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PRE.FACE 

This study was conducted between 1978 and 1983 by personnel of the U. S. 

Army Engineer Waterways Experiment Station (WES) under the sponsorship of the 

Directorate of Civil Works of the Office, Chief of Engineers, U. S. Army. The 

work was funded under the Structural Engineering Research Work Unit 31588 

which was monitored by Mr. Lucian G. Guthrie. 

The investigation was conducted under the supervision of Messrs. Byrant 

Mather, Chief, Structures Laboratory (SL), William J. Flathau, Assistant 

Chief, SL, and James T. Ballard, Chief, Structural Mechanics Division, SL. 

Mr. Kenneth L. Saucier designed the constituents of the concrete mixture and 

controlled its production. Messrs. Darryl F. Hale and Billy W. Benson as­

sisted in conducting the tests while Messrs. Frederick P. Leake, Jr., and 

William C. Strahan, Jr., instrumented them. 

The Commanders of WES during the investigation and the preparation of 

this report were COL John L. Cannon, CE, COL Nelson P. Conover, CE, and 

COL Tilford C. Creel, CE. The Technical Director was Mr. F. R. Brown. 
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CO}n~RSION FACTORS, NON-SI TO METRIC (SI) 
UNITS OF MEASUREMENT 

Non-SI units of measurement used 1n this report can be converted to SI (metric) 

units as follows: 

Multiply 

degrees Fahrenheit 

feet 

inches 

microinches per inch 

pounds (force) per 
square inch 

pounds (force) per 
cubic foot 

pounds (force) per 
cubic yard 

By 

t°C = (t°F - 32)/1.8 

0.3048 

2.54 

1.0 

6.89476 

16.01846 

0.59327642 

3 

To Obtain 

degrees Celsius 

metres 

centimetres 

micrometres per metre 

kilopascals 

kilograms per cubic metre 

kilograms per cubic metre 



1 . 1 BACKGROUND 

CONCRETE BEHAVIOR UNDER DYNAMIC 

TENSILE-COMPRESSIVE LOAD 

CHAPTER 1 

INTRODUCTION 

The Corps of Engineers is directly responsible for the seismic safety of 

many concrete gravity dams and by its practice influences the safety of many 

more structures it owns. To fulfill this responsibility economically, the 

strength and stress-strain behavior of mass concrete under the multiaxial and 

dynamic states of stress induced by earthquake motions must be known. This re­

port describes an investigation undertaken to improve the knowledge of this be­

havior. The results should also be of some value in assessing the response of 

various concrete structures to blast, wave, wind, and other dynamic loadings. 

1.2 PREVIOUS RESEARCH 

During a strong motion earthquake, it is generally believed that the 

individual monoliths of a concrete gravity dam will vibrate independently 

of one another (Chopra 1978). Accordingly, the mass concrete of each mono­

lith is subjected to a nonuniform dynamic stress, which can be approximated 

by a plane stress condition. It follows that an understanding of mass con­

crete material behavior under such conditions is a prerequisite for any 

assessment of a gravity dam's seismic safety. Furthermore, the available 

information on the dynamic properties of structural concrete should be 

reviewed as well. Although structural concrete does not possess the thermal 

cracking problems during curing to the extent that mass concrete does, the 

stress-strain relations of the two materials appear to be similar (ACI 

1963, 1970)." 

Both the uniaxial and even the biaxial material behavior of concrete 

seems to be reasonably understood under statically applied loads. Accepted 

experiments have been conducted on thin plates loaded in plane (Kupfer, Hils­

dorf, and Rusch 1969), on thin hollow cylinders loaded axially and by internal 

pressure (McHenry and Karni 1958), and on thin hollow cylinders loaded axially 

and in torsion (Bresler and Pister 1958, Goode and Helmy 1967). The results 

of these tests have established the . bi~xial stress combinations at which 
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concrete fails as well as its stress-strain behavior from no load through 

failure. Elastic, incrementally plastic theories of mechanical behavior have 

been subsequently proposed (Ottosen 1977, Chen and Chen 1975) which are con­

sistent with and rationally generalize these experimental results, as shown 
in Figure 1.1. 

The dynamic material behavior of concrete has only been reported for uni­

axial states of stress. A number of experiments on cylinders monotonically 

loaded in compression (Watstein 1953, Hatano and Tsutsumi 1959, Atchley and 

Furr 1967, Kirillov 1977) and in tension (Hatano 1960, Raphael 1975) have been 

reported. One can generally conclude from this work that the strength and 

stiffness of concrete increase with increasing strain rate while the failure 

strain is unaffected by the rate of straining, as seen in Figure 1.2. Some 

experiments have also been conducted on cylinders cyclically stressed in 

compression (Ban and Muguruma 1960, Hatano and Watanabe 1971, Takeda and 

Tachikawa 1973) and in tension (Saucier 1977). These results suggest that 

the strains at failure may be independent of the history of stresses and 

strains. 

However, no experimental information has been published describing the 

biaxial, dynamic material properties of concrete. An analytical thesis of 

concrete dam behavior, in which reasonable bounds for these unknown properties 

were assumed, suggests that the extent of cracking induced by seismic ground 

motion can be very sensitive to these assumptions (Pal 1974). Although these 

must eventually be defined under cyclic: and reversible strains representative 

of earthquake induced vibrations, logically they must first be experimentally 

measured for monotonic loadings . These must also be known in all quadrants 

of the biaxial space. But an understanding of biaxial tension-compression be­

havior is the foremost concern, since the stress state of a dam's cracked 

regions occur in this quadrant. 

1.3 SCOPE 

Accordingly, the scope of this first experimental investigation of con-

crete dynamic, biaxial 

compression loadings. 

material behavior is confined to monotonic, tension­

In the following chapters of this report, the experi­

mental procedure will be detailed, the test results will be discussed, and 

suggestions for further study of this behavior will be offered. 
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CHAPTER 2 

PROCEDURE 

A number of techniques to measure the dynamic, biaxial material behavior 

were critically examined in the design of this experiment. These included 

thin square plates loaded in plane; hollow cylindrical specimens loaded by 

pressure, torque, and thrust; rhomboidal sandwich plates loaded anticlastically 

(having opposite curvatures); solid cylindrical specimens loaded radially and 

axially; and beams loaded laterally. The comparison concluded that practically 

significant data about monotonic, tensile-compressive properties could econom­

i cally be gathered using hollow cylinders of 3000 psi,a 3/8-inch maximum size 

a ggregate loaded in axial compression and internal pressure by a quickly modi­

f ied hydraulic device existing at the WES. 

2.1 SPECIMENS 

As shown in Figure 2.1, the experimental specimen was a hollow right C1r­

cular cylinder of 13-inch inner diameter, l-inch wall thickness, and 26-inch 

height. The specimen's radius-to-wall thickness ratio, 6.5, is high enough 

to assure an elastic distribution of tensile hoop stress that is uniform to 

within 8 percent (Timoshenko 1941). Reasonable static results were reported 

in McHenry and Karni (1958), which were obtained from a similar specimen having 

a less uniform distribution corresponding to a radius-to-thickness ratio of 

2.5. This study's height-to-outer diameter ratio matches that of McHenry 

and Karni (1958) to give a uniformly stressed central region uninfluenced by 

the boundary conditions at the ends of the specimen. This height is also small 

enough that the transit time (<0.2 ms (millisecond) for 155 lb/ft3 , 5 x 106 psi 

modulus concrete) fo r axial-stress wave s is virtually instantaneou s in compari­

son t o the loading rise times of inte rest (>25 ms ). 

The constituents of concrete mixture used for these specimens are g1ven 

1n Table 2.1. This mixture was selected to have a nominal 90-day compressive 

strength of 3000 ps1. The maximum aggregate size was restricted to 3/8 inch 

to duplicate the ratio of the parameter-to-specimen wall thickness used 1n 

McHenry and Karni (1958). The aggregate size distribution, shape, and mineral 

a A table of factors for converting non-SI units of measurement to metric 
( C' l '\ ..... ~ts ~,. gl. V"" " "' " n-:>r.e:o 3 \ ...,.1 J U.ll.l ..&. .._, \, .aa V &.4 yub'- • 



conle11t of this mix were otherwise chosen to be as representative as possible 

of mass concrete. All cement and aggregates for all the specimens were 

blended together in a single common dry batch to minimize the variation of 

concrete strength among the lots of specimens. 

The specimens were cast in lots of five, in steel molds, mounted on a vi­

brating table. These molds were removed after 48 hours and prepared for re­

use. The specimens were then cured until 28 days old in a fog room. There­

after, until testing at approximately 90 days age, the specimens were sealed 

within plastic bags at ambient temperatures less than 85°F. Before each test, 

the inside surface of the cylinder was thinly coated with an epoxy to prevent 

the intrusion of water into the wall, under pressure. 

cast at both ends of the cylinder to provide a smooth 

seals, as shown in Figure 2.1. 

2.2 LOADING 

An epoxy cap was also 

surface for the 0-ring 

All loadings were applied by the WES 200 kip-loader (shown 1n Figure 2.2) 

which can apply monotonic loadings with rise times as fast as 1 ms (Balsara 

and Hossley 1973). This simple and inexpensive open-loop hydraulic device 

employs a silicone oil as the working fluid. Static loads are applied by 

slowly pressurizing the upper chamber while maintaining little or no pressure 

in the lower chamber. Dynamic loads are generated by pressurizing the upper 

chamber to a level greater than the lower one and then suddenly releasing the 

fluid through the orifice shown. The shape of the loading-versus-time curve 

thus created is obviously a complex function of fluid pressure, fluid volume, 

orifice opening, and specimen stiffness which cannot be controlled with abso­

lute precision. However, it is possible to satisfactorily generate nominal 

peak loads and rise times after some preliminary calibrations. 

The special aluminum fixtures, shown in Figure 2.1, were fabricated to 

mount the concrete specimens in the 200-kip loading device. The top fixture 

incorporated two valved openings so that the specimen could be filled with 

water in such a way that no significant air was entrapped. The bottom fixture 

contained mounts for two pressure transducers. A satisfactory seal between 

each fixture and the specimen was established with 0-rings. 

Thus, the hydraulic ram's loading was carried in part by an axial com­

pression in the specimen and in part by a pressurization of the contained 

water, which simultaneously loaded the specimen in circumferential tension . 

9 



Three nominally different proportions of compressive and tensile loadings were 

achieved by inserting a 1/4-inch thick, a 1/16-inch thick, or no rubber pad 

between the top fixture and the specimen (Figure 2.1), so as to effectively 

change the relative stiffness of the two parallel load paths seen by the ram. 

A uniaxial compressive loading was also achieved by simply not filling the 

specimen with water. Finally, an essentially uniaxial tensile condition re­

sulted when the specimen was overfilled so that the top fixture bore only on 

the water surface. 

2.3 INSTRUMENTATION 

The total load-versus-time function, applied by the hydraulic ram 1n each 

test, was measured by the load cell shown under the bottom fixture in Fig-

ure 2.3. The sensing element of this cell is a hollow column. Two axial and 

two transverse strain gages on this column were wired to form a fully active 

Wheatstone bridge circuit. 

The water pressure inside each cylinder was independently measured by two 

identical pressure gages in the bottom fixture. Each gage's sensing element 

was a 0.1-inch-diameter steel diaphragm containing four semiconductor strain 

gages 1n a fully active four-arm Wheatstone bridge. 

Three independent measurements each of axial strain, outer circumferen­

tial strain, and inner circumferential strain were made on each specimen, as 

shown in Figure 2.4. Each of these nine measurements was made with a single 

6-inch-long, constantan alloy, wire gage. 

The signals from all twelve of these channels were simultaneously re­

corded on FM magnetic tape during each test. A corresponding digital magnetic 

tape was subsequently produced for later reduction of these data, as described 

in Chapter 3. 

2.4 CONTROL CYLINDERS 

Six conventional 6-by-12-inch control cylinders were cast with each lot 

of hollow cylinders and were cured under the same conditions. Four of the 

control cylinders were statically tested in compression (ASTM C 39-72) to 

measure strength, axial strain, and transverse strain (ASTM 1972). There­

maining two cylinders were statically tested in direct tension (ASTM D 2936-78) 

to measure strength and axial strain (ASTM 1978). 

10 



Table 2.1. Coitslilueuts of concrete mixture. 

Constituent lb/yd3 

Portland Cement, Type II 470 

Sand, Limestone 1600 

Rock, Limestone 3/8 • • 1600 1n max1rnurn 

Water 376 

11 
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Figure 2.3 Typical test spec1men and loading device. 
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Figure 2.4 Location of strain gages. 
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CHAPTER 3 

RESULTS 

Eight lots of five hollow cylindrical specimens each were produced. Of 

these, twenty-nine appeared to be of adequate quality to test. Eleven of these 

tests were invalid because the specimen's state-of-stress did not appear to be 

uniform before failure. The dynamic, biaxial loading condition and the spec­

imen lot of the 18 tests considered to be successful are listed in Table 3.1. 

These conditions include static, biaxial, and dynamic uniaxial states compar­

able to previously published results of other researchers, as well as dynamic, 

biaxial states heretofore untested. 

For each test, the data recorded on magnetic digital tape were reduced 

with the aid of the WES central computer system as follows. Individual plots 

of the load cell, the two pressure transducers, and the nine strain gages (as 

a function of time) were first examined to eliminate invalid recordings. The 

compressive stress function of time oc(t) was then computed by dividing the 

net force carried in the cylinder wall by its cross-sectional area, i.e. 

1n which 

P(t) --

p(t) --
-r. -1 
-r -

0 

P( t) -
a (t) -

c 

2 nr.p(t) 
1 

2 - r.) 
1 

load function measured by load cell 

average of valid pressure transducer measurements 
. radius (6.5 inches) spec1mens 1nner 
. outer radius (7.5 inches) spec1mens 

The tensile stress was calculated from the thin-walled approximation 

(Timoshenko 1941): 

The compress1ve £ (t) , outer tensile 
c 

strain functions of time were estimatecl 

of each strain. 

r. 
: r. p(t) 

1 

, and inner tensile £ti(t) 

mean of the valid measurements 

These results are shown 1n Fignrps 3.1 through 3.18. The (a) part of 
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each figure depicts the reference stress versus time function. This reference 

stress is the compressive stress a (t) except for the uniaxial tensile tests 
c 

in which it is crt(t) . The (b) portion of each figure then shows how the 

other stress varied with respect to the reference stress. The strain behavior 

as a function of the reference stress is next presented in part (c). Finally 

the (d) part of each figure is a photograph of the failed specimen, if 

available. 

From an examination of these plots, the magnitudes of compressive crc 

and tensile crt stress at failure were judged, as indicated for each speci­

men, and listed in Table 3.2. The time since load application at which this 

failure occurred t , the compressive strain magnitude £ , and the average r c 
£t of the inner and outer tensile strain magnitudes at failure are also pre-

sented in this listing. The last column qualitatively indicates whether the 

failure was "compressive" (accompanied by the complete disintegration of the 

specimen) or "tensile" (characterized by a single longitudinal cleavage). 

The results of the 6- by 12-inch control cylinder tests appear in Ta-

ble 3.3. For those specimens tested in st~ tic, uniaxial compression, the max·· 

imum stress crc and corresponding compressive £c and tensile £t strains 

are given. For the cylinders loaded in static, uniaxial tension, the maximum 

stress crt and corresponding strain Et are listed. 
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Testa,b 

I-1 

I-2 

I-3 

I-4 

II-1 

II-2 

II-4 

II-5 

III-1 

III-2A 

III-4 

III-4A 

III-5 

IV-1 

IV-2 

IV-3 

V-1 

V-4 

Table 3.1. Dynamic tension-compression test conditions. 

Age 
Days 

91 

93 

94 

88 

106 

83 

106 

107 

90 

98 

84 

111 

85 

112 

81 

112 

93 

96 

Lot 

a 

a 

a 

b 

d 

e 

e 

d 

b 

d 

c 

h 

c 

d 

f 

h 

g 

g 

aDynamic conditions of 200-kip loader: !--Static; II--0.082-inch orifice with 
solenoid valve; III-0.182-inch orifice with solenoid valve; IV--0.4375-inch 

borifice with solenoid valve, and; V--1.1875-inch orifice with rupture disc. 
Biaxial conditions of loading fixture: 1--No water, no insert; 2--Water, no 
insert; 3--Water, 0.0625-inch insert; 4--Water, 0.25-inch insert, and; 
5--Water, fixture off cylinder. 
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Test 

I-1 

I-2 

I-3 

I-4 

II-1 

II-2 

II-4 

II-5 

III-1 

III-2A 

III-4 

III-4A 

III-5 

IV-1 

IV-2 

IV-3 

V-1 

V-4 

* Static. 

Table 

t 
r 

ms 

600000* 

600000* 

600000* 

600000* 

1420 

1160 

630 

273 

1070 

440 

54 

102 

170 

69 

188 

50 

25 

270 

" " :l.t.. Dynamic tension-compression test results. 

a at e et Type of c c 
• • 1Jin/in JJin/in Failure ps1 ps1 

3060 0 1340 440 Compressive 

2620 so 742 158 Tensile 

1180 145 265 88 Tensile 

920 121 230 77 Tensile 

2600 0 1185 160 Compressive 

1920 35 480 110 Compressive 

425 295 110 110 Tensile 

0 372 15 105 Tensile 

3780 0 1055 500 Compressive 

2580 21 690 155 Tensile 

26 340 20 60 Tensile 

270 305 80 100 Tensile 

58 325 40 65 Tensile 

2530 0 790 220 Compressive 

2840 73 990 385 Compressive 

1080 350 280 150 Tensile 

3700 0 1240 355 Compressive 

500 440 120 205 Tensile 
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Table 3.3. Static control cylinder test results. 

a at £ £t a at £ £t c c c c 
Lot Specimen ps1 ps1 l-Jin/in l-Jin/in Lot Specimen ps1 ps1 l-Jin/in l-Jin/in 

a 1 3520 2050 800 e 25 3100 2200 700 

2 3630 1950 700 26 3080 2100 1000 

3 3450 2100 1300 27 3130 2200 1000 

4 3570 2100 900 28 3110 2100 750 

5 290 60 29 340 95 

6 320 60 30 375 100 

b 7 3710 2350 1100 f 31 3020 2300 1000 

8 3700 2150 1000 32 3100 2550 1250 

9 3500 2200 1000 33 2880 2550 1000 

10 3590 2300 1200 34 2940 2450 880 

11 310 65 35 320 90 

12 230 55 36 360 90 

c 13 3540 2500 900 g 37 3250 2050 1400 

14 3400 2100 700 38 3270 2150 800 

15 3430 2400 950 39 3220 2300 1200 
16 3430 2500 900 40 3180 2150 1100 

17 305 70 41 250 60 

18 335 85 42 255 60 

d 19 3560 2300 1250 h 43 3250 2600 1500 

20 3590 2300 900 44 3200 2200 1000 

21 3430 2300 900 45 3020 2300 1000 

22 3660 2200 1000 46 3180 2300 1000 

23 245 55 47 390 90 

24 360 95 48 270 85 
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DISCUSSION 

4.1 CONTROL CYLINDERS 

The distribution of control cylinder compressive strength, by lot, is 

shown in Figure 4.1. The 3333-psi grand mean is 11 percent above the nomi­

nally desired 90-day strength. It is noted that lots a-d appear stronger than 

e-h for no plausible reason. The 7 percent coefficient of variation (COV) in­

dicates that reasonable uniform quality was attained among lots. Nonetheless, 

the control cylinder tensile strengths (in Figure 4.2) have a grand mean which 

is a plausible 9 percent of the average compressive strength. Notice the 

16 percent COV for tensile strength, which suggests this parameter is more 

variable than the compressive strength. The distributions of strain-at-failure 

appear in Figures 4.3 through 4.5. It appears that failure strains vary more 

under identical conditions than do failure stresses. 

4.2 FAILURE MODES 

The failure modes of the dynamic ~pecimens are shown as a function of 

their biaxial-stress state in Figure 4.6. Those specimens loaded in uniaxial 

compression disintegrated completely an<.l explosively under the dynamic load-

1ng. On the other hand, single longitudinal cleavage failures occurred in 

those specimens loaded significantly in tension. The transition from com­

press1ve failure to tensile failure is rapid as the percent of tension in­

creases. These observations are consi~: tent with those of the static tests by 

McHenry and Karni (1958) and Kupfer, Hi_lsdorf, and Rusch (1969). 

4.3 STRENGTH DATA 

To interpret the dynamic, biaxial strength results 1n Table 3.2, a step­

W1Se statistical-regression procedure v1as conducted, as described in Draper 

and Smith (1966). The form of this re~~ression equation was taken to be linear 

between a and a for constant t , which approximates the accepted 
c t r 

static, tension-compression behavior in Figure 1.1. The form of the equation 

was also assumed to be linear with respect to Qn tr for a constant acjat 
ratio which agrees with previous uniaxi_al, dynamic findings in Figure 1.2. 

The result of the re~ression analysis, shown in Figure 4.7, is 
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t a a 
c + t r 

1 - 0.02503 tn ~ + s -a ats a cs s 

in which 

a - compressive stress at failure 
c 

t < t < 25 ms 
s r 

, 

> 0 > 0 a , at c 

a - estimated static uniaxial compressive strength - 2520 psi 
cs 
at - tensile stress at failure 

ats - estimated static uniaxial tensile strength = 325 psi 

t - time since load application at which failure occurs 
r 

t - time of static load application = 600,000 ms 
s 

s - standard error of estimate = 0.2321 

(1) 

a 
The square of the regression's multiple correlation coefficient, r

2 
- 0.8254 

indicates that all but 17 percent of the strength variability in Table 3.2 is 

explained by this equation. In light of control cylinder strength variability 

in tension, much of this residual variability may represent material differ-

ences in the concrete. Neither a nor a agrees identically with the cs ts 
corresponding measured uniaxial static strength. This is of no particular 

significance, since these estimates were selected to fit all the biaxial dy-

namic measurements. 

In Figure 4.8, the biaxial aspect of the regression is compared with the 

dynamic data, previous static theory, and the control cylinders. Note that the 

strength axes in this figure have been factored by the dynamic effect of the 

regression equation, 

dence causes the data 

1 - 0.02503 tn t /t 
r s 

to scatter less than 

• This removal of dynamic depen-

in the unfactored plot of Fig-

ure 4.6. The factoring also reduces the regression equation from the family of 

lines shown in Figure 4.7 to a single line centered in the data. To within the 

data's accuracy, the results are seen to be consistent with a static theory 

previously shown in Figure 1.1 to represent existing static data. Also, to 

within the dynamic data's scatter, the regression's estimated uniaxial stengths 

are in agreement with the control-cylinder results. 

Figure 4.9 illustrates the dynamic side of the regression result. The 

ordinate of this graph measures the biaxial strength in the form assumed by the 

regression. In spite of the dynamic data scatter, there is seen to be some 

logarithmic dependence of biaxial strength on the loading time t 
r 

which is 

explained by the regression equation. This behavior agrees with previous 
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uniaxial, dynamic results to the extent shown. The dynamic results are con­

sistent with the control cylinder tests as well. 

Practically speaking, the regression equation 1 and Figure 4.7 indicate 

that the biaxial strength increases significantly under dynamic loading. For 

example, a gravity dam with a fundamental period of 0.2 second would have its 

loading applied during an earthquake in approximately t 
r 

= 0.2 sec/4 = 50 ms . 
If the structure's concrete material were similar to that studied therein, one 

could expect biaxial strengths from equation 1 that are about 24 percent 

greater than static values. However, this increase should be used cautiously 

as the standard error of this estimate is 23 percent. 

4.4 STRAIN DATA 

A stepwise-regression analysis was also _performed on the strains-at­

failure given in Table 3.2. The result illustrated in Figure 4.10 is 

E E 
c t 1 + - s 

' E Ets E cs 

in which 

E - compressive strain at failure 
c 

t < t < 25 ms s r 

> 15 ~in/in E c 

E 
t 

> 60 ~in/in 

E - estimated uniaxial compressive strain - 11.68 ~in/in cs 
£t - tensile strain at failure 

- estimated uniaxial tensile strain = 4.25 ~in/in 

- standard error of estimate = 25.17 

- time of static load application = 600,000 ms 

t -
r 

time since load application at which failure occurs 

(2) 

This equation 
2 

explains r = 0.6314 of the strain variability in Table 3.2. 

That there is more residual variation of strain than there is of strength is 

not unexpected since the strain distribution of the control cylinders varied 

more than their strength distributions also. The estimated E and E cs ts 
refer to hypothetical uniaxial strain loadings and thus should not be compared 

to the strains measured for uniaxial stress loadings. 

The biaxial dependence of strains-at-failure is shown in Figure 4.11. 

The dynamic data are seen to follow the trend of equation 2. Note that they 

are consistent with strains-at-static failure taken from Kupfer, Hilsdorf, and 
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Rusch (1969), as well. Although smaller in magnitude, the dynamic strains-at­

failure are also seen to be in approximately the same ratio as the static con­

trol data. 

The independence of biaxial strain on dynamic loading, implied by equa­

tion 2, is shown in Figure 4.12. There is seen to be no significant depen­

dence of the biaxial strain measured by the form of equation 2 upon the load-

ing time t . 
r 

The static control cylinder tests also agree with this result. 

This independence of strain and loading time has been previously noted under 

uniaxial conditions (as in Figure 1.2). 

A useful implication of these strain results is that failure under dy­

namic, biaxial loadings might be judged by a strain criterion rather than a 

strength criterion. An advantage of the former is that the same standard 

would be applicable for dynamic and static loadings. However, the standard 

error of estimate, and hence uncertainty, of the strain criteron would be 

greater than that of a stress criterion. 

4.5 STRESS-STRAIN BEHAVIOR 

The two previous sections have established that tensile-compressive 

strengths increase with the loadings rapidity while the failure strains remain 

constant. This dynamic stiffening is inconsistent with the assumption of lin­

early elastic behavior used in practical design analyses. However, it resem­

bles the response of viscoelastic models which linearly relate stress to strain 

rate as well as strain and which have been proposed for the uniaxial behavior 

of concrete by Hatano (1960), Hatano and Tsutsumi (1959), and Krillov (1977). 

In addition to this rate dependency, the static stress strain data reflect non­

linearities which increase in importance as the biaxial load becomes more com­

pressive in character . A viscoplastic material model, which nonlinearly re­

lates stress, strain, and strain rate (Bazant and Oh, 1982), may explain both 

of these violations of linear elasticity. It would seem nrudent to recommend 

no improvement to the design practice of modeling stress-strain behavior as 

linearly elastic until this or some other theoretical model is shown to conform 

to this data and until the broader implications of such a model are appreciated. 

4.6 FURTHER RESEARCH 

This study has usefully advanced seismic design by establishing the dy­

namic dependence of tensile-compressive stress and strain at failure. However, 
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additional research is desirable to better comprehend the stress-strain behav­

ior of concrete which is also important to the seismic analysis of dams. This 

project has provided data base for such research. Viscoelastic material models 

should now be compared to these results. Contingent on the results of this 

comparison, viscoplastic models may also warrant investigation. Thereafter, 

the behavior under other biaxial stress states and under cyclic loadings 

should be examined. Finally, the dependence of dynamic, biaxial behavior on 

the constituents of the concrete mixture remains to be determined. 
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CHAPTER 5 

CONCLUSIONS 

The tensile-compressive behavior of concrete in monotonically dynamic 

stress states can be investigated with a hollow cylindrical specimen subjected 

to axial and internal pressure loads by a large, open-loop hydraulic device. 

Under combined dynamic loading, the tensile stress-at-failure decreases 

as the simultaneously acting compressive stress is increased. 

For tensile-compressive loading, the strength increases as the stresses 

are applied more rapidly while the strains-at-failure remain constant with 

respect to loading time. 

The stress-strain behavior of concrete under dynamic biaxial loading is 

more complex than the linearly elastic behavior assumed in seismic design 

analyses. 
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