>,NUZX<4>,FXCH<4>,ENU<4>,ENUX<4), 

#UF<4>,FKCH<4>,PENU<4>,PNU<4> 
COMMON /GRAIN/ AFFO,AFFF,BB,DUM,ENUB,FLFFO,FLFFF,GG,GL,GO, 

#TIME 
c 
C DEFINE THE CONSTANTS AND THE WEIGHTING COEFFICIENTS 
c 

c 

PI=3. 141592741012573 
WT1=0. 34785485 

\ 

WT2=0. 65214515 
ETA<l>=-0.86113631 
ETA<2>=-0. 33998104 
ETA<4>=-ETA<1> 
ETA<3>=-ETA<2> 

C DEFINE THE FUNCTION AND PERFORM THE INTEGRATION 
c 

c 
c 
c 

c 
c 
c 

20 

30 

DO 60 'f = 1 I 4 
FKCH<I>=<ETA<I>•<X-ZL}+(X+ZL))/2. 0 
GO TO <20,30,40) KK • 

PERIODIC VOLUME DISTRIBUTION FUNCTION 

ENU<I>=ENUA+(l . -ENUA>•COS<2. •PI*FKCH<I>IGL> 
NUZX<I>=<<ENUA-1 . 0)/GL>*2.0*PI*SIN<2. *PI*FKCH(l)/GL> 
PP=FLFFO+O. S•AFFO•NUZX<I>**2 
IF<PP . LT. 0 . 0> GO TO 150 
UF<I>=SGRT<PP> 
FXCH<I>=1 . 0 / UF <I> 
GO TO 50 

EXPONENTIAL VOLUME DISTRIBUTION FUNCTION 

PENU<I >=l . 0-<1 . 0-ENUB>•EXP<-BB•GG*FKCH<I>> 
ENUX<I>=<1 . 0-ENUB>*BB•GG*EXP<-BB*GG*FKCH<I>> 
TEST=FLFFO+O. 5*AFFO•ENUX<I>**2 
IF<TEST . LT. O> GO TO 150 
UF<I>=SGRT<FLFFO+O. 5*AFFO•ENUX<I>**2> 
F XC H < I > = 1 . 0 I UF < I > 
GO TO 50 

g PERIODIC AND EXPONENTIAL COMBINED VOLUME DISTRIBUTION FUNCTION 
c 

40 ENU<I>=ENUA+<l . -ENUA>•COS<2. *PI*FKCH(l)/GL> 
NUZX<I>=<<ENUA-1 . O> I GL>*2. 0*PI*SIN<2. *PI*FKCH<l)/GL> 
PENU<I>=l . 0-<1 . 0-ENUB>*EXP<-BB*GG*FKCH<I>> 
ENUX<I>=<l . O-ENUB>*BB*GG*EXP<-BB*GG*FKCH<I>> 
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c 

PNU<I>=ENU<I>*ENUX<I>+PENU<I>*NUZX<I> 
CHEK=FLFFO+. 5*AFFO*PNU<I>**2 
IF<CHEK. LT. O> GO TO 150 
UF<I> = SORT<FLFFO+O. 5*AFFO*PNU<I>**2) 
FXCH<I>=1.0/UF<I> 

50 CONTINUE 
100 TAUX = WT1*<FXCH<1>+FXCH(4))+WT2*<FXCH<2>+FXCH<3>> 

TIME= TAUX*<<X-ZL>/2.0> 
TIME - DUM + TIME 

C CALCULATE THE AVERAGE WAVE SPEED 
c 

UBAR = X/TIME 
GOTO 200 

150 WRITE<6, 180> NF,JF 
180 FORMAT<lX, 'INPUT IS INCOMPATIBLE WITH REAL WAVE SPEED IN GAUSS'/ 

#lX, 'LOOPING PARAMETER N =', I5, 
#lX, ' WAVE AMPLITUDE NUMBER J =', I3> 

STOP 
200 RETURN 

END 
SUBROUTINE RUNKUT<AMP,ENUA,H,K,N,RKAPA,RMU,RVDFUN,RWS,X,YO> 

C******************************************************************* 
C SUBROUTINE RUNGE-KUTTA CALCULATES THE WAVE AMPLITUDE * 
C IN THE GRANULAR MEDIA * 
C******************************************************************* 
c 

REAL AMP,BB,ENU, ENUX,ENUXX,ENUZ,ENUZZ,H,PENU,RKAPA,RMU,RVDFUN, 
#RWS, X, YO 

COMMON / GRAIN/ AFFO,AFFF,BB,DUM,ENUB,FLFFO,FLFFF,GG,GL,GO · TIME 
COMMON /CONTRL/ p I p L Q, G1 ~ 

DATA Pl / 3 . 1415927410125~3/ 
c 
C DEFINE THE VOLUME DISTRIBUTION FUNCTIONS AND THEIR DERIVATIVES 
c 
C PERIODIC VOLUME DISTRIBUTION FUNCTION 
c 

c 

ENU<X>=<ENUA+<l . -ENUA>*COS<2. *PI*X/OL>>*P+Pl 
ENUZ<X>=<-2. *PI*<l. -ENUA>*SIN<2. *PI*X/GL>IGL>*P 
ENUZZ<X>=<-4. *<PI**2. >*<1. -ENUA>*COS<2. *PI*X/GL)/(GL**2>>•P 

C EXPONENTIAL VOLUME DISTRIBUTION FUNCTION 
c 

c 

PENU<X>=<l . 0-<1 . 0-ENUB>*EXP<-BB*GG*X>>*G+Gl 
ENUX <X> =<<1 . 0-ENUB>*BB*GG*EXP<-BB*GG*X>>*G 
ENUXX<X>=<-<1 . O-ENUB>*BB**2*GG**2*EXP<-BB*GG*X>>*G 

C PERIODIC AND EXPONENTIAL VOLUME DISTRIBUTION FUNCTION COMBINED 
c 

c 

PNU<X>=ENU<X>*PENU<X> 
PNUX<X>=ENU<X>*ENUX<X>+PENU<X>*ENUZ<X> 
PNUXX<X>=ENU<X>*ENUXX<X>+PENU<X>*ENUZZ<X>+2. *ENUZ<X>*ENUX<X> 

C COMPUTE THE WAVE AMPLITUDE AND THE CONSTANTS MU & KAPA 
c 

UFSG<X>=<FLFFO+O. 5*AFFO*PNUX<X>**2) 
FMU<X>=<UFSG<X>IPNU<X>+AFFO*PNUXX<X>12.0)*PNUX<X>I(2. *UFSG<X>> 
CKAP<X>=-<FLFFF+AFFF*PNUX<X>**2/2. )/(2. *GO*UFSO<X>**2> 
FC<X ,Z>=CKAP<X>*Z**2-FMU<X>*Z 
AK1 =FC<X ,YO> 
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c 

AK2=FC<X+H/2.0,YO+H*AK1/2. 0> 
AK3=FC<X+H/2. 0,YO+H*AK2/2. O> 
AK4=FC<X+H,YO+H*AK3) 
YO = YO+H*<AK1+2. O*AK2+2. O*AK3+AK4)/6. ·0 
AMP=YO 
RMU=FMU<X> 
RKAPA=CKAPCX> 
RVDFUN=PNUCX> 
IF CUFSG<X> . LT. O> GO TO 10 
RWS=SGRTCUFSGCX>>/1000. 
GO TO 30 

10 WRITE<6,20) N,K 
?O FORMATClX, ' INPUT IS INCOMPATIBLE WITH REAL WAVE SPEED IN RUNKUT'/ 

#1X, 'LOOPING PARAMETER N =', 15, 
#1X, ' WAVE AMPLITUDE NUMBER J =', 13) 

STOP 
30 RETURN 

END 

c ******************~****************************************** 
SUBROUTINE WAVGRAFCX,XMININP,XMAXINP,Y,YMININP,YMAXINP,N,M, 

NORIG, MORJG, LINLABEL, INDAX, DEPAX, TITLE, INDEVEN, 
\ 

DEPEVEN> 
c ************************************************************* 
c 
C To draw a line graph with multiple plots on an 8X11 page, 
C using DI-3000 graphics subroutines 
c 
C N: Number of values in each set 
C M: Number of sets of dependent values 
C NORIG ~riginal c~lumn dimension of the value arrays 
C MOR I G : " r ow . " .. .. " 11 

C LINLABEL : Character string labels of each · Jet of values 
C INDAX : Character string of independent ax1s label 
C DEPAX : 11 11 11 dependent 11 

" 

C TITLE: " 11 title of graph 
C <Note : all c haracter strings should be inclosed 1n a 
C de 1 i m i t e r mark, such as ' $graph$ ' > 
C INDEVEN : Logical variable which is . TRUE. if the independent 
C axis should be extended to terminate at even divisions . 
C DEPEVEN : Logical variable which is . TRUE. if the dependent 
C axis should be e xtended to terminate at even divisions . 
C VECTOR : Array for graph information storage 
C VSIZE : Size of VECTOR array 
C RATIO : Aspect ratio of the graphics device 
C NSET: Data set counter 
C XDIVMAX : Maximum numb e r of independent axis divisions 
C YDIVMAX : Maximum number o f dependent axis divisions 
c SPAN: Range of axes <maximum value minus minimum value> 
c ORDER : order of the a xis increments 
C RESOLUTION: Min1mum even incremented resolution of the axis 
c 

REAL X< NORIG ), XMININP, XMAXINP, Y< NORJG, MORIG ), YMININP, 
YMAXINP 

INTEGER N, M, NORJG, MOR I G 
CHARACTER LINLABEL<10)*2 5 , INDAX*SO,DEPAX*50,TITLE*50 
LOGICAL INDEVEN, DEPEVEN 
REAL ENTER, OUTER , XMIN, XMAX, YMIN, YMAX, RATIO, SPAN, ORDER, 

# RESOLUTION, XINCREMENT , YINCREMENT 
INTEGER VECTOR <15000 >, VSI ZE, NSET, XDIVMAX, YDIVMAX 
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c 

DATA VSIZE/15000/, XDIVMAX/S/,YDIVMAX/10/ 
XMIN=XMININP 
XMAX=XMAXINP 
YMIN=YMININP 
YMAX=YMAXINP 

C Initialize GRAFMAKER and DI-3000 
c 

c 

CALL JCHINJ( . TRUE. I 1 ) 
CALL JCHART< VECTOR, VSIZE > 
CALL JASPEK< 1, RATIO > 
CALL JVSPAC< -1 . Q, 1. 0, -RATIO, RATIO> 
CALL JGRAPH< VECTOR, VSIZE, 1 > 

C Define title and text characteristics . 
c 

c 

CALL JXTEXT < VECTOR, VSI ZE, L S, 0 . O, 1. O, 0 > 
CALL JTXBOX< VECTOR, VSIZE, O, O, 1 > 
CALL JSTNOT< VECTOR, VSIZE, L L TITLE > 
CALL JPONOT< VECTOR, VSIZE, 1, 1, 500. O, 980. 0 > 
CALL JTXHGT< VECTOR, VSIZE, 20. 0, 0 . 0, 0 . 0) 

C If desired, redefine the dependent axis minimum and 
C max1mum for even axes 
c 

SPAN = YMAX - YMIN 
IF <SPAN. LT. 1E-6> THEN 

ORDER= LOG10< SPAN*1E12/12. 0 >- LOG10( FLOAT< YDIVMAX > ) 
ELSE 

ORDER = LOG10( SPAN > - LOG10( FLOAT( YDIVMAX > ) 
END IF . . 
IF< ORDER . LT. 0 . 0 >ORDER= ORDER- 1. 0 
RESOLUTION= 10. 0 ** INT< ORDER > 
IF< SPAN I FLOAT< YDIVMAX > . LE. RESOLUTION> THEN 

YINCREMENT = RESOLUTION 
ELSE IF< SPAN I FLOAT< YDIVMAX ) . LE. 2 . 0 *RESOLUTION> THEN 

¥INCREMENT= 2 . 0 *RESOLUTION 
ELSE IF< SPAN I FLOAT< YDIVMAX > . LE. 5. 0 *RESOLUTION> THEN 

YINCREMENT = S. O *RESOLUTION 
ELSE IF< SPAN I FLOAT< YDIVMAX > . LE. 10. 0 *RESOLUTION ' > THEN 

YINCREMENT = 10. 0 * RESOLUTION 
ELSE 

¥INCREMENT - 20. 0 * RESOLUTION 
END IF 
IF < INDEVEN > THEN 

IF< YMIN . GE. 0 >THEN 
YMIN- YINCREMENT *FLOAT< INT< YMIN I YINCREMENT + 0 . 01 ) > 

ELSE 
YMIN = YINCREMENT *FLOAT< INT< YMIN I YINCREMENT- 0.99 > ) 

END IF 
IF < YMAX . GE. 0 > THEN 

YMAX = YINCREMENT *FLOAT( INT< YMAX I YINCREMENT + 0 . 99 > > 
ELSE 

YMAX = YINCREMENT *FLOAT< INT< YMAX I YINCREMENT- 0.01 > > 
END IF 

END IF 
CALL JSTVAX <VECTOR, VSIZE, 1, 1, YMIN, YMAX, DEPAX> 
IF ( . NOT. INDEVEN >THEN 

YMIN = YM IN + YINCREMENT 
IF< YMIN . GE. 0 >THEN 
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c 

YMIN = YINCREMENT *FLOAT< INT< YMIN I YINCREMENT + 0.01 > > 
ELSE 

YMIN = YINCREMENT *FLOAT< INT< YMIN I YINCREMENT- 0.99) > 
END IF 
YMAX = YMAX - YINCREMENT 
IF< YMAX .GE. 0 >THEN 

YMAX = YINCREMENT * FLOAT< INT< YMAX I YINCREMENT + 0. 99 > > 
ELSE 

YMAX = YINCREMENT *FLOAT< INTC YMAX I YINCREMENT- 0.01 ) > 
END IF 

END IF 
CALL JTIC <VECTOR, VSIZE, 1, 1, 1, YMIN, YMAX, YINCREMENT> 
CALL JTCATR <VECTOR,VSIZE, 1, 1, 1,0.0,6.0,0> 

C If desired, redefine the independent axis minimum and 
C maximum for even divisions 
c 

• 

SPAN = XMAX - XMIN 
IF C SPAN. LT. 1E-6 > THEN 

ORDER = LOGlO< SPAN*1E12112. 0 > - LOGlO< FLOAT< XDIVMAX > > 
ELSE 

ORDER = LOGlO< SPAN > - LOG!O< FLOAT< XDIVMAX > > 
END ' IF 
IF< ORDER. LT. 0. 0 >ORDER= ORDER- 1.0 
RESOLUTION = 10. 0 ** INT< ORDER > 
IF< SPAN I FLOAT< XDIVMAX > .LE. RESOLUTION> THEN 

XINCREMENT = RESOLUTION 
ELSE IF< SPAN I FLOAT< XDIVMAX > .LE. 2.0 *RESOLUTION> THEN 

XINCREMENT = 2.0 *RESOLUTION 
ELSE IF< SPAN I FLOAT( XDIVMAX > . LE. 5.0 *RESOLUTION) THEN 

XINCREMENT = 5. 0 * RESOLUTION • 

ELSE IF< SPAN I FLOAT< XDIVMAX > . LE. 1v 0 *RESOLUTION> THEN 
XINCREMENT = 10. 0 * RESOLUTION 

ELSE 
XINCREMENT = 20. 0 *RESOLUTION 

END IF 
IF < INDEVEN > THEN 

IF< XMIN . GE. 0) THEN 
XMIN = XINCREMENT *FLOAT< INT< XMIN I XINCREMENT + 0.01 > > 

ELSE 
XMIN - XINCREMENT * FLOAT< INT< XMIN I XINCREMENT - 0. 99 > > 

END IF 
IF < XMAX . GE. 0 >THEN 

XMAX- XINCREMENT *FLOAT< INT< XMAX I XINCREMENT + 0.99 > > 
ELSE 

XMAX = XINCREMENT *FLOAT< INT< XMAX I XINCREMENT- 0.01 > > 

END IF 
END IF 
CALL JSTHAX< VECTOR, VSIZE, 1, 2, XMIN, XMAX, INDAX ) 
IF < . NOT . INDEVEN > THEN 

XMIN = XMIN + XINCREMENT 
IF ( XMIN . GE. 0 >THEN 

XMIN- XINCREMENT *FLOAT< INT< XMIN I XINCREMENT + 0.01 > ) 
ELSE 

XMIN = XINCREMENT * FLOAT< INT< XMIN I XINCREMENT - 0. 99 > > 

END IF 
XMAX = XMAX - XINCREMENT 
IF< XMAX . GE. 0 >THEN 

XMA X = XINCREMENT *FLOAT <INT <XMAX I XINCREMENT + 0.99)) 
ELSE 
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c 

XMAX = XINCREMENT *FLOAT <INT <XHAX I XINCREMENT- 0.01)) 
END IF 

END IF 

C DESCRIBE TWO TICK MARK OROUPS TO BE USED ON THE X-AXIS 
c 

c 
c 
c 

c 

CALL JTIC <VECTOR, VSIZE, 1, 2, 2, XHIN, XMAX, XINCREMENT> 
CALL JTCATR<VECTOR,VSIZE, 1,2,2,0.0, 15.0,0> 
ENTER=XMIN+XINCREMENT/2.0 
OUTER=XMAX-XINCREMENT/2. 0 
CALL JTIC <VECTOR, VSIZE, 1, 2, 3, ENTER, OUTER, XINCREMENT> 
CALL JTCATR <VECTOR,VSIZE, 1,2,3,0.0,7. 5,0) 
CALL JTCPAT <VECTOR,VSIZE, 1,2,3, 10,20> 

OPEN UP A LEGEND 

CALL JTXBOX< VECTOR, VSI ZE, o, o, 1 ) 

CALL JSTLGD< VECTOR, VSI ZE, 1' , •• , ) 

CALL JLGPOS< VECTOR, VSI ZE, 1. 500. o, 860. 0 ) 

CALL JTXHGT< VECTOR, VSI ZE, 17. o, 0. o, 0 . 0 ) 

C PASS THE DATA SETS TO GRAFMAKER 
c 

c 

CALL JRDATA <VECTOR, VSIZE, 1, X, N) 
CALL JINDEP <VECTOR, VSIZE, 1. 1 > 
DO NSET = 1. M 

CALL JRDATA < VECTOR, VSIZE, NSET + 1, Y< 1, NSET ), N ) 
CALL JDEPENC VECTOR, VSIZE, 1, NSET, NSET + 1 > 

C DEFINE PLOT LINE CHARACTERISTICS 
c 

CALL JXLINE< VECTOR, ~SIZE, NSET, NSET, 16383, <NSET-1>*10, 
16383 ) 
CALL JDTATR< VECTOR, VSIZE, 1, NSET, Q, O, NSET > 

c 
C MAKE A LEGEND ENTRY 
c 

IF< LINLABEL< NSET ><1: 1) . EG. 'S' . AND. LINLABEL< NSET ><2:2> 
. NE. ' S' > CALL JSDLGD< VECTOR, VSIZE, L NSET, 
LINLABEL< NSET > ) 

END DO 
c 
C SHOW CHART 
c 

CALL JCHSHW <VECTOR,VSIZE, -0. 70, 0 . 70, -0. 55, 0 . 55) 
c 
C PAUSE FOR VIEWING 
c 

CALL .JPAUSE ( 1 > 
c 
C Terminate GRAFMAKER 
c 

CALL JCHTRM ( . TRUE. > 
RETURN 
END 
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