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PREFACE

This study was conducted between 1978 and 1983 by personnel of the U. S.
Army Engineer Waterways Experiment Station (WES) under the sponsorship of the
Directorate of Civil Works of the Office, Chief of Engineers, U. S. Army. The
work was funded under the Structural Engineering Research Work Unit 31588
which was monitored by Mr. Lucian G. Guthrie.

The investigation was conducted under the supervision of Messrs. Byrant
Mather, Chief, Structures Laboratory (SL), William J. Flathau, Assistant
Chief, SL, and James T. Ballard, Chief, Structural Mechanics Division, SL.
Mr. Kenneth L. Saucier designed the constituents of the concrete mixture and
controlled its production. Messrs. Darryl F. Hale and Billy W. Benson as-
sisted in conducting the tests while Messrs. Frederick P. Leake, Jr., and
William C. Strahan, Jr., instrumented them.

The Commanders of WES during the investigation and the preparation of
this report were COL John L. Cannon, CE, COL Nelson P. Conover, CE, and
COL Tilford C. Creel, CE. The Technical Director was Mr. F. R. Brown.
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CONVERSION FACTORS, NON-SI TO METRIC (SI)

UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI (metric)

units as follows:

Multiply
degrees Fahrenheit
feet
inches

microinches per inch

pounds (force) per
square inch

pounds (force) per
cubic foot

pounds (force) per
cubic yard

By

t°C = (t°F - 32)/1.8
0.3048

2.54

1.0

6.89476

16.01846

0.59327642

To Obtain

degrees Celsius
metres

centimetres
micrometres per metre

kilopascals

kilograms per cubic metre

kilograms per cubic metre



CONCRETE BEHAVIOR UNDER DYNAMIC
TENSILE-COMPRESSIVE LOAD

CHAPTER 1
INTRODUCTION

1.1 BACKGROUND

The Corps of Engineers is directly responsible for the seismic safety of
many concrete gravity dams and by its practice influences the safety of many

more structures it owns. To fulfill this responsibility economically, the

strength and stress-strain behavior of mass concrete under the multiaxial and
dynamic states of stress induced by earthquake motions must be known. This re-
port describes an investigation undertaken to improve the knowledge of this be-
havior. The results should also be of some value in assessing the response of

various concrete structures to blast, wave, wind, and other dynamic loadings.

1.2 PREVIOUS RESEARCH

During a strong motion earthquake, it is generally believed that the
individual monoliths of a concrete gravity dam will vibrate independently
of one another (Chopra 1978). Accordingly, the mass concrete of each mono-
lith is subjected to a nonuniform dynamic stress, which can be approximated
by a plane stress condition. It follows that an understanding of mass con-
crete material behavior under such conditions is a prerequisite for any
assessment of a gravity dam's seismic safety. Furthermore, the available
information on the dynamic properties of structural concrete should be
reviewed as well. Although structural concrete does not possess the thermal
cracking problems during curing'to the extent that mass concrete does, the
stress-strain relations of the two materials appear to be similar (ACI
1963, 1970)."

Both the uniaxial and even the biaxial material behavior of concrete
seems to be reasonably understood under statically applied loads. Accepted
experiments have been conducted on thin plates loaded in plane (Kupfer, Hils-
dorf, and Rusch 1969), on thin hollow cylinders loaded axially and by internal
pressure (McHenry and Karni 1958), and on thin hollow cylinders loaded axially
and in torsion (Bresler and Pister 1958, Goode and Helmy 1967). The results

of these tests have established the hiaxial stress combinations at which

Lﬁ.



concrete fails as well as its stress-strain behavior from no load through
failure. Elastic, incrementally plastic theories of mechanical behavior have
been subsequently proposed (Ottosen 1977, Chen and Chen 1975) which are con-
sistent with and rationally generalize these experimental results, as shown
in Figure 1.1.

The dynamic material behavior of concrete has only been reported for uni-
axial states of stress. A number of experiments on cylinders monotonically
loaded in compression (Watstein 1953, Hatano and Tsutsumi 1959, Atchley and
Furr 1967, Kirillov 1977) and in tension (Hatano 1960, Raphael 1975) have been
reported. One can generally conclude from this work that the strength and
stiffness of concrete increase with increasing strain rate while the failure
strain is unaffected by the rate of straining, as seen in Figure 1.2. Some
experiments have also been conducted on cylinders cyclically stressed in
compression (Ban and Muguruma 1960, Hatano and Watanabe 1971, Takeda and
Tachikawa 1973) and in tension (Saucier 1977). These results suggest that
the strains at failure may be independent of the history of stresses and
strains.

However, no experimental information has been published describing the
biaxial, dynamic material properties of concrete. An analytical thesis of
concrete dam behavior, in which reasonable bounds for these unknown properties
were assumed, suggests that the extent of cracking induced by seismic ground
motion can be very sensitive to these assumptions (Pal 1974). Although these
must eventually be defined under cyclic and reversible strains representative
of earthquake induced vibrations, logically they must first be experimentally
measured for monotonic loadings. These must also be known in all quadrants
of the biaxial space. But an understanding of biaxial tension-compression be-

havior is the foremost concern, since the stress state of a dam's cracked

regions occur in this quadrant.

1.3 SCOPE

Accordingly, the scope of this first experimental investigation of con-
crete dynamic, biaxial material behavior is confined to monotonic, tension-
compression loadings. In the following chapters of this report, the experi-
mental procedure will be detailed, the test results will be discussed, and

suggestions for further study of this behavior will be offered.
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CHAPTER 2

PROCEDURE

A number of techniques to measure the dynamic, biaxial material behavior
were critically examined in the design of this experiment. These included

thin square plates loaded in plane; hollow cylindrical specimens loaded by

pressure, torque, and thrust; rhomboidal sandwich plates loaded anticlastically
(having opposite curvatures); solid cylindrical specimens loaded radially and
axially; and beams loaded laterally. The comparison concluded that practically
significant data about monotonic, tensile-compressive properties could econom-
ically be gathered using hollow cylinders of 3000 pSi,a 3/8-inch maximum size
aggregate loaded in axial compression and internal pressure by a quickly modi-

fied hydraulic device existing at the WES.

2.1 SPECIMENS

As shown in Figure 2.1, the experimental specimen was a hollow right cir-
cular cylinder of 13-inch inner diameter, 1-inch wall thickness, and 26-inch
height. The specimen's radius-to-wall thickness ratio, 6.5, is high enough
to assure an elastic distribution of tensile hoop stress that is uniform to
within 8 percent (Timoshenko 1941). Reasonable static results were reported
in McHenry and Karni (1958), which were obtained from a similar specimen having
a less uniform distribution corresponding to a radius-to-thickness ratio of
2.5. This study's height-to-outer diameter ratio matches that of McHenry
and Karni (1958) to give a uniformly stressed central region uninfluenced by
the boundary conditions at the ends of the specimen. This height is also small
enough that the transit time (<0.2 ms (millisecond) for 155 1b/ft3, R 106 psi
modulus concrete) for axial-stress waves is virtually instantaneous in compari-
son to the loading rise times of interest (>25 ms).

The constituents of concrete mixture used for these specimens are given
in Table 2.1. This mixture was selected to have a nominal 90-day compressive
strength of 3000 psi. The maximum aggregate size was restricted to 3/8 inch

to duplicate the ratio of the parameter-to-specimen wall thickness used in

McHenry and Karni (1958). The aggregate size distribution, shape, and mineral

able of factors for converting non-SI units of measurement to metric

units is given on page 3.



content of Lhis mix were otherwise chosen to be as representative as possible
of mass concrete. All cement and aggregates for all the specimens were
blended together in a single common dry batch to minimize the variation of
concrete strength among the lots of specimens.

The specimens were cast in lots of five, in steel molds, mounted on a vi-
brating table. These molds were removed after 48 hours and prepared for re-
use. The specimens were then cured until 28 days old in a fog room. There-
after, until testing at approximately 90 days age, the specimens were sealed
within plastic bags at ambient temperatures less than 85°F. Before each test,
the inside surface of the cylinder was thinly coated with an epoxy to prevent
the intrusion of water into the wall, under pressure. An epoxy cap was also
cast at both ends of the cylinder to provide a smooth surface for the O-ring

seals, as shown in Figure 2.1.

2.2 LOADING

All loadings were applied by the WES 200 kip-loader (shown in Figure 2.2)
which can apply monotonic loadings with rise times as fast as 1 ms (Balsara
and Hossley 1973). This simple and inexpensive open-loop hydraulic device
employs a silicone oil as the working fluid. Static loads are applied by
slowly pressurizing the upper chamber while maintaining little or no pressure
in the lower chamber. Dynamic loads are generated by pressurizing the upper
chamber to a level greater than the lower one and then suddenly releasing the
fluid through the orifice shown. The shape of the loading-versus-time curve
thus created is obviously a complex function of fluid pressure, fluid volume,
orifice opening, and specimen stiffness which cannot be controlled with abso-
lute precision. However, it is possible to satisfactorily generate nominal
peak loads and rise times after some preliminary calibrations.

The special aluminum fixtures, shown in Figure 2.1, were fabricated to
mount the concrete specimens in the 200-kip loading device. The top fixture
incorporated two valved openings so that the specimen could be filled with
water in such a way that no significant air was entrapped. The bottom fixture
contained mounts for two pressure transducers. A satisfactory seal between
each fixture and the specimen was established with O-rings.

Thus, the hydraulic ram's loading was carried in part by an axial com-
pression in the specimen and in part by a pressurization of the contained

water, which simultaneously loaded the specimen in circumferential tension.



Three nominally different proportions of compressive and tensile loadings were
achieved by inserting a 1/4-inch thick, a 1/16-inch thick, or no rubber pad
between the top fixture and the specimen (Figure 2.1), so as to effectively
change the relative stiffness of the two parallel load paths seen by the ram.
A uniaxial compressive loading was also achieved by simply not filling the
specimen with water. Finally, an essentially uniaxial tensile condition re-
sulted when the specimen was overfilled so that the top fixture bore only on

the water surface.

2.3 INSTRUMENTATION

The total load-versus-time function, applied by the hydraulic ram in each
test, was measured by the load cell shown under the bottom fixture in Fig-
ure 2.3. The sensing element of this cell is a hollow column. Two axial and
two transverse strain gages on this column were wired to form a fully active
Wheatstone bridge circuit.

The water pressure inside each cylinder was independently measured by two
identical pressure gages in the bottom fixture. Each gage's sensing element
was a 0.l-inch-diameter steel diaphragm containing four semiconductor strain
gages in a fully active four-arm Wheatstone bridge.

Three independent measurements each of axial strain, outer circumferen-
tial strain, and inner circumferential strain were made on each specimen, as
shown in Figure 2.4. Each of these nine measurements was made with a single
6-inch-long, constantan alloy, wire gage.

The signals from all twelve of these channels were simultaneously re-
corded on FM magnetic tape during each test. A corresponding digital magnetic

tape was subsequently produced for later reduction of these data, as described

in Chapter 3.

2.4 CONTROL CYLINDERS

Six conventional 6-by-12-inch control cylinders were cast with each lot
of hollow cylinders and were cured under the same conditions. Four of the
control cylinders were statically tested in compression (ASTM C 39-72) to
measure strength, axial strain, and transverse strain (ASTM 1972). The re-
maining two cylinders were statically tested in direct tension (ASTM D 2936-78)
to measure strength and axial strain (ASTM 1978).
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CHAPTER 3

RESULTS

Eight lots of five hollow cylindrical specimens each were produced. Of
these, twenty-nine appeared to be of adequate quality to test. Eleven of these
tests were invalid because the specimen's state-of-stress did not appear to be
uniform before failure. The dynamic, biaxial loading condition and the spec-
imen lot of the 18 tests considered to be successful are listed in Table 3.1.
These conditions include static, biaxial, and dynamic uniaxial states compar-
able to previously published results of other researchers, as well as dynamic,
biaxial states heretofore untested.

For each test, the data recorded on magnetic digital tape were reduced
with the aid of the WES central computer system as follows. Individual plots
of the load cell, the two pressure transducers, and the nine strain gages (as
a function of time) were first examined to eliminate invalid recordings. The
compressive stress function of time Uc(t) was then computed by dividing the

net force carried in the cylinder wall by its cross-sectional area, 1i.e.

P(t) - melp(t)

Gc(t) . Iﬂi(r2 - r?)
0 i
in which
P(t) = load function measured by load cell
p(t) = average of valid pressure transducer measurements
r. = specimens inner radius (6.5 inches)
L specimens outer radius (7.5 inches)

The tensile stress was calculated from the thin-walled approximation

(Timoshenko 1941):

.

GoLE] =S L)
O 1

to(t) , and inner tensile ati(t)

strain functions of time were estimated by the mean of the valid measurements

The compressive Sc(t) , outer tensile ¢

of each strain.
These results are shown in Figures 3.1 through 3.18. The (a) part of

16



each figure depicts the reference stress versus time function. This reference
stress is the compressive stress Uc(t) except for the uniaxial tensile tests
in which it is 0,(t) . The (b) portion of each figure then shows how the
other stress varied with respect to the reference stress. The strain behavior
as a function of the reference stress is next presented in part (c). Finally
the (d) part of each figure is a photograph of the failed specimen, if
available.

From an examination of these plots, the magnitudes of compressive 0.
and tensile O, stress at failure were judged, as indicated for each speci-
men, and listed in Table 3.2. The time since load application at which this
failure occurred t.H the compressive strain magnitude €. » and the average
€ of the inner and outer tensile strain magnitudes at failure are also pre-
sented in this listing. The last column qualitatively indicates whether the
failure was '"compressive" (accompanied by the complete disintegration of the
specimen) or "tensile" (characterized by a single longitudinal cleavage).

The results of the 6- by 12-inch control cylinder tests appear in Ta-
ble 3.3. For those specimens tested in static, uniaxial compression, the max-
imum stress O and corresponding compressive €. and tensile €, strains
are given. For the cylinders loaded in static, uniaxial tension, the maximum

stress O, and corresponding strain €. are listed.
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Table 3.1. Dynamic tension-compression test conditionms.

Age

Testa'h Days Lot
1=1 91 a
I-2 93 a
=3 94 a
I-4 88 b
II-1 106 d
I1-2 83 e
I1-4 106 e
I11-5 107 d
I111-1 90 b
ITI-2A 98 d
I11-4 84 C
ITI-4A 111 h
I1I=5 85 C
IV=-1 112 d
V-2 81 3
IV-3 112 h
V-1 93 g
V-4 96 g

aDynamic conditions of 200-kip loader: I--Static; I1I--0.082-inch orifice with
solenoid valve; III-0.182-inch orifice with solenoid valve; IV--0.4375-inch
orifice with solenoid valve, and; V--1.1875-inch orifice with rupture disc.
Biaxial conditions of loading fixture: 1--No water, no imnsert; 2--Water, no
insert; 3--Water, 0.0625-inch insert; 4--Water, 0.25-inch insert, and;
5--Water, fixture off cylinder.

18



Table 3.2.

Dynamic tension-compression test results.

e e ¢ “c 5 Type of

Test ms psi psi uin/in pMin/in Failure
I-1 600000%* 3060 0 1340 440 Compressive
| 600000* 2620 50 7142 158 Tensile

I-3 600000% 1180 145 265 88 Tensile

I-4 600000%* 920 121 230 17 Tensile
I1-1 1420 2600 0 1185 160 Compressive
11-2 1160 1920 35 480 110 Compressive
11-4 630 425 295 110 110 Tensile
IT=5 273 0 3712 15 105 Tensile
Id=1 1070 3780 0 1055 500 Compressive
I1I-2A 440 2580 21 690 155 Tensile
I111-4 54 26 340 20 60 Tensile
ITI-4A 102 270 305 80 100 Tensile
I11~5 170 58 325 40 65 Tensile
V-1 69 2530 0 790 220 Compressive
V-2 188 2840 13 990 385 Compressive
1V=3 50 1080 350 280 150 Tensile
V-1 25 3700 0 1240 355 Compressive
V-4 270 500 440 120 205 Tensile
# Static.

19



Table 3.3. Static control cylinder test results.

UC Ut SC Et UC Ut Ec Et.

Lot Specimen psi psi pin/in pin/in Lot Specimen psi psi pin/in pin/in

a 1 3520 2050 800 e 25 3100 2200 700
2 3630 1950 700 26 3080 2100 1000

3 3450 2100 1300 27 3130 2200 1000

4 3570 2100 900 28 3110 2100 750

S 290 60 29 340 95

6 320 60 30 379 100

b 7 3710 2350 1100 f 31 3020 2300 1000
8 3700 2150 1000 32 3100 2550 1250

9 3500 2200 1000 33 2880 2550 1000

10 3590 2300 1200 34 2940 2450 880

11 310 65 35 320 90

12 230 35 36 360 90

C 13 3540 2500 900 g 37 3250 2050 1400
14 3400 2100 700 38 3270 2150 800

15 3430 2400 950 39 3220 2300 1200

16 3430 2500 900 40 3180 2150 1100

17 305 70 41 250 60

18 335 85 42 255 60

d 19 3560 2300 1250 h 43 3250 2600 1500
20 3590 2300 900 a4 3200 2200 1000

21 3430 2300 900 45 3020 2300 1000

22 3660 2200 1000 46 3180 2300 1000

23 245 55 47 390 90

24 360 95 48 270 85

20
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CHAPTER &

DISCUSSION

4.1 CONTROL CYLINDERS

The distribution of control cylinder compressive strength, by lot, is
shown in Figure 4.1. The 3333-psi grand mean is 11 percent above the nomi-
nally desired 90-day strength. It is noted that lots a-d appear stronger than
e-h for no plausible reason. The 7 percent coefficient of variation (COV) in-
dicates that reasonable uniform quality was attained among lots. Nonetheless,
the control cylinder tensile strengths (in Figure 4.2) have a grand mean which
is a plausible 9 percent of the average compressive strength. Notice the
16 percent COV for tensile strength, which suggests this parameter is more
variable than the compressive strength. The distributions of strain-at-failure

appear in Figures 4.3 through 4.5. 1t appears that failure strains vary more

under identical conditions than do failure stresses.

4.2 FAILURE MODES

The failure modes of the dynamic specimens are shown as a function of
their biaxial-stress state in Figure 4.6. Those specimens loaded in uniaxial
compression disintegrated completely and explosively under the dynamic load-
ing. On the other hand, single longitudinal cleavage failures occurred in
those specimens loaded significantly in tension. The transition from com-
pressive failure to tensile failure is rapid as the percent of tension in-
creases. These observations are consistent with those of the static tests by

McHenry and Karni (1958) and Kupfer, Hilsdorf, and Rusch (1969).

4.3 STRENGTH DATA

To interpret the dynamic, biaxial strength results in Table 3.2, a step-
wise statistical-regression procedure vas conducted, as described in Draper
and Smith (1966). The form of this regression equation was taken to be linear
between O and O, for constant t which approximates the accepted
static, tension-compression behavior in Figure 1.1. The form of the equation
was also assumed to be linear with respect to 2n tr for a constant Uc/Ut
ratio which agrees with previous uniaxial, dynamic findings in Figure 1.2.

The result of the recression analysis, shown in Figure 4.7, 18
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-EE—-+-E£— =1 - 0.02503 ﬂn-fz-i s 3 (1)
%s “ts ts 5
g2 0, O 0
in which
0= compressive stress at failure
O estimated static uniaxial compressive strength = 2520 psi
g = tensile stress at failure
s estimated static uniaxial tensile strength = 325 psi
tr = time since load application at which failure occurs
e s time of static load application = 600,000 ms
S, = standard error of estimate = 0.2321 )
The square of the regression's multiple correlation coefficient, r = 0.8254

indicates that all but 17 percent of the strength variability in Table 3.2 is
explained by this equation. 1In light of control cylinder strength variability
in tension, much of this residual variability may represent material differ-
ences in the concrete. Neither O,g Dor o agrees identically with the
corresponding measured uniaxial static strength. This is of no particular
significance, since these estimates were selected to fit all the biaxial dy-
namic measurements.

In Figure 4.8, the biaxial aspect of the regression is compared with the
dynamic data, previous static theory, and the control cylinders. Note that the
strength axes in this figure have been factored by the dynamic effect of the
regression equation, 1 - 0.02503 &n tr/tS . This removal of dynamic depen-
dence causes the data to scatter less than in the unfactored plot of Fig-
ure 4.6. The factoring also reduces the regression equation from the family of
lines shown in Figure 4.7 to a single line centered in the data. To within the
data's accuracy, the results are seen to be consistent with a static theory
previously shown in Figure 1.1 to represent existing static data. Also, to
within the dynamic data's scatter, the regression's estimated uniaxial stengths
are in agreement with the control-cylinder results.

Figure 4.9 illustrates the dynamic side of the regression result. The
ordinate of this graph measures the biaxial strength in the form assumed by the
regression. In spite of the dynamic data scatter, there is seen to be some

logarithmic dependence of biaxial strength on the loading time tr which is

explained by the regression equation. This behavior agrees with previous
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uniaxial, dynamic results to the extent shown. The dynamic results are con-

sistent with the control cylinder tests as well.,

Practically speaking, the regression equation 1 and Figure 4.7 indicate
that the biaxial strength increases significantly under dynamic loading. For
example, a gravity dam with a fundamental period of 0.2 second would have its
loading applied during an earthquake in approximately t_ = 0.2 sec/4 = 50 ms .
If the structure's concrete material were similar to thai studied therein, one
could expect biaxial strengths from equation 1 that are about 24 percent

greater than static values. However, this increase should be used cautiously

as the standard error of this estimate is 23 percent.

4.4 STRAIN DATA

A stepwise-regression analysis was also performed on the strains-at-

failure given in Table 3.2. The result illustrated in Figure 4.10 is

E. < &t <25 ms
r

€. €. =
e 1 % s ; e > 15 uin/in (2)
cs ts &
e, > 60 pin/in
in which
EC = compressive strain at failure
Ea T estimated uniaxial compressive strain = 11.68 pin/in
Et = tensile strain at failure
£yt estimated uniaxial tensile strain = 4.25 pin/in
SE = standard error of estimate = 25.17
oS time of static load application = 600,000 ms
t = time since load application at which failure occurs

; . . 2 ; e avat .
This equation explains r = 0.6314 of the strain variability in Table 3.2.
That there is more residual variation of strain than there is of strength is

not unexpected since the strain distribution of the control cylinders varied

more than their strength distributions also. The estimated €. and €
refer to hypothetical uniaxial strain loadings and thus should not be compared
to the strains measured for uniaxial stress loadings.

The biaxial dependence of strains-at-failure is shown in Figure 4.11.
The dynamic data are seen to follow the trend of equation 2. Note that they

are consistent with strains-at-static failure taken from Kupfer, Hilsdorf, and
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Rusch (1969), as well. Although smaller in magnitude, the dynamic strains-at-
failure are also seen to be in approximately the same ratio as the static con-
trol data.

The independence of biaxial strain on dynamic loading, implied by equa-
tion 2, is shown in Figure 4.12. There is seen to be no significant depen-
dence of the biaxial strain measured by the form of equation 2 upon the load-
ing time tr . The static control cylinder tests also agree with this result.
This independence of strain and loading time has been previously noted under
uniaxial conditions (as in Figure 1.2).

A useful implication of these strain results is that failure under dy-
namic, biaxial loadings might be judged by a strain criterion rather than a
strength criterion. An advantage of the former is that the same standard
would be applicable for dynamic and static loadings. However, the standard
error of estimate, and hence uncertainty, of the strain criteron would be

greater than that of a stress criterion.

4.5 STRESS-STRAIN BEHAVIOR

The two previous sections have established that tensile-compressive
strengths increase with the loadings rapidity while the failure strains remain
constant. This dynamic stiffening is inconsistent with the assumption of lin-
early elastic behavior used in practical design analyses. However, it resem-
bles the response of viscoelastic models which linearly relate stress to strain
rate as well as strain and which have been proposed for the uniaxial behavior
of concrete by Hatano (1960), Hatano and Tsutsumi (1959), and Krillov (1977).
In addition to this rate dependency, the static stress strain data reflect non-
linearities which increase in importance as the biaxial load becomes more com-
pressive in character. A viscoplastic material model, which nonlinearly re-
lates stress, strain, and strain rate (Bazant and Oh, 1982), may explain both
of these violations of linear elasticity. It would seem nrudent to recommend
no improvement to the design practice of modeling stress—-strain behavior as
linearly elastic until this or some other theoretical model is shown to conform

to this data and until the broader implications of such a model are appreciated.

4.6 FURTHER RESEARCH

This study has usefully advanced seismic design by establishing the dy-

namic dependence of tensile-compressive stress and strain at failure. However,
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additional research is desirable to better comprehend the stress-strain behav-
ior of concrete which is also important to the seismic analysis of dams. This
Project has provided data base for such research. Viscoelastic material models
should now be compared to these results. Contingent on the results of this
comparison, viscoplastic models may also warrant investigation. Thereafter,
the behavior under other biaxial Stress states and under cyclic loadings
should be examined, Finally, the dependence of dynamic, biaxial behavior on

the constituents of the concrete mixture remains to be determined.
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CHAPTER 5

CONCLUSIONS

The tensile-compressive behavior of concrete in monotonically dynamic
stress states can be investigated with a hollow cylindrical specimen subjected
to axial and internal pressure loads by a large, open-loop hydraulic device.

Under combined dynamic loading, the tensile stress-—-at-failure decreases
as the simultaneously acting compressive stress is increased.

For tensile-compressive loading, the strength increases as the stresses
are applied more rapidly while the strains—-at-failure remain constant with

respect to loading time.

The stress-strain behavior of concrete under dynamic biaxial loading is
more complex than the linearly elastic behavior assumed in seismic design

analyses.
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