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PREFACE 

This investigation was conducted for the Office, Chief of Engineers, 

U. S. Army, by personnel of the Geomechanics Division (GD), Structures 

Laboratory (SL), U. S. Army Engineer Waterways Experiment Station (WES), 

as a part of Project 4Al61102AT22, Task BO, Work Unit 005, "Constitutive 

Properties for Natural Earth and Man-Made Materials." This report was 

prepared by Drs. George Y. Baladi and Behzad Rohani during the period 

January-July 1982 under the general direction of Mr. Bryant Mather, 

Chief, SL, and Dr. J. G. Jackson, Jr., Chief, GD. The report was typed 

by Mrs. Bobbie B. Morrow. 

COL Tilford C. Creel, CE, was Commander and Director of WES during 

this investigation. Mr. F. R. · Brown was Technical Director. 
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CONVERSION FACTORS, METRIC (SI) U. S. CUSTOMARY 
UNITS OF MEASUREMENT 

Units of measurement used in this report can be converted as follows: 

Multiply By To Obtain 

centimetres 0.3937007 inches 

centimetres per millisecond 0.3937007 inches per millisecond 

grams per cubic centimetre 62.42797 pounds (mass) per cubic foot 

metres 3.280839 feet 

metres per millisecond 3.280839 feet per millisecond 

millimetres 0.03937007 inches 

megapascals 145.0377439 pounds per square inch 
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AN ELASTIC-VISCOPLASTIC CONSTITUTIVE MODEL FOR EARTH MATERIALS 

PART I: INTRODUCTION 

1. The mechanical response of most earth materials subjected to 

high-intensity dynamic loadings, such as those produced by large explo­

sive detonations and impact of high-velocity projectiles, differs con­

siderably from what is usually observed under relatively low-intensity 

static loadings (very slow rates of deformation). In order to obtain 

realistic solutions for dynamic problems, a constitutive model should be 

used that can account for the dependency of the stress-strain-strength 

properties of earth materials on the various rates of loading or defor­

mation being applied. In addition, the constitutive model should 

account for other pertinent features of the stress-strain properties of 

earth materials observed under both dynamic and static loading condi­

tions, such as (a) the dependency of the shearing strength of the 

material on hydrostatic stress, (b) shear-induced volume change, and (c) 

permanent strain during a load-unload cycle of deformation (for both 

deviatoric and hydrostatic loading conditions). 

2. Incremental elastic-plastic constitutive models have been used 

successfully to simulate the stress-strain properties of soil (Baladi 

and Rohani, 1979; Baladi, 1977; and Sandler, DiMaggio, and Baladi, 

1976). It is therefore logical to adopt a physically realistic incre­

mental elastic-plastic constitutive model for earth materials and intro­

duce rate dependency in such a model. Generally, two different types of 

rate-dependent models can be constructed in this manner: viscoelastic­

plastic models in which both the elastic and the plastic responses of 

the material are rate-sensitive ; and e lastic-viscoplastic models ~n 

which the plastic portion of the model is rate-dependent and the elastic 

portion is rate-independent. As pointed out by Perzyna (1966), the 

viscoelastic-plastic models are mathematically very complicated and are 

not suitable for solving practical engineering problems. The elastic­

viscoplastic models, because of their mathematical simplicity 
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(relative to viscoelastic-plastic models) and their similarities witl1 

the inviscid theory of plasticity, are more appropriate for practical 

engineering application (Perzyna, 1966; Swift, 1975). Also, viscous 

effects appear to be more evident in the plastic range for most soils. 

Thus, it is reasonable to adopt an elastic-viscoplastic type constitu­

tive relationship to model the rate-dependent response of earth mate­

rials. Application of this type of model for describing the rate­

dependent response of rocks is discussed by DiMaggio and Sandler (1971). 

3. This report describes the fundamental basis of elastic­

viscoplastic constitutive relationships and the development of a 

specific model of this type for earth materials. To demonstrate the 

application of the model, its behavior under cylindrical states of 

stress is examined and correlated with experimental data for a clayey 

sand. 
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PART II: FUNDAMENTAL BASIS OF 
ELASTIC-VISCOPLASTIC CONSTITUTIVE RELATIONSHIPS 

4. The basic premise of elastic-plastic constitutive relation­

ships is the assumption that certain materials are capable of undergoing 

small plastic (permanent) as well as elastic (recoverable) strains at 

each loading increment.* In the case of elastic-viscoplastic materials, 

it is further assumed that the behavior of the material in the plastic 

region is rate-dependent. Mathematically, the total strain rate is 

assumed to be the sum of the elastic components and the viscoplastic 

components, i.e., 

where 

d£ .. 
lJ -dt 

E 
d£ .. 

lJ -
dt 

vp 
d£ .. 

lJ -dt 

d£ .. 
lJ = 

dt 

E 
d£ .. 

lJ + 
dt 

vp 
d£ .. 

lJ 
dt 

total components of the strain rate tensor 

components of the elastic strain rate tensor 

components of the viscoplastic strain rate tensor 

Elastic Strain Rate Tensor 

• 

(1) 

5. Within the elastic range, the behavior of the material can be 

described by an elastic constitutive relation of the type 

E d£ .. 
_l~J_ ( ) 

dt cijki 0 mn 

* In this paper, compression is considered positive. 
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where 

cijki - material response function 

dcrki - components of stress - rate tensor dt 

a - components of stress tensor mn 

For isotropic compressible elastic materials, the simplest form of 

Equation 2 is 

where 

Jl -

sij -

K -
G -

0 .. 
1] 

-

a -
nun 

E 
de: .. 

1] -
dt 

1 dJl 

9K dt 

first invariant of 

0 .. 
1] 

1 
dS .. 

1] 

+ 2G dt 

stress tensor 

Jl 
a . . - 3 °ij - stress deviation tensor 
1] 

elastic bulk modulus 

elastic shear modulus 

1 i • - J 
Kronecker delta -

0 • 
=/: 

• 1 J 

(3) 

6. The bulk and shear moduli can be expressed as functions of the 

invariants of the stress tensor. However, in order not to generate 

energy or hysteresis within the elastic range, the elastic response must 

be path-independent. This condition can be met if and only if the bulk 

modulus is a function of the first invariant of the stress tensor and 

the shear modulus is a function of the second invariant of the stress 

deviation tensor (Sandler, DiMaggio, and Baladi, 1976). Thus, 
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where 

1 J.2 = 2 sij sij = the second invariant of the stress deviation 
tensor 

Viscoplastic Strain Rate Tensor 

7. The behavior of the material in the plastic range is assumed 

to be rate-sensitive. As indicated by Perzyna (1966), the viscoplastic 

component of the strain rate tensor can be expressed as an arbitrary 

function of the "excess stress" above the initial yield condition which 

is called the static yield criterion. The static yield criterion should 

satisfy all the known conditions of the inviscid theory of plasticity 

(Drucker, 1956). In general, the static yield surface may be expressed 

as 

6 (cr .. , K)- 0 
s 1J 

(5) 

For isotropic materials the static yield surface may be expressed, for 

example, as 

where K is a hardening parameter and generally is a function of the 

viscoplastic (or plastic) deformation. The static yi e ld surface 

(Equation 6) may expand or contract a s K increases or decreases , 

respectively (Figure 1). 

(6) 

8. Since the viscoplastic strain rate is an arbitrary f unction of 

the excess stress above the static yield criterion, the "dynamic yi eld 

surface" can be defined as 

K) - 13 

- 0 (7) 
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p 
de: .. 

lJ 

n (a . . ' K2) s lJ 

Figure 1. Work-hardening loading surface and 
plastic strain increment vector 

VERY SLOW RATE OF DEFORMATION 

Figure 2. Typical behavior of the function g(6s/B) 
for viscoplastic materials 
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• 

and the flow rule for work-hardening and rate-sensitive plastic mate­

rials may be written as 

yg(~) a n s if ns > 0 vp 
acr .. de: .. 

1J 1J -dt 
0 if ns < 0 

(8) 

The parameter S/B in Equation 7 is dimensionless and defines the rate 

of expansion of the yield surface. (B is a scaling factor which has 

the dimension of stress; it is introduced in Equation 7 to make nd 

dimensionless.) The function g(fis/B) in Equation 8 is a dimensionless 

function which may be determined from the results of dynamic property 

tests for the material of interest (Figure 2). The parameter y in 

Equation 8 is a viscosity parameter associated with the viscoplastic 

response of the material and has the dimension of (time)-1
. It should 

be pointed out that for very slow rates of deformation, S and g(fi s /B) 

approach zero. Hence, 1 become identical and the visco­ns 

plastic flow rule (Equation 8) reduces to its inviscid counterpart. 

9. The viscoplastic stress-s train relation can be expressed in 

terms of the hydrostatic and deviatoric components of strain. Applying 

the chain rule of differentiation to the right-hand side of Equation 8 

yields 

de: . . n vp (
1 ~ 

d~J - yg Bs 

Multiplying both sides of Equation 9 by 

de:~ 
dt 

10 

1 a fi s 
s .. 

2~ a~ 1 J 
2 2 

8 .. 
1J 

gives 

( 9) 

(10) 



The deviatoric component of the viscoplastic strain rate tensor 

de~/dt can be written as 

vp de .. 
1] -

dt 

vp 
d£ .. 

1] 

dt 

vp 
1 d£kk --3 dt 0 .. 

1] 

Substitution of Equations 9 and 10 into Equation 11 yields 

de. . u vp (1 ~ d~J - yg Bs 
s .. 

1] 

2~ 
2 

(11) 

(12) 

The associated flow rule is satisfied when Equations 

with Equation 7; this shows that the vector d£~/dt 1] 

space is always normal to the surface ns(Jl' IJ2, K) 

10 and 12 are used 

in the ( J 1 , I J 2) 
= f3 (Figure 3). 

Squaring both sides of Equation 9 gives 

SUBSEQUENT DYNAMIC 
LOADING SURFACE ~ 

(6s = s) 

INITIAL YIELD 
--suRFACE (6s = 0) 

Figure 3. Dynamic loading surface and strain rate vector 
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vp d£ .. 
lJ 

dt 



vp 
dE: .. 

l.J 
dt 

vp 
dE: .. 

l.J 
dt 

2 

1 
2 

(13) 

Substitution of Equation 11 into Equation 13 yields 

yg(!s~ -

where 

1 -
vp vp 2 

devp 1 de .. de .. 
- l.J l.J -dt 2 dt dt -

1 
3 (14) 

square root of the second invariant of the 
viscoplastic strain rate deviation tensor 

Inverting Equation 14 results in 

2 
1 -

vp 2 2 
1 dE:kk -vp 

bS + 2 
de -

-1 1 3 dt dt 
0 (15) -- g -

B y 2 2 at) 
+! s 

2 

Comparison of Equation 7 with Equation 15 yields the following expres­

sion for the parameter S/B 
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~ ,.. 
vp\ 2 -.!. 

2 2 
1 d£kk I -vp'\ 

+ 2 de -
B -1 1 3\ dt 1 \ dt 1 - - g ~ - (16) B > y 

t6 2 
an 

2 

'+ .!. 3 aJs 
s 

2 
av'J! \ 1 .. 2 -

Equation 16 implicitly represents the dependence of the dynamic yield 

surface on the viscoplastic strain rate tensor. 

Total Strain Rate Tensor 

10. The total strain rate tensor can be obtained by combining 

Equations 3 and 9; thus, 

dE .. 
1] 

dt 

1 dJl 
=-

9K dt 0 .. 
1] 

1 dS .. 
1] 

+ 2G dt 

-
0 •. + 
1J 

1 

Similarly, the stress rate tensor can be written as 

do .. 
1J -

dt 

de .. 
.r: 2 1J 
uij + G dt 

-at) s .. 
.r: __ s 1J 
u •• + G 
1J a~~ 

2 2_ 

-

-
(17) 

(18) 

Equation 17 or 18 is the general constitutive equation for an elastic­

viscoplastic isotropic material. To use these equations, it is only 

necessary to specify the functional forms of K , G , 1 and ns ' 
g(t)s/B) and to determine experimentally the numerical values of y and 

the coefficients in these functiorrs. The development of a specific 

elastic-viscoplastic constitutive model for earth materials is presented 

in the following section. 
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PART III: ELASTIC-VISCOPLASTIC MODEL FOR EARTH MATERIALS 

11. Before the development of the elastic-viscoplastic model is 

described, it may be useful to briefly discuss some of the salient 

features of the stress-strain properties of soil under dynamic loading. 

In the case of most soils, the strength of the material increases with 

increasing rate of deformation. Because of this dependency on the rate 

of deformation, the overall character of the dynamic stress-strain 

curves often differs considerably from that of the corresponding curves 

obtained under static loading conditions (Whitman, 1970). 

12. Figure 4 depicts qualitatively typical stress-strain 

relations under axisymmetric triaxial test conditions for various rates 

of strain. As indicated in Figure 4, the soil specimens are hydro­

statically consolidated to the same confining pressure (point 1, Figure 

4) . The samples are then sheared at different rates of strain by 

increasing the vertical stress (J 
z 

while the radial stress 

constant. The important behavior to be observed from Figure 

a is held 
r 

4 is that, 

as the rate of strain dE /dt increases, the strength of the material 
z 

also increases. Therefore, associated with each strain rate, the 

material possesses a unique failure envelope which may be referred to as 

"dynamic failure envelope." The implications of the dynamic failure 

envelope can best be realized from the results of a variable strain rate 

test. 

13. It is possible for a material that strain hardens under 

static loading conditions to exhibit strain-softening behavior due to 

strain rate effects during dynamic loading. For example, Figure 5 

depicts the hypothetical result of such a test superimposed on the 

corresponding result from a static test. Similar to Figure 4, the two 

stress-strain relations in Figure 5 are associated with axisymmetric 

triaxial tests and are hydrostatically consolidated to the same con­

fining pressure. In the case of the dynamic test, the strain rate 

during the initial part of the test (point 1 to point 2 in Figure 5) is 

increasing. Beyond point 2, the strain rate decreases. During the 

initial part of the test, the strength of the material continuously 

14 
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increases because of the incrl!asing t>lrain rate. Beyond point 2,. the 

strength of the material actually decreases because of the decreasing 

strain rate, resulting in a "falling" or softening stress-strain curve. 

14. In the following section, the mathematical forms of the 

various response functions are developed for a proposed constitutive 

model for earth materials. 

Elastic Response Functions 

15. The behavior of the model in the elastic (recoverable) r ange 

is described by the elastic bulk and shear moduli. The elastic bulk 

modulus lS assumed to be a function of the first invariant of the stress 

t ensor J
1 

(Figure 6). The elastic shear modulus, on the other hand, 

is assumed to be a function of the second invariant of the stress 

deviation tensor 

where 

K. -
1. 

Kl and K2 -

G. -
1. 

Gl and G2 -

J' 
2 

(Figure 7), i.~., 

initial elastic bulk 

material constants 

initial elastic shear 

material constants 

(19) 

(20) 

modulus 

modulus 

The constants Ki , K1 , and K2 can be determined from the charac­

teristics of the unloading curve from an isotropic consolidation test 

(Figure 8). The constants Gi , G1 , a nd c
2 

can be determined from the 
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characteristics of the unloading stress difference-strain difference 

curves from triaxial shear tests (Figure 9). 

Viscoplastic Behavior 

16. For the plastic behavior, the dynamic loading function 6d 

(Equation 7) is assumed to be isotropic and to consist of two parts 

(Figure 10): a rate-dependent ultimate failure envelope and a rate­

dependent strain-hardening yield surface. The failure envelope portion 

of the loading function is assumed to be of the Prager-Drucker type and 

is denoted by 

IJZ - aJl 
----------------- - 0 

B 

- k - e 
(21) 

• 

and the rate-dependent strain-hardening yield surface is assumed to be 

elliptical and of the following form 

K) - e 

(22) 

The parameters k and in Equation 21 are material constants rep-

resenting the static cohesive and frictional strength of the material, 

respectively. The parameter R (Equation 23 below) in Equation 22 is 

minor axes of the elliptic yield surface 

in Figure 10 define the intersections of 

(Equation 22) with the failure envelope 

axis, respectively. The hardening parame­

ter K is generally a function of the history of the viscoplastic 

the ratio of the major to the 

(Figure 10). L and K + s 
each elliptical yield surface 

fd(Jl, IJ2 ' S) and the Jl 

strain. For the present model, R and K are chosen to be 
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Figure 10. Proposed yield surface for the elastic-·Jiscoplil s i:ic model 
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R 
R-

1 
° (1 + R1exp(-R2L)] 

+ Rl 

K = - l 2n 
D 

where R
0 

, R
1 

, R
2 

, D , and W are material constants. 

(23) 

(24) 

17. In order to complete the specification of the model in the 

viscop1astic range, the function g(ns/B) (see Equation 8) must be 

specified. For the present model, g(ns/B) is chosen to be 

g(:s~ - (B1f) exp B s - 1 on the failure envelope 

(25) 

g(:s) - (B1F ~ exp B s - 1 on the hardening surface 

in which B
1 

is a material constant controlling the rate of change in 

the value of the function g • Note in Figure 10 that the elliptic 

yield surface has a horizontal tangent at its intersection with the 

failure envelope. This can be assured by the following relation: 

L -
K - Rk. 
1 + a.R 

(26) 

In summary, the proposed model contains 16 material constants. Six of 

the constants (Ki , K1 , K2 , Gi , G1 , and G2) are related to the 

elastic response of the material, and the remaining 10 constants (B , 

B
1 

, a. , k , R
0 

, R
1 

, 

viscoplastic response. 

R2 , D , W , and y) describe the material's 

The behavior of the proposed model under con-

ventional laboratory test conditions (cylindrical specimens) is examined 

in the following section. 
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PART IV: BEHAVIOR OF THE MODEL UNDER A CYLINDRICAL STATE OF STRESS 

18. The rate-dependent nature of the proposed model can be demon­

strated by examining the behavior of the model under particular labora­

tory test boundary conditions. Since most mechanical testing of soils 

for engineering purposes is performed with the standard triaxial shear 

test apparatus, it is useful to investigate the behavior of the model in 

cylindrical coordinates. Adopting the z-axis of a cylindrical coordi­

nate system (z , r , and 8) as the axis of symmetry of the sample, the 
-

stress tensor and the strain tensor associated with this configuration 

become 

(J 0 0 z 

(J • • - 0 (J 0 (27) 
l.J r 

0 0 (J 
r 

and 

E 0 0 z 

E . . - 0 E 0 (28) 
l.J r 

0 0 E r 

The variables P = J
1

/3 (mean normal stress), J2 (the second invariant 

of the stress deviation tensor), and Ekk/3 (mean volumetric strain) 

associated with the above stress and s train tensors take the following 

forms 

cr + 2cr z r 
3 

(29) 

(30) 
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£ 
z + 2£ 

r -----
3 

(31) 

Generally, every triaxial test has two phases: the hydrostatic phase 

and the shear phase. These phases are discussed below. 

Hydrostatic Phase 

19. During the hydrostatic phase of the triaxial test, all 

stresses and strains are equal. Thus, 

£kk 
£ - £ -z r 3 

(32) 

(33) 

The relationship between the elastic volumetric strain rate and the rate 

of the first invariant of stress is given as (Equation 3) 

E 
d£kk 

- 31<: dt 

in which the elastic bulk modulus K is given in Equation 19. Sub­

stituting Equation 19 in Equation 34 and integrating the resulting 

expression provides the following relation between the elastic volu­

metric strain and the first invariant of the stress tensor: 

exp(K2J
1

) - K
1 

1 - K 1 

The function 6/B (Equation 16) for the hydrostatic phase takes the 

following form: 

22 

(34) 

(35) 



B - = 
B 

-1 
g 

1 

13 

+1:. 
2 

aF 
s 

1 
2 

In view of Equations 22 and 25, Equation 36 results in 

3Y 
R 

K)J 
- 1 

Substitution of Equation 24 into Equation 37 yields 

3Y 
R 

exp 
Bl 

+ BDR 

(36) 

(37) 

- 1 (38) 

For a specified rate of loading, Equation 38 can be integrated to yield 

a relationship between viscoplastic volumetric strain and time. For the 

same specified rate of loading, the elastic volumetric strain-time 

response can be calculated from Equation 35. The total volumetric 

strain-time response can then be determined by adding the viscoplastic 

strain calculated from Equation 38 and the elastic strain obtained from 

Equation 35. 

20. Note in Equation 38 that when y- oo (i.e., for an inviscid 

plastic material) Equation 38 results in 

- 1 - 0 (39) 

or 

(40) 
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As a result of Equations 35 and 40, the total volumetric strain for 

inviscid elastic-plastic materials takes the following form: 

+ W[l - exp(-DJ1)] (41) 

As expected, the volumetric strain in Equation 41 is independent of the 

time rate of applied loading. 

Shear Phase 

21. For the shear phase, a constant mean normal stress test will 

be considered. For this stress path, 

- 0 (42) 

0 in the clastic range 

(43) 

in tl1e viscoplastic range 

- 0 (44) 

The relationship between the elastic strain deviation rate tensor and 

the rate of stress deviation tensor is given as (Equation 3) 

E 
de .. 

1] -
dt 

1 
2G 

dS .. 
1] 

dt 
(45) 

where the elastic shear modulus G i s given in Equation 20. The func­

tion S/B (Equation 16) takes the following form: 
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• 

1 -vp 2 2 
1 dE:kk 2(d~:p) - + f3 -1 1 3 dt - = g 

B y 2 2 

+.!. 
aF 

3 s 
2 , 

In view of Equations 12 and 22, Equation 46 can be rewritten in the 

following form: · 

2 
vp 

g(:s)r J' 1 ds kk + .!. y2 2 -

g(:s) 
3 dt 2 (J - L)2/R2 

1 1 = -
y L)2/R4 +.!. J' 3(J -1 2 2 

(Jl - L)2 
+ J' 

R2 2 

Equation 47, in conjunction with Equation 25, leads to 

vp 
d£kk 

dt 

3(J1 - L)/R2 

- ------~-----------

- 1 

1 -
2 

+ J' 2 

• 

(46) 

(4 7) 

(48) 

Equation 48 describes the coupling between the volumetric strain and the 

shear stress (J' 
2 

in this case) during a constant mean normal stress 

t est . For a specified time history of J' 
2 ' 

Equation 48 can be inte-

grated to determine the resulting time history of the viscoplastic 

volumetric strain. From Equations 12, 22, and 25, the following expres­

sion is obtained for the viscoplastic strain deviation rate tensor: 
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vp 
de1 . 
_ __.Jol... -
dt 

1 YSi . 

2 ...;(Jl - L) 2 /R2 

- 1 

+ J' 
2 

exp 
B1~Jl - L)

2
/R

2 
+ Jz - Bl (K - L)/R 

B 

(49) 

Equations 45 through 49 provide a complete specification for the behav­

ior of the material for constant mean normal stress triaxial tests. 

These equations, however, must be integrated numerically in order to 

relate stresses to strains during dynamic loading. A computer program 

has been developed for numerical integration of the governing equations 

of the proposed model for general three-dimensional states of stress. 

For the sake of brevity, the numerical implementation of the model is 

not described herein. In the following section, the behavior of the 

model is correlated with test data for a clayey sand using this computer 

program. 
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PART V: CORRELATION OF TEST DATA WITH MODEL BEHAVIOR 

22. In this section, the behavior of the model under states of 

uniaxial strain and triaxial shear are correlated with available test 

data for a clayey sand classified as SC according to the Unified Soil 

Classification System. Static data consisted of (a) load-unload axial 

stress-axial strain relations (a versus £ ) for uniaxial strain, and z z 
the corresponding stress paths expressed in terms of principal stress 

difference versus mean normal stress (a - a versus P) , and (b) two 
z r 

triaxial shear test load-unload stress-strain relations (for two 

different· confining stresses) presented in terms of principal stress 

difference versus principal strain difference (a - a versus 
z r 

£ - £ ) and a static failure envelope based on these two tests 
z r ' 

(Ehrgott, 1978). The available dynamic data for this material consisted 

of several stress-strain curves from dynamic uniaxial strain tests 

(Jackson, Ehrgott, and Rohani; 1980). 

23. The first step in correlating the behavior of the model with 

test data is to simulate the static properties of the material and to 

determine the numerical values of the material constants K. , Kl , 
1 

K2 , G. , Gl ' G2 , a , k 
' 

R , Rl ' R2 , D , and w • The 
1 0 

response of the material under static loading is governed by these 

constants (i.e., the case of inviscid plasticity when rate dependency is 

neglected). Figure 11 portrays the static test data and the correspond­

ing model behavior for both the triaxial shear and the uniaxial strain 

test conditions. It can be noted from Figure 11 that the model has 

reasonably simulated the static response of the soil both qualitatively 

(triaxial shear response) and quantitatively (uniaxial strain response). 

The next step is to simulate the available dynamic stress-strain 

properties of the material, using the numerical values of the 13 con­

stants above and numerical values determined for the remaining three 

constants B , B
1 

, and y • As indicated before, the available 

dynamic data for this material are limited to several uniaxial strain 

stress-strain relations. The dynamic data were obtained for loading 

27 



--- TEST DATA 
------ MODEL BEHAVIOR 

~ 15 ~ 15 
~ ~ 

... 
s... 

t> 

N•O 
t> IQ 

... 
LI.J 
u 
z 
LI.J 
a:: 
LI.J 
LL.. 
LL.. 
........ 
0 

5 -

FAILURE 
ENVELOPE 

~ STRESS PATH 

... 
s... 

t> 

... 
LI.J 
u 
z 
LI.J 
a:: 
LI.J 
LL.. 
LL.. 
........ 
0 

a r = 4. 14 MPa 
//-------:;:--~ 

1/ / I 
I I 
I /_ a = 2. 07 MPa I 

J r I 
---------~ 

5 1/1~~.- - 1i 
II , It 

(./") 
(./") 
LI.J 
a:: 
f- 0 ~~~-L~------~------~ 
(./") 0 5 10 t5 

(./") 
(./) 

LI.J 
a:: 
f-­
(.1") 

u I 1 ~ 

~~--~-----~-~~~~~-1 

~ 
0... 
~ 

... 
N 

t> 
... 

(./") 
(./") 
LI.J 
a:: 
f-
(./") 

_J 
c:::( 
u 
........ 
f-a:: 
LI.J 
> 

e 1 e 20 1 30 

MEAN NORMAL STRESS, p, MPa STRAIN DIFFERENCE, Ez - Er' PERCENT 

a. Triaxial shear response 

24 0: 15 ,.-
~ 

... 
s... 

t> 
I 

16 N1~ 
t> 

... 
LI.J 

tl u 
z 

I 
rl 

LI.J 
a:: 

8 LI.J 5 J I LL.. I 
LL.. 

'I ........ 
0 

J • 

/ I I (./") 
(./") 

h~ LI.J 
I a:: 

e I f- ~ (./") 

0 5 te 15 0 5 . 10 15 

VERTICAL STRAIN, Ez' PERCENT MEAN NORMAL STRESS, p, MPa 

b. Uniaxial strain response 

Figure 11. Static response of the material in triaxial shear and uniaxial 
strain tests; model behavior versus test results 
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rise times on the order of a few tenths of a millisecond (Jackson, 

Ehrgott, and Rohani; 1980). Two of the dynamic stress-strain curves 

were used for the purpose of model fitting. Figure 12a depicts the 

stress-time histories for the two tests. It should be noted that the 

entire load-unload cycles for these tests were completed in slightly 

less than 1 msec. These stress-time histories were used as input for 

driving the model. The experimental stress-strain curves and the 

corresponding model behavior for the two dynamic tests are shown in 

Figure 12b. The agreement between the dynamic test data and the model 

behavior is very good, both quantitatively and qualitatively, especially 

during the early part of the test. It is of interest to compare these 

dynamic stress-strain relations with the corresponding static result in 

Figure llb. In the case of the static test, the stress-strain curve is 

concave to the stress axis (a "stiffening" behavior), whereas the 

dynamic curves are concave to the strain axis (a "yielding" behavior). 

The proposed constitutive model predicts this dramatic change in the 

overall character of the stress-strain curves remarkably well. 

24. The numerical values of the 16 material constants for the 

clayey sand are summarized in Table 1. To demonstrate the application 

of the proposed model further, the model was driven with the strain-time 

history shown in Figure 13a under triaxial shear test 

2.07 MPa) using the material constants given in Table 

conditions (a = 
r 

1. The resulting 

dynamic stress-strain curve is shown in Figure 13b. Also shown in 

Figure 13b is the corresponding static stress-strain curve (from Figure 

lla). The effect of the strain rate on the stress-strain response of 

the material is clearly demonstrated ln Figure 13b. As the strain rate 

increases during the early part of the simulated dynamic test, the 

stiffness and strength of the material also increases (relative to the 

static stiffness and strength). During the latter part of the test 

where strain rate decreases with time, the dynamic curve actually falls 

(apparent strain softening) a nd eventually coincides with the static 

stress-strain curve (at late times). 
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Table 1 

Summary of the Material Constants and 

Numerical Values for Clayey Sand 

Material 
Constant 

K. 
1. 

Kl 

K2 

G. 
1. 

Gl 

G2 

a. 

k 

R 
0 

~ 

R2 

D 

f w 
B 

Bl 

y 

Unit of 
Measure 

MPa 

---

MPa 
-1 

MPa 

---

MPa -1 

---
MPa 

---

---

MPa -1 

MPa 
-1 

---
MPa 

---
-1 msec 

30 

Numerical 
Value 

800 

0.5 

0.1 

480.0 

0.5 

0.65 

0.2722 

0.231 

1.2 

-0.5 

0.1 

0.05 

0.0985 

1.0 

150,000.0 

0.1 
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configuration; model behavior versus test results 



t-
~ ~e r 
u 
a::: 
w 
0.. 

.. 
N 

w 
.. 

z 
......... 
cl: 
a::: 
t-
V1 

_J 

cl: 
u 
......... 
t-
a::: 
w 
> 

.. 
w 
u 
ZitS 
w 0.. 
a::: :a: 
w 

1!3 

£3 

20 

LL.. .. 

~ bs... 1 e 
0 

V1 
V1 N 
Wb 
a::: 
t-
V> 

0 

-·· 

// 
/ 

~--------~--------~----------~ 
2 4 6 8 1~ 

TIME, MSEC 

a. Input strain-time history 

DYNAMIC 

STATIC (FROM FIGURE lla) 

2 ~--------~--------~-----------~--------~---------~ 
B 5 15 2B 25 

STRAIN DIFFERENCE, Ez - Er' PERCENT 

b. Resulting dynamic stress-strain relation 

Figure 13. Predicted dynamic stress-strain relation for triaxial 
shear test condition (a = 2.07 MPa) 

r 

32 



PART VI: SUMMARY AND CONCLUSIONS 

25. An elastic-viscoplastic constitutive model has been developed 

for earth materials and has been partially validated via comparison with 

both static and limited dynamic stress-strain data for a clayey sand. 

The model is capable of simulating many pertinent features of the 

stress-strain-strength properties of earth materials such as dependency 

of the shearing strength of the material on hydrostatic stress and rate 

of deformation, shear-induced volume change, and permanent deformation 

under hydrostatic and deviatoric cyclic loadings. In its present form, 

the model contains 16 material constants that can be readily determined 

from the results of static and dynamic triaxial shear and uniaxial 

strain tests. 

26. The model has been translated into a numerical algorithm for 

implementation into finite-difference or finite-element computer codes. 

The numerical algorithm is very versatile in that it embodies all 

classes of e~astic-plastic constitutive models. Test data for several 

rates of deformation and test boundary conditions (other than those used 

to fit the model) are needed to further validate the accuracy and deter­

mine the range of application of the model. 
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