

United States Government

TECHNICAL REPORT SL-87-11


ANALYSIS OF DYNAMIC IN SITU BACKFILL PROPERTY TESTS

Report 3 THE MODIFIED ONED PROGRAM FOR ONE-DIMENSIONAL PLANAR STRESS WAVE PROPAGATION

by

Lynn Seaman

SRI International 333 Ravenswood Avenue Menlo Park, California 94025-3493

July 1987 Report 3 of a Series

Approved For Public Release, Distribution Unlimited

Library Branch Technical Information Center U.S. Army Engineer Waterways Experiment Station Vicksburg, Mississippi

Prepared for US Army Corps of Engineers Washington, DC 20314-1000

Under Project No. 4A162719AT40, Task AO, Work Unit 024 (Contract No. DACA39-83-K-0002)

Monitored by Structures Laboratory US Army Engineer Waterways Experiment Station PO Box 631, Vicksburg, Mississippi 39180-0631

LS2K# 16452626

7A7 W34 No. SL-87-11 repl. 3 c. 3

Unclassified SECURITY CLASSIFICATION OF THIS PAGE

			REPORT DOCU	MENTATION	PAGE		
1a. REPORT SECURITY CLASSIFICATION Unclassified				16. RESTRICTIVE	E MARKINGS		and the second
2a. SECURITY CLASSIFICATION AUTHORITY 2b. DECLASSIFICATION / DOWNGRADING SCHEDULE 4. PERFORMING ORGANIZATION REPORT NUMBER(S)			- There was not a	3 DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution unlimited. 5. MONITORING ORGANIZATION REPORT NUMBER(S) Technical Report SL-87-11			
			DULE				
			BER(S)				
	PERFORMING	ORGANIZATION	6b. OFFICE SYMBOL (If applicable)	USAEWES	MONITORING ORGAN s Laboratory	IZATION	
6c. ADDRESS (City, State, and ZIP Code) 333 Ravenswood Avenue Menlo Park, CA 94025-3493				7b. ADDRESS (City, State, and ZIP Code) PO Box 631 Vicksburg, MS 39180-0631			
8a. NAME OF FUNDING/SPONSORING ORGANIZATION US Army Corps of Engineers			8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER Contract No. DACA39-83-K-0002			
BC. ADDRESS (City, State, and	ZIP Code)		10. SOURCE OF FUNDING NUMBERS			
Washingto	on, DC 20	314-1000		PROGRAM ELEMENT NO.	PROJECT NO. 4A162719AT40	TASK NO. AO	WORK UNIT ACCESSION NO. 024
Analysis	(Hite)	c In Situ Ba	ckfill Property Propagation	Tests; The N	Modified ONED	Progra	am for One-
2. PERSONAL							
13a. TYPE OF REPORT Report 3 of a Series FROM			COVERED TO	14. DATE OF REF July 1987	PORT (Year, Month, L	lay) 15.	PAGE COUNT 102
Available	e from Nat	ional Techni	cal Information	Service, 52	85 Port Royal	Road,	Springfield, VA
17.	COSATI	CODES	18. SUBJECT TERMS				
FIELD	GROUP	SUB-GROUP	Artificial viscosityPlane stress wave propagationExplosive loadingsPorous material modelsLarge deformationsShock waves				

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

ONED is a small one-dimensional stress wave propagation computer program for simulating explosive loading on layers of soil. The method of artificial viscosity is used with an explicit computational technique. Materials treated can be solids, porous solids, gases, and explosives. The loading causing the waves can be provided either as a pressure history or by the detonation of an explosive layer. The materials are represented by three-dimensional models with separate treatments for the pressure and deviatoric stresses. The pressure for the porous material is given by loading and unloading curves defined by varying moduli. The deviator stress model describes elastic and plastic behavior with either a Mises or a Coulomb friction yield limit. The detonation of an explosive is provided by either a polytropic gas relation or a tabular isentrope.

This version of ONED is an amplification of an earlier version used at the US Army Engineer Waterways Experiment Station for many years. The main changes are the conversion to (Continued)

UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS					
			22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL		
DD FORM 1473, 84 MAR		83 APR edition may be used unti All other editions are obs			
	Allo			Unclassifi	ed

Unclassified SECURITY CLASSIFICATION OF THIS PAGE

19. ABSTRACT (Continued).

an explicit computational scheme, use of artificial viscosity, provision for large deformations, addition of explosive detonations, and use of separable material model routines.

All have been a second to a second of the	

Unclassified SECURITY CLASSIFICATION OF THIS PAGE

PREFACE

.

The work described herein was performed by SRI International for the US Army Engineer Waterways Experiment Station (WES) under Contract No. DACA39-83-K-0002. It was sponsored by the Office, Chief of Engineers, US Army, as a part of Project 4A162719AT40, Task AO, Work Unit 024, "Ground Shock Prediction Techniques for Earth and Earth-Structure Systems." Technical Monitor for OCE was Mr. R. L. Wight.

Dr. Lynn Seaman was the Principal Investigator for this study. Dr. Joseph S. Zelasko, Geomechanics Division (GD), Structures Laboratory (SL), was the WES Contracting Officer's Representative. Dr. J. G. Jackson, Jr., was Chief, GD, and Mr. Bryant Mather was Chief, SL.

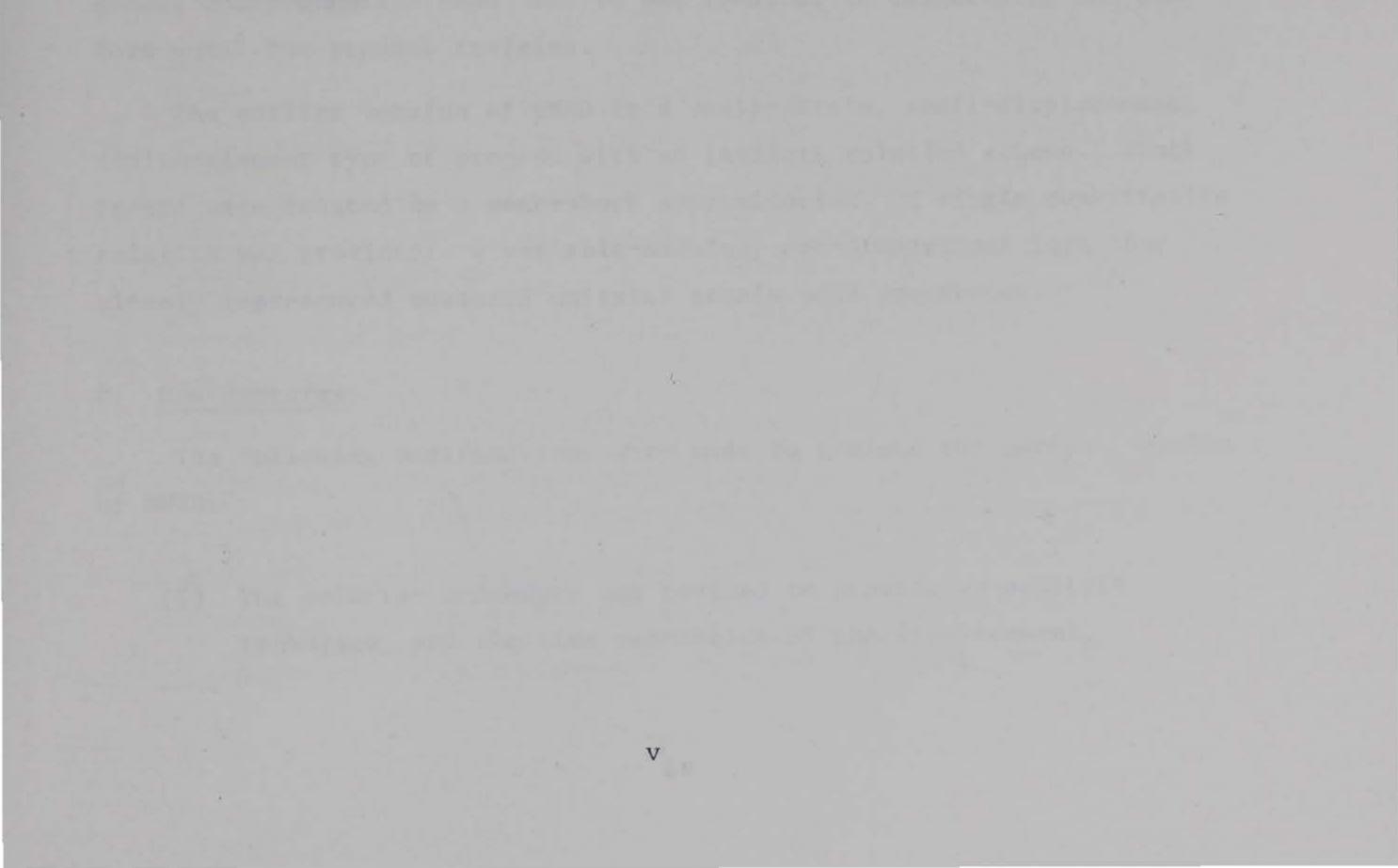
COL Dwayne G. Lee, CE, is Commander and Director of WES. Dr. Robert W. Whalin is Technical Director.

i

TABLE OF CONTENTS

			Page
PRE	FACE	*****	i
LIS	r of	ILLUSTRATIONS	iv
CON	VERS	ION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT	vi
I	INT	RODUCTION	1
	Α.	Background	1
	Β.	New Features	1
	с.	Scope	2
II	PRO	PAGATION CALCULATIONS (Subroutine CMPUTE)	5
	Α.	Solution Procedure for Wave Propagation Equations	5
	Β.	Artificial Viscous Stress	10
	C.	Time-Step Control	11
III	CON	STITUTIVE RELATIONS	13
	Α.	Pressure Model for a Solid (Subroutine EQST)	13
	В.	Deviator Stress Model (A Part of Subroutine CMPUTE)	14
	С.	Model for Porous Material (Subroutine SSONED)	19
	D.	Model for an Explosive (Subroutine EXPLODE)	24
IV	INI	TIALIZATION	27
	Α.	Input of General Control Information	27
	Β.	Material Property Input	30
		1. Input for the Porous Model SSONED	31
		2. Input for the Explosive Model EXPLODE	32
		3. Input for the Solid Model EQST	33
	с.	Layering	33
	D.	Geostatic Stress Initialization	35
V	PRI	NTED OUTPUT: READIT, HISTRY, SCRIBE, CMPUTE, and VALMAX	37
REF	EREN	CES	51
APP	ENDI	CES	
	Α.		A-1
	в.	Glossary of Terms Used in the Program	B-1
	с.	Insertion Procedure	C-1
	D.	Listing of ONED and Its Subroutines	D-1

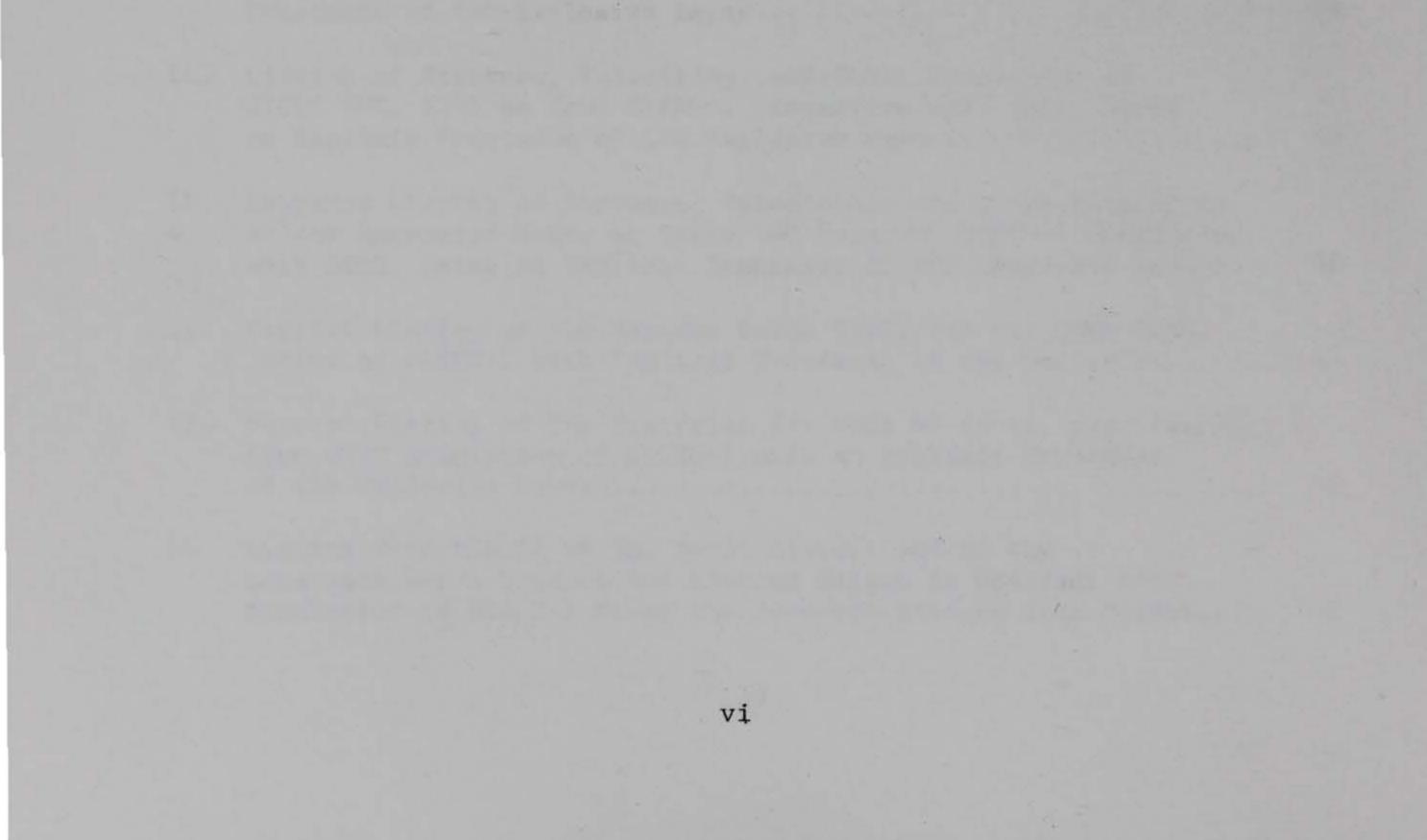
LIST OF ILLUSTRATIONS


Page

1.	Grid for Depicting Coordinates and Time Increments	8
2.	Definition of Modulus and Strain Values on Loading and Unloading Curves for the SSONED Model	20
3.	Three Descriptions of the Unloading Process Provided by the SSONED Model	22
4.	Sample Input for an ONED Simulation of Wave Propagation Through Layers of Clay, Plywood, Foam, and Sand (DISKO-2)	28
5.	Listing from READIT of General Control Information Used in ONED Simulation of DISKO-1 Using an Explicit Treatment of the Explosive Layer	38
6.	Listing of Material Property Information for Porous Materials: Three Lines from READIT and the Remainder from SSONED	39
7.	Listing of Material Property Information for Explosives and Gases: Three Lines from READIT and Two from EXPLODE	41
8.	Partial Listing of the Layer, Node, and Cell Information from READIT for the ONED Simulation of DISKO-1 with an Explicit Treatment of the Explosive Layer	42
9	Listing of the Layout and Depths at Which Histories are Requested for the ONED Simulation of DISKO-1 with an Explicit Treatment of the Explosive Layer	43

10. Listing of Stresses, Velocities, and Other Properties at CYCLE 400, 1.03 ms from DISKO-1 Simulation with ONED, Using an Explicit Treatment of the Explosive Layout 45 11. Snapshot Listing of Stresses, Velocities, and Other Properties at the Requested Nodes at Cycle 300 from the DISKO-1 Simulation 46 with ONED, Using an Explicit Treatment of the Explosive Layout .. 12. Partial Listing of the Maximum Value Table for the ONED Simu-47 lation of DISKO-1 with Explicit Treatment of the Explosive 13. Partial Listing of the Histories for Node 62 (6-in. gage depth) from ONED Simulation of DISKO-1 with an Explicit Treatment of the Explosive Layer 48 14. Listing from READIT of the Force History and of the Locations where Printed and Plotted Output is Desired: ONED Simulation of DISKO-1 Using the Pressure History from GUINSY 50

LIST OF ILLUSTRATIONS (Continued)


- A-1 Input File for ONED Simulation of DISKO-1 Using the Pressure History from the Blast Pressure Gages..... A-2
- A-3 Input File for the ONED Simulation of DISKO-1 with the Pressure History Constructed by GUINSY from the Stress Gage Records..... A-4
- A-4 Input File for a Synthetic Problem with a Solid, a Gap, a Porous Material, and an Explosive Requiring a Tabular Isentrope..... A-5

CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI (metric) units as follows:

Multiply	Ву	To Obtain
degrees (angle)	0.01745329	radians
dynes per square centimeter	0.1	pascals
ergs	0.1	microjoules
feet	0.3048	meters
grams per cubic	1,000	kilograms per cubic meter
inches	25.4	millimeters
kips (force)	4.448222	kilonewtons
kips (force) per square inch	6.894757	megapascals
pounds (force) per square inch	6.894757	kilopascals
pounds (mass)	0.4535924	kilograms
pounds (mass) per cubic foot	16.01846	kilograms per cubic meter

ANALYSIS OF DYNAMIC IN SITU BACKFILL PROPERTY TESTS

THE MODIFIED ONED PROGRAM FOR ONE-DIMENSIONAL PLANAR STRESS WAVE PROPAGATION

I INTRODUCTION

The ONED code is a computer program for calculating one-dimensional plane stress wave propagation through a column of soil and other materials in response to detonation of an explosive. The materials may be porous solids, solids, gases, or explosives. The stress waves being computed are initialized by detonation of an explosive or by prescription of a pressure history at the top boundary. Computations are made with the Lagrangian form of the equations of motion so that the coordinates move with the materials. An artificial viscosity is used to smear wave fronts over several computational cells.

A. Background

The present ONED code is a revision of a code that has been in regular use at the U. S. Army Engineer Waterways Experiment Station (WES) for many years. The first version of the ONED code was developed at WES around 1966 for predicting ground motion. In 1971, Radhakrishnan and Rohani documented the code¹ and it has remained in essentially the same

form until the present revision.

The earlier version of ONED is a small-strain, small-displacement, finite-element type of program with an implicit solution scheme. Shock fronts were treated by a weak-shock approximation. A single constitutive relation was provided: a variable-modulus, one-dimensional form that closely represented measured uniaxial strain soil properties.

B. New Features

The following modifications were made to produce the current version of ONED:

 The solution procedure was revised to provide an explicit technique, and the time sequencing of the displacement,

velocity, acceleration, and stress calculations were adjusted so that they provide an accurate centering of the finite difference equations for momentum conservation.

- (2) The treatment of strain and density was modified to represent a large displacement formulation.
- The calculation of an artificial viscosity was added with (3) both a quadratic and a linear term in $d_{\rm P}/dt$, the rate of change of density with time.
- The subroutines that handle the stress-strain calculation (4) were isolated so that these subroutines can be transported to other organizations and codes and so that other stressstrain routines can be readily added.
- A three-dimensional model for porous material was (5) constructed.

The following models were added:

(6) Models for deviator stress, a Mie-Grüneisen model for solids, and polytropic and tabular isentrope models for explosives.

In addition some changes were made in the input and output, and the treatment of geostatic stress has been modified.

Scope С.

This report contains a discussion of the theoretical bases for the equations used in ONED, application of the theory to analysis of typical problems, details of implementation, and sample problems. The essential theory for one-dimensional wave propagation is given in Chapter II and the constitutive relations (stress-strain relations) in Chapter III. The

processes associated with initializing the material properties and the cell layout are described in Chapter IV. Sample input files are listed in Appendix A, followed by a glossary of all important parameters in Appendix B. The code is intended for modification and amplification by adding new stress-strain relations: guidelines for inserting new relations are described in Appendix C.

Appendix D is a listing of ONED and its subroutines. Internally the code uses the cgs system of units, but there are provisions for inserting some of the data in the SI or English systems. Some printout can also be obtained in the other systems.

II PROPAGATION CALCULATIONS (Subroutine CMPUTE)

The motion and stresses throughout the material are determined as a function of time in the code. The solution is obtained by integrating the mass and momentum conservation relations together with constitutive relations for the material. This section presents the conservation relations and their general solutions.

In the solution procedure, the material is first divided into discrete units or cells. Velocities, stresses, and other quantities are initialized in cells as required for the particular problem. Then a time step is taken and the motions and stresses are calculated for each cell using the conservation and constitutive relations. This process of stepping forward in time and performing calculations for each cell is repeated until the time has reached the duration of interest. The time step used is controlled by stability and smoothness criteria in the code. The stability considerations are described in this section.

A. Solution Procedure for Wave Propagation Equations

The ONED program is based on the solution of the Lagrangian equations governing one-dimensional planar motion of a continuous medium. The solution technique is called the method of artificial viscosity because of the introduction of viscous forces to permit a continuous-flow computation in regions of high stress gradients. Such regions are interpreted as locations of shock fronts although no discontinuities occur in the computed flow field. With this artificial viscosity method, the equations of continuous flow can be used everywhere, and no special equations are required for shock fronts. ONED uses the leapfrog method of von Neumann and Richtmyer² to integrate the flow equations. The following paragraphs introduce the governing differential equations for planar flow. These equations are changed to an integral form for solution in the program. The one-dimensional planar Lagrangian differential equations to be solved are

$$\left(\frac{\partial V}{\partial t}\right)_{H} = -\frac{1}{D_{o}} \left(\frac{\partial R}{\partial H}\right)_{t} + g \qquad (momentum)$$

$$\left(\frac{\partial X}{\partial t}\right)_{H} = V \qquad (velocity) \qquad (2)$$

$$\left(\frac{\partial D}{\partial t}\right)_{H} = -\frac{D^{2}}{D_{o}} \left(\frac{\partial V}{\partial X}\right)_{t} \text{ or equivalently}$$

$$\left(\frac{\partial X}{\partial H}\right)_{t} = D_{o}/D$$

$$(3)$$

where

t

V

- H = Lagrangian coordinate location (original position in laboratory coordinates)
- X = Eulerian coordinate location (current position in laboratory coordinates)

= time

= particle velocity

 $D_{,D_{0}}$ = current and original density

R = total mechanical stress

g = acceleration of gravity.

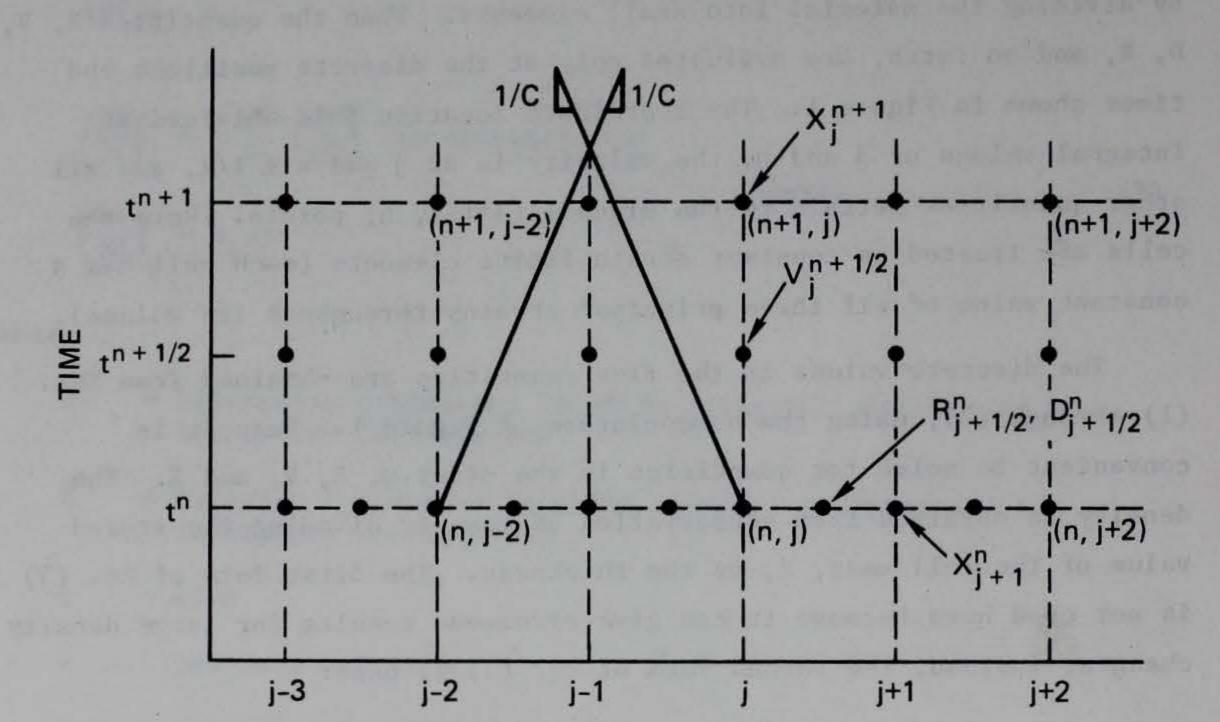
These equations relate velocity to the coordinate motion and provide for conservation of momentum and mass. In addition to these differential equations, there is an equation of state (or constitutive relation) that is a relationship between stress or pressure quantities and the density, history of loading, and so forth.

R = F(D,...)

(equation of state)

$$= P + \sigma' + Q \tag{4}$$

The total mechanical stress (in the direction of propagation), R, is composed of the pressure P, the deviator stress σ' in the direction of propagation, and an artificial viscous stress, Q.


In the code the four preceding equations are solved simultaneously by dividing the material into small elements. Then the quantities X, V, D, R, and so forth, are evaluated only at the discrete positions and times shown in Figure 1. The coordinate location X is obtained at integral values of j and n, the velocity is at j and n + 1/2, and all other quantities pertain to the midcell (j+1/2, n) points. Here the cells are treated as constant strain finite elements (each cell has a constant value of all three principal strains throughout its volume).

The discrete values of the flow quantities are obtained from Eqs. (1) through (3), using the nomenclature of Figure 1. Here it is convenient to solve for quantities in the order D, R, V, and X. The density is obtained from conservation of mass by dividing the stored value of the cell mass, Z, by the thickness. The first form of Eq. (3) is not used here because it can give erroneous results for large density changes; instead, the second form of Eq. (3) is used:

$$D_{j+1/2}^{n} = \frac{Z_{j+1/2}}{X_{j+1}^{n} - X_{j}^{n}}$$
(5)

The velocity is obtained by a discretization of Eq. (1), or equivalently, by using "force equals mass times acceleration" and considering a mass pertaining to the jth coordinate point.

$$v_{j}^{n+1/2} = v_{j}^{n-1/2} - \frac{R_{j+1/2}^{n} - R_{j-1/2}^{n}}{1/2 (Z_{j+1/2} + Z_{j-1/2})} \Delta t^{n} + g\Delta t^{n}$$
(6)

LAGRANGIAN DISTANCE (coordinates of cells)

MA-6802-2

FIGURE 1 GRID FOR DEPICTING COORDINATES AND TIME INCREMENTS

Here $\Delta t^n = t^{n+1/2} - t^{n-1/2}$ is the time step centered at the nth time. Finally, the Eulerian position of the coordinate is computed from Eq. (2)

 $x_{j}^{n+1} = x_{j}^{n} + v_{j}^{n+1/2} \Delta t^{n+1/2}$ (7)

where $\Delta t^{n+1/2} = t^{n+1} - t^n$. The computations proceed from top to bottom (or from left to right in Figure 1), one cell and coordinate at a time, updating the flow quantities to the new time $t^{n+1/2}$ or t^{n+1} , as appropriate. This process is continued until the bottom boundary is reached. Then computations resume at the top for the next time increment.

The foregoing integration method is essentially the leapfrog method of von Neumann and Richtmyer². With this approach, the derivatives in the equations of mass and momentum are correctly centered. That is, each of the conservation relations is replaced by a numerical approximation in which all terms pertain to the same point in time and space. For example, in the momentum Eq. (6), $\partial V/\partial t$ and $\partial R/\partial Z$ are both centered precisely at (n,j), and therefore, the solution scheme is of second order although no

numerical approximations to $\partial^2 V / \partial t^2$ or $\partial^2 R / \partial Z^2$ are needed.

In the code, the names of quantities are essentially those given above in the discretized equations. The coordinate quantities are VEL(J) = $V^{n+1/2}$ and $X(J) = X_j^{n+1}$, and the cell quantities are of the form RMECH(J) = $R_{j+1/2}^n$. The time step is DT = $\Delta t^{n+1/2}$. Hence the coordinate point and the cell to the right are both labeled J, and the midcell quantities at n and the coordinate quantities at n+1/2 or n+1 are stored in the arrays. Boundaries between materials are treated in the same fashion as coordinates within a material except that an extra coordinate is provided to permit separation of the layers.

en besterne verse and and and and an entropy of the second of an entropy of the second of an entropy of the second of the second

B. Artificial Viscous Stress

The artificial viscous stress is required in finite difference wave propagation calculations to smooth shock waves so that the entire flow field can be treated by the conservation equations of continuous flow, Eqs. (1) through (3). The artificial viscous stress (Q) is the difference between the nonequilibrium mechanical stress (R) and the equilibrium thermodynamic stress (σ) given by the constitutive relations. Hence Q represents real stresses occurring in the nonequilibrium states of the shock front. However, the basis for computing Q is artificial, depending on the computational cell size and on viscosity coefficients, which are not related to real physical processes.

In the modified ONED, the usual linear and quadratic viscous stress forms are provided. The linear form is computed by the equation

$$Q = -C_{L,s} \rho \Delta V$$
 (8)

where C_L = dimensionless coefficient of linear artificial viscosity, C_s = sound speed, and $\Delta V = V_{j+1} - V_j$, the velocity difference across the cell. The linear artificial viscosity is similar in form and operation to the standard linear viscosity models used to represent material

behavior. However, here the coefficient C_L is chosen to provide enough damping to minimize oscillations in the calculations and not to represent the real material viscosity. Useful values for C_L are in the range of 0.05 to 0.50.

The quadratic artificial viscous stress proposed originally by von Neumann and Richtmyer² has the form

$$Q = C_Q \rho(\Delta V)^2$$
(9)

where C_Q = the dimensionless viscosity coefficient, and $\Delta V = V_{j+1} - V_j$, as before. The quadratic viscous stress is permitted to act only on compressive waves. For normal values of C_Q of 3 or 4, the shock front is rapidly spread over three to four cells and then maintains essentially a constant thickness as the wave propagates. Because of the quadratic nature of the expression for Q, very little damping occurs outside the shock front. In contrast, the linear viscosity tends to continue to erode the wave fronts as long as they propagate.

Normally, both linear and quadratic artificial viscous stresses are used, so the artificial viscous stress Q is the sum of the linear and quadratic terms from Eqs. (8) and (9). The quadratic viscosity quickly establishes the shock front thickness. The linear viscosity damps the small oscillations that would otherwise occur near the shock front, but is given a small enough coefficient so that the wave front is not seriously eroded.

C. Time-Step Control

 $\Delta t \leq \frac{\Delta x}{C}$

For the calculations to proceed in a stable manner, the time increment between cycles must be kept smaller than that given by the Courant-Friedrichs-Lewy condition (see Reference 3, p. 262). This criterion is simply

(10)

where ΔX is the cell size and C_e is the local effective sound speed (defined later).

The criterion means that the time step cannot be so large that the new points are outside the characteristic domain of dependence of the previous points. Referring to Figure 1, the new point (n+1, j-1), for which the variables are computed from values at (n, j-2), (n, j-1), and (n, j), must lie within the domain of dependence or range of waves from those points. This domain is contained between lines with speeds of C_e . A physical interpretation of the requirement is that a wavelet cannot be allowed to proceed from one coordinate point to beyond another in one time step because this would allow a material point to be affected by conditions at material points outside the true domain of dependence.

This simple criterion is modified to provide for added safety (the step used in ONED is 80% of the time step at the limit of stability) and to allow for the effect of artificial viscosity.

Artificial viscosity stiffens the material and therefore increases the apparent sound speed, reducing the allowable time step. For linear and quadratic viscosity coefficients (C_L and C_Q), Herrmann et al. (Reference 4, p. 37) derived a reduction factor to be applied to the time step. As shown in Reference 5, the effect of the artificial viscosity can be accounted for by computing an effective sound speed C_e and effective modulus M_e as follows:

$$C_e^2 = \frac{M_e}{\rho} = \frac{\Delta P + 2Q}{\Delta \rho} + \frac{4G}{3\rho}$$
(11)

where ΔP and $\Delta \rho$ are the changes in pressure and density during the current time step, and G is the shear modulus.

III CONSTITUTIVE RELATIONS

The constitutive relations provide the stress as a function of density, strains, and other quantities. This section describes the common constitutive relations and outlines the available constitutive models.

In the standard constitutive relations, the stress tensor is separated into a pressure and a stress deviator tensor. The pressure is the average stress

$$P = 1/3 \Sigma \sigma_{ii}$$

and the stress deviator elements are

$$\sigma'_{ij} = \sigma_{ij} - P\delta_{ij}$$
(13)

where σ_{ij} are stress tensor elements and δ_{ij} is the Kronecker delta. The pressure is usually presented as a function of density and internal energy. The deviator stress is calculated by elastic-plastic relations.

A. Pressure Model for a Solid (Subroutine EQST)

The pressure is computed from a pressure density relation for each material. The pressure-density relation used here is the Hugoniot for shock compaction given as the following series:

 $P_{\rm H} = C\mu + D\mu^2 + S\mu^3$ (14) where

> $\mu = \frac{\rho}{\rho_0} - 1$ C = bulk modulus

D,S = coefficients with the units of moduli ρ, ρ_{o} = current and initial densities.

For the present calculations, we are neglecting the internal energy changes occurring in shock compaction because ONED is intended only for stresses up to a few kilobars. Thus, the Hugoniot is also being used as the unloading isentrope.

B. Deviator Stress Model (a Part of Subroutine CMPUTE)

The deviator stress is the part of the stress tensor that arises because of the resistance of the material to shearing deformation. In ONED, the standard model for deviator stresses accounts for elastic response and plastic flow. The yield strength that governs plastic flow can be either of the Mises or Coulomb types. First some general definitions are given and then the equations that are special to each yield type.

The elastic relations between stress and strain are cast in the following form:

$$\sigma_{ij} = 2G(\varepsilon_{ij}^{E} - \frac{\delta_{ij}}{3} \varepsilon_{\ell}^{E})$$

(15)

 $P = C\Sigma\epsilon_{ii}$

Here, σ'_{ij} and ε^{E}_{ij} are the deviatoric stress and elastic strain in the ij direction, G is the shear modulus, δ_{ij} is the Kronecker delta, P is pressure, and C is the bulk modulus. For the elastic case, $\varepsilon_{ij} = \varepsilon^{E}_{ij}$, all the strain is elastic. However, Eqs. (15) and (16) are also applicable to the plastic case where the strain increments are separated into elastic and plastic components:

$$d\varepsilon_{ij} = d\varepsilon_{ij}^{E} + d\varepsilon_{ij}^{P}$$
(17)

14

3.5

where $d\epsilon_{ij}$ is the total strain increment and $d\epsilon_{ij}^p$ is the plastic strain increment. For convenience, the terms in the parentheses of Eq. (15) can (ΔS) be named a deviator strain, defined as follows:

Combining this definition with Eq. (22), we find the $\beta_{ij} = \frac{3}{1} = \frac{3}{1} = \frac{3}{1}$ (81) (81) (81) (18) $d\hat{e}_{1j}^{p} = \sigma_{1j} \frac{3d\bar{e}^{p}}{2\bar{d}}$ (25)

 $(10^{-1})_{0}$ obtain a solution for an increment of strain, we clipute figt the stress that would occur if the strain were entirely elastic, that is. The Mises or Reuss plasticity relations or "incremental plasticity with an associated flow rule" are considered here first⁶. Modifications to treat Coulomb friction are described later. Yield occurs when the (20)effective stress reaches the yield strength. The effective stress is

(02)
$$\varepsilon_{ijo}^{E}$$
 = the elastic deviator up to the currence strator $\frac{\xi}{2}$ = $\overline{\sigma}$

where the repeated subscripts indicate summation. The yield criterion is

 ϵ_{1j}^{*} = the elastic deviator strain after the current $\sigma = Y$ (21)increment

where Y is the current yield strength. The Reuss flow rule indicates that the deviator stress in any direction is proportional to the plastic deviator strain in that direction (because the Reuss material sustains no The second equality in Eq. (26) is obtainin by using Eq. (17) to decompose $\Delta \varepsilon_{1j}$ and by adding $\varepsilon_{1j}^{E} + \Delta \varepsilon_{1j}^{E}$ to obtain ε_{1k}^{E} . Quantifies $(22)_{and} \Delta \varepsilon_{1j}^{P}$ can both be replaced by stress quantifies through the use of Eqs. (19) and (25). Then, where $d\lambda$ is a proportionality constant. Now we define a scalar effective plastic strain quantity as follows: $\sigma_{11}^{N} = \sigma_{11}(1 + 3G\Delta \overline{e}^{P}/\overline{\sigma})$ (27)(22) are squared and a qualifity $i_{15}^{q} = \frac{q}{12} \frac{1}{15} \sqrt{1 + \frac{q}{12}} \frac{1}{15} \sqrt{1 + \frac{q}{12}} \frac{1}{15} \sqrt{1 + \frac{q}{12}}$ analogy to the definition of o, then we obtain As before, the repeated subscripts indicate summation. Now we square Eq. (22) and make use of the definitions of σ and $d\epsilon^{p}$. Then $+1)\delta = \sqrt{6}$ (28)

$$d\bar{\varepsilon}^{p} = \frac{2}{3} \bar{\sigma} d\lambda$$
 (24)

Combining this definition with Eq. (22), we find that

$$d\hat{\varepsilon}_{ij}^{p} = \sigma_{ij} \frac{3d\bar{\varepsilon}^{p}}{2\bar{\sigma}}$$
(25)

To obtain a solution for an increment of strain, we compute first the stress that would occur if the strain were entirely elastic, that is,

$$\sigma_{ij}^{N} = 2G \left(\varepsilon_{ij0}^{E} + \Delta \varepsilon_{ij}^{i} \right) = 2G \left(\varepsilon_{ij}^{E} + \Delta \varepsilon_{ij}^{p} \right)$$
(26)

where

1

 ε_{ijo}^{E} = the elastic deviator up to the current strain step

 $\Delta \varepsilon_{ii}$ = the total deviator strain increment

ε^E = the elastic deviator strain after the current increment

marge I. in the suppress winds atreastile. The Scott Stew rale finds

 $\Delta \varepsilon_{ij}^{p}$ = the plastic strain increment.

The second equality in Eq. (26) is obtained by using Eq. (17) to decompose $\Delta \varepsilon_{ij}$ and by adding $\varepsilon_{ijo}^E + \Delta \varepsilon_{ij}^E$ to obtain ε_{ij}^E . Quantities ε_{ij}^E and $\Delta \varepsilon_{ij}^p$ can both be replaced by stress quantities through the use of Eqs. (19) and (25). Then,

$$\sigma_{ij}^{N} = \sigma_{ij}^{\prime} (1 + 3G\Delta \overline{\epsilon}^{p} / \overline{\sigma})$$
(27)

If both sides of Eq. (27) are squared and a quantity $\overline{\sigma}^N$ is introduced in analogy to the definition of $\overline{\sigma}$, then we obtain

$$\overline{\sigma}^{N} = \overline{\sigma}(1 + 3G\Delta\overline{\epsilon}^{p}/\overline{\sigma})$$
(28)

Here, $\sigma = Y$. Combining Eqs. (27) and (28) yields a solution for σ'_{ij} :

$$\sigma'_{ij} = \sigma'^{N} \frac{\overline{\sigma}}{\overline{\sigma}^{N}}$$
(29)

Then, the elastic strain can be obtained from Eq. (19) and the effective plastic strain from Eq. (28):

$$\Delta \bar{\varepsilon}^{\rm p} = \frac{\bar{\sigma}^{\rm N} - \bar{\sigma}}{3G}$$
(30)

Finally, each component of plastic strain is found from Eq. (22) using $d\lambda$ obtained from Eq. (24).

The preceding process can be adapted to hardening plasticity where Y is not a constant. The equations are appropriate for steps from one plastic Mises state to another or from an elastic state to a plastic state.

The Coulomb plasticity model is quite different from the preceding Mises model. The yield strength is a function of normal stress on the plane of yield (a Tresca formulation); hence, the pressure as well as the deviator stresses are involved in yielding. No changes in pressure or volume occur during yielding so this is a Coulomb-without-dilatation model and hence, the flow law is non-associated. The fundamental Coulomb relation provides a shear yield stress τ_c as a function of cohesion c, normal stress σ_N , and the angle of internal friction ϕ :

$$\tau_{c} = c + \sigma_{N} \tan \phi$$
(31)

Following Terzaghi,⁷ this expression is transformed to

$$\sigma_1 = 2c \sqrt{N_{\phi}} + \sigma_3 N_{\phi}$$
(32)

where $N_{\phi} = \tan^2(45^\circ + \phi/2)$, σ_1 is the stress in the direction of propagation, and $\sigma_2 = \sigma_3$ is the lateral stress. A second yield condition, with σ_1 and σ_3 interchanged in Eq. (32), is obtained for the case where σ_3 is the most compressive stress. To solve for the yield limit on $\sigma_1' (\sigma_{1y}')$, we replace σ_1 and σ_3 by deviator stresses and pressure and use Eqs. (12) and (13) to obtain

$$\sigma_1' + \sigma_2' + \sigma_3' = 0$$
 ($\sigma_2 = \sigma_3$)

$$\sigma_3 = -\frac{1}{2} \sigma_1$$
 (33)

Using Eq. (33) in Eq. (32), we obtain the yield limit

$$f_{1y} = \frac{2c \sqrt{N_{\phi}} + P(N_{\phi} - 1)}{1 + N_{\phi}/2}$$
(34)

(35)

for σ_1 more compressive than σ_3 , and

$$\sigma_{1y} = -\frac{2c \sqrt{N_{\phi}} + P(N_{\phi} - 1)}{1/2 + N_{\phi}}$$

for σ_3 more compressive than σ_1 .

The input quantities for the yield model are the yield strength (Y) for the Mises model or 2c and tan ϕ for the Coulomb model. Because of the different natures of the two models, they cannot be combined. The one that is to be used is determined in the code by whether tan ϕ is nonzero. The deviator stress model is used with either solid or porous models for pressure.

C. Model for Porous Material (Subroutine SSONED)

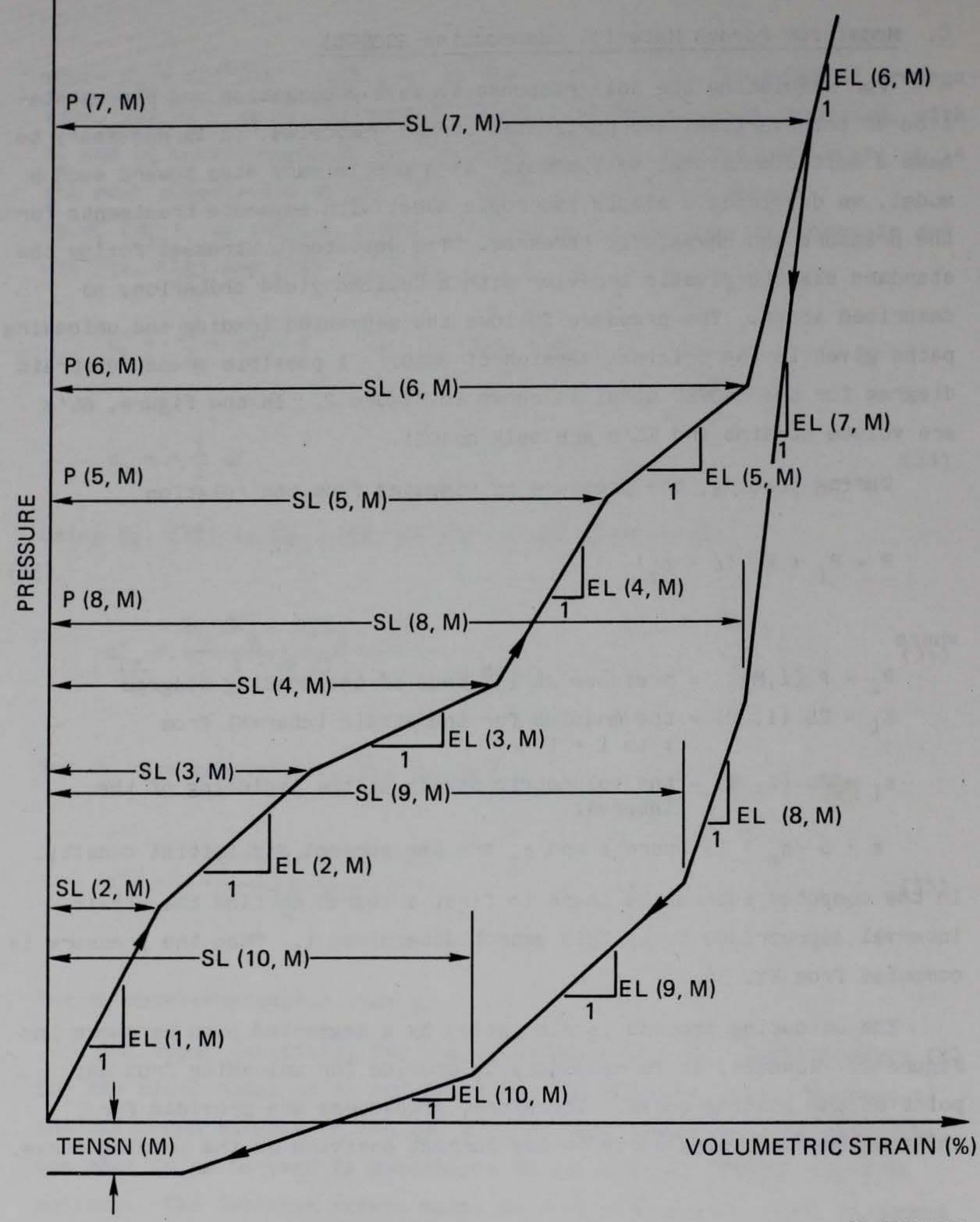
For simulating the soil response to wave propagation and representation of both vertical and horizontal stress histories, it is necessary to have a multidimensional soil model. As a preliminary step toward such a model, we developed a simple isotropic model with separate treatments for the pressure and deviatoric stresses. The deviatoric stresses follow the standard elastic-plastic behavior with a Coulomb yield criterion, as described above. The pressure follows the segmented loading and unloading paths given in the original version of ONED.¹ A possible pressure-strain diagram for the SSONED model is shown in Figure 2. In the figure, SL's are volume strains and EL's are bulk moduli.

During loading, the pressure is computed from the relation

$$P = P_{i} + E_{i} (\varepsilon - \varepsilon_{i})$$

(36)

where


 $P_i = P(i,M) = pressure at ith node of the loading diagram$ $<math>E_i = EL(i, M) = the modulus for the strain interval from$ i to i + 1 $<math>\epsilon_i = SL(i, M) = the volumetric strain at the beginning of the$ interval

 $\varepsilon = \rho / \rho_0 - 1$, where ρ and ρ_0 are the current and initial density.

In the computer subroutine there is first a search to find the strain interval appropriate to ε ; this search determines i. Then the pressure is computed from Eq. 36.

The unloading process is also given by a segmented path as shown in Figure 2. However, it is necessary to provide for unloading from any point on the loading curve. Therefore, procedures are provided for shifting the unloading curve to any current position on the loading curve.

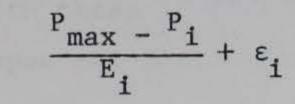
POLICE 2. DEFENTION OF NOCULUS AND STAN PALIDES ON LO VOINT

JA-6391-57A

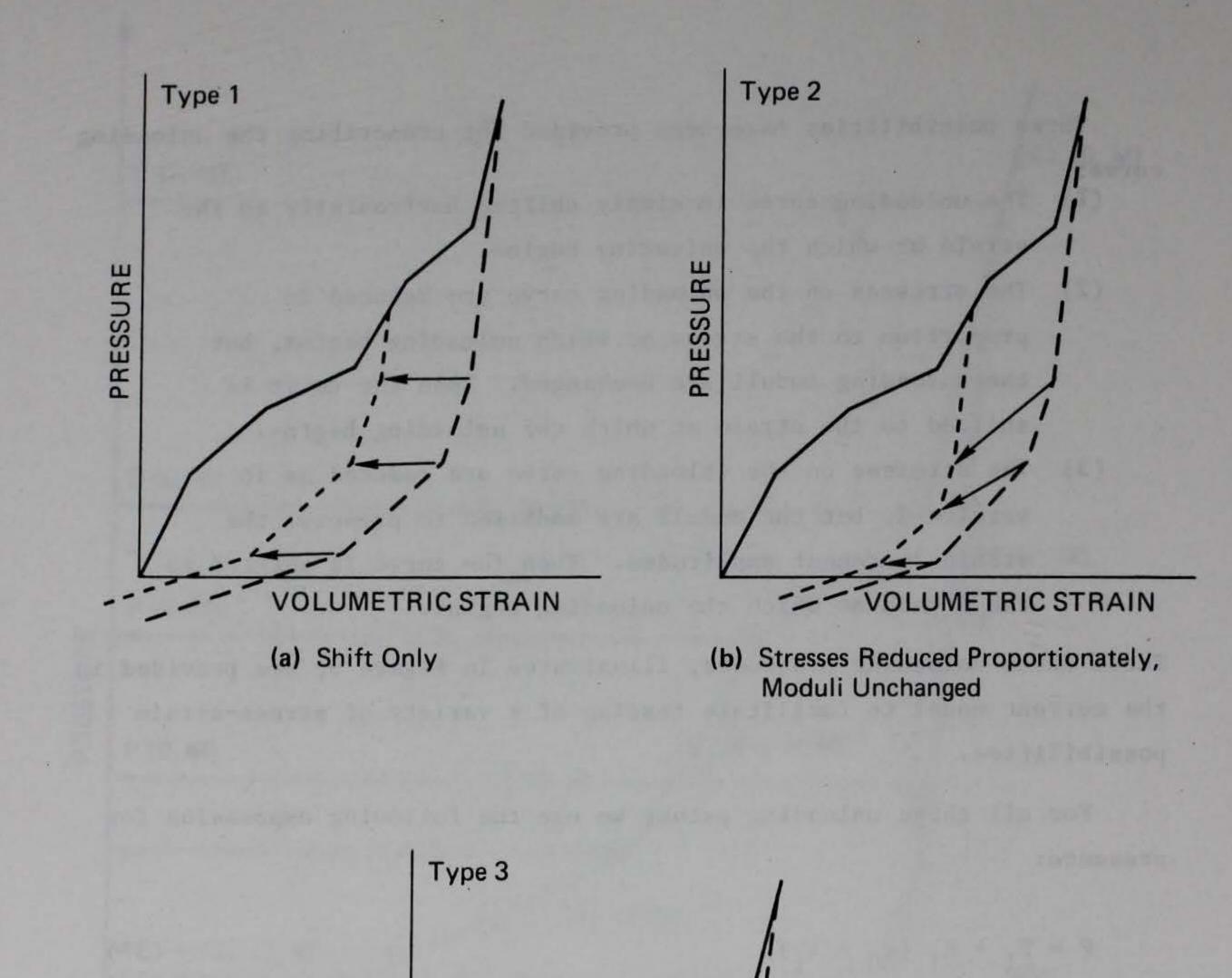
FIGURE 2 DEFINITION OF MODULUS AND STRAIN VALUES ON LOADING AND UNLOADING CURVES FOR THE SSONED MODEL Three possibilities have been provided for prescribing the unloading curve:

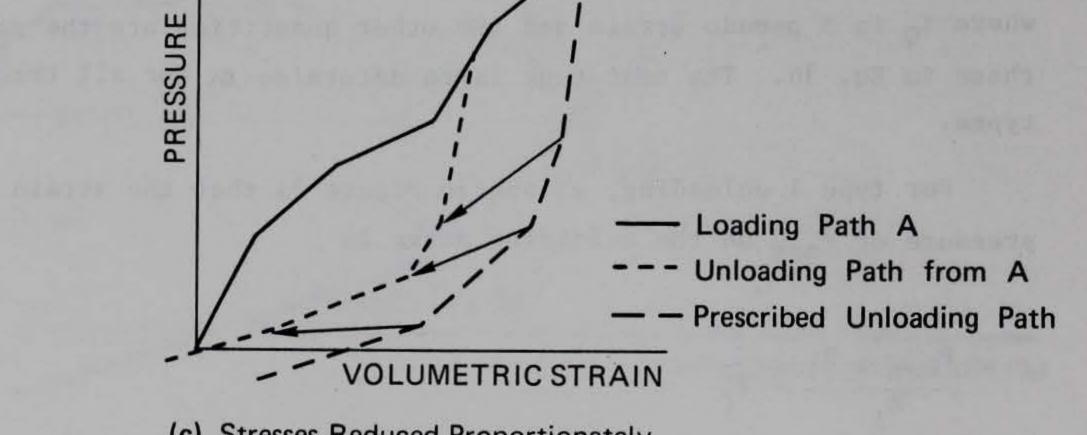
- (1) The unloading curve is simply shifted horizontally to the strain at which the unloading begins.
- (2) The stresses on the unloading curve are reduced in proportion to the stress at which unloading begins, but the unloading moduli are unchanged. Then the curve is shifted to the strain at which the unloading begins.
- (3) The stresses on the unloading curve are reduced as in version 2, but the moduli are modified to preserve the strain increment amplitudes. Then the curve is shifted to the strain at which the unloading begins.

These three unloading processes, illustrated in Figure 3, are provided in the current model to facilitate testing of a variety of stress-strain possibilities.


For all three unloading paths, we use the following expression for pressure:

$$P = P_{i} + E_{i} (\varepsilon_{Q} - \varepsilon_{i})$$


(37)


where ϵ_Q is a pseudo strain and the other quantities are the same as those in Eq. 36. The next task is to determine ϵ_Q for all three loading types.

For type 1 unloading, we see in Figure 3a that the strain at a pressure of P_{max} on the unloading curve is

(38)

(c) Stresses Reduced Proportionately, Strain Increments Unchanged

JA-6391-58A

FIGURE 3 THREE DESCRIPTIONS OF THE UNLOADING PROCESS PROVIDED BY THE SSONED MODEL where P_{max} is the highest pressure reached before the current unloading and P_i is the pressure at an unloading node just above P_{max} . The strain at P_{max} is ε_{max} . Then the appropriate pseudo strain is

$$\varepsilon_{Q} = \varepsilon + \frac{P_{\max} - P_{i}}{E_{i}} + \varepsilon_{i} - \varepsilon_{\max}$$
(39)

This expression is also satisfactory for unloading from pressures above the provided peak and for continuing into tension.

For type 2 unloading the peak point $(P_k \varepsilon_k)$ of the provided loading curve governs. The unloading curve is constructed by reducing the pressures at nodes and the strain increments by the ratio P_{max}/P_k . The pseudo strain ε_Q is readily obtained by computing the incremental reduction from ε_k :

$$\varepsilon_{Q} = \varepsilon_{k} + \frac{P_{k}}{P_{max}} (\varepsilon - \varepsilon_{max})$$
(40)

where ϵ_k is the volumetric strain at the peak point of the provided

loading curve.

With type 3 unloading the strain increment sizes are preserved. Therefore, the expression is like that in Eq. 40, but without the ratio factor

 $\varepsilon_0 = \varepsilon_k + \varepsilon - \varepsilon_{max}$ (41)

With these special definitions of the pseudo strain, all three unloading types can be treated in a common fashion.

It is advisable to plot the loading curve and unloading curves from several nodes to decide whether the behavior is reasonable. Under some circumstances the unloading curves can cross the loading curves or otherwise provide for physically unreasonable behavior.

D. Model for an Explosive (Subroutine EXPLODE)

At the time of detonation, the chemical energy of an explosive is transformed into internal energy. This energy places the state for the material at a point on the equation-of-state surface termed the "constantvolume explosion" state. Subsequent motions of the material usually allow it to expand along the unloading isentrope that passes through the constant-volume explosion point.

For the ONED calculations, a very simple procedure is available for representing explosions. Only the isentrope must be provided. Then, at the beginning of the calculation, the pressure in the explosive jumps to the constant-volume explosion point on the isentrope. Subsequent rarefaction waves in the explosive allow the pressure to reduce along the isentrope in a natural fashion. The isentrope can be provided in two ways: with the analytical form for a polytropic gas or as a series of pressure-volume points.

The polytropic gas has the following expression for an isentrope:

 $PV^{\gamma} = constant = P_{CJ} V_{CJ}^{\gamma}$

where γ is the gas constant = Γ + 1, and P_{CJ} and V_{CJ} are the pressure and specific volume at the Chapman-Jouguet point. The input quantities used to define the pressure-volume isentrope are the chemical energy Q and the Gruneisen ratio Γ . From these two quantities and the initial density ρ_0 , the detonation velocity D_x and quantities at the C-J point can all be determined.

$$D_{x} = \sqrt{2Q(\gamma + 1)(\gamma - 1)}$$
(43)
$$P_{CJ} = 2Q(\gamma - 1) \rho_{0}$$
(44)

$$V_{CJ} = \frac{\gamma}{\rho_0(\gamma + 1)}$$
(45)

$$E_{CJ} = \frac{2Q\gamma}{\gamma + 1}$$
(46)

$$u_{CJ} = \sqrt{\frac{2Q(\gamma - 1)}{\gamma + 1}}$$
(47)

where E_{CJ} and u_{CJ} are internal energy and particle velocity, respectively. The quantities P_{CJ} , V_{CJ} , and D_x are computed in the subroutine EXPLODE during initialization. Then Eq. (42) is used to determine the pressure during calls by CMPUTE. The parameters of the C-J point are convenient for characterizing the explosives because these data are usually available; however, the C-J state is not normally reached in constant-volume explosion calculations.

The sound speed on the isentrope is given by

1

 $C = \sqrt{\gamma P / \rho}$

(48)

The sound speed is computed at each call to aid in the time-step calculation.

IV INITIALIZATION

The READIT subroutine is called once at the beginning of each problem to read in all the data and initialize the COMMON storage. The sequence of major operations conducted by this subroutine is

- Call ZERO to zero the main arrays.
- Read general running instructions for the problem.
- Read properties for each material.
- Lay out a coordinate grid over all the materials.
- Initialize the coordinate and cell arrays, including the geostatic stress.
- Print initial coordinate and cell values.

A sample input file is shown in Figure 4. All the input quantities are provided by the user in free-field format, except for the first three lines of comments and the title. The input quantities are generally in English units; lengths in feet or inches, density in pounds per cubic foot, pressure in psi, and time in seconds. The exception is the Q or chemical energy of explosives in erg/g. The input quantities are explained in the next subsections, and some guidance for selecting values is provided. Please refer to the Glossary (Appendix B) for definitions of the terms.

A. Input of General Control Information

The first group of data identifies the computation and controls the type of simulation, the amount of printing and plotting, and the numbers of layers of materials.

The first three lines describe the computation. The first two lines should begin after column 5. The third line contains an identifying FIRST TRIAL OF MODIFIED ONED WITH DATA, USING ZELASKO'S INPUT FOR DISKO 2, MODIFIED FORM TO FIT THE SRI ONED.

1 DISKO 2 FOR WES, ONED TRIAL WITH AN EXPLOSIVE LAYER 998, 0, 0.0035, 10, 1. NOCOMP, BOTTOM BOUNDARY INDICATOR, TEND, NSTOP, GACC 6, 0, 0, 0, 5, 0, NLAYRS, MISP, NSP, MATTEN, NMIRLS, NFORCE 11, 1, 3, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0.005 NNODE, KNTROL (7), NHIST, MVT, NSV, KVEL, TND 1.333, 2.9, 3.3, 3.8, 3.9, 4.0, 4.44, 5.44, 6.44, 7.44, 8.44 DEPTHS FOR HIST. 1000., 0.0, 60., 0., 0., 0. SK (7)

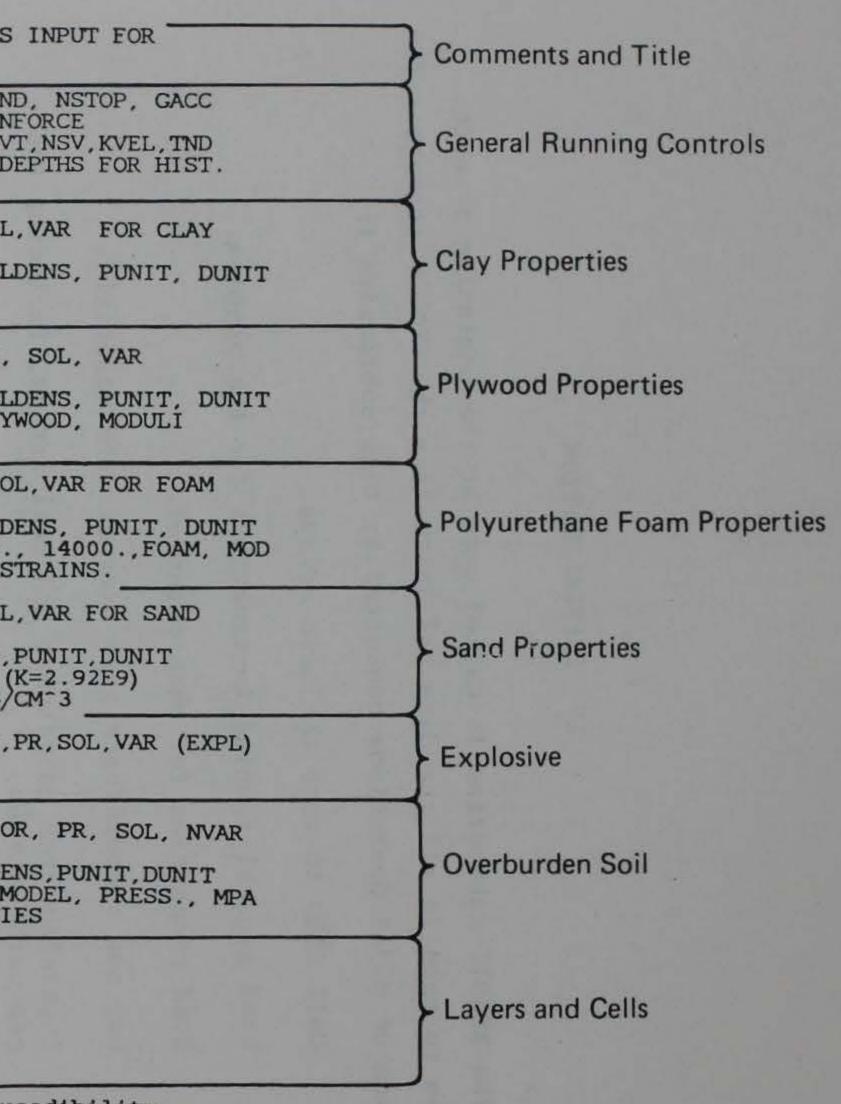
'CLAY',128.,0.05, 4., 0.,1,0,0,2 GAM, DAMP, TENSN, POR, PR, SOL, VAR FOR CLAY 0., 0. SHMOD, YIELD, TANPHI 3, 1, 'MODU', 'STRA', 6.914627E4, 1. KFIN, NTYPE, LPRESS, LDENS, PUNIT, DUNIT 39750., 993750., 993750. CLAY BERM MODEL, MODULI 100., 0., STRAINS

'PLYWUD',42.,0.05,4.,0.,1,0,0,2 GAM, DAMP, TENSN, POR, PR, SOL, VAR 0.,0.,0. SHMOD, YIELD, TANPHI 8,1, 'MODU', 'STRA', 6.914627E4, 1. KFIN, NTYPE, LPRESS, LDENS, PUNIT, DUNIT 65000., 16000., 8000., 18000., 21500., 30000., 2.E5, 2.E5, PLYWOOD, MODULI 1.0, 2.5, 7., 9.5, 12.75, 100., 0.0, STRAINS

'FOAM',1.25, 0.05, 4., 1.5, 1,0,0,2 GAM, DAMP, TENSN, POR, PR, SOL, VAR FOR FOAM 0., 0., 0. SHMOD, YIELD, TANPHI 10, 1, 'MODU', 'STRA', 6.914627E4, 1. KFIN, NTYPE, LPRESS, LDENS, PUNIT, DUNIT 72.73, 1891., 41., 1654., 7.5E4, 7.5E4, 75000., 40000., 14000., 14000., FOAM, MOD 55., 92.0, 3260., 4892., 5000., 5100., 5064., 5058., 5052., STRAINS.

'SAND',106.3, 0.1, 4.,0.0,1,0,0,2 GAM, DAMP, TENSN, POR, PR, SOL, VAR FOR SAND 1.36E+9, 1.0E+4, 0.274 SHMOD, YIELD, TANPHI 7,3,'P','D',1.,1.0 SSONED: KFIN, NTYPE, LPRESS, LDENS, PUNIT, DUNIT 4.E7, 7.E7, 1.7E8, 4.5E8, 1.E9, 0., FLUME SAND, P, DYN/CM^2 (K=2.92E9) 1.7268, 1.7458, 1.793, 1.893, 2.065, 2.023 DENSITIES, G/CM^3

'EXPL1', 2.7406, 0.05, 4.,0.0, 0, 1, 0, 0 GAM, DAMP, TENSN, POR, PR, SOL, VAR (EXPL) 0., 0., 0. SHMOD, YIELD, TANPHI 'POLY', 4.5E10, 0.2 Q AND GAMMA


'OVERBDN', 95.035, 0.1, 4., 0.0, 1,0,0,2 GAM, DAMP, TENSN, POR, PR, SOL, NVAR 1.36E+9, 1.0E+4, 0.274 SHMOD, YIELD, TANPHI 10,1,'P','D',1.E7,1.0 SSONED: KFIN,NTYPE,LPRESS,LDENS,PUNIT,DUNIT 8., 39., 69., 122., 230., 400., 100., 30., 0., SAND OVERBDN MODEL, PRESS., MPA 1.603,1.792,1.904,2.031,2.176,2.343,2.290,2.256,2.207 DENSITIES

2.6667, 3.0417,		and the second se		SAND OVERBURDEN EXPLOSIVE	
3.7917, 3.8547,	1.0,	0,	1	CLAY LAYER DB, SPL, NSP, M PLYWOOD LAYER	
3.9387,	and the second second			FOAM	
9.9387	1.0,	0,	4	SAND TEST BED	

Notes: The blank lines between materials were introduced for readibility. They must not appear in the input file.

> FIGURE 4 SAMPLE INPUT FOR AN ONED SIMULATION OF WAVE PROPAGATION THROUGH LAYERS OF CLAY, PLYWOOD, FOAM, AND SAND (DISKO-2)

28

JA-6391-59

number in column 5 and is alphanumeric thereafter. This third line is printed as a title with the remainder of the output.

The fourth line contains the parameters NOCOMP, LB, TEND, NSTOP, and NOCOMP controls the plotting process. For a calculation with GACC. NOCOMP greater than or equal to 999, the input stops and the results from a previous run are plotted. LB gives the boundary condition at the bottom of the last layer. LB is zero for a free boundary and 1 for a rigid boundary: neither condition represents the continuum of material below a test region. Therefore, sufficient distance should be provided below the region of interest so that no waves reflected from the bottom can return to the region of interest during the calculation time. TEND is the termination time of the calculation and NSTOP is the total number of time increments. The program halts when either of these stop parameters is reached. GACC is an indicator for the geostatic stress; a nonzero value causes initialization of a geostatic stress and use of a gravity loading throughout the computation.

The fifth line contains NLAYRS, MISP, NSP, MATTEN, NMTRLS, and NFORCE; these control layering, materials, and loading. NLAYRS is the number of layers, and MISP and NSP are indicators controlling the method of computing the cell sizes in each layer. MATTEN is an indicator that

can allow ONED to approximate spherical attenuation and dispersion. NMTRLS is the number of materials; the number of materials need not correspond with the number of layers. NFORCE is the number of pressuretime points in the loading history; NFORCE = 0 is used for an explosive loading in which the explosion process is simulated.

The sixth line provides a series of plot and print controls: NNODE, KNTROL(7), NHIST, MVT, NSV, KVEL, and TNDPLT. NNODE is the number of nodes or cells at which histories are required, and KNTROL (7 parameters) controls the types of plots generated for each of those nodes. NHIST is the frequency for listing the array values at these nodes (the listing occurs every NHIST time steps). See Appendix B for KVEL and TNDPLT.

The seventh line contains the depths (in feet) at which the plots and printouts are required. There are NNODE of these depths. The eighth line contains the scale factors SK(7) for the requested plots.

B. Material Property Input

In the present version of ONED, the information for the materials and for the layers is inserted separately. Therefore, although a material appears in several layers, it is only necessary to insert its properties once. Conversely, a material may appear in the data input but not be used for any layer.

For each material two lines of data are read by READIT. The first of these lines gives NAME, GAM, DAMPL, DAMPQ, TENSN, NPOR, NPR, NSOL, and NVAR. NAME is an eight-letter alphanumeric identifier for the material and GAM is its initial density in pounds per cubic foot. DAMPL is the coefficient of linear artificial viscosity. A value of 0.05 is appropriate for an elastic solid, but larger values, such as 0.15 to 0.5, should be used for porous materials. DAMPQ is the coefficient of quadratic artificial viscosity. A value of 4 is used for solids, but values up to 100 can be used for porous materials. The appropriate values of the viscous coefficients for each material and stress level are determined by trial calculations. The "best" values of DAMPL and DAMPQ

allow the calculation to meet two criteria:

- Slight oscillations occur in the stress and velocity histories near the shock fronts and do not occur elsewhere.
- During a shock loading at a point in the material, the series of total stress, specific volume (RMECH,1/DENS) points from the initial state to the shocked state approximate a straight line in stress-volume space.

Excessive damping eliminates oscillations, increases the rise time of shock fronts, and causes a stress-volume curve that is convex upward. Too little damping will cause serious oscillations in the histories and may even cause cell distortions that can halt the calculation.

TENSN is the tensile strength. For TENSN set to zero, no strength criterion is used (i.e., infinite tension stress is allowed).

NPOR, NPR, and NSOL are a set of indicators for the type of material model to be used. Currently, only one material model of each type is provided:

- NPOR = 1: porous model, subroutine SSONED
- NPR = 1: explosive model, subroutine EXPLODE
- NSOL = 1: solid model, subroutine EQST.

As more models are generated and inserted, they can be designated by NPOR = 2, NPR = 2, and so forth. Separate designators are used for each type of model so that combined models can be used. A combined model could describe a porous material that compacts to a solid or an explosive that begins as a solid.

NVAR is the number of extra variables provided for each cell of the material. The extra variables are stored in the COM array. The first extra variable for the Jth cell is at location L = LVAR(J); that is, at COM(L). Of the current models, SSONED requires two extra variables and the others require none. If histories of nonarray quantities are desired for any model, a simple coding change can allow storage of these in the COM array for later printing and plotting.

The second line read by READIT contains the shear modulus SHMOD, yield strength YIELD, and tan ϕ TANPHI. These parameters control the deviator stress model used. SHMOD and YIELD are input in dyn/cm².

The remainder of the material properties for each model are read by that model subroutine.

1. Input for the Porous Model SSONED

The input required for the porous model SSONED defines the pressurevolume relations to be used for loading and unloading. Three lines or more are read to provide the necessary properties.

The first line contains a series of control parameters needed for interpreting the remaining input: KFIN, NTYPE, LPRESS, LDENS, PUNIT, DUNIT. KFIN is the number of pressure-strain segments used to define the loading and unloading curves. The pressure-strain curves can be entered using pressures or moduli, and strain or density. In each case only KFIN-1 values are required: the first pressure and strain values are taken to be zero, the initial density is GAM, and there are only KFIN-1 intervals for moduli.

NTYPE gives the type of unloading process as described in Section III and shown in Figure 3.

The indicators LPRESS, LDENS, PUNIT, and DUNIT control the interpretation of the pressure-strain values read in next. LPRESS and LDENS are labels with the possible values "D", "M", "P", and "S"; these indicate whether density, modulus, pressure, or strain quantities will be read in. PUNIT and DUNIT are conversion factors to transform pressures and moduli to dyn/cm^2 and densities to g/cm^3 .

The next lines contain the values defining the pressure-strain path during loading and unloading for the porous material. The meaning of these quantities is indicated in Figure 3.

2. Input for the Explosive Model EXPLODE

The model for an explosive can be prescribed in two ways. In the first method the explosive products are a polytropic gas specified by the standard polytropic gas equation. The only required input quantities are Q and Γ . All other properties of the material can be found from Eqs. 42 through 48. The single line read by EXPLODE contains LABEL, Q, and Γ . LABEL is an alphanumeric label of three letters.

The second means of specifying an explosive is to provide a pressure-volume series to define the unloading isentrope for the explosive products. To indicate the use of the pressure-volume series, the LABEL parameter is 'TAB' for a tabular equation of state. In this case Q and Γ have no meaning. Following this line, are a series of lines read by EOSTAB (the tabular equation-of-state subroutine), which is called by EXPLODE.

The first line read by EOSTAB contains IMAX, LABEL, and TYPE. IMAX is the number of pressure-volume (or pressure-density) values in the series defining the isentrope. LABEL is an alphanumeric label indicating whether densities or volumes are being presented. The default value is 'DENSITY'. If volumes are used, read in 'VOLUME'. TYPE determines whether the interpolation between successive points in the series is linear or logarithmic. Logarithmic interpolation should be used, so TYPE should be set to 'LOG'.

Subsequent lines of the input for EOSTAB contain pairs of density (or volume) and pressure. The units for these are g/cm^3 (or cm^3/g) and dyn/cm^2 because properties for explosives are usually given in these units. The points can be inserted in order of ascending or descending pressure; the subroutine determines which order is being used.

3. Input for the Solid Model, EQST

The solid model EQST requires parameters to define the Hugoniot curve. These quantities are RHO, EQSTC, EQSTD, and EQSTS, which are given in a single line. These correspond to ρ_0 , C, D, and S of Eq. (14).

The EXPLODE model can also be used to represent a nonexplosive gas, such as air. Figure A-2 shows a sample of this treatment. The Q is simply chosen so that the pressure from Eq. (42) is the desired ambient

value.

C. Layering

The dimensions and sequencing of the layers and cells are provided next in a series of lines, one line per layer. NLAYRS, the total number of layers including gaps, was read in under the general control information. For each of these layers the user specifies the layer thickness, the material of the layer, and the method for dividing the layer into cells. The layer thickness is provided by the depth of the bottom of the layer in feet. The material number for the layer is M, meaning that it was the Mth material described. For a gap, M = 0. The cell sizes are given by a combination of three parameters: MISP, NSP, and SPL. Uniform cell sizes can be specified in two ways:

- (1) MISP = 0, SPL = cell size in inches.
- (2) MISP = 2, NSP = the number of equal size cells.

If nonuniform cell sizes are desired, MISP can be set to 1 and NSP to the number of cells. Then the cell size for each cell is read into the SP() array.

For accurate calculations the cells should be laid out with care. The following rules are suggested as means for obtaining good results:

• A single cell can be used to represent the presence of a material, but it can provide no information about the wave shape within that material and very little information on the travel time through the material. Five cells in a material can define the presence of the material and its dimensions, but give little information about the wave reverberations within that material. Twenty cells will provide the reverberations also in the material. For judging the appropriate cell sizes and numbers for a problem, it is often necessary to perform a preliminary calculation and examine the resulting wave shapes. For more sharply defined wave fronts, the number of cells should be increased.

 For porous materials, more cells should be provided than would normally be necessary for a solid material.

 Rise times of stress waves are equal to about four traverse times for the cells. Hence, the definition of the stress history can be used as a basis for defining acceptable cell sizes.

 The cell sizes in adjacent layers should be matched so that the propagation times across cells are approximately the same. This propagation time is given by

 $\Delta T = \Delta X/C$

(49)

where ΔX is the cell thickness and C is the nominal sound speed. For a porous material, many possible definitions are available for the sound speed. Here the appropriate value of C is that associated with the main compaction wave. Hence, given the stress-strain relation and an estimate of the peak stress, we can determine the location of the Rayleigh line. From this line, we can find the sound speed C.

$$c^{2} = \frac{P/\rho_{0}}{1 - \rho_{0}/\rho}$$
(50)

In some cases of large compaction it may be necessary to perform a preliminary calculation and revise the cell sizing based on the results of this first calculation.

For nonuniform cells, the sizes should not be allowed to change more than about 5% between cells within a single material.

D. Geostatic Stress Initialization

In the revised ONED the geostatic stress is initialized in detail and the gravity effect is maintained throughout the calculation. The geostatic effect is indicated by providing a nonzero value of GACC. Then

READIT computes the overburden for each cell at its center, assuming that X increases in the downward direction. With the overburden stress GEOSTR, READIT computes the strain caused in the cell to reach the overburden stress in the cell. For computing the geostatic stress, READIT calls the various stress-strain subroutines. The strain results in a changed density. The changed density modifies the overburden so the geostatic stress is determined by iteration in each cell. The number of iteration trials is output by the code (see next section). Thus, the initialized material shows a gradually increasing density with depth. The geostatic stress is presumed to affect the pressure only and not the deviatoric stress.

V PRINTED OUTPUT: READIT, HISTRY, SCRIBE, CMPUTE, AND VALMAX

Several types of printed output are provided during and at the conclusion of a calculation. During the reading of the input, the input values are printed by READIT with some additional comments. The material property subroutines read their own input and provide printout. After the input is read, a layout listing is given by READIT. During the calculation, several listings of the layout with current cell variables are made by HISTRY (on a call from CMPUTE) and from CMPUTE. A VALMAX listing of maximum values is made at the end of the calculation. The SCRIBE subroutine is called by ONED to print historical listings of all requested variables.

Samples of the output are presented for simulations of the DISKO-1 event⁸. Three sets of input for the problem are given in Figures A-1 through A-3.

The input of the general control information in Figure A-2 is reflected in the listing of the quantities in Figure 5 from READIT. These parameters are also defined in the Glossary in Appendix B.

Listings of two sets of data for porous materials are shown in Figure 6. The first three lines in each set are written in READIT and reflect the information read by READIT. These lines are common to all types of material models. The next lines are written by SSONED and are specific to porous materials. The first of these contains the control parameters and indicators for SSONED: KFIN, the number of pressurestrain points on the loading and unloading path; NTYPE, the type of unloading requested (see Figure 3); LPRESS and LDENS, labels for the specified values on the paths; and the calibration factors PUNIT and DUNIT. To the right on the line are MAT, THE MATERIAL NUMBER, AND RHOS, the initial density in g/cm^3 . The next two to four lines contain the pressure (or modulus) and strain (or density) values on the loading and unloading path. Finally there are six lines in which the pressures,

COMPUTATION CONTROLS

PROBLEM NUMBER 1

NOCOMP	=	998	PLOT AT INPUT SCALE FACT
LB	=	0	INFINITE BOTTOM BOUNDARY
TEND	=	4.000E-03	END OF PROBLEM TIME (SEC
NSTOP	=	400	TOTAL NUMBER OF STEPS
GACC	=	9.815E+02	ACC OF GRAVITY FOR GEOST

INPUT CONTROLS

NLAYRS =	= 4	NUMBER OF LAYERS
MISP =	= 0	SPACING CONST W/IN EACH I
MATTEN =	= 0	ALPHA (I) = 1 FOR EVERY NO
NMTRLS =	= 4	NUMBER OF MATERIALS
NFORCE =	= 0	NUMBER OF PRESSURE-TIME I

OUTPUT CONTROLS

KNTROL1	=	1	STRESS - TIME PLOT
KNTROL2	=	3	PART. VEL TIME PLOT
NHIST	=	100	GROUND MOTIONS PRINTED EV
MVT	=	1	MAX VALUE TABLE PRINTED
NNODE			NUMBER OF OUTPUT NODES
TNDPLT	=		END OF PLOT TIME (SEC)
KVEL	=	1	OUTPUT PARTICLE VELOCITIE

SCALE FACTORS ARE 1000.0 0.0

FIGURE 5 LISTING FROM READIT OF GENERAL CONTROL INFORMATION USED IN ONED SIMULATION OF DISKO-1 USING AN EXPLICIT TREATMENT OF THE EXPLOSIVE LAYER

ONED: A ONE-DIMENSIONAL WAVE PROPAGATION SOLUTION IN PIECEWISE LINEAR HYSTERETIC MATERIAL

TEST OF SRI ONED TO SIMULATE THE DISKO-1 EVENT, FINAL SET OF DATA [B6391.ONED]DISKO1E.OND IS DATA, [*.*]RONED.COM, [*.*]MONED.EXE DISKO 1 FOR WES, ONED SIMULATION OF THE EXPLOSIVE LAYER.

ORS TATIC EFFECT

LAYER ODE PTS.

VERY 'NHIST' TIME INCREMENTS

ES IN M /SEC

60.0 0.0 0.0 0.0 0.0

MATERIAL NUMBER 1 DENS- 106.30000 DAMPL, Q- 1.000E-01 4.000E+00 TENSN- 0.000E+00 NPOR- 1 NPR- 0 NSOL- 0 NVAR- 2 MATERIAL IS SAND SHMOD= 1.360E+09 YIELD= 1.000E+04 TANPHI= 2.740E-01 KFIN- 7 NTYPE- 3 LPRESS- PRES LDENS- DENS PUNIT- 1.00000E+00 DUNIT- 1.00000E+00 MAT- 1 RHOS- 1.70277E+00 FROM -SSONED-4.000E+07 7.000E+07 1.700E+08 4.500E+08 1.000E+09 0.000E+00 1.727E+00 1.746E+00 1.793E+00 1.893E+00 2.065E+00 2.023E+00 ----- LOADING AND UNLOADING -----MAT'L = 1 1 2 PT = 3 4 5 6 7 STRAIN (%) = 0.0000 1.4114 2.5273 5.2992 11.1720 21.2732 18.8067 DENS(G/CM3) = 1.702767 1.726800 1.745800 1.793000 1.893000 2.065000 2.023000 PRESS(PSI) = 0.000E+00 5.801E+02 1.015E+03 2.466E+03 6.527E+03 1.450E+04 0.000E+00 MODULI (PSI) = 4.110E+04 3.899E+04 5.232E+04 6.915E+04 7.897E+04 5.880E+05 0.000E+00

MATERIAL NUMBER 4

MATERIAL IS OVERBON DENS= 95.03500 DAMPL, Q= 1.000E-01 4.000E+00 TENSN= 0.000E+00 NPOR= 1 NPR= 0 NSOL= 0 NVAR= 2 SHMOD= 1.360E+09 YIELD= 1.000E+04 TANPHI= 2.740E-01

KFIN- 10 NTYPE- 1 LPRESS- PRES LDENS- DENS PUNIT- 1.00000E+07 DUNIT- 1.00000E+00 MAT- 2 RHOS- 1.52232E+00 FROM -SSONED-8.000E+00 3.900E+01 6.900E+01 1.220E+02 2.300E+02 4.000E+02 1.000E+02 3.000E+01 0.000E+00

1.603E+00 1.792E+00 1.904E+00 2.031E+00 2.176E+00 2.343E+00 2.290E+00 2.256E+00 2.207E+00

MAT'L = 4				LOADING	AND UNLO
PT -		1	2	3	4
STRAIN (%) -	0.0000	5.2999	17.7152	25.0724	33.415
DENS (G/CM3) =	1.522318	1.603000	1.792000	1.904000	2.03100
PRESS (PSI) -	0.000E+00	1.160E+03	5.656E+03	1.001E+04	1.769E+0
MODULI (PSI)	- 2.18	9E+04 3.62	1E+04 5.91	4E+04 9.21	4E+04 1.0

FIGURE 6 LISTING OF MATERIAL PROPERTY INFORMATION FOR POROUS MATERIALS: THREE LINES FROM READIT AND THE REMAINDER FROM SSONED

 So
 6
 7
 8
 9
 10

 .50
 42.9399
 53.9100
 50.4285
 48.1950
 44.9763

 .00
 2.176000
 2.343000
 2.290000
 2.256000
 2.207000

 .04
 3.336E+04
 5.801E+04
 1.450E+04
 4.351E+03
 0.000E+00

 .645E+05
 2.248E+05
 1.250E+06
 4.546E+05
 1.352E+05
 0.000E+00

JA-6391-61

4

moduli, strains, and densities are listed in a standard array. This listing is intended to assist users in catching errors in the prescription of the path.

Sample output of the material data for gaseous material is shown in Figure 7. As for porous materials, the first three lines are standard data written by READIT. The next two lines are written by EXPLODE. The first line contains a label "POL" for polytropic and two numerical values: Q and T (explosive energy in erg/g and the Grüneisen ratio). The last line, starting with "CONST.VOL...." lists the chemical energy Q, Chapman-Jouguet (C-J) detonation pressure, specific volume at the C-J point, Grüneisen ratio, and the square of the detonation velocity.

The layering information is listed by READIT with the cell layout data, as shown in Figure 8. The input quantities (see Figure 4) are DB, the distance in feet to the bottom of the layer; SPL, the cell size in inches; NSP, the number of cells; and the material number M. The cell listing contains the cell number J, the node position X in cm, the cell size SPL in cm, the density in g/cm^3 , the stress σ_1 (geostatic) in dyn/cm^2 , the cell mass per unit area in g/cm^2 , tensile strength in dyn/cm^2 , material number M, the material name, and the location in the COM array of extra variables. The number of trials used in the iteration to compute the geostatic stress is listed on the right. In this listing, it

is apparent that there is a zero-mass cell at the end of each layer. This unused cell permits double nodes to occur at interfaces between materials. The double nodes permit a simple separation process between layers and also allows the user to initialize the layout with a gap between layers.

A second listing of this layout information is provided in the upper part of Figure 9. This listing is like the layout given in the earlier version of ONED. Also in Figure 9 is a short listing of the cells or nodes at which historical information is requested.

During a calculation, two types of snapshot listings are provided to show stresses and other quantities in the cells and nodes at certain times. Both are triggered when NSTEP is a multiple of NHIST. Samples of

MATERIAL NUMBER 2 MATERIAL IS EXPLI DENS- 2.74060 DAMPL, Q- 5.000E-02 4.000E+00 TENSN- 0.000E+00 NPOR- 0 NPR- 1 NSOL- 0 NVAR- 0 SHMOD- 0.000E+00 YIELD- 0.000E+00 TANPHI- 0.000E+00 POL 4.500E+10 2.000E-01 CONST.VOL.EXPLOSION WITH ENERGY= 4.500E+10 ERG/G, PCJ = 7.902E+08 VCJ = 1.24248E+01 GRUN = 2.00000E-01 SPEED2= 3.960E+10

MATERIAL NUMBER 3

DENS- 0.07295 DAMPL, Q- 5.000E-02 4.000E+00 TENSN- 0.000E+00 NPOR- 0 NPR- 1 NSOL- 0 NVAR- 0 MATERIAL IS AIR SHMOD- 0.000E+00 YIELD- 0.000E+00 TANPHI- 0.000E+00 POL 2.139E+09 4.000E-01 CONST.VOL.EXPLOSION WITH ENERGY= 2.139E+09 ERG/G, PCJ = 2.000E+06 VCJ = 4.99222E+02 GRUN = 4.00000E-01 SPEED2= 4.107E+09

FIGURE 7 LISTING OF MATERIAL PROPERTY INFORMATION FOR EXPLOSIVES AND GASES: THREE LINES FROM READIT AND TWO FROM EXPLODE

LISTING OF THE LAYOUT

PTOTT	NO OL THE LA	1001								
		1 FOR WES,	ONED SIMULA	TION OF THE	EXPLOSIVE	LAYER. 20	-JA	N-86		
J	X	SPL	DENSITY	SIG1	CELMAS		M	NAME	LVAR	TRIALS
1	0.000E+00	2.540E+00	1.522320	1.898E+03	3.867E+00	0.000E+00	4	OVERBD	1	3
2	2.540E+00	2.540E+00	1.522324	5.693E+03	3.867E+00	0.000E+00			3	3
3	5.081E+00	2.540E+00	1.522328	9.489E+03	3.867E+00	0.000E+00	4	and a second		3
	Omitted	in the Fic	Jure							
31	7.621E+01			1.158E+05	3.867E+00	0.000E+00	4	OVERBD	61	3
32	7.875E+01	2.540E+00		1.196E+05				A REAL PROPERTY AND ADDRESS OF THE A	102 5724	3
33	8.129E+01	2.540E+00	0.000000	0.000E+00	0.000E+00			112-140000-112-14 ×		0
LISTI	NG OF THE L	TUOYA								
	DISKO	1 FOR WES,	ONED SIMULA	TION OF THE	EXPLOSIVE	LAYER. 20	-JA	N-86		
J	X		DENSITY	SIG1			M	NAME	LVAR	TRIALS
				1.215E+05					0	1
35	8.167E+01	3.810E-01	0.043900	1.215E+05	1.673E-02	0.000E+00			0	ĩ
				1.215E+05					0	ī
10.00 m		in the Fig		Contraction of the second			12.			
43				1.216E+05	1.673E-02	0.000E+00	2	EXPL1	0	1
	8.510E+01	and the second se		0.000E+00	and the second se		O	Comment Carrie Must free 1	0	ō
LISTI	NG OF THE L	TUOYA								
	DISKO	1 FOR WES.	ONED SIMULA	TION OF THE	EXPLOSIVE	LAYER. 20	-JA	N-86		
J				SIG1			0.000		LVAR	TRIALS
45	8.510E+01	7.620E+00	0.001168	1.216E+05	8.904E-03	0.000E+00	3	AIR	0	1
46				0.000E+00					0	ō
LISTI	NG OF THE L	AYOUT								
	DISKO :	1 FOR WES,	ONED SIMULA	TION OF THE	EXPLOSIVE	LAYER. 20	-JA	N-86		
J	X	SPL	DENSITY	SIG1	CELMAS				LVAR	TRIALS
47	X 9.272E+01	1.016E+00	1.702840	SIG1 1.225E+05	1.730E+00	0.000E+00	1	SAND	65	3
48	9.374E+01	1.016E+00	1.702841	1.242E+05	1.730E+00	0.000E+00	1	SAND	67	3
49	9.475E+01	1.016E+00	1.702842	1.259E+05	1.730E+00	0.000E+00	1	SAND	69	3
		in the Fig				A REAL PROPERTY OF THE REAL PR				
296	3.457E+02	1.016E+00	1.703094	5.453E+05	1.730E+00	0.000E+00	1	SAND	563	3
297	3.467E+02	1.016E+00	0.000000	0.000E+00	0.000E+00	0.000E+00	ō	SAND	0	ō

	DISKO 1	FOR WES,	ONED SIMULA	TION OF THE	EXPLOSIVE	LAYER. 20	-JA	N-86		
J		SPL		SIG1			M	NAME	LVAR	TRIALS
1	0.000E+00 2	.540E+00	1.522320	1.898E+03			4	OVERBD	1	3
2	2.540E+00 2	.540E+00	1.522324	5.693E+03	3.867E+00	0.000E+00	4	OVERBD	3	3
3	5.081E+00 2	.540E+00	1.522328					and a second		3
	Omitted i	n the Fic								
31	7.621E+01 2			1.158E+05	3.867E+00	0.000E+00	4	OVERBD	61	3
32	7.875E+01 2	.540E+00	1.522439	1.196E+05	3.867E+00	0.000E+00	4	OVERBD		3
33	8.129E+01 2	.540E+00	0.000000	0.000E+00	0.000E+00		0	THE REPORT OF TH		Ō
LISTI	NG OF THE LAY	TUOT								
	DISKO 1	FOR WES,	ONED SIMULA	TION OF THE	EXPLOSIVE	LAYER. 20	-JA	N-86		
J		SPL		SIG1	CELMAS		M	NAME	LVAR	TRIALS
34	8.129E+01 3	.810E-01	0.043900		1.673E-02		2		0	1
	8.167E+01 3			1.215E+05			2		0	1
	8.205E+01 3			1.215E+05			2		0	1
	Omitted i									
43	8.472E+01 3			1.216E+05	1.673E-02	0.000E+00	2	EXPL1	0	1
44	8.510E+01 3	.810E-01	0.000000	0.000E+00	0.000E+00	0.000E+00	0	EXPL1	0	0
LISTI	NG OF THE LAY	TUOT								
	DISKO 1	FOR WES,	ONED SIMULA	TION OF THE	EXPLOSIVE	LAYER. 20	-JA	N-86		
J	X	SPL		SIG1			M	NAME	LVAR	TRIALS
45	8.510E+01 7	.620E+00	0.001168	1.216E+05	8.904E-03	0.000E+00	3	AIR	0	1
46		.620E+00		0.000E+00			0	AIR	0	0
LISTI	NG OF THE LAY	TUO		· · · ·						
	DISKO 1	FOR WES,	ONED SIMULA	TION OF THE	EXPLOSIVE	LAYER. 20	-JA	N-86		
J	X 9.272E+01 1	SPL	DENSITY	SIG1	CELMAS	TENS	M	NAME	LVAR	TRIALS
47	9.272E+01 1	.016E+00	1.702840	1.225E+05	1.730E+00	0.000E+00	1	SAND	65	3
48		.016E+00	1.702841	1.242E+05	1.730E+00	0.000E+00	1	SAND	67	3
49	9.475E+01 1	.016E+00	1.702842	1.259E+05	1.730E+00	0.000E+00	1	SAND	69	3
	Omitted i	n the Fic	gure							
296		.016E+00	1.703094	5.453E+05	1.730E+00	0.000E+00	1	SAND	563	3
297		.016E+00	0.000000	0.000E+00	0.000E+00	0.000E+00	0	SAND	0	0

		DISKO	1 FOR WES,	ONED SIMUL	ATION OF THE	EXPLOSIVE	LAYER. 20	-JA	N-86		
J		X	and the second s			CELMAS		M	The second second	LVAR	TRIALS
1	0	.000E+00	2.540E+00	1.522320	1.898E+03	3.867E+00		4			3
2	2	.540E+00	2.540E+00	1.522324	5.693E+03			4	A PARTICIPATION OF THE PARTY OF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3
3	5		2.540E+00		9.489E+03				and the second se		3
			in the Fi								
31	7		2.540E+00		1.158E+05	3.867E+00	0.000E+00	4	OVERBD	61	3
32	7	.875E+01	2.540E+00		1.196E+05	3.867E+00		0.000	A REAL PROPERTY AND ADDRESS OF THE A		
33			2.540E+00			and the second sec					3 0
LISTI	NG	OF THE I	LAYOUT								
				ONED SIMUL	ATION OF THE	EXPLOSIVE	LAYER. 20	-JA	N-86		
J		X				CELMAS			NAME	LVAR	TRIALS
34	8	.129E+01			1.215E+05					0	1
					1.215E+05						ĩ
36			3.810E-01		1.215E+05					0	ī
1000	-		i in the Fie					12			
43	8		3.810E-01		1.216E+05	1.673E-02	0.000E+00	2	EXPL1	0	1
a family of the second s		the state of the s	and the second se	0.000000		0.000E+00		ō	Company of Company of Company of Company	0	ō
LISTI	NG	OF THE I	TUOKA								
		DISKO	1 FOR WES.	ONED SIMUL	ATION OF THE	EXPLOSIVE	LAYER. 20	-JA	N-86		
J		X		DENSITY				M	NAME	LVAR	TRIALS
45	8	.510E+01			1.216E+05					0	1
46		.272E+01			0.000E+00			0	AIR	Ó	ō
LISTI	NG	OF THE I	LAYOUT								
		DISKO	1 FOR WES,	ONED SIMUL	ATION OF THE	EXPLOSIVE	LAYER. 20	-JA	N-86		
J		X	SPL	DENSITY				M	NAME	LVAR	TRIALS
47	9	.272E+01	SPL 1.016E+00	1.702840	1.225E+05			1	SAND	65	3
48		.374E+01	1.016E+00	1.702841		1.730E+00	0.000E+00	1	SAND	67	3
49	1000	.475E+01	1.016E+00		the second se	1.730E+00	0.000E+00	ī	SAND	69	3
			i in the Fie					-			
296	3	.457E+02	1.016E+00		5.453E+05	1.730E+00	0.000E+00	1	SAND	563	3
297	100000	.467E+02	1.016E+00		0.000E+00	0.000E+00	0.000E+00	õ	SAND	0	õ

	DISKO	1 FOR WES,	ONED SIMULA	TION OF THE	EXPLOSIVE	LAYER. 20	-JA	N-86		
J	X	SPL	DENSITY	SIG1	CELMAS	TENS	M	NAME	LVAR	TRIALS
1	0.000E+00	2.540E+00	1.522320	1.898E+03	3.867E+00	0.000E+00	4	OVERBD	1	3
2	2.540E+00	2.540E+00	1.522324	5.693E+03	3.867E+00	0.000E+00	4	OVERBD	35	3
3	5.081E+00		1.522328						5	3
	Omitted	in the Fid	gure							
31	7.621E+01	2.540E+00	1.522435	1.158E+05	3.867E+00	0.000E+00	4	OVERBD	61	3
32	7.875E+01	2.540E+00	1.522439	1.196E+05	3.867E+00	0.000E+00	4	OVERBD		3
33	8.129E+01	2.540E+00	0.000000	0.000E+00	0.000E+00	0.000E+00	0	OVERBD	0	0
LISTI	NG OF THE L	AYOUT								
			ONED SIMULA	TION OF THE	EXPLOSIVE	LAYER. 20	-JA	N-86		
J		SPL		SIG1					LVAR	TRIALS
	8.129E+01					0.000E+00			0	1
	8.167E+01					0.000E+00			Ö	ĩ
36				1.215E+05					0	ī
0.010		in the Fid		Constant and the second second			12.	10000 CO.		
43	8.472E+01		the second se	1.216E+05	1.673E-02	0.000E+00	2	EXPL1	0	1
44	8.510E+01	3.810E-01	0.000000	0.000E+00	0.000E+00	0.000E+00	0	EXPL1	0	0
LISTI	NG OF THE L	AYOUT								
	the second s		ONED SIMULA	TION OF THE	EXPLOSIVE	LAYER. 20	-JA	N-86		
J	X		DENSITY				00.00		LVAR	TRIALS
45	8.510E+01					0.000E+00			0	1
46	9.272E+01							AIR	0	0
LISTI	NG OF THE L	AYOUT								
			ONED SIMULA	TION OF THE	EXPLOSIVE	LAYER. 20	-JA	N-86		
J	X	SPL	DENSITY				M		LVAR	TRIALS
47	X 9.272E+01	1.016E+00	1.702840			0.000E+00	1		65	3
48	9.374E+01	1.016E+00	1.702841	1.242E+05	1.730E+00	0.000E+00	1	SAND	67	3
49	9.475E+01	1.016E+00	1.702842	1.259E+05	1.730E+00	0.000E+00	ī	SAND	69	3
		in the Fie								
296	3.457E+02	1.016E+00	1.703094	5.453E+05	1.730E+00	0.000E+00	1	SAND	563	3
297	3.467E+02	1.016E+00	0.000000	0.000E+00	0.000E+00	0.000E+00	0	SAND	0	Ō

EXPLICIT TREATMENT OF THE EXPLOSIVE LAYER

FIGURE 8 PARTIAL LISTING OF THE LAYER, NODE, AND CELL INFORMATION FROM READIT FOR THE ONED SIMULATION OF DISKO-1 WITH AN

DISKO 1 FOR WES, ONED SIMULATION OF THE EXPLOSIVE LAYER. 20-JAN-87 LAYER PROPERTIES

LAYER NUMBER	NC	DES	BOTTOM (FT)	GAMMA (PCF)	PCRIT	SPACING (IN)	TENSION (PSI)
1	1	- 33	2.6670	95.04	0.10	1.0001	0.000E+00
2 3	34 45	C107.0	2.7920 3.0420	2.74	0.05	0.1500 3.0000	0.000E+00 0.000E+00
4	47	- 298	11.3750	106.30	0.10	0.4000	0.000E+00

OUTPUT DEPTH (ft)	DESIRED	AT NODE
3.1420		50
3.5420		62
4.5420		92
5.5420		122
6.5420		152
7.5420		182
8.5420		212

43

FIGURE 9 LISTING OF THE LAYOUT AND DEPTHS AT WHICH HISTORIES ARE REQUESTED FOR THE ONED SIMULATION OF DISKO-1 WITH AN EXPLICIT TREATMENT OF THE EXPLOSIVE LAYER

both these snapshot listings are shown in Figures 10 and 11. The listed quantities in Figure 10 include position X in cm, velocity VEL in cm/s, the mechanical stress RMECH in the direction of propagation in dyn/cm^2 , thermodynamic stress SIG1 in dyn/cm^2 , the artificial viscous stress DSTRS in dyn/cm^2 , the pressure in dyn/cm^2 , the density DENS in g/cm^3 , the sound speed SSPEED in cm/s, the deviator stress SIGDEV in the direction of propagation in dyn/cm^2 , and the yield strength Y in dyn/cm^2 .

The second snapshot listing, shown in Figure 11, is similar to that obtained in the original version of ONED. This listing provides most of the same quantities, but only for the requested nodes and cells. The applied pressure at the surface, the mechanical stress RMECH, thermodynamic stress SIG1 and the damping stress are in psi. The compressive strain is in percent, acceleration in g's, particle velocity in m/s or in/s (depending on the setting of the indicator KVEL), and the node location in cm or inches (depending on KVEL).

At the end of the calculation, a summary is given of the maximum values that have occurred at all depths. Such a summary is shown in Figure 12. The listed quantities include the depth to the node, the mechanical stress RMECH, the velocity, coordinate position, strain in the cell, and acceleration. The depth, velocity, position, and acceleration

pertain to the node J, and the other quantities refer to the following cell. In each case the time at which the maximum quantity occurred is also shown.

The final listing shows a history of some quantities at the requested nodes. A portion of one of these listings from SCRIBE (part of HISTRY) is given in Figure 13. The quantities are RMECH in psi, the acceleration in g's, the velocity in m/s, position in in., strain in percent, impulse in dyn-s/cm², and the stress in the first and second principal directions in MPa. The impulse is obtained as the integral of stress RMECH over time at the cell:

44

(51)

 $I = \int R dt$

SNAPS	DISKO 1	FOR WES, ONED SIN	ULATION OF TH	E EXPLOSIV	E LAYER.	23-JAN-86				
JN			EL RMECH	SIG1	DSTRS	DDECC	DENC	CODERD		
				DYN/CM2			DENS			
1	4 18.4	4917E-07 3.96159E-	04 6 0435+02	6 042E+02	DYN/CM2	DYN/CM2	G/CM3			DYN/CM2
-	T = 2 to 3	1 upro omitted for	04 0.0435+02	D.UAJCTUZ	5.0042-05	1.2982+00	1.522321	8.552E+04	6.030E+02	1.000E+04
. 32	A 6376	1 were omitted fro	a che rigure.	MAL 4	is the U	verburden.				12 marsh -12
	- 037.0	7864E+01-1.68039E+	03 5.6396+07	5.6392+07	0.000E+00	4.755E+07	1.647572	8.220E+04	8.839E+06	1.000E+04
33 34		1338E+01-1.48328E+						0.000E+00		
34	Z 0 7.5	1338E+01-1.48328E+	03 6.816E+07	6.816E+07	0.000E+00	6.816E+07	0.010444	8.850E+04	0.000E+00	0.000E+00
40	J = 35 to	43 were omitted fr	om the Figure	. MAT	2 is Prima	acord Explo				
42		2713E+01 2.20655E+					0.012357	9.000E+04	0.000E+00	0.000E+00
43		6249E+01 1.74489E+					0.012522	9.012E+04	0.000E+00	0.000E+00
44		9606E+01 1.21503E+					0.000000	0.000E+00	0.000E+00	0.000E+00
45		9606E+01 1.21503E+					0.029140	6.386E+04	0.000E+00	0.000E+00
46		2661E+01 1.19526E+					0.000000	0.000E+00	0.000E+00	0.000E+00
47	1 65 9.4	2661E+01 1.19526E+	03 8.963E+07 8	8.941E+07	2.253E+05	7.764E+07		1.533E+05		
	J = 48 to	60 were omitted fr	om the Figure	. MAT	1 is Flume	Sand.	J = 62 i	is at the 6	" gage dep	th.
61	1 93 1.0	7948E+02 1.04290E+	03 8.239E+07	8.239E+07	0.000E+00	6.032E+07	1.757782	1.552E+05	2.207E+07	1.000E+04
62	1 95 1.0	8932E+02 1.05206E+	03 7.892E+07 '	7.892E+07	0.000E+00	5.758E+07		1.553E+05		
63	1 97 1.0	9918E+02 1.12735E+	03 8.410E+07 1	8.403E+07	6.937E+04	6.136E+07		1.554E+05		
64	1 99 1.1	0904E+02 1.07618E+	03 8.910E+07 (B.910E+07	0.000E+00	6.502E+07		1.554E+05		
		87 were omitted fr								
88		4627E+02 1.55218E+			0.000E+00	1.006E+08	1.760313	1.551E+05	3.886E+07	1.000E+04
89		5610E+02 1.60514E+						1.553E+05		
90		6595E+02 1.33766E+						1.555E+05		
91		37583E+02 1.44746E+						1.553E+05		
	J = 92 is	at the 18" gage de	pth.							
92	1 155 1.3	8569E+02 1.34110E+	03 9.586E+07	9.476E+07	1.106E+06	6.953E+07	1.745022	1.558E+05	2 523E+07	1 000E+04
93	1 157 1.3	39560E+02 1.00945E+	03 8.500E+07 8	8.500E+07	0.000E+00	6.320E+07		1.559E+05		
94		10554E+02 1.23000E+						1.556E+05		the second s
95	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1543E+02 1.24849E+			and the second se			1.559E+05	and the second sec	The second s
96		2535E+02 9.18443E+		Contraction of the second s				and the of the second s	the state of the s	The second s
97		3535E+02 5.72848E+			And the second se			1.570E+05		
98		4541E+02 2.91633E+	SERVER STATISTICS AND ADDRESS OF STREET	DECOMPANY AND AND A DOCUMENT	SUBSCIENTION STATES	A REAL PROPERTY AND A REAL		1.574E+05	CONTRACTOR AND A DESCRIPTION OF A DESCRI	
99		15553E+02 1.24673E+						1.576E+05		
100		6567E+02 4.78922E+						1.577E+05		
101		7582E+02 1.86556E+					and the second s	1.577E+05	Contraction of the Article of the Ar	
102		8598E+02 8.85777E+						1.577E+05	and the second sec	
103	Care a second and a second as a se	9614E+02 4.85159E+								
104	The second secon	50630E+02 2.32672E+								
105		51646E+02 9.56769E-						1.577E+05		
105	Contract Contraction Contraction	52662E+02 3.16232E-				CONTRACTOR OF A		1.577E+05	Contraction and a second of	
107		53678E+02 5.38749E-						1.577E+05		
108		54694E+02 0.00000E+						1.577E+05-2		
108						2.2011.03	1.102502	1.5772.05-1		LICOLICA
	Note: Rema	ainder of Listing i	s beyond the	ave front						

FIGURE 10 LISTING OF STRESSES, VELOCITIES, AND OTHER PROPERTIES AT CYCLE 400, 1.03 ms FROM DISKO-1 SIMULATION WITH ONED, USING AN EXPLICIT TREATMENT OF THE EXPLOSIVE LAYOUT

45

DISKO TIME	1 FOR WES, SURFACE STRESS	ONED NODE NO.	APPLIED	N OF THE REACTION STRESS	EXPLOSIVE DAMPING STRESS	LAYER. STRAIN	20-JAN-87 ACCEL	PARTICLE	POSITION	
 6.474E-04	PSI 0.00		PSI	PSI	PSI	PERCENT	G' S	M/S	IN	
		50	972.83	971.68	1.15	3.93064	8468.844	11.784	38.080	
		62	1908.41	1908.41	0.00	3.77272	-9397.986	14.595	42.703	
		92	2.88	2.88	0.00	0.00702	0.000	0.000	54.503	
		122	3.62	3.62	0.00	0.00882	0.000	0.000	66.503	
		152	4.36	4.36	0.00	0.01061	0.000	0.000	78.502	
		182	5.10	5.10	0.00	0.01241	0.000	0.000	90.502	
		212	5.84	5.84	0.00	0.01421	0.000	0.000	102.501	

FIGURE 11 SNAPSHOT LISTING OF STRESSES, VELOCITIES, AND OTHER PROPERTIES AT THE REQUESTED NODES AT CYCLE 300 FROM THE DISKO-1 SIMULATION WITH ONED, USING AN EXPLICIT TREATMENT OF THE EXPLOSIVE LAYOUT

1

DISKO 1 FOR WES, ONED SIMULATION OF THE EXPLOSIVE LAYER. 20-JAN-87 SUMMARY OF MAXIMUM VALUES

NODE	DEPTH	DELOTION									
NO.	FT.	REACTION	TIME		OCITY		ACEMENT	STR	IN	ACCELERA	TION
		(MPA)	(SEC)	VALUE	TIME	VALUE	TIME	VALUE	TIME	VALUE	TIME
	Nodes 1 -	16 were o	mitted from	(M/S)	(SEC)	(IN)	(SEC)	(1)	(CEC)	(G' S)	
17	1.3335	6.94	1.035E-03	-9.043	1.035E-03	rburden 13	contained	in cells 1			
18	1.4168	9.38	1.035E-03	-14.234	1.035E-03	-0.027	1.035E-03	3.216E+00		-8.169E+03	1.035E-03
19	1.5002	10.03	1.016E-03	-17.124	1.035E-03	-0.058	1.035E-03	4.445E+00		-8.371E+03	9.738E-04
20	1.5835	10.06	9.657E-04	-17.409	9.895E-04	-0.100	1.035E-03	4.793E+00	and the second se	-8.584E+03	9.047E-04
21	1.6669	9.99	9.534E-04	-17.300	9.364E-04	-0.190	1.035E-03	4.808E+00		-8.839E+03	8.366E-04
22	1.7502	10.43	9.272E-04	-17.548	9.408E-04	-0.234	1.035E-03	4.772E+00		-9.173E+03	7.648E-04
23	1.8336	11.00	8.810E-04	-18.516	9.000E-04	-0.280	1.035E-03 1.035E-03	4.982E+00		-9.641E+03	6.958E-04
24	1.9169	11.11	8.366E-04	-19.156	8.542E-04	-0.326	1.035E-03	5.254E+00		-1.035E+04	6.324E-04
25	2.0002	11.60	7.994E-04	-19.281	8.242E-04	-0.376	1.035E-03	5.305E+00		-1.123E+04	5.712E-04
26	2.0836	12.74	6.991E-04	-19.764	5.281E-04	-0.426	1.035E-03	5.512E+00		-1.201E+04	5.140E-04
27	2.1669	13.73	7.431E-04	-21.639	4.782E-04	-0.480	1.035E-03	5.977E+00 6.337E+00		1.267E+04	5.618E-04
28	2.2503	13.97	4.154E-04	-22.618	4.327E-04	-0.536	1.035E-03	6.361E+00		1.655E+04	5.106E-04
29	2.3336	14.71	3.733E-04	-23.248	3.931E-04	-0.591	1.035E-03	6.358E+00		-1.764E+04	6.031E-04
30	2.4170	16.92	2.982E-04	-24.727	3.352E-04	-0.647	1.035E-03	7.130E+00		-1.666E+04 -2.335E+04	2.128E-04
31	2.5003	18.96	1.299E-04	-26.314	1.545E-04		1.035E-03	8.166E+00		-3.865E+04	1.567E-04
32	2.5837	26.87	6.911E-05	-35.864	1.006E-04	-0.773	1.035E-03	9.775E+00		-5.971E+04	2.323E-04
33	2.6670	0.00	1.035E-03	-54.919	4.587E-05	-0.849	1 0355 03				5.188E-05 1.044E-07
24	The preced	ing cell :	18 unused:	33 represe	nts a node	only. The	next cella	0.000E+00 contain ex	plosive.	-2.0022405	1.0442-07
34	2.6670 2.6795		* TT	34.313	4.30/E-05	-0.849	1.035E-03	-8.542E+01	1.504E-04	-2.002E+05	1.044E-07
36	2.6920		2.297E-07	-220.015	1.879E-04	0.694	1.484E-04	-8.264E+01	1.316E-04	-1.701E+06	1.524E-04
37	2.7045	38.18	1.037E-06	414.680	1.053E-04	1.368	1.445E-04	-7.956E+01		1.894E+06	3.866E-05
38	2.7170	38.18	2.711E-06	621.674	9.093E-05	1.871	1.370E-04	-7.563E+01	9.767E-05		3.610E-05
39	2.7295	38.18	5.064E-06	826.401	7.994E-05	2.221	1.316E-04	-7.489E+01	1.027E-03		3.086E-05
40	2.7420	38.18 38.18	2.711E-06	998.172	7.159E-05	2.457	1.265E-04	-7.416E+01	1.009E-03		2.505E-05
41	2.7545	38.18	1.349E-06 3.801E-07	1123.381	6.647E-05	2.626	1.248E-04	-7.477E+01	8.721E-04	-4.588E+06	6.989E-05
42	2.7670	74.54	6.401E-05	1249.056	6.375E-05	2.754		-7.550E+01	8.857E-04	-1.438E+07	6.594E-05
43	2.7795		6.353E-05	1311.246 1323.457	5.511E-05	2.857	1.182E-04	-7.635E+01	2.777E-04	-3.804E+07	6.430E-05
44	2.7920	0.00	1.035E-03	1396.479	3.610E-05 1.338E-05	3.113	1.035E-03	-7.850E+01	2.733E-04	-8.240E+07	6 3538-05
2.77.8			is unused:	44	1.3302-05	3.489	1.035E-03	0.000E+00 contains ai	1.035E-03	-1.480E+08	6.320E-05
45	2.7920	311.25	6.320E-05	1396 479	1.338E-05	only. The	next cell				
46	3.0420		1.035E-03		6.705E-05		1.035E-03 1.035E-03	3.257E+04		-1.480E+08	
	The preced			The next	cells conta		the test be		1.035E-03	3.521E+06	6.335E-05
47	3.0420		7.994E-05		6.705E-05		1.035E-03				
48	3.0753		9.767E-05	37.337			1.035E-03	7.648E+00 6.678E+00			
49	3.1087		1.149E-04		1.069E-04		1.035E-03	6.092E+00	1.334E-04 1.524E-04		7.346E-05
50	3.1420		1.334E-04	29.874			1.035E-03	5.769E+00	1.334E-04	9.061E+04 7.567E+04	9.223E-05
	A new titl	e occurs a	at this lin						1.3346-04	1.30/2+04	1.069E-04
51	3.1753	25.66	1.524E-04	28.598	1.426E-04	0.535	1.035E-03	5.617E+00	1.524E-04	7 2788+04	1.231E-04
	Nodes 52 t	o 60 are c	omitted for	the Figur	e. Node 62	is at the	6" gage de	apth in the	Flume sand	TETOLTON	1.2316-04
61	3.5086	20.55	3.435E-04	23.603	3.352E-04	0.396	1.035E-03	4.692E+00	3.435E-04		3.142E-04
62	3.5420		3.619E-04	22.860	3.539E-04	0.383	1.035E-03			Contraction of the second s	
63	3.5753		3.818E-04		3.733E-04	0.371	1.035E-03	4.404E+00	3.818E-04	5.775E+04	3.539E-04
64	3.6086		3.988E-04	21.362	3.903E-04	0.359	1.035E-03	4.267E+00	4.016E-04		3.733E-04
65	3.6420		4.211E-04	20.679	The second se	0.348	1.035E-03	4.142E+00	4.211E-04		3.931E-04
66	3.6753		4.386E-04	20.054	4.298E-04	0.337	1.035E-03	4.022E+00	4.417E-04	5.085E+04	4.126E-04
70			omitted her								
78	4.0753		8.632E-04	16.788				3.477E+00	8.632E-04	3.166E+04	6.583E-04
79	4.1086		8.857E-04	16.744	8.765E-04	0.200	1.035E-03	3.464E+00	8.857E-04	3.046E+04	6.790E-04
0.1			omitted her		2 is at the		depth.	2 1 2			
91	4.5086		1.035E-03	14.757			1.035E-03	3.094E+00	And the second s		1.009E-03
92 93	4.5419 4.5753		9.856E-04	13.521	1.035E-03		1.035E-03	2.799E+00	9.895E-04		1.031E-03
94			1.009E-03	13.247	1.001E-03	0.042	1.035E-03	2.785E+00	1.009E-03		9.698E-04
94	4.6086	10.94 9.34	1.031E-03 1.035E-03	13.156	1.024E-03	0.033	1.035E-03	1. Contract (C) / 200 million (C) (C) / 200 million	1.031E-03		9.895E-04
95	4.6753		1.035E-03	12.550 9.283	1.035E-03	0.022	1.035E-03		1.035E-03		1.009E-03
97	4.7086		1.035E-03	5.821	1.035E-03	0.013	1.035E-03		1.035E-03		1.031E-03
98	4.7419		1.035E-03	2.981	1.035E-03 1.035E-03	0.007	1.035E-03		and the second se		1.035E-03
99	4.7753	00001-02020	1.035E-03	1.280	1.035E-03		1.035E-03	1 D.S. MORE CONSISTENCE CONTRACT	1.035E-03		1.035E-03
100	4.8086		1.035E-03	0.493	1.035E-03	0.001	1.035E-03	1.876E-01	1.035E-03		1.035E-03
					for the Fig	0.000	1.035E-03	7.534E-02	1.035E-03	2.206E+03	1.035E-03
		and the second	· · · · · · · · · · · · · · · · · · ·	and cood							

FIGURE 12 PARTIAL LISTING OF THE MAXIMUM VALUE TABLE FOR THE ONED SIMULATION OF DISKO-1 WITH EXPLICIT TREATMENT OF THE EXPLOSIVE

UTCT	DISKO 1 ORIES AT NODE	A STATE AND A STAT	D SIMULATION	OF THE EXP	LOSIVE LAYER.
NS	CARLEY CONTRACTOR OF CONTRACTOR OF CONTRACTOR	RMECH	ACC	UPLOCITY	DOCTATON
NS	SEC	MPA	G'S	VELOCITY M/SEC	POSITION
166			5.159E+01	4.678E-03	IN 4.250E+01
167			5.844E+01	5.522E-03	4.250E+01
168		1.711E-02	6.608E+01	6.484E-03	
100	Time steps 16				4.250E+01
201	3.105E-04	2.423E+00	2.636E+04	4.723E+00	4.251E+01
	3.142E-04	3.077E+00	3.158E+04	5.892E+00	
202				AND DESCRIPTION OF A	4.251E+01
203		3.807E+00	3.686E+04	7.172E+00	4.251E+01
204	3.208E-04	4.610E+00	4.219E+04	8.531E+00	4.251E+01
205	3.238E-04	5.502E+00	4.887E+04	1.001E+01	4.251E+01
206	3.267E-04	6.466E+00	5.410E+04	1.159E+01	
207		7.505E+00	5.781E+04	1.323E+01	4.251E+01
208		8.632E+00	5.986E+04	1.491E+01	4.252E+01
209	3.352E-04	9.825E+00	5.993E+04	1.657E+01	4.252E+01
210	3.380E-04	1.121E+01	5.799E+04	1.816E+01	4.252E+01
211	3.408E-04	1.283E+01	5.318E+04	1.961E+01	4.252E+01
212	. 3.435E-04	1.436E+01	4.535E+04	2.082E+01	4.252E+01
213	3.461E-04	1.576E+01	3.644E+04	2.178E+01	4.253E+01
214	3.487E-04	1.699E+01	2.613E+04	2.246E+01	4.253E+01
215	3.513E-04	1.803E+01	1.425E+04	2.282E+01	4.253E+01
216	3.539E-04	1.884E+01	1.429E+03	2.286E+01	4.253E+01
217	3.566E-04	1.942E+01	-1.156E+04	2.256E+01	4.254E+01
218	3.592E-04	1.976E+01	-2.392E+04	2.195E+01	4.254E+01
219	The second s	1.984E+01	-3.479E+04	2.103E+01	4.254E+01
220	3.647E-04	1.958E+01	-4.334E+04	1.987E+01	4.254E+01
10000	The new headi	- A CONTRACTOR OF A CONTRACTOR			
221	3.675E-04	1.883E+01	-4.824E+04	1.854E+01	4.254E+01
222	3.704E-04	1.762E+01	-4.789E+04	1.719E+01	4.255E+01
223	3.733E-04	1.611E+01	-4.202E+04	1.600E+01	4.255E+01
224	3.761E-04	1.449E+01	-3.168E+04	1.511E+01	4.255E+01
225	3.789E-04	1.294E+01	-1.863E+04	1.459E+01	4.255E+01
226	3.818E-04	1.161E+01	-4.871E+03	1.446E+01	4.255E+01
227	3.846E-04	1.061E+01	7.725E+03	1.467E+01	4.255E+01
228	3.874E-04	1.005E+01	1.755E+04	1.516E+01	4.256E+01
229	3.903E-04	9.950E+00	2.342E+04	1.581E+01	4.256E+01
230	3.931E-04	1.030E+01	2.465E+04	1.651E+01	4.256E+01

FIGURE 13 PARTIAL LISTING OF THE HISTORIES FOR NODE 62 (6-in.-GAGE DEPTH) FROM ONED

.48

20-JAN-87

STRAIN	IMPULSE	SIGMA-1	SIGMA-2
(1)	DYN-S/CM^2	MPA	MPA
5.551E-03	3.285E+01	1.633E-02	1.543E-02
5.628E-03	• 3.310E+01	1.669E-02	1.558E-02
5.717E-03	3.335E+01	1.710E-02	1.575E-02
5.914E-01	3.732E+02	2.324E+00	1.352E+00
7.458E-01	4.667E+02	2.931E+00	1.705E+00
9.166E-01	5.756E+02	3.602E+00	2.096E+00
1.103E+00	7.025E+02	4.333E+00	2.521E+00
1.308E+00	8.502E+02	5.139E+00	2.990E+00
1.534E+00	1.022E+03	6.003E+00	3.493E+00
1.783E+00	1.220E+03	6.931E+00	4.033E+00
2.055E+00	1.447E+03	7.944E+00	4.622E+00
2.346E+00	1.704E+03	9.029E+00	5.254E+00
2.652E+00	1.993E+03	1.033E+01	6.009E+00
2.963E+00	2.318E+03	1.189E+01	6.917E+00
3.270E+00	2.680E+03	1.342E+01	7.810E+00
3.562E+00	3.075E+03	1.488E+01	8.660E+00
3.831E+00	3.501E+03	1.622E+01	9.441E+00
4.067E+00	3.956E+03	1.741E+01	1.013E+01
4.265E+00	4.438E+03	1.839E+01	1.070E+01
4.415E+00	4.945E+03	1.915E+01	1.114E+01
4.511E+00	5.475E+03	1.963E+01	1.142E+01
4.547E+00	6.023E+03	1.981E+01	1.153E+01
4.519E+00	6.582E+03	1.958E+01	1.139E+01
	-		
4.425E+00	7.138E+03	1.883E+01	1.096E+01
4.274E+00	7.664E+03	1.762E+01	1.025E+01
4.086E+00	8.143E+03	1.611E+01	9.372E+00
3.885E+00	8.573E+03	1.449E+01	8.433E+00
3.692E+00	8.957E+03	1.294E+01	7.532E+00
3.526E+00	9.303E+03	1.161E+01	6.755E+00
3.402E+00	9.618E+03	1.061E+01	6.177E+00
3.332E+00	9.913E+03	1.005E+01	5.847E+00
3.320E+00	1.020E+04	9.950E+00	5.790E+00
3.362E+00	1.049E+04	1.027E+01	5.997E+00

SIMULATION OF DISKO-1 WITH AN EXPLICIT TREATMENT OF THE EXPLOSIVE LAYER

where t_n is the current time. The quantities SIGMA-1 AND SIGMA-2 are the stresses in the direction of propagation and orthogonal to that direction, respectively.

In cases where the wave propagation is caused by a pressure history instead of a detonation, the history is read and printed by READIT during initialization. A sample of the pressure history listing (THIST, PHIST) is shown in Figure 14. This pressure history was obtained from a GUINSY calculation⁹ of the DISKO-1 stress gage records. The input for this case is given in Figure A-3.

Some of the data printed in the preceding figures are also available for plotting. The SCRIBE listings of this histories have been stored on file 7 and can be plotted. Also the maximum value table in Figure 12 is available on file 7, following the SCRIBE data.

	· States - Constant	

DIS	SKO 1	FOR	WES,	ONED	SIMULATION	WITH	PRESSURES	FRO
FORCE	HIST	ORY	ON FI	RST NO	DDE			

TIME	PRESS								
0.000E+00	0.000E+00	2.000E-06	2.326E+02	4.000E-06	4.651E+02	6.000E-06	6.977E+02	1.000E-05	8.335E+02
1.400E-05	9.678E+02	1.700E-05	1.100E+03	2.100E-05	1.229E+03	2.500E-05	1.354E+03	2.900E-05	1.477E+03
3.300E-05	1.595E+03	3.700E-05	1.711E+03	4.000E-05	1.825E+03	4.400E-05	1.938E+03	4.800E-05	2.051E+03
5.200E-05	2.164E+03	5.600E-05	2.278E+03	5.900E-05	2.393E+03	6.300E-05	2.514E+03	6.700E-05	2.636E+03
7.100E-05	2.762E+03	7.500E-05	2.894E+03	7.900E-05	3.028E+03	8.200E-05	3.167E+03	9.400E-05	2.914E+03
1.040E-04	2.697E+03	1.130E-04	2.512E+03	1.230E-04	2.354E+03	1.330E-04	2.217E+03	1.420E-04	2.097E+03
1.520E-04	1.991E+03	1.640E-04	1.896E+03	1.740E-04	1.811E+03	1.840E-04	1.733E+03	1.930E-04	1.660E+03
2.030E-04	1.592E+03	2.130E-04	1.530E+03	2.220E-04	1.471E+03	2.340E-04	1.418E+03	2.440E-04	1.370E+03
2.540E-04	1.329E+03	2.630E-04	1.295E+03	2.730E-04	1.271E+03	2.830E-04	1.257E+03	2.900E-04	1.297E+03
2.970E-04	1.355E+03	3.020E-04	1.428E+03	3.090E-04	1.510E+03	3.170E-04	1.600E+03	3.240E-04	1.691E+03
3.290E-04	1.782E+03	3.360E-04	1.867E+03	3.430E-04	1.945E+03	3.510E-04	2.015E+03	3.550E-04	2.075E+03
3.630E-04	2.126E+03	3.700E-04	2.169E+03	3.750E-04	2.211E+03	3.820E-04	2.255E+03	4.030E-04	2.130E+03
4.250E-04	2.003E+03	4.470E-04	1.877E+03	4.680E-04	1.756E+03	4.890E-04	1.641E+03	5.110E-04	1.533E+03
5.320E-04	1.434E+03	5.540E-04	1.343E+03	5.750E-04	1.260E+03	5.970E-04	1.185E+03	6.180E-04	1.117E+03
6.390E-04	1.054E+03	6.610E-04	9.964E+02	6.830E-04	9.424E+02	7.040E-04	8.910E+02	7.250E-04	8.420E+02
7.460E-04	7.950E+02	7.680E-04	7.499E+02	7.900E-04	7.078E+02	8.110E-04	6.696E+02		

OUTPUT DEPTH(ft)	DESIRED AT NODE
0.1000	4
0.2500	8
0.5000	16
1.5000	46
1.6700	51
1.8300	55
2.5000	76
3.5000	106
4.5000	136
5.5000	166

FIGURE 14 LISTING FROM READIT OF THE FORCE HISTORY AND OF THE LOCATIONS WHERE PRINTED AND PLOTTED OUTPUT IS DESIRED: ONED SIMULATION OF DISKO-1 USING THE PRESSURE HISTORY FROM GUINSY

50

ROM CUINSY20-JAN-86

REFERENCES

1. Radhakrishnan, N., and Rohani, B. November 1971. "A One-Dimensional Plane Wave Propagation Code for Layered Nonlinear Hysteretic Media," Technical Report S-71-12, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

2. Von Neumann, J., and Richtmyer, R. D. 1950. "A Method for the Numerical Calculation of Hydrodynamic Shocks," J. Appl. Phys., Vol 21, pg 232.

3. Richtmyer, R. D., and Morton, K. W. 1967. Difference Methods for Initial-Value Problems, 2d ed., Interscience Publishers, New York, NY.

4. Herrmann, W., Holzhauser, P., and Thompson, R. J. February 1967. "WONDY, a Computer Program for Calculating Problems of Motion in One Dimension," SC-RR-66-601, Sandia Corporation, Albuquerque, NM.

5. Seaman, L., Barbee, T. W. Jr., and Curran, D. R. December 1971. "Dynamic Fracture Criteria of Homogeneous Materials," Report No. AFWL-TR-71-156, Air Force Weapons Laboratory, Kirtland Air Force Base, NM.

6. Hill, R. 1950. <u>The Mathematical Theory of Plasticity</u>. Clarendon Press, Oxford.

7. Terzaghi, K. 1943. Theoretical Soil Mechanics. John Wiley and Sons, Inc., New York, NY.

8. Seaman, L. July 1987. "Analysis of Dynamic In Situ Backfill Property Tests: Report 4, Computation of K_o Stress-Strain and Stress-Path Relations for Dry Flume Sand in the DISKO-1 Experiment," Technical Report SL-87-11, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

9. Seaman, L. July 1987. "Analysis of Dynamic In Situ Backfill Property Tests: Report 2, An Improved Lagrangian Analysis for Stress and Particle Velocity Gage Arrays," Technical Report SL-87-11, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Appendix A

SAMPLE INPUT FOR ONED

This appendix provides sample input files and supplements the input description in Section IV. The input files show sample problems in which either a surface pressure history or an explosive detonation drives the waves. Material properties characteristic of solids, porous materials, explosives, and air are provided.

Figures A-1 through A-3 show three treatments of the DISKO-1 event⁸. In Figure A-1, the loading is applied by an average pressure history from the blast pressure gages, and in Figure A-2 by detonation of the explosive layer. The explosive is treated as a polytropic gas. Figure A-3 contains another input for DISKO-1 in which the loading is a pressure history derived from a Lagrangian analysis performed using the GUINSY code⁹. In Figure A-4 is an input file for a synthetic problem containing several layers of porous and solid materials, an explosive, and a gap. The gap is simply an empty layer; it closes during the calculation. The isentrope (pressure-volume curve) for the explosive is provided by a

table of volume and pressure values.

TEST OF SRI ONED TO SIMULATE THE DISKO-1 EVENT, FINAL SET OF DATA [B6391.ONED]DISKOIBL.OND IS DATA, [*.*]RONED.COM, [*.*]MONED.EXE DISKO 1 FOR WES, ONED SIMULATION WITH PRESSURES FROM BLAST GAGES. 1 998, 0, 0.004, 400, 1. NOCOMP, BOTTOM BOUNDARY INDICATOR, TEND, NSTOP, GACC NLAYRS, MISP, NSP, MATTEN, NMIRLS, NEORCE 1, 0, 0, 0, 1, 139, 10, 1, 3, 0, 0, 0, 0, 0, 100, 1, 1, 1, 0.004 NNODE, KNIROL (7), NHIST, MVT, NSV, KVEL, TND 0.1, 0.25, 0.5, 1.5, 1.67, 1.83, 2.5, 3.5, 4.5, 5.5 DEPTHS FOR HIST. (FT) SK (7) 1000., 0.0, 60., 0., 0., 0., 0. 'SAND', 106.3, 0.1, 4., 0.0, 1, 0, 0, 2 GAM, DAMP, TENSN, POR, PR, SOL, VAR FOR SAND 1.36E+9, 1.CE+4, 0.274 SHMOD, YIELD, TANPHI 7,3,'P','D',1.,1.0 KEIN, NTYPE, LPRESS, LDENS, PUNIT, DUNIT SSONED: 4.E7, 7.E7, 1.7E8, 4.5E8, 1.E9, 0., FLUME SAND, P, DYN/CM² (K=2.92E9) 1.7268, 1.7458, 1.793, 1.893, 2.065, 2.023 DENSITIES, G/CM^3 0.4, 0, 1 DB (DIST TO BOT, FT), SPL (CELL SIZE, IN), NSP (# CELL), MAT # 8.333 0.000E+00 0.000E+00 2.000E-06 1.896E+03 4.000E-06 2.136E+03 6.000E-06 2.336E+03 2.515E+03 8.000E-06 1.000E-05 2.664E+03 1.200E-05 2.794E+03 1.400E-05 2.894E+03 1.600E-05 2.984E+03 1.800E-05 3.053E+03 2.000E-05 3.293E+03 2.200E-05 3.503E+03 2.400E-05 3.692E+03 2.600E-05 3.832E+03 2.800E-05 3.922E+03 3.000E-05 3.961E+03 3.200E-05 3.951E+03 3.400E-05 3.892E+03 3.600E-05 3.822E+03 3.800E-05 3.743E+03 4.000E-05 3.662E+03 4.200E-05 3.572E+03 4.400E-05 3.482E+03 4.600E-05 3.393E+03 4.800E-05 3.313E+03 5.000E-05 3.234E+03 5.200E-05 3.163E+03 5.400E-05 3.093E+03 3.034E+03 5.600E-05 2.973E+03 5.800E-05 6.000E-05 2.914E+03 6.200E-05 2.863E+03 6.400E-05 2.824E+03 Lines were omitted for the Figure. 1.550E-03 6.775E+02 6.865E+02 1.590E-03 6.945E+02 1.660E-03 1.720E-03 7.374E+02 1.780E-03 7.235E+02 1.000E-02 7.235E+02

FIGURE A-1 INPUT FILE FOR ONED SIMULATION OF DISKO-1 USING THE PRESSURE HISTORY FROM THE BLAST PRESSURE GAGES

TEST OF SRI ONED TO SIMULATE THE DISKO-1 EVENT, FINAL SET OF DATA [B6391.ONED]DISKO1E.OND IS DATA, [*.*]RONED.COM, [*.*]MONED.EXE 1 DISKO 1 FOR WES, ONED SIMULATION OF THE EXPLOSIVE LAYER. 998, 0, 0.004, 400, 1. NOCOMP, BOTTOM BOUNDARY INDICATOR, TEND, NSTOP, GACC 4, 0, 0, 0, 4, 0, NLAYRS, MISP, NSP, MATTEN, NMIRLS, NEORCE 7, 1, 3, 0, 0, 0, 0, 0, 100, 1, 1, 1, 0.004 NNODE, KNIROL (7), NHIST, MVT, NSV, KVEL, TND 3.142, 3.542, 4.542, 5.542, 6.542, 7.542, 8.542 DEPTHS FOR HIST. (FT) 1000., 0.0, 60., 0., 0., 0., 0. SK (7) 'SAND', 106.3, 0.1, 4.,0.0,1,0,0,2 GAM, DAMP, TENSN, POR, PR, SOL, VAR FOR SAND 1.36E+9, 1.0E+4, 0.274 SHMOD, YIELD, TANPHI 7,3,'P','D',1.,1.0 SSONED: KFIN, NTYPE, LPRESS, LDENS, PUNIT, DUNIT 4.E7, 7.E7, 1.7E8, 4.5E8, 1.E9, 0., FLUME SAND, P, DYN/CM^2 (K=2.92E9) 1.7268, 1.7458, 1.793, 1.893, 2.065, 2.023 DENSITIES, G/CM⁻³ 'EXPL1', 2.7406, 0.05, 4.,0.0, 0, 1, 0, 0 GAM, DAMP, TENSN, POR, PR, SOL, VAR (EXPL) 0., 0., 0. SHMOD, YIELD, TANPHI 'POLY', 4.5E10, 0.2 Q AND GAMMA 'AIR', .072946, 0.05, 4.,0.0, 0, 1, 0, 0 GAM, DAMP, TENSN, POR, PR, SOL, VAR FOR AIR 0., 0., 0. SHMOD, YIELD, TANPHI 'POLY', 2.139E9, 0.4 Q AND GAMMA 'OVERBON', 95.035, 0.1, 4., 0.0, 1,0,0,2 GAM, DAMP, TENSN, POR, PR, SOL, NVAR 1.36E+9, 1.0E+4, 0.274 SHMOD, YIELD, TANPHI 10,1,'P','D',1.E7,1.0 SSONED: KFIN, NTYPE, LPRESS, LDENS, PUNIT, DUNIT 8., 39., 69., 122., 230., 400., 100., 30., 0., SAND OVERBON MODEL, PRESS., MPA 1.603,1.792,1.904,2.031,2.176,2.343,2.290,2.256,2.207 DENSITIES 1.0 0, 4 32 INCHES OF SAND OVERBURDEN 2.667 0.15 0, 2 1.5 INCHES OF PRIMACORD-AIR MIXTURE 2.792 3.0 0, 3 3.0 INCHES OF AIR (REPRESENTING A MIXTURE OF FOAM AND AIR) 3.042

11.375 0.4 0, 1 100 INCHES OF FLUME SAND

FIGURE A-2 INPUT FILE FOR THE ONED SIMULATION OF DISKO-1 USING THE EXPLICIT TREATMENT OF THE EXPLOSIVE LAYER

TEST OF SRI ONED TO SIMULATE THE DISKO-1 EVENT, FINAL SET OF DATA [B6391.ONED]DISKO1P.OND IS DATA, [*.*]RONED.COM, [*.*]MONED.EXE 1 DISKO 1 FOR WES, ONED SIMULATION WITH PRESSURES FROM GUINSY CALC. 7/10/85 998, 0, 0.004, 400, 1. NOCOMP, BOTTOM BOUNDARY INDICATOR, TEND, NSTOP, GACC 1, 0, 0, 0, 1, 79, NLAYRS, MISP, NSP, MATTEN, NMIRLS, NEORCE 10, 1, 3, 0, 0, 0, 0, 0, 100, 1, 1, 1, 0.004 NNODE, KNTROL (7), NHIST, MVT, NSV, KVEL, TND 0.1, 0.25, 0.5, 1.5, 1.67, 1.83, 2.5, 3.5, 4.5, 5.5 DEPTHS FOR HIST. (FT) 1000., 0.0, 60., 0., 0., 0., 0. SK (7) 'SAND', 106.3, 0.1, 4.,0.0,1,0,0,2 GAM, DAMP, TENSN, POR, PR, SOL, VAR FOR SAND 1.36E+9, 1.0E+4, 0.274 SHMOD, YIELD, TANPHI 7,3,'P','D',1.,1.0 SSONED: KFIN, NTYPE, LPRESS, LDENS, PUNIT, DUNIT 4.E7, 7.E7, 1.7E8, 4.5E8, 1.E9, 0., FLUME SAND, P, DYN/CM^2 (K=2.92E9) 1.7268, 1.7458, 1.793, 1.893, 2.065, 2.023 DENSITIES, G/CM^3 0.4, 0, 1 DB (DIST TO BOT, FT), SPL (CELL SIZE, IN), NSP (# CELL), MAT # 8.333 0.000E+00 0.000E+00 2.000E-06 2.326E+02 4.000E-06 4.651E+02 6.000E-06 6.977E+02 1.000E-05 8.335E+02 1.400E-05 9.678E+02 1.700E-05 1.100E+03 2.100E-05 1.229E+03 2.500E-05 1.354E+03 2.900E-05 1.477E+03 3.300E-05 1.595E+03 3.700E-05 1.711E+03 4.000E-05 1.825E+03 4.400E-05 1.938E+03 4.800E-05 2.051E+03 5.200E-05 2.164E+03 2.278E+03 5.600E-05 5.900E-05 2.393E+03 6.300E-05 2.514E+03 6.700E-05 2.636E+03 7.100E-05 2.762E+03 7 500F-05 2 804F+03

1.300E-03	2.0941+03	
7.900E-05	3.028E+03	
8.200E-05	3.167E+03	
9.400E-05	2.914E+03	
1.040E-04	2.697E+03	
1.130E-04	2.512E+03	
1.230E-04	2.354E+03	
1.330E-04	2.217E+03	
Lines	were omitted here for the figure	
7.900E-04	7.078E+02	
8.110E-04	6.696E+02	
1.000E-02	6.696E+02	

FIGURE A-3 INPUT FILE FOR THE ONED SIMULATION OF DISKO-1 WITH THE PRESSURE HISTORY CONSTRUCTED BY GUINSY FROM THE STRESS GAGE RECORDS

TEST OF SRI ONED TO SIMULATE A FICTITIOUS SITUATION TO DEMONSTRATE THE TREATMENT OF SOLIDS, POROUS MATLS, TABULAR ISENTROPE, AND A GAP. 1 ONED SIMULATION OF SIX LAYER PROBLEM, INCLUDING A GAP 998, 0, 0.004, 400, 1. NOCOMP, BOTTOM BOUNDARY INDICATOR, TEND, NSTOP, GACC 6, 0, 0, 0, 5, 0, NLAYRS, MISP, NSP, MATTEN, NMTRLS, NFORCE 7, 1,3,0,0,0,0,0, 100, 1, 1, 1, 0.004 NNODE, KNTROL (7), NHIST, MVT, NSV, KVEL, TND 3.142, 3.542, 4.542, 5.542, 6.542, 7.542, 8.542 DEPTHS FOR HIST. (FT) 1000., 0.0, 60., 0., 0., 0., 0. SK (7)

'SAND',106.3, 0.1, 4.,0.0,1,0,0,2 GAM, DAMP, TENSN, POR, PR, SOL, VAR FOR SAND 1.36E+9, 1.0E+4, 0.274 SHMOD, YIELD, TANPHI 7,3,'P','D',1.,1.0 SSONED: KFIN, NTYPE, LPRESS, LDENS, PUNIT, DUNIT 4.E7, 7.E7, 1.7E8, 4.5E8, 1.E9, 0., FLUME SAND, P, DYN/CM^2 (K=2.92E9) 1.7268, 1.7458, 1.793, 1.893, 2.065, 2.023 DENSITIES, G/CM^3

'STEEL',489.8, 0.1, 4.,0.0, 0,0,1,2 GAM, DAMP; Q, TENSN, POR, PR, SOL, VAR -----1.344E+10, 7.034E+11, 0. SHMOD (DYN/CM2), YIELD (DYN/CM2), TANPHI 2.203E7, 7.477E7, 8.E8 EQSTC, EQSTD, EQSTS FOR STEEL

'EXPLI', 2.7406, 0.05, 4.,0.0, 0, 1, 0, 0 GAM, DAMP, TENSN, POR, PR, SOL, VAR (EXPL) 0., 0., 0. SHMOD, YIELD, TANPHI 'POLY', 4.5E10, 0.2 Q AND GAMMA

'ANFO', 48.8, 0.05, 4.,0.0, 0, 1, 0, 0 GAM, DAMP, TENSN, POR, PR, SOL, VAR (EXPL) 0., 0., 0. SHMOD, YIELD, TANPHI 'TAB', 4.5E10, 0.2 Q AND GAMMA -NOT USED-10, 'VOLUME', 'LOG' IMAX, LABEL, TYPE FOR TABULAR EQ. OF STATE 9.142E-01, 6.500E+10, 1.5322E00, 1.871E+10, 2.568E+00, 5.932E+09 4.304E+00, 2.060E+09, 7.214E+00, 7.790E+08, 1.2091E01, 3.174E+08 2.0265E01, 1.372E+08, 3.3966E01, 6.200E+07, 5.6928E01, 3.100E+07 1.000E+02, 1.530E+07

'PLYWUD',42.,0.05,4., 0.,1,0,0,2 GAM, DAMP, TENSN, POR, PR, SOL, VAR 0., 0. SHMOD, YIELD, TANPHI 8, 1, 'MODU', 'STRA', 6.914627E4, 1. KFIN, NTYPE, LPRESS, LDENS, PUNIT, DUNIT 65000., 16000., 8000., 18000., 21500., 30000., 2.E5, 2.E5, PLYWOOD, MODULI 1.0, 2.5, 7., 9.5, 12.75, 100., 0.0, STRAINS 2.667 1.0 0, 2 32 INCHES OF STEEL (OVERBURDEN) 2.792 0.15 0, 3 1.5 INCHES OF STEEL (OVERBURDEN) 3.042 3.0 0, 4 3.0 INCHES OF ANFO 3.1045 0.75 0, 5 3/4 INCH OF PLYWOOD 3.1253 0.25 0, 0 1/4 INCH GAP

11.4587 0.4 0, 1 100 INCHES OF FLUME SAND

Notes: The blank lines between materials were introduced for readibility. They must not appear in the input file.

FIGURE A-4 INPUT FILE FOR A SYNTHETIC PROBLEM WITH A SOLID, A GAP, A POROUS MATERIAL, AND AN EXPLOSIVE REQUIRING A TABULAR ISENTROPE

Appendix B

GLOSSARY OF TERMS USED IN THE PROGRAM

- ACC(J) Acceleration of the Jth node, cm/s².
- ALPHA(J) Ratio of area at top to area at node J (attenuation factor).
- BETA Array containing problem title, input.
- CELMAS(J) Mass of material in cell J between nodes J and J+1, g/cm².
- COM(L) Array containing extra variables for each cell. Used with the NVAR(M) and LVAR(J) arrays.
- DAMPL(M) Coefficient for the linear artificial viscosity term, input, dimensionless.
- DAMPQ(M) Coefficient for the quadratic artificial viscosity term, initialized at 4.0, dimensionless.
- DENS(J) Density of the Jth cell, g/cm³.
- DENSCAL Conversion factor for changing densities from pcf to g/cm³: 0.0160185 g/cm³/(pcf).
- DEP() Depth in feet at which historical information is requested, input.
- DISTCAL Conversion factor for changing distances from inches to cm: 2.54 cm/in.
- DT Time step for each computational cycle, computed in the program, sec.
- DUNIT Unit conversion factor to transform the input values of density to g/cm³. (Used for SSONED input)
- EL(i,M) An array of moduli for loading and unloading in a porous material treated by SSONED. EL(i,M) is used in the strain interval from SL(i,M) to SL(i+1,M).
- ELMOD(M) Longitudinal elastic modulus for each material, computed in the program, dyn/cm².
- EQSTC(M) Bulk modulus used with the solid model, EQST. Input in psi.

- EQSTD(M) Second coefficient in the series expansion for bulk modulus used in EQST. Input in psi.
- EQSTG(M) Gruneisen ratio = $\Gamma = \gamma 1$ where γ is the polytropic exponent for an explosive, input to EXPLODE, dimensionless.
- EQSTS(M) Third coefficient in the series expansion for bulk modulus used in EQST. Input in psi.
- FL(i,M) An array of pressures for the loading and unloading curves used in SSONED. FL(i,M) is the pressure at the strain SL(i,M) in dyn/cm².
- G Acceleration of gravity, 981.456 cm/s².
- GACC Indicator for initializing the geostatic stress option and using a gravity effect throughout the calculation, input, dimensionless at input. When GACC is read in with a nonzero value, it is reset to G = 981.456 cm/s².
- GAM(M) Initial density for each material, input, 1b/ft³
- KNT Index used with the KNTROL() array to indicate plots desired. If KNT = 0, no plotting occurs.
- KNTROL() Indicator array for the type of plots required:

= 0 for no plots. KNT is set to zero. = 1 for stress - time plot. = 2 for acceleration - time plot.

	<pre>= 4 for node location - time plot. = 5 for strain - time plot. = 6 for impulse - time plot. = 7 for average strain - time plot.</pre>
KVEL	Input indicator to control units for printing particle velocity: 0 for in./s, > 0 for m/s.
LB	Indicator for the boundary condition at the bottom of the last layer:
	<pre>= 0 means free boundary = 1 means rigid boundary</pre>
LDENS	Label with the same meaning as LPRESS.
LPRESS	Label for type of quantities to be used for pressure-strain relation for SSONED. Four labels are provided: "D" for density, "S" for strain, "M" for modulus, and "P" for
	pressure. (Only the first character is interpreted.)

A locator array for the Jth cell providing the starting LVAR(J) position for extra variables in the COM array. For L = LVAR(J), the first variable is at COM(L).

MASSCAL Conversion factor to change masses from pounds to grams: 2.204624E-3 1b/g.

MAT(J)Material number of the Jth cell, dimensionless.

MATTEN Indicator for the use of the attenuation factors, ALPHA(J), input. O for no attenuation; > O for use of the attenuation factors.

> Indicator used to control cell spacing (input): = 0 uniform spacing given by SPL. = 1 cell spacing is read in for each layer. > 1 and NSP > 0, uniform cell sizes and NSP is the

number of cells.

MVT Parameter controlling printing of the maximum value table, input. Zero value omits printing.

N Total number of nodes in the problem.

MISP

NAME(M) Four-letter title for each material, input.

Number of pressure-time points in the loading function, NFORCE input.

NHIST Frequency for snapshot listings of current status of the requested cells and nodes, input.

NLAYRS Number of layers used in the input. A gap counts as a layer.

Number of materials to be read in for the calculation, NMTRLS input.

Number of nodes or cells at which output is required, NNODE input.

Parameter controlling plot scales: NOCOMP < 998 means compute and plot at computed scales. = 998 means compute and plot at input scales. > 998 means plot at input scales, no computation.

Array containing the numbers of cells or nodes at which NOUT() historical data are requested.

Indicator for a porous material, input; nonzero means NPOR(M) SSONED is to be called.

- NPR(M) Indicator for a pressure model for a material, here used for an explosive, input: nonzero means EXPLODE is to be called.
- NSOL(M) Indicator for a solid model, input: nonzero means EQST is to be called.
- NSP Number of cells in each layer (input). Used either with MISP = 1 for nonuniform layout or MISP = 2 for a uniform layout.
- NSTEP Current count of the computational cycle for the problem.
- NSTOP Number of computational cycles at which problem will be stopped, input, dimensionless.
- NSV Parameter controlling saving of a plot tape for future plotting, input.
- NTYPE(M) Indicator for type of unloading process used in SSONED. Input to SSONED. See Section III.C.
- NVAR(M) Number of extra variables in the COM array to be provided for each cell of the material.
- NVELCAL Label used with velocity output to indicate either in./s or m/s.
- PHIST() Array containing the pressures for the applied pressure on the top boundary, input in psi.

PRESCAL	Conversion factor for changing pressure or stress in psi to dyn/cm ² : 6.914627E4 dyn/cm ² /psi.
PUNIT	Unit conversion factor to transform from the input values of modulus and pressure to dyn/cm ² (used for SSONED input).
PRESS(J)	Pressure in the J th cell, dyn/cm ² .
QEXPL(M)	Chemical energy of an explosive, input in erg/g.
RHO(M)	Initial density of the material, g/cm ³ .
RMECH(J)	Mechanical stress in the J th cell, dyn/cm ² .
SAVDMX()	A two-dimensional array for the maximum mechanical stress, acceleration, particle velocity, position, and strain that occur at the J th cell and node during the computation.
SHMOD(M)	Shear modulus for each material, input, dyn/cm ² .

- SIGI(J) Thermodynamic stress in the direction of propagation, dyn/cm².
- SL(i,M)Strain array describing loading and unloading curves for a porous material treated by SSONED. These curves are subdivided into a number of strain intervals: the SL(i,M) bound these intervals.

SSPEED(J) Sound speed in the Jth cell, cm/s.

TANPHI(M) Tangent of the coefficient of friction for a yield strength model with Coulomb friction, input, dimensionless.

TEND Stop time for the calculation, input, s.

Tensile strength of the Jth cell, dyn/cm2. TENSIL(J)

TENSN(M) Tensile strength of the material, input, psi. A zero value is interpreted as infinite strength.

THIST() Array containing the times of the pressure history applied to the top boundary, input in s.

TIME Current problem time during a calculation, s.

TMAX() A two-dimensional array containing the times at which the maxima SAVDMX occur.

TNDPLT Duration of plotting time, input, s.

Particle velocity of the Jth node, cm/s. VEL(J)

- Conversion for changing particle velocity in in./s to cm/s. VELCAL
- Position of the Jth node, cm. X(J)
- Yield strength of the Jth cell, dyn/cm2. Y(J)
- Yield strength of the material, input in dyn/cm². YIELD(M)

Appendix C

INSERTION PROCEDURE

As new material models are generated, they can be added to ONED for performing wave propagation calculations. This appendix describes the procedure for inserting material model subroutines.

A wave propagation code normally has four main categories of operations: reading the input data, initializing a finite difference grid, performing calculations for each time increment at each grid point, and printing the computed information. A material model subroutine may be involved in all or some of these operations. Call statements must be provided in ONED at appropriate locations to accomplish these tasks. Also, the new subroutine should be provided with separate sections for each operation and an indicator to show which operation to perform. For example, in SSONED the formal parameter NCALL indicates the operation required, as follows:

NCALL = 0 Initialize the routine and read data for one material 1 Calculate pressure

The CALL for NCALL = 0 is in READIT. For NCALL = 1, the CALL statement

is in CMPUTE.

At the point of insertion of the CALL statement, four elements are provided:

- (1) The appropriate branching statements are needed to switch to the new model when it is required. SSONED was treated as a porous model and designated by NPOR(M) = 1. Then branching statements in READIT and CMPUTE were written to route the computation to SSONED.
- (2) Variables must be initialized, calibrated, or given sign changes just preceding the CALL statement.
- (3) The CALL statement is provided.
- (4) Some variables may need to be reset following the calculations in the routine. Then a jump is provided to the appropriate section of READIT or CMPUTE to continue the calculation.

These is the Contracting States and a long fight of the state of the s

Items (2), (3), and (4) are discussed further below following introduction of a CALL statement.

A sample of the calling procedure for SHEAR2 is listed here because it encompasses most of the problems that might be encountered in an insertion. SHEAR2 is a stress-strain relation describing elastic-plastic behavior with shear banding. It was written for two-dimensional calculations and hence employs most of the stress and strain tensor components. The pressure is positive in compression in SHEAR2, but the stress is positive in tension. Twenty-five extra variables (from the COM array) are required by SHEAR2. In addition, most of the basic material properties are transmitted to SHEAR2 in an array called ESC. Thus, it is necessary to dimension ESC and to fill it with properties before the CALL. Thus, the first step is the dimension statement:

DIMENSION ESC(20,20)

The first subscript indicates the material parameter, and the second subscript is the material number. The array could be filled with a set of statements as follows:

IF (ESC(1,M) .GT. 0.) GO TO 25 ESC(2,M) = RHO(M)

ESC(2,M) = EQSTC(M)ESC(3,M) = EQSTD(M)ESC(4,M) = EQSTS(M)

ESC(5, M) = SHMOD(M)

ESC(9,M) = Grüneisen ratio

Note that the Hugoniot coefficients (used in EQST) must be provided to CMPUTE before this equivalencing can work. In the example that follows, the stress, strain, and other variables must be prepared for the CALL to SHEAR2. The first of the preparatory statements defines NCALL, which is 2 for the usual stress calculation, but 3 for a stress calculation plus a request that SHEAR2 print its shear banding quantities.

NCALL = 2

If (NHIST .GT. 0 .AND. MOD(N, NHIST) .EQ. 0) NCALL = 3

The input file is set to 5, although it is not used here.

INPUT = 5

An integer indicator is used with SHEAR2. It may be reset within the subroutine.

IH3 = COM(L)

The deviator stresses are initialized with the sign convention that stress is positive in tension.

```
SX = - SIGDEV
SY = - 0.5*SIGDEV
SZ = SY
TXY = 0.
```

The strain increments are initialized to be positive in tension, also. EX = -2.*(DENS(J)-DOLD)/(DENS(J)+DOLD)

EY = 0.

EZ = 0.

EXY = 0.

The rotation quantities are set at zero because there is no rotation in

ONED. ROT = 0. DROT = 0.

The melt energy should be initialized in erg/g. F is the thermal strength reduction factor.

```
EMELT = 1.E10

F = 1.

CALL SHEAR2 (NCALL, INPUT, MATL, J, J, IH3, SX, SY, SZ,

1 TXY, PRESS(J), COM(L+1), DENS(J), DOLD, DT, EH, EOLD,

2 COM(L+2), EMELT, COM(L+3), EX, EY, EZ, EXY, F, Y(J),

3 COM(L+4), ROT, DROT, ESC, COM(L+5) )
```

In the CALL statement, J appears twice because the statement is for a two-dimensional code. DENS(J) and DOLD are the new density and the density at the previous cycle, DT is the time step, and EH and EOLD are the new internal energy and the internal energy at the previous cycle. The use of the COM array is illustrated in the CALL. The first member of the array for the Jth cell, COM(L), was used earlier for IH3. Now the next four members of the array are used to represent individual variables. The last of the formal parameters, COM(L+5), is just the first of a set of 20 variables used in one group by SHEAR2. After the CALL statement, the stress and IH3 are returned to their standard locations:

SIGDEV = -SX

COM(L) = IH3

Before insertion into ONED, any new subroutine should be thoroughly tested by itself. For example, SSONED was tested with a one-page program called TSS, which was written for these tests. TSS first calls SSONED (in the same way that READIT would) to read and initialize variables. Then TSS calls SSONED in a 50-step loop (like CMPUTE would) to compute pressure. In this loop density changes were provided that caused several cycles of loading, unloading, and reloading. The resulting pressure-

density path was plotted to verify that the correct path was followed.

Following insertion of a new material model into ONED, it is a good plan to run a simple problem with NHIST set to 5 or 10 to determine whether the routine is performing satisfactorily.

Appendix D

LISTING OF ONED AND ITS SUBROUTINES

The following listing contains all the subroutines used with ONED, listed in alphabetical order after the main program. Included are ONED, the COMMON block used with all the routines, CMPUTE, EOSTAB, EQST, EXPLODE, GRAFONED, HISTRY, PLOTIT, READIT, and SSONED. HISTRY contains a number of ENTRYs, which make them also appear as subroutine CALLS in the other routines. These ENTRYs are FORCI, PLOTSC, RECORD, SCRIBE, UPDATE, VALMAX, and ZERO.

GRAFONED calls an SRI graphing routine called GRAPH4. A user will need to replace these CALLs in GRAFONED by CALLs appropriate to the graphics software at his computer.

<page-footer><page-footer>

	PROGRAM ONED	ONED	1
С	ONE-DIMENSIONAL WAVE PROPAGATION PROGRAM FOR PLANAR FLOW.	ONED	2
CONTRACTOR OF A DESCRIPTION OF A DESCRIP	BASED ON ONED154 OF WES. PROGRAMMERS ROHANI AND DAVIS. REVISED BY	ONED	3
C	RADHAKRISHNAN, SEPT. 69. MODIFIED BY SEAMAN IN SEPTEMBER 1984 TO INCLUDE		4
С	AN EXPLICIT LEAP-FROG SOLUTION SCHEME WITH ARTIFICIAL VISCOSITY, LARGE	LONED	5
С	DEFORMATIONS, AND SEPARATE SUBROUTINES WITH STRESS-STRAIN RELATIONS	ONED	6
C	FOR SOILS, SOLIDS, AND EXPLOSIVES.	ONED	7
С		ONED	8
С	MAIN PROGRAM CALLS ROUTINES READIT, CMPUTE AND PLOTIT.	ONED	9
С		ONED	10
С	TIME SEQUENCING	ONED	11
С	STRESS, ACCEL, POSITION, STRAIN ARE AT TIME AND TIME+DT	ONED	12
С	VELOCITY IS DEFINED AT TIME+DT/2	ONED	13
С	ORDER OF CALCULATIONS IS:	ONED	14
С	ACCEL, VELOCITY, POSITION, STRESS	ONED	15
С		ONED	16
	INCLUDE '\$DISK3: [SEAMAN.ONED] ONEDCOM.FOR'	ONED	17
С		ONED	18
	ITAPE = 0	ONED	19
	10 REWIND 7	ONED	20
С	**** READIT READS, DIGESTS, AND OUTPUTS THE INPUT DATA ****	ONED	21
	CALL READIT	ONED	22
	IF (NOCOMP .EQ. 999) GO TO 30	ONED	23
С	**** CMPUTE COMPUTES AND PRINTS THE GROUND MOTIONS AND STRESSES AND		24
C	RECORDS THE INFORMATION ON TAPE FOR PLOTIT ****	ONED	25
	CALL CMPUTE	ONED	26
	READ (5,950, END=22) ID	ONED	27
	GO TO 24	ONED	28
	22 ID = 0	ONED	29
С	IF ID = 0, END OF RUN; OTHERWISE, ANOTHER SET OF DATA FOLLOWS.	ONED	30
	24 IF (KNT .LE. 0) GO TO 55	ONED	31
	30 REWIND 7	ONED	32
C	**** PLOTIT USES THE DATA FROM THE TAPE GENERATED IN CMPUTE TO	ONED	33
č	GENERATE A PLOT TAPE OF THE GROUND MOTIONS AND STRESSES ****	ONED	34
č	CALL PLOTIT	ONED	35
-	ITAPE = 1	ONED	36
	IF (NSV .EQ. 0) GO TO 55	ONED	37
С	SAVE TAPE BY ADDING SUITABLE CODING AT THIS POINT	ONED	38
C	EE TR (WIT DO A) WRITTRR (C ADA)	ONED	50

	55	IF (KNT .EQ. 0) WRITE (6,934)	ONED	39
		CALL SCRIBE	ONED	40
		IF (ID .EQ. 0) GO TO 70	ONED	41
		WRITE (6,965)	ONED	42
		GO TO 10	ONED	43
	70	WRITE (6,970)	ONED	44
		STOP ' ONED, NORMAL END'	ONED	45
2		FORMAT STATEMENTS	ONED	46
	934	FORMAT (// 9X,20H NO PLOTS WERE MADE)	ONED	47
	950	FORMAT (78X, 12)	ONED	48
	965	FORMAT (// 9X,16H END OF PROBLEM)	ONED	49
	970	FORMAT (// 9X,12H END OF RUN)	ONED	50
		END	ONED	51

[SEAMAN.ONED]ONEDCOM.FOR	COM	1
IMPLICIT REAL*8 (A-H,O-Z)	COM	2
PARAMETER (NON = 300)	COM	3
CHARACTER*8 NAME	COM	4
COMMON G, GACC, NOCOMP, FORCE, NMTRLS, NSTEP, NSTOP	COM	5
COMMON /ID/ BETA(12), IDENT	COM	6
COMMON /PLOT/ DEP(20), KNTROL(7), KNT, NOUT(20), NSV, SK(7), TNDPLT	COM	7
COMMON /TIME/ DT, TIME, TEND	COM	8
COMMON /PROP/ DAMPL(6), DAMPQ(6), ELMOD(6), GAM(6), NAME(6), NPR(6),	COM	9
@ NPOR(6), NSOL(6), NVAR(6), RHO(6), SHMOD(6), SQRTNP(6), TANPHI(6),	COM	10
@ YIELD(6)	COM	11
COMMON /LAYER/ LB, N, NSP '	COM	12
COMMON /EDIT/ KVEL, LCOUNT, LPRNT, MVT, NHIST, NNODE	COM	13
COMMON /TENS/ TENSN(6), NTENSN(6)	COM	14
COMMON /ARRAY/ ACC (NON), ALPHA (NON), CELMAS (NON), DENS (NON),	COM	15
@ PRESS(NON), RMECH(NON), SIG1(NON), SSPEED(NON), TENSIL(NON),	COM	16
@ VEL(NON), X(NON), Y(NON), MAT(NON)	COM	17
COMMON /MAX/ SAVDMX (5, NON), TMAX (5, NON)	COM	18
COMMON /COM/ LVAR (NON), COM (5000)	COM	19
COMMON /CALIB/ DENSCAL, DISTCAL, PRESCAL, VELCAL, AVELCAL,	COM	20
@ NVELCAL	COM	21
COMMON /FORC/ NFORCE, PHIST(900), THIST(900)	COM	22

C

```
CMPT
                                                                               1
       SUBROUTINE CMPUTE
    "CMPUTE" CONTAINS THE MAIN TIME-STEPPING LOOP OVER ALL CELLS,
                                                                        CMPT
                                                                               2
C
             COMPUTES ACCEL., VELOCITY, DISPL., AND CALLS THE
                                                                       CMPT
                                                                               3
C
            STRESS-STRAIN SUBROUTINES TO COMPUTE STRESS.
                                                                       CMPT
C
                                                                               4
             DETERMINES THE TIME STEP SIZE,
                                                                        CMPT
C
                                                                               5
            CALLS "FORCI" TO COMPUTE DRIVING STRESS ON FIRST NODE, CMPT
C
                                                                               6
             CALLS "HISTRY" FOR LISTING OF VALUES AT CERTAIN TIMES,
C
                                                                        CMPT
                                                                               7
            CALLS "UPDATE" TO STORE MAXIMUM VALUES OF VARIABLES,
                                                                        CMPT
                                                                               8
C
            CALLS "VALMAX" TO PRINT THE MAXIMUM VALUES, AND
                                                                        CMPT
                                                                               9
C
            CALLS "RECORD" TO STORE HISTORICAL DATA FOR PRINTING.
C
                                                                        CMPT
                                                                             10
C
                                                                        CMPT
                                                                              11
                                                                        CMPT
                                                                              12
C
        - - - DEFINITIONS
                                                                        CMPT
       ACC(I) = ACCELERATION AT NODE I, (IN/SEC^2)
                                                                              13
C
        ALPHA(I) = ATTENUATION FACTOR TO APPROXIMATE MULTI-DIM FLOW
                                                                        CMPT
                                                                              14
C
        CELMAS(I) = MASS OF CELL I BETWEEN NODES I AND I+1, (G/CM^2) CMPT
C
                                                                              15
       DENS(I) = DENSITY OF CELL I BETWEEN NODES I AND I+1, (G/CM^3) CMPT
С
                                                                              16
        RMECH(I) = MECHANICAL STRESS IN CELL I, (DYN/CM^2)
                                                                        CMPT 17
C
        SIG1(I) = THERMODYNAMIC STRESS IN CELL I, (DYN/CM^2)
                                                                        CMPT 18
C
        SSPEED(I) = SOUND SPEED IN CELL I, (CM/SEC)
C
                                                                        CMPT 19
                                                                        CMPT
С
       VEL(I) = VELOCITY AT NODE I, (CM/SEC)
                                                                              20
       X(I) = POSITION OF NODE I, (CM)
                                                                        CMPT
C
                                                                              21
       Y(I) = CURRENT YIELD STRENGTH OF NODE I, (DYN/CM^2)
                                                                        CMPT
                                                                              22
C
                                                                              23
C
                                                                        CMPT
       NPRNT AND NHIST CONTROL WHEN GROUND MOTIONS ARE (ARE NOT) PRINTECMPT
C
                                                                              24
                                                                              25
C
                                                                        CMPT
      INCLUDE '[SEAMAN.ONED]ONEDCOM.FOR'
                                                                        CMPT 26
                                                                        CMPT
                                                                              27
C
 ********
                                                             28
      TIME = 0.
                                                                              29
                                                                        CMPT
      FORCE = 0.
                                                                        CMPT
                                                                              30
      SAFETY = 0.8
                                                                        CMPT
                                                                              31
                                                                              32
      NPRNT = NHIST - 1
                                                                        CMPT
                                                                              33
      BEGIN LOOP OVER TIME STEPS
                                                                        CMPT
С
      DT = 1.E - 12
                                                                        CMPT
                                                                              34
      DTOLD = DT
                                                                              35
                                                                        CMPT
    \cdot NSTEP = 0
                                                                        CMPT 36
  100 NSTEP = NSTEP+1
                                                                              37
                                                                        CMPT
                                                                              38
      TIME = TIME+DT
                                                                        CMPT
      DTHALF = 0.5*(DT+DTOLD)
                                                                        CMPT 39
      DTMIN = 1000.
                                                                        CMPT
                                                                              40
        CALL "FORCI" TO OBTAIN THE DRIVING STRESS ON NODE 1.
                                                                        CMPT
С
                                                                              41
      IF (NFORCE .GT. 0) CALL FORCI
                                                                        CMPT
                                                                              42
C *******
                                                             ******
                                                                        CMPT
                                                                              43
                                                                              44
                                                                         CMPT
С
С
       COMPUTE ACCELERATION, VELOCITY AND POSITION
                                                                         CMPT
                                                                              45
                                                                         CMPT
                                                                               46
С
                                                                        CMPT
                                                             ******
C *******
                                                                               47
      ACC(1) = (FORCE-RMECH(1))/(0.5*CELMAS(1)) + GACC
                                                                         CMPT
                                                                              48
                                                                        CMPT
                                                                              49
      VOLD = VEL(1)
      XOLD = X(1)
                                                                         CMPT
                                                                              50
      VEL(1) = VEL(1) + DTHALF * ACC(1)
                                                                         CMPT
                                                                              51
                                                                               52
      X(1) = X(1) + VEL(1) * DT
                                                                         CMPT
C ********
                                                            ******
                                                                        CMPT
                                                                              53
                                                                              54
                                                                         CMPT
        LOOP OVER ALL NODES FOR ACC, VEL, POSITION
C
                                                            ******
                                                                              55
C ********
                                                                        CMPT
                                                                         CMPT
                                                                               56
      ISPALL = 0
                                                                        CMPT
                                                                              57
      DO 200 J=2,N
     REAR BOUNDARY CONDITIONS, LB=1 MEANS RIGID, LB=0 MEANS FREE
                                                                              58
                                                                        CMPT
C
      IF (J .GE. N .AND. LB .EQ. 1) GO TO 200
                                                                              59
                                                                         CMPT
      IF (J .GE. N .AND. LB .EQ. 0) GO TO 160
                                                                         CMPT
                                                                               60
                                                                               61
                                                                         CMPT
        TEST FOR INTERFACE CONDITIONS
C
                                                                               62
  120 IF (MAT(J-1) .NE. 0 .AND. MAT(J) .NE. 0) GO TO 160
                                                                        CMPT
```

D4

-				
С	TEST FOR RIGHT SIDE OF INTERFACE, MAT $(J-1) = 0$		CMPT	63
-	IF (MAT (J-1) .EQ. 0) GO TO 155		CMPT	64
С	TEST CONDITIONS ON LEFT SIDE OF INTERFACE, MAT(J) =	0	CMPT	65
~	IF (X(J+I)-X(J) .GT. 1.E-8) GO TO 160		CMPT	66
С	COMBINED INTERFACE, COMPUTED FOR J = NODE ON LEFT		CMPT	67
	ACC(J) = (RMECH(J-1) - RMECH(J+1)) / (0.5*(CELMAS(J-1)+CELMAS(J-1)))	MAS(J+1)))	CMPT	68
	e + GACC		CMPT	69
	VEL(J) = (CELMAS(J-1) * VEL(J) + CELMAS(J+1) * VEL(J+1)) / (CELMAS(J-1)) + CELMAS(J-1) * VEL(J+1)) / (CELMAS(J-1)) + CELMAS(J-1)) + CELMAS(J+1) * VEL(J+1)) / (CELMAS(J-1)) + CELMAS(J-1)) + CELMAS(J-1)) + CELMAS(J-1)) + CELMAS(J-1)) / (CELMAS(J-1)) + CELMAS(J-1)) + CELMAS(J-		CMPT	70
	<pre>@ (CELMAS(J-1)+CELMAS(J+1)) + DTHALF*ACC(J) </pre>		CMPT	71
	IF $(ABS(VEL(J)) . LE. 1.) VEL(J) = 0.$ X(J) = X(J)+VEL(J)*DT		CMPT	72
	ACC (J+1) = ACC (J)		CMPT	73
	VEL(J+1) = VEL(J)		CMPT	74
	X(J+1) = X(J)		CMPT	75
	ISPALL = 1		CMPT	76
	GO TO 200		CMPT	77
С	RIGHT SIDE OF INTERFACE		CMPT CMPT	78 79
-	155 IF (ISPALL .EQ. 1) GO TO 200		CMPT	80
С	****	*****	CMPT	81
C	STANDARD ROUTE FOR INTERIOR NODE OR SPALLED NODE		CMPT	82
	160 ACC(J) = (RMECH(J-1) - RMECH(J)) / (0.5*(CELMAS(J-1) + CELMAS))	AS(J))) +GAC		83
	VEL(J) = VEL(J) + ACC(J) * DTHALF		CMPT	84
	IF $(ABS(VEL(J)) . LE. 0.01) VEL(J) = 0.$		CMPT	85
	X(J) = X(J) + VEL(J) * DT		CMPT	86
	ISPALL = 0		CMPT	87
	200 CONTINUE		CMPT	88
С			CMPT	89
С	****	*****	CMPT	90
С	LOOP OVER EACH CELL TO COMPUTE STRAIN AND STRESS		CMPT	91
C	****	******	CMPT	92
С			CMPT	93
	IF (NHIST .GT. 0 .AND. MOD (NSTEP, NHIST) .EQ. 0)		CMPT	94
	0 WRITE (6,1644) BETA, NSTEP, TIME	. 10010 5/	CMPT	95
2	1644 FORMAT (/10X,12A6/' SNAPSHOT AT NSTEP =',14,', TIME =		CMPT	96
	@ 8H J MAT, 5X, 1HL, 11X, 1HX, 9X, 3HVEL, 5X, 5HRMECH, 6X, 4H		CMPT	97 98
	<pre>@ 5x, 5HDSTRS, 5x, 5HPRESS, 6x, 4HDENS, 4x, 6HSSPEED, 4x, 6HSIG @ 24x, 2HCM, 6x, 6HCM/SEC, 3x, 7HDYN/CM2, 3x, 7HDYN/CM2, 3x, 7</pre>		CMPT	99
	<pre>@ 24X,2HCM,6X,6HCM/SEC,3X,7HDYN/CM2,3X,7HDYN/CM2,3X,7 @ 3X,7HDYN/CM2,5X,5HG/CM3,4X,6HCM/SEC,3X,7HDYN/CM2,3X</pre>			100
	DO 650 J = 1, N	, /110114/0112/		101
	RMOLD = RMECH(J)			102
	DOLD = DENS(J)		CMPT	
	SOLD = SIG1(J)		CMPT	104
	POLD = PRESS(J)		CMPT	105
	DSTRS = 0.		CMPT	106
	SPEED = SSPEED(J)		CMPT	107
	L = LVAR(J)		CMPT	108
	SIGDEV = SIG1(J) - PRESS(J)		CMPT	109
	IF (MAT(J) .LE. 0 .OR. J .EQ. N) GO TO 648		CMPT	
	MATL = MAT(J)		CMPT	
	DENS(J) = CELMAS(J) / (X(J+1) - X(J))	10-11	CMPT	
С	****	*****	CMPT	
the second second	CONSTITUTIVE RELATIONS		CMPT	
C		******	CMPT	
CC	****		CMDM	116
000	MODELS FOR PRESSURE	******	CMPT	
0000	MODELS FOR PRESSURE	*****	CMPT	117
000000	MODELS FOR PRESSURE ******** POROUS MATERIAL: THE -SSONED- MODEL	*****	CMPT CMPT	117 118
000	MODELS FOR PRESSURE ******** POROUS MATERIAL: THE -SSONED- MODEL TE (NPOR(MATL) .EO. 0) GO TO 260		CMPT CMPT CMPT	117 118 119
000	MODELS FOR PRESSURE ******** POROUS MATERIAL: THE -SSONED- MODEL IF (NPOR(MATL) .EQ. 0) GO TO 260 CALL SSONED(2, J, NSTEP, MATL, DENS(J), DOLD, PRESS(J), COM		CMPT CMPT CMPT CMPT	117 118 119 120
000	MODELS FOR PRESSURE ******** POROUS MATERIAL: THE -SSONED- MODEL IF (NPOR(MATL) .EQ. 0) GO TO 260 CALL SSONED(2,J,NSTEP,MATL,DENS(J),DOLD,PRESS(J),COM(@ TENSIL(J),COM(L+1),SPEED2)		CMPT CMPT CMPT CMPT CMPT	117 118 119 120 121
000	MODELS FOR PRESSURE ******** POROUS MATERIAL: THE -SSONED- MODEL IF (NPOR(MATL) .EQ. 0) GO TO 260 CALL SSONED(2,J,NSTEP,MATL,DENS(J),DOLD,PRESS(J),COM(@ TENSIL(J),COM(L+1),SPEED2) GO TO 450		CMPT CMPT CMPT CMPT	117 118 119 120 121 122
000	MODELS FOR PRESSURE ******** POROUS MATERIAL: THE -SSONED- MODEL IF (NPOR(MATL) .EQ. 0) GO TO 260 CALL SSONED(2,J,NSTEP,MATL,DENS(J),DOLD,PRESS(J),COM(@ TENSIL(J),COM(L+1),SPEED2)	(L),	CMPT CMPT CMPT CMPT CMPT CMPT	117 118 119 120 121 122 123

	260 IF (NPR(MATL) .EQ. 0) GO TO 280	CMPT	125
	CALL EXPLODE (2, J, NSTEP, MATL, DENS (J), PRESS (J), SPEED2)	CMPT	and the second second
	GO TO 600	CMPT	and a second of
C	******	CMPT	CONTRACTOR OF A
č	MIE-GRUENEISEN MODEL FOR A SOLID	CMPT	A STATISTICS OF
	280 IF (NSOL(MATL) .EQ. 0) GO TO 450	CMPT	and the second second
	CALL EQST (2, J, NSTEP, MATL, PRESS (J), DENS (J), SPEED2)	CMPT	131
С	******	CMPT	132
C	DEVIATOR STRESS MODELS	CMPT	133
C	******	CMPT	134
C	ELASTIC, PLASTIC, WITH COULOMB-TRESCA YIELD STRENGTH	CMPT	135
	450 IF (Y(J) .EQ. 0AND. TANPHI (MATL) .EQ. 0.) GO TO 590	CMPT	136
	IF (TANPHI(MATL) .EQ. 0.) GO TO 500	CMPT	137
	PLIMIT = $-Y(J) * SQRTNP(MATL) / (SQRTNP(MATL) * *2-1.)$	CMPT	138
	IF (PRESS(J) .LE. PLIMIT) GO TO 590	CMPT	139
	DEPS = 2.*(DENS(J)-DOLD)/(DENS(J)+DOLD)	CMPT	140
	SIGDEV = SIGDEV+1.333*SHMOD (MATL) *DEPS	CMPT	141
	IF (SIGDEV .GT. 0.) SIGDEV = MIN(SIGDEV, (Y(J) * SQRTNP(MATL) +	CMPT	142
	<pre>@ PRESS(J)*(SQRTNP(MATL)**2-1.))/(1.+0.5*SQRTNP(MATL)**2))</pre>	CMPT	143
	IF (SIGDEV .LT. 0.) SIGDEV = MAX(SIGDEV, - (Y(J) * SQRTNP(MATL) +	CMPT	144
	<pre>@ PRESS(J)*(SQRTNP(MATL)**2-1.))/(0.5+SQRTNP(MATL)**2))</pre>	CMPT	145
	GO TO 600	CMPT	146
С	DEVIATOR MODEL: ELASTIC, PLASTIC WITH CONSTANT YIELD STRENGTH	CMPT	147
	500 DEPS = $2.*(DENS(J)-DOLD)/(DENS(J)+DOLD)$	CMPT	148
	SIGDEV = SIGDEV+1.333*SHMOD (MATL) *DEPS	CMPT	149
	SIGDEV = SIGN(MIN(ABS(SIGDEV), 0.6666667*Y(J)), SIGDEV)	CMPT	150
	GO TO 600	CMPT	151
	590 SIGDEV = 0.	CMPT	152
	600 SIG1(J) = PRESS(J) + SIGDEV	CMPT	153
	SSPEED(J) = SQRT(SPEED2+1.333*SHMOD(MATL)/DENS(J))	CMPT	154
С	******	CMPT	155
С	ARTIFICIAL VISCOUS STRESS	CMPT	156
	DELTAV = VEL(J+1) - VEL(J)	CMPT	157
	IF (DELTAV .GT. 0.) GO TO 635	CMPT	
	DSTRS = RHO (MATL) *DELTAV* (-DAMPL (MATL) *SQRT (ABS (PRESS (J) /DENS (J))) CMPT	159
	(0 + DAMPQ (MATL) *DELTAV)	CMPT	160
С	******	CMPT	161
С	SOUND SPEED	CMPT	and the second second
	635 SPEED = SSPEED(J)	CMPT	163

```
635 \text{ SPEED} = \text{SSPEED}(J)
                                                                              CMPT 163
      IF (ABS (DENS (J)-DOLD) .LT. 1.E-4) GO TO 640
                                                                              CMPT 164
      EFFMOD = (SIG1(J) - SOLD + 2.*DSTRS) / (DENS(J) - DOLD)
                                                                              CMPT 165
      IF (EFFMOD .GT. SPEED **2) SPEED = SQRT (EFFMOD)
                                                                              CMPT 166
C ********
                                                                 ******
                                                                              CMPT 167
        COMPUTE NATURAL TIME STEP FOR EACH CELL
C
                                                                              CMPT 168
  640 DTNAT = (X(J+1)-X(J)+DT*(VEL(J+1)-VEL(J)))/(SPEED+MAX(VEL(J),0.D0)CMPT 169
     Q = MIN(VEL(J+1), 0.D0))
                                                                              CMPT 170
      IF (DTNAT .GT. DTMIN) GO TO 645
                                                                              CMPT 171
      DTMIN = DTNAT
                                                                              CMPT 172
      JTS = J
                                                                              CMPT 173
      DXJTS = X(J+1) - X(J)
                                                                              CMPT 174
      SPJTS = SPEED
                                                                              CMPT 175
  645 \text{ RMECH}(J) = \text{SIG1}(J) + \text{DSTRS}
                                                                              CMPT 176
  648 IF (NHIST .GT. 0 .AND. MOD (NSTEP, NHIST) .EQ. 0)
                                                                              CMPT 177
        WRITE (6,1645) J, MAT(J), L, X(J), VEL(J), RMECH(J), SIG1(J),
     G
                                                                              CMPT 178
          DSTRS, PRESS(J), DENS(J), SSPEED(J), SIGDEV,Y(J)
     6
                                                                              CMPT 179
 1645 FORMAT (14, 14, 16, 1P2E12.5, 4E10.3, 0PF10.6, 1P3E10.3)
                                                                              CMPT 180
  650 CONTINUE
                                                                              CMPT 181
C ********
                                                                 ******
                                                                              CMPT 182
        SET TIME STEP FOR NEXT CYCLE
C
                                                                              CMPT 183
      DTOLD = DT
                                                                              CMPT 184
      DT = MIN(SAFETY*DTMIN, TEND-TIME, MAX(1.2*DT, 0.035*SAFETY*DTMIN))
                                                                              CMPT 185
      IF (NHIST .GT. 0 .AND. MOD (NSTEP, NHIST) .EQ. 0)
                                                                              CMPT 186
```

@ WRITE (6,1655) NSTEP, DT, DTMIN, TIME, JTS, DXJTS, SPJTS		
1655 FORMAT (' CMP TIME, NSTEP=', 14,' DT, DTMIN, TIME=', 1P3E12.5,'		
@ I4,' DX, SPEED AT JTS=', 2E10.3)	CMPT	
C ************************************	V	
C PRINT SNAPSHOT EDIT OF VALUES AT CURRENT TIME	CMPT	
IF (NHIST .LE. 0) GO TO 701	CMPT	
NPRNT = NPRNT + 1	CMPT	
IF (NPRNT .LT. NHIST) GO TO 701	CMPT	
NPRNT = 0	CMPT	
CALL HISTRY	CMPT	
C WRITE HISTORICAL DATA TO TAPE 7 FOR PLOTTING	CMPT	
701 IF (KNT .GE. 1 .OR. NSTEP .EQ. 1) CALL RECORD	CMPT	
C STORE MAXIMUM VALUES FOR CURRENT CYCLE	CMPT	- 200 - 200 -
CALL UPDATE	CMPT	
IF (TIME .LT. TEND .AND. NSTEP .LT. NSTOP) GO TO 100		201
END FILE 7		202
C ********		203
C PRINT MAX VALUES OF STRESS, ACC, VEL, POSITION, STRAIN		204
CALL VALMAX	CMPJ	205
END FILE 7	CMPT	206
REWIND 7	CMPT	c 207
IF (KNT .LE. 0) RETURN		208
IF (NOCOMP .EQ. 998) RETURN	CMP	r 209
C WRITE PLOTTING SCALES	CMP	r 210
C *********	*** CMP	r 211
CALL PLOTSC	CMP	r 212
RETURN	CMP	r 213
END	CMP	r 214

.

	A service and the second will be an internal second and a second s

D7

-

	SUBROUTINE EOSTAB (NCALL, IN, M, DN, ENGN, PRESN)	ETAB	1
С	TABULAR ISENTROPE TO BE USED FOR EXPLOSIVE GASES	ETAB	2
	IMPLICIT REAL*8 (A-H, O-Z)	ETAB	3
C		ETAB	4
С	CURRENT REVISION - AUGUST, 1984	ETAB	5
C		ETAB	6
	DIMENSION D(30,6), ENG(30,6), PRES(30,6), EX(30,6), MAXN(6),	ETAB	7
	@ PRINV(30), TYPE(6), VORD(30)	ETAB	8
	CHARACTER*8 LABEL, TYPE	ETAB	9
С		ETAB	10
	IF (NCALL .GT. 0) GO TO 200	ETAB	11
C		ETAB	12
C	INITIALIZE AND READ DATA ##### NCALL = 0 #######	ETAB	13
C		ETAB	14
	READ (IN, *) IMAX, LABEL, TYPE (M)	ETAB	15
	MAXN(M) = IMAX	ETAB	16
	IF (LABEL .EQ. 'VOLUME') GO TO 10	ETAB	17
	LABEL = 'DENSITY'	ETAB	18
	10 IF (TYPE(M) .EQ. 'LOG') GO TO 20	ETAB	19
	TYPE(M) = 'LINEAR'	ETAB	20
	20 WRITE (6,9010) IMAX, LABEL, TYPE (M), IN	ETAB	21
	READ (IN, *) (VORD(I), PRES(I, M), I=1, IMAX)	ETAB	22
	WRITE (6,9030) (VORD(I), PRES(I, M), I=1, IMAX)	ETAB	23
	IF (LABEL .NE. 'VOLUME') GO TO 31	ETAB	24
С	TRANSFORMATION OF VOLUME TO DENSITY	ETAB	25
-	DO 30 I=1, IMAX	ETAB	26
	30 VORD $(I) = 1. / VORD (I)$	ETAB	27
	31 IF (VORD(1) .GT. VORD(2)) GO TO 38	ETAB	28
С	INVERT ORDER OF DENSITY VALUES TO GIVE LARGEST VALUES FIRST	ETAB	29
	DO 32 I = 1, IMAX	ETAB	30
	32 PRINV(I) = PRES(I,M)	ETAB	31
	DO 35 I = 1, IMAX	ETAB	32
	IS = IMAX+1-I	ETAB	33
	PRES(I,M) = PRINV(IS)	ETAB	34
	35 D(I,M) = VORD(IS)	ETAB	35
	GO TO 45	ETAB	36
С	PLACE DENSITY AND PRESSURE IN MAIN ARRAYS	ETAB	37
0	38 DO 40 I = 1, IMAX	ETAB	38
	40 D(I,M) = VORD(I)		
		ETAB	39

40 D(1,M) = VORD(1)	ETAB	39
45 IM1=IMAX-1	ETAB	40
WRITE (6,1045) (PRES(I,M),D(I,M),I=1,IMAX)	ETAB	41
1045 FORMAT (' 45 EOSTAB P,D=',1P6E10.3/(10X,6E10.3))	ETAB	42
C COMPUTE DP/DRHO OR POLYTROPIC EXPONENT	ETAB	43
DO 50 I=1, IM1	ETAB	44
50 EX(I,M) = (PRES(I+1,M) - PRES(I,M)) / (D(I+1,M) - D(I,M))	ETAB	45
IF (TYPE(M) .NE. 'LOG') GO TO 80	ETAB	46
DO 65 I=1, IM1	ETAB	47
IF (PRES(I,M) .LE. 0OR. PRES(I+1,M) .LE. 0.) GO TO 65	ETAB	48
EX(I, M) = LOG(PRES(I+1, M)/PRES(I, M))/LOG(D(I+1, M)/D(I, M))	ETAB	49
65 CONTINUE	ETAB	50
80 CONTINUE	ETAB	51
WRITE (6,1080) (EX(I,M),I=1,IMAX)	ETAB	52
1080 FORMAT (' 80 EOSTAB EX=', 1P6E10.3/(10X, 6E10.3))	ETAB	53
RETURN .	ETAB	54
C *****	ETAB	55
CCALCULATE PRESSURE #### NCALL = 1 ####	ETAB	56
C *****	ETAB	57
C IT - ARRAY SUBSCRIPT OF LEFT LIMIT OF INTERVAL BEING CHECKED	ETAB	58
200 IT = MAXN(M) - 1	ETAB	59
C CHECK IF INPUT DENSITY IS LESS THAN ANY VALUE IN INTERVAL	ETAB	60
C CONTAINING LOWEST DENSITY	ETAB	61
IF (DN .LT. D(IT,M)) GO TO 275	ETAB	62

	IT=1		
с		ETAB	63
c	CHECK IF INPUT DENSITY IS GREATER THAN ANY VALUE IN INTERVAL	ETAB	64
~	CONTINITION ITGREST DENSITY	ETAB	65
	IF (DN .GT. D(IT, M)) GO TO 275	ETAB	66
	IM2 = MAXN(M) - 1 DO 240 I=1, IM2	ETAB	67
	IT=MAXN (M) -I+1	ETAB	68
		ETAB	69
240	IF (DN .LT. D(IT,M)) GO TO 275 CONTINUE	ETAB	70
		ETAB	71
200	5 IF (TYPE(M) .EQ. 'LOG') GO TO 290	ETAB	72
200	PRESN = PRES(IT, M) + (DN-D(IT, M)) * EX(IT, M)	ETAB	73
200	GO TO 300	ETAB	74
290) IF (PRES(IT,M) .LE. 0OR. PRES(IT+1,M) .LE. 0.) GO TO 280	ETAB	75
	PRES(IT,M) * (DN/D(IT,M)) * EX(IT,M)	ETAB	76
300	CONTINUE	ETAB	77
-	RETURN	ETAB	78
001		ETAB	79
9010	FORMAT (' IMAX=', I3,' LABEL=', A8,' TYPE=', A8, 2X, 4H, IN=, I1,	ETAB	80
	e /H -EOST-)	ETAB	81
9030) FORMAT (' V OR D, P=', 1P6E10.3/(11X, 6E10.3))	ETAB	82
	END	ETAB	83

C

C

.

с	SUBROUTINE EQST (LS, J, N, M, P, D, SPEED2) PRESSURE FROM P = C*MU + D*MU^2 + S*MU^3	EQST EQST	1 2
	IMPLICIT REAL*8(A-H,O-Z)	EQST	3
С		EQST	4
	COMMON /CALIB/ DENSCAL, DISTCAL, PRESCAL, VELCAL	EQST	5
С		EQST	6
	DIMENSION EQSTC(6), EQSTD(6), EQSTS(6), RHO(6)	EQST	7
	IF (LS .GT. 0) GO TO 100	EQST	8
С	INITIALIZATION PORTION	EQST	9
	READ (5,*) EQSTC(M), EQSTD(M), EQSTS(M)	EQST	10
	WRITE (6,1002) M, EQSTC(M), EQSTD(M), EQSTS(M)	EQST	11
1002	FORMAT (' EOS DATA FOR M=', I2, ': C, D, S=', 1P8E10.3)	EQST	12
	RHO(M) = D	EQST	13
	EQSTC(M) = EQSTC(M) * PRESCAL	EQST	14
	EQSTD(M) = EQSTD(M) * PRESCAL	EQST	15
	EQSTS(M) = EQSTS(M) * PRESCAL	EQST	16
	SPEED2 = EQSTC(M) / RHO(M)	EQST	17
	WRITE (6,1093) RHO(M), EQSTC(M), EQSTD(M), EQSTS(M), SPEED2	EQST	18
1093	FORMAT (' EOS CALIB. DATA: RHO, C, D, S=', 1P4E10.3,' SP2=', E10.3)	EQST	19
	RETURN	EQST	20
С	COMPUTE PRESSURE	EQST	21
100	EMU = D/RHO(M) - 1.	EQST	22
	P = EMU*(EQSTC(M) + EMU*(EQSTD(M) + EMU*EQSTS(M)))	EQST	23
	SPEED2 = $(EQSTC(M) + 2.*EMU*EQSTD(M) + 3.*EMU**2*EQSTS(M))/RHO(M)$	EQST	24
	RETURN	EQST	25
	END	EQST	26

<page-footer><page-footer>

	CUDDOUTTNE EVELOPE (MARIE		
	SUBROUTINE EXPLODE (NCALL, J, N, M, D, P, SPEED2)	EXPL	1
	IMPLICIT REAL*8 (A-H, O-Z)	EXPL	2
	TUTE CURROUTINE DOD DUDT CONTRACTOR	EXPL	3
	THIS SUBROUTINE FOR EXPLOSIONS HAS TWO FUNCTIONS AND IS DIVIDED INTO TWO PARTS:	EXPL	4
		EXPL	5
	1. INITIALIZE THE MATERIAL VARIABLES AT THE TIME OF READING	EXPL	6
	MATERIAL PROPERTIES.	EXPL	7
	 COMPUTE PRESSURE IN THE EXPLOSIVE PRODUCTS DURING THE CALCULATION. 	EXPL	8
	SPECIAL FEATURES:	EXPL	9
		EXPL	10
	* TABULAR EQUATION OF STATE BY LABELLING -QEXPL- WITH 'TAB'	EXPL	11
	IN THE TITLE OF THE INPUT LINE	EXPL	12
	COMMON /CALTR / DENGGAL DEGESS	EXPL	13
	COMMON /CALIB/ DENSCAL, DISTCAL, PRESCAL, VELCAL	EXPL	14
	DIMENSION DUO (2) MEDANIC (C) DED (2)	EXPL	15
	DIMENSION RHO(3), MTRANS(6), PCJ(3), QEXPL(3), TAB(3), VCJ(3)	EXPL	16
	DIMENSION EQSTG(3) CHARACTER*3 LABEL	EXPL	17
	CHARACIER'S LABEL	EXPL	18
		EXPL	19
	DATA MAT/0/	EXPL	20
	IN=5	EXPL	21
	IF (NCALL .GT. 1) GO TO 300	EXPL	22
+++	NCALL = 1 TO INIT MAT PROP, 2 TO CALC PRESS.	EXPL	23
		EXPL	and the second
+++.	INITIALIZE MATERIAL VARIABLES	EXPL	
		EXPL	20.10
	MAT = MAT+1	EXPL	
÷	MTRANS(M) = MAT	EXPL	1000
	READ (IN, *) LABEL, QEXPL (MAT), EQSTG (MAT)	EXPL	
	WRITE (6,9010) LABEL, QEXPL (MAT), EQSTG (MAT)	EXPL	
	RHO(MAT) = D	EXPL	
	TAB(MAT) = 0.	EXPL	Contraction of the second
	SPEED2 = 2.*QEXPL(MAT)*EQSTG(MAT)*(EQSTG(MAT)+2.)	EXPL	
	VCJ(MAT) = (EQSTG(MAT) + 1.) / ((EQSTG(MAT) + 2.) * RHO(MAT))	EXPL	Sec. Sec.
	PCJ(MAT) = 2.*RHO(MAT) *QEXPL(MAT) *EQSTG(MAT)	EXPL	
	WRITE (6,9020) QEXPL(MAT), PCJ(MAT), VCJ(MAT), EQSTG(MAT), SPEED2	EXPL	36
	IF (LABEL .NE. 'TAB') RETURN	EXPL	37
10 10 10 m		EXPL	38
when when when when	ADDEDIDE FOR MIDILING FOUNDATION OF CHIMP FOR DOD DODDIOMO	TIVD T	20

0000000000000000

с

0000

С

C****PREPARE FOR TABULAR EQUATION OF STATE FOR PRODUCTS	EXPL 39	3
CALL EOSTAB (0, IN, MAT, RHO(MAT), E)	EXPL 40)
TAB(MAT) = 1.	EXPL 41	L
RETURN	EXPL 42	2
C	EXPL 43	3
C *****	EXPL 44	4
C COMPUTE DETONATION PROCESS	EXPL 45	5
C ******	EXPL 46	6
	EXPL 47	7
300 MAT = MTRANS (M)	EXPL 48	8
IF (TAB(MAT) .EQ. 1.) GO TO 350	EXPL 49	9
P = PCJ(MAT) * (VCJ(MAT) *D) ** (EQSTG(MAT) +1.)	EXPL 50	0
SPEED2 = (EQSTG(MAT) + 1.) * P/D	EXPL 5	1
RETURN	EXPL 52	2
C	EXPL 5	3
C****TABULAR EQUATION OF STATE	EXPL 5	4
350 CALL EOSTAB(1, 5, MAT, D, E, P)	EXPL 5	5
SPEED2 = 3.*P/D	EXPL 5	6
RETURN	EXPL 5	7
C	EXPL 5	8
9010 FORMAT (1X, A3, 2X, 1P2E10.3)	EXPL 5	9
9020 FORMAT (3X, 'CONST. VOL. EXPLOSION WITH ENERGY=' 1PE10.3,	EXPL 6	0
@ ' ERG/G, PCJ =' E10.3,' VCJ ='E12.5,' GRUN =', E12.5,' SPEEL	D2=', EXPL 6	1
@ 1PE10.3)	EXPL 62	2

•3

END	
END	EXPL 63
	C. C. M. S.
	A MARKE INCALE LOT. IN CO. 10. 100 - 10.
	TTANISTING , ITAMESICAL CONTRACT CONTRACT OF THE AREA TO A DECK
	CALL SOCIETY, STATEMENT OF THE SALE OF THE STATE OF THE SALE OF TH

	SUBROUTINE GRAFONED (TIME, SS, ST1, ST2, NST, NNODE, IDAT, BETA) CHARACTER*10 DISCPT(10), IDAT CHARACTER*80 LABEL(3) DIMENSION TIME(1), SS(1), ST1(1), ST2(1), IAR(7) REAL*8 KK, BETA(12)
C	
c	GRAPHS DATA FROM ONED
č	STRESS 1 VS TIME
č	STRESS 2 VS TIME
c	STRESS 1 VS STRAIN
č	STILLOS I VO STRAIN
C C	INITIALIZE
	IAR(1) = -1
	IAR(2) = 1
	IAR(3) = 0
	IAR(4) = 0
	IAR(5) = 0
	IAR(6) = 0

DIMENSION TIME(1),SS(1),ST1(1),ST2(1),IAR(7) REAL*8 KK,BETA(12)	GRAF GRAF GRAF
GRAPHS DATA FROM ONED STRESS 1 VS TIME STRESS 2 VS TIME STRESS 1 VS STRAIN	GRAF GRAF GRAF GRAF
INITIALIZE	GRAF GRAF
IAR(1) = -1 IAR(2) = 1	GRAF
IAR(3) = 0 IAR(4) = 0	GRAF GRAF GRAF
IAR(5)=0 IAR(6)=0	GRAF
IAR(7)=5	GRAF GRAF
XMIN=0. XMAX=0.	GRAF GRAF
YMIN=0. YMAX=0.	GRAF
LABEL(1) = IDAT ENCODE (42 1000 LADEL(1)(11 EQ)) DETA(1) DETA(2) DETA(2)	GRAF
ENCODE (42,1000,LABEL(1)(11:52)) BETA(1),BETA(2),BETA(3), BETA(4),BETA(5),BETA(6),BETA(7) FORMAT (7A6)	GRAF GRAF GRAF
LABEL(2) = 'TIME *SEC\$'	GRAF
LABEL(3) = 'PRINCIPAL STRESS 1 (MPa), NODE' ENCODE (3,1010,LABEL(3)(32:34)) NNODE	GRAF GRAF
FORMAT (I3) CALL GRAPH4 (TIME, ST1, NST, 1, XMAX, XMIN, YMAX, YMIN, LABEL, IAR)	GRAF GRAF

GRAF

GRAF

9

c

С

С

С

	GRAF	37
LABEL(3) = 'PRINCIPAL STRESS 2 (MPa), NODE'	GRAF	38
ENCODE (3,1010, LABEL(3) (32:34)) NNODE	GRAF	39
CALL GRAPH4 (TIME, ST2, NST, 1, XMAX, XMIN, YMAX, YMIN, LABEL, IAR)	GRAF	40
	GRAF	41
LABEL(2) = 'STRAIN (*PERCENT\$)'	GRAF	42
LABEL(3) = 'PRINCIPAL STRESS 1 (MPa), NODE'	GRAF	43
ENCODE (3,1010, LABEL(3) (32:34)) NNODE	GRAF	44
CALL GRAPH4 (SS, ST1, NST, 1, XMAX, XMIN, YMAX, YMIN, LABEL, IAR)	GRAF	45
RETURN	GRAF	46
END	GRAF	47

```
SUBROUTINE HISTRY
                                                                        HIST
                                                                               1
    THE HISTRY SUBROUTINE CONTAINS & SERIES OF SEPARATE SUBROUTINES
                                                                        HIST
C
                                                                               2
    CALLED FOR PRINTING AND STORAGE OPERATIONS.
C
                                                                        HIST
                                                                               3
         - - ACTIONS OF THE SUBROUTINES - -
C
                                                                        HIST
                                                                               4
                 INITIALIZES VALUES OF THE ARRAYS
        "ZERO"
                                                                               5
C
                                                                        HIST
        "HISTRY" PRINTS THE GROUND MOTIONS AT SELECTED TIMES
C
                                                                               6
                                                                        HIST
        "RECORD" STORES ON TAPE 7 THE VARIABLES AT SELECTED NODES
                                                                               7
C
                                                                        HIST
        "SCRIBE" PRINTS THE HISTORIES OF THE VARIABLES AT SELECTED NODESHIST
C
                                                                               8
        "UPDATE" UPDATES THE MAX VALUE TABLE
C
                                                                        HIST
                                                                               9
        "VALMAX" PRINTS THE MAXIMUM VALUE TABLE
C
                                                                        HIST
                                                                              10
        "FORCI" INTERPOLATES THE PRESSURE-TIME INPUT VALUES TO
C
                                                                        HIST
                                                                             11
          DETERMINE THE SURFACE STRESS AT EACH TIME INCREMENT
C
                                                                              12
                                                                        HIST
        "PLOTSC" COMPUTES THE SCALE FACTORS FOR THE PLOTS
C
                                                                              13
                                                                        HIST
C
                                                                              14
                                                                        HIST
      INCLUDE '[SEAMAN.ONED]ONEDCOM.FOR'
                                                                             15
                                                                        HIST
C
                                                                             16
                                                                        HIST
      DIMENSION AA(20), RIMP(20), RR(20), RROLD(20), SS(20),
                                                                        HIST
                                                                              17
     @ ST1(20), ST2(20), VV(20), XX(20)
                                                                        HIST
                                                                              18
      DIMENSION XSAVE(20), DSAVE(20), XZERO(900)
                                                                             19
                                                                        HIST
     CHARACTER*10 IDAT
                                                                              20
                                                                        HIST
      DATA ITIME/0/
                                                                              21
                                                                        HIST
        C
                                                                        HIST
                                                                              22
      CALL DATE (IDAT)
                                                                              23
                                                                        HIST
        ENTRY HISTRY
C
                                                                        HIST
                                                                              24
  - HISTRY - PRINTS A SNAPSHOT OF THE STATUS OF STRESS AND OTHER VALUESHIST
C
                                                                              25
C
              AT THE REQUESTED NODES AT PERIODIC CALLS FROM -CMPUTE-.
                                                                              26
                                                                        HIST
C
              THE CALL TO HISTRY IS AT CYCLES THAT ARE A MULTIPLE OF
                                                                        HIST
                                                                              27
C
              NHIST.
                                                                              28
                                                                        HIST
     LCOUNT = LCOUNT+1
                                                                        HIST
                                                                              29
       IF (LCOUNT-LPRNT) 210,205,205
C
                                                                        HIST
                                                                             30
  205 WRITE (6,1018) BETA
                                                                        HIST
                                                                              31
      WRITE (6,1019) NVELCAL
                                                                              32
                                                                        HIST
     LCOUNT = 0
                                                                              33
                                                                        HIST
     RPSI = FORCE/PRESCAL
                                                                        HIST
                                                                              34
  210 WRITE (6,1021) TIME, RPSI
                                                                        HIST
                                                                              35
     . DO 215 J=1, NNODE
                                                                        HIST
                                                                              36
      KJ = NOUT(J)
                                                                        HIST
                                                                             37
      QA = RMECH(KJ) * ALPHA(KJ) / PRESCAL
                                                                              38
                                                                        HIST
      PA = SIG1 (K,T) * ALDHA (K,T) / DRESCAL
```

KA - SIGI (KO) "ADENA (KO) / EKESCAD	HIST	39
DAMPF = QA-RA	HIST	40
MATL = MAT(KJ)	HIST	41
ST = (DENS(KJ)/RHO(MATL)-1.)*100.	HIST	42
VELOC = VEL(KJ) *AVELCAL	HIST	43
AG = ACC(KJ)/G	HIST	44
XIN = X(KJ)/2.54	HIST	45
215 WRITE (6,1023) KJ, QA, RA, DAMPF, ST, AG, VELOC, XIN	HIST	46
RETURN	HIST	47
**************	HIST	48
ENTRY RECORD	HIST	49
- RECORD - SAVES CURRENT VALUES AT THE REQUESTED NODES FOR LATER	HIST	50
PRINTING BY -SCRIBE RECORD IS CALLED AT EACH CYCLE	HIST	51
BY -CMPUTE	HIST	52
GLOSSARY OF VALUES STORED ON TAPE 7 FOR HISTORIES	HIST	53
	HIST	54
RR = RMECH(J) MECHANICAL STRESS	HIST	55
AA = ACC(J)/G ACCELERATION IN G'S	HIST	56
VV = VEL(J) PARTICLE VELOCITY	HIST	57
XX = POSITION	HIST	58
RIMP = IMPULSE	HIST	59
SS = REACTION STRAIN	HIST	60
ST1 = THERMODYNAMIC STRESS IN FIRST (AXIAL) DIRECTION.	HIST	61
ST2 = THERMODYNAMIC STRESS IN SECOND (LATERAL) DIRECTION.	HIST	62

```
SAVDMX(1, I) ... (5, I) ARE RESPECTIVELY THE MAXIMUM VALUES OF HIST
C
                                                                           63
         STRESS, ACCELERATION, PARTICLE VELOCITY, DISPLACEMENT AND HIST
C
                                                                           64
C
         STRAIN AT I.
                                                                     HIST
                                                                           65
C
       TMAX(1, I) ... TMAX(5, I) ARE THE TIMES CORRESPONDING TO THE MAX'S. HIST
                                                                           66
C
        SK(1)...SK(7) ARE THE SCALE FACTORS FOR PLOTTING THE ABOVE VS HIST
                                                                           67
C
         TIME.
                                                                     HIST
                                                                           68
      TOPSTRS = FORCE * 1.E - 7
                                                               HIST
HIST
HIST
HIST
                                                                           69
      IF (NSTEP .GT. 1) GO TO 220
                                                                           70
     -DO 218-
C
                                                                           71
     DO 218 J = 1, NNODE
                                                                           72
     KJ = NOUT(J)
                                                                   HIST
                                                                           73
     DSAVE(J) = DENS(KJ)
                                                               HIST
                                                                           74
                                                              HIST
HIST
      XSAVE(J) = X(KJ)
                                                                           75
  218 CONTINUE
                                                                           76
      DO 219 J = 1, N
                                                                   HIST
                                                                           77
219 XZERO(J) = X(J)
                                                                  HIST
                                                                            78
C PREPARE FIRST RECORD ON TAPE 7
                                                              HIST
                                                                            79
C 'NNODE' IS THE NUMBER OF OUTPUT NODES, 'NOUT' GIVES THE CELL NO.S OF HIST
                                                                            80
C THE OUTPUT NODES, 'BETA' IS THE PROBLEM DESCRIPTION, 'NSTEP' IS THE HIST
                                                                            81
   NUMBER OF CYCLES, AND 'N' IS THE NUMBER OF CELLS.
                                                            HIST
                                                                            82
C
                                                                HIST
      NEND = 10000
                                                                            83
                                                                   HIST 84
HIST 85
      WRITE (7) NNODE, NOUT, BETA, NEND, N
  220 CONTINUE
     -DO 280-

DO 280 J=1, NNODE

KJ = NOUT(J)

CONVERT STRESS FROM DYN/CM^2 TO MPA

RR(J) = RMECH(KJ) *ALPHA(KJ) *1.E-7
                                                                   HIST 86
     -DO 280-
C
                                                                      HIST
                                                                            87
                                                                      HIST
                                                                            88
C
                                                                      HIST
                                                                            89
                                                                            90
                                                                      HIST
                                                                      HIST
                                                                            91
      ST2(J) = (1.5*PRESS(KJ)-0.5*SIG1(KJ))*1.E-7
                                                                            92
                                                                      HIST
      RIMP(J) = RIMP(J) + (RR(J) + RROLD(J))/2.*DT*1.E7HIST
                                                                            93
      IF (J .EQ. 1) WRITE (6,1224) J,KJ,RIMP(J),RR(J),RROLD(J),DT HIST
                                                                            94
 1224 FORMAT (' 224 HIST J, KJ=', 214,' RIMP, RR=', 1P2E10.3,' RROLD, DT=', HIST
                                                                            95
                                                                      HIST
                                                                            96
     1 2E10.3)
                                                                            97
                                                                      HIST
      RROLD(J) = RR(J)
                                                                            98
                                                                      HIST
      MATL = MAT(KJ)
      SS(J) = (DENS(KJ) / RHO(MATL) - 1.) *100.
                                                                            99
                                                                      HIST
                                                                      HIST 100
      AA(J) = ACC(KJ)/G
```

VV(J) = VEL(KJ) * AVELCAL	HIST 101
280 XX(J) = X(KJ)/DISTCAL	HIST 102
WRITE (7) TIME, TOPSTRS, (RR(J), AA(J), VV(J), XX(J), SS(J), RIMP(J),	HIST 103
@ ST1(J), ST2(J), J=1, NNODE)	HIST 104
290 RETURN	HIST 105
*****	HIST 106
ENTRY SCRIBE	HIST 107
- SCRIBE - IS CALLED AT THE END OF A CALCULATION TO PRINT THE	HIST 108
HISTORICAL DATA STORED ON TAPE 7 BY -RECORD THE	HIST 109
CALL IS FROM -ONED	HIST 110
DO 305 I = 1, NNODE	HIST 111
REWIND 7	HIST 112
READ (7) NSPACE	HIST 113
IF (I .EQ. 1) WRITE (6,1299) BETA, NOUT (I), NVELCAL	HIST 114
IF (I .GT. 1) WRITE (6,1300) BETA, NOUT (I), NVELCAL	HIST 115
DO 300 NS = 1, NSTEP	HIST 116
READ (7) TIME, TOPSTRS, (RR(J), AA(J), VV(J), XX(J), SS(J), RIMP(J),	HIST 117
@ ST1(J), ST2(J), J=1, NNODE)	HIST 118
IF (I .EQ. 1) WRITE (6,1301) NS, TIME, TOPSTRS, RR(I), AA(I),	HIST 119
0 VV(I), XX(I), SS(I), RIMP(I), ST1(I), ST2(I)	HIST 120
IF (I .GT. 1) WRITE (6,1301) NS, TIME, RR(I), AA(I), VV(I), XX(I),	HIST 121
@ SS(I), RIMP(I), ST1(I), ST2(I)	HIST 122
IF (MOD (NS, 55) .EQ. 0 .AND. I .EQ. 1) WRITE (6,1299) BETA,	HIST 123
@ NOUT(I), NVELCAL	HIST 124
(NUUI(I), NVEHCAL	

ENTRY UPDATE HIST 144 C - UPDATE - IS CALLED TO UPDATE THE MAXIMUM VALUE TABLE AT EACH CYCLE. HIST 145 C TRESE VALUES ARE STORED AT THE REQUESTED NODES. UPDATE HIST 146 C IS CALLED BY -CMPUTE HIST 147 IF (MVT) 319, 317, 319 317 IF (KNT) 500, 500, 318 HIST 149 317 IF (KNT) 500, 500, 318 HIST 149 318 NSTRT - NOUT(1) HIST 151 GO TO 320 . HIST 153 319 NSTRT = 1 HIST 151 GO TO 325 HIST 153 NFINSH = NOUT(1). LT. ABS(SAVDMX(1,I))) GO TO 325 HIST 155 SAVDMX(1,I) = RMECH(I) LT. ABS(SAVDMX(2,I)) GO TO 330 HIST 159 SAVDMX(2,I) = ACC(I) LT. ABS(SAVDMX(2,I)) GO TO 330 HIST 156 SAVDMX(2,I) = ACC(I) .LT. ABS(SAVDMX(2,I)) GO TO 335 HIST 162 SAVDMX(2,I) = TIME HIST 155 SAVDMX(4,I) - VEL(I) LT. ABS(SAVDMX(3,I)) GO TO 335 HIST 162 SAVDMX(4,I) = TIME HIST 156 SAVDMX(4,I) = TIME HIST 157 TMAX(3,I) = TIME HIST 157 TMAX(4,I) = TIME HIST 157 340 MATL = MAT(I) HIST 161 340 MATL = MAT(I) HIST 161 340 MATL = MAT(I) HIST 161 340 MATL = MAT(I) HIST 167 340 MATL = TIME HIST 177 340 MATL = TIME HIST 177 340 MATL = MAT(I) HIST 167 340 MATL = MAT(I) HIST 167 340 MATL = TIME HIST 177 340 MATL = MAT(I) HIST 167 340 MATL = MAT(I) HIST 177 345 CONTINUE HIST 1			
300 CONTINUE HIST 127 305 CONTINUE HIST 128 1299 FORMAT (1H1, 10X, 12A6/ HIST 128 1299 FORMAT (1H1, 10X, 12A6/ HIST 128 1299 FORMAT (1H1, 10X, 12A6/ HIST 128 1290 FORMAT (1H1, 10X, 12A6/ HIST 127 130 GONTINUE HIST 127 141 HISTORIES AT NODE NO., 13/4X, 2HNS, 6X, 4HTHE, HIST 137 150, 31(4), 2X, 10HDNN-3/CMC2, 2X, 3HMPA, 9X, 3HMPA, 9X, 3HMPA) HIST 137 1300 FORMAT (1H1, 10X, 12A6/ HIST 137 1300 FORMAT (1H1, 10X, 12A6/ HIST 137 141, 10X, 12A6/ HIST 137 150 A 114, 10X, 10HDNN-3/CMC2, 2X, 3HMPA, 9X, 3HMPA, 9X, 3HMPA, 10K, 6HSTRAIN, HIST 138 1301 FORMAT (1G, 1P10E12.3) HIST 116 1301 FORMAT (1G, 1P10E12.3) HIST 147 RETURN HIST 148 C INCALED TO UPDATE THE MAXIMUM VALUE TABLE AT EACH CYCLE. HIST 148 C IS CALLED TO UPDATE THE MAXIMUM VALUE TABLE AT EACH CYCLE. HIST 146 C IS CALLED TO UPDATE THE MAXIMUM VALUE TABLE AT EACH CYCLE. HIST 146 C IS CALLED TO UPDATE THE MAXIMUM VALUE TABLE AT EACH CYCLE. HIST 146 C IS CALLED TO UPDATE <td< td=""><td></td><td></td><td>1 agent dates</td></td<>			1 agent dates
305 CONTINUE HIST 128 1299 FORMAT (1H1,10X,1286/ HIST 129 244 HISTORIES AT NODE NO., 13/4X,2HNS,8X,4HTHE, HIST 130 2 24 SIX,010TO STRESS,7X,5HRECL,9X,3HNCA,XX,7HSICOLTT,4X, HIST 131 4 240,010TO,6X,6HSTRAIN,5X,7HINPULSE,5X,7HSICMA-1,5X,7HSICMA-2/ HIST 131 4 9X,3HK2,9X,3HNCA,9X,3HNCA,9X,3HNCA,9X,3HNCA HIST 131 6 9X,3H(4),2X,10HDVH-5/CM^2,5X,3HNCA,9X,3HNCA HIST 135 7 9 04,3H(4),2X,10HDVH-5/CM^2,5X,3HNCA,9X,3HNCA HIST 135 8 24H HISTORIES AT NODE NO.,13/4X,2HNS,8X,4HTIME, HIST 136 8 25X,7HIMEULSE,5X,7HSIGMA-1,5X,7HSIGMA-2/ HIST 140 9 9X,3H(4),2X,10HDVH-5/CM^2,9X,3HNCA,9X,3HNCA,1X,2HNN,8K,4HTIME, HIST 141 1301 FORMAT (16,1P10E12.3) HIST 141 7 ************************************	@ NOUT(I), NVELCAL	HIST	126
305 CONTINUE HIST 128 1299 FORMAT (1H1,10X,12A6/ HIST 129 1299 FORMAT (1H1,10X,12A6/ HIST 111 8 24H HISTORIES AT NODE NO., 13/4X,2HNS,8X,4HTHE, HIST 130 8 14,0HTOP STREES,7X,5HRECH,9X,3HNEAC,3X,3HUEAC,1X,3HISTAA-1,5X,7HISTAA-1,5X,7HISTAA-1,5X,7HISTAA-1,5X,7HISTAA-1,5X,7HISTAA-1,5X,7HISTAA-1,5X,7HISTAA-1,5X,7HISTAA-1,5X,7HISTAA-1,5X,7HISTAA-1,5X,7HISTAA-1,5X,7HISTAA-1,5X,7HISTAA-1,5X,7HISTAA-1,5X,7HISTAA-1,5X,7HISTAA-1,5X,7HISTAA-1,6X,7HISTAA-1,6X,7HISTAA,7X,8HADCATTNO,6X,6HSTAN,HIST 137 8 24H HISTORIES AT NODE NO., 13/4X,2HNS,8X,4HTHE, HIST 13 9 24J, SHENGC,Y,3HAUCAC, YA, 8HUELOCITY,4X, 8HOSTAN, HIST 137 HIST 131 9 24, HISTORIES AT NODE NO., 13/4X,2HNS,8X,4HTHE, HIST 131 9 24, SHENGL,SY,3HDCA,3X,3HDCA,5X,3HJEAA,3X,3HJEAA HIST 131 9 25, SHENGC,MY,3HOSA,2X,2H/SEC,10X,2HIN, HIST 131 9 25, SHENGL,MY,3HOSA,2X,2H/SEC,10X,2HIN, HIST 131 9 26, SH (1), 2X,10HDNH-5/CM^2,9X,3HMPA,9X,3HMPA) HIST 131 1301 FORMAT (16,1P10E12.3) HIST 131 1301 FORMAT (16,1P10E12.3) HIST 131 1310 FORMAT (16,1P10E12.3) HIST 131 1311 F (NVT) 310,317,313 HIST 131 1313 FIGHAM HIST 131 1314 HIST 142 HIST 142 <td< td=""><td>300 CONTINUE</td><td>HIST</td><td>127</td></td<>	300 CONTINUE	HIST	127
1299 FORMAT (1H1,10X,1286/ 8 24H HISTORIES AT NODE NO.,13/4X,2HNS,8X,4HTIME, HIST 130 8 2X,100TOP STRESS,7X,5HRMECH,9X,3HACC,4X,8HVELOCIT,4X, HIST 131 9 4 2X,100TOP STRESS,7X,5HRMECH,9X,3HACC,4X,8HVELOCIT,4X, 9 4 15X,3HSC,9X,3HMCA,9X,3HMCA,9X,3HACA,4X,8HVELOCIT,4X, 9 5X,3H(\$),2X,10HDYM-5/CM^2,9X,3HMCA,9X,3HMCA,9X,7HJCMA-1/5X,7HSICMA-2/ 8 15X,3HSC,9X,3HMCA,9X,3HMCA,9X,3HMCA,9X,3HMCA, 1300 FORMAT (1H1,10X,1286/ 8 24H HISTORIES AT MODE NO.,13/4X,2HNS,8X,4HTIME, HIST 137 9 5X,7HIMCUSS,9X,3HMCA,9X,3HMCA,9X,3HMCA,9X,3HMTA, 1301 FORMAT (1H,110X,1286/ 9 15X,3HSC,9X,3HMCA,9X,3HMCA,9X,3HMCA,9X,3HMCA, 9 15X,3HSC,9X,3HMCA,9X,3HMCA,9X,3HMCA,9X,3HMCA, 9 15X,3HSC,9X,3HMCA,9X,3HMCA,9X,3HMCA,9X,3HMCA, 9 15X,3HSC,9X,3HMCA,9X,3HMCA,9X,3HMCA,9X,3HMCA, 9 15X,3HSC,9X,3HMCA,9X,3HMCA,9X,3HMCA,9X,3HMCA, 9 15X,3HSC,9X,3HMCA,9X,3HMCA,9X,3HMCA,9X,3HMCA, 1301 FORMAT (16,1PL012.3) 1031 FORMAT (16,1PL012.3) 1031 FORMAT (16,1PL012.3) 1031 FORMAT (16,1PL012.3) 1031 FORMAT (16,1PL012.3) 1031 FORMAT (16,1PL012.3) 10317 F (MUT) 319,317,313 1031 FORMAT (16,1PL012.3) 1031 FORMAT (17,1PL012.3) 1031 FORMAT (17,1PL012.3) 1031 FORMAT (17,1PL012.3) 1031 FORMAT (17,1PL012.3) 1031 FORMAT (17,1PL012.3) 1031 FORMAT (17,1PL013.3) 1031 FORMAT (17,1PL013.3) 1031 FORMAT (17,1PL013.3) 1031 FORMAT (17,1PL013.3) 1031 FORMAT (17,1PL013.3) 1043 FORMAT (17,1PL013.3) 1043 FORMAT (17,1PL013.3) 1043 FORMAT (17,1PL013.3) 105 FORMAT (17,		HIST	128
<pre>e 24H HISTORIES AT NODE NO 13/4X, 21NS, 8X, 44TIME, HIST 131 e 24 Discrete 24, 000 - 000</pre>		- Charles and the second	and the second
<pre></pre>			
<pre>e h#postTION, 6x, 6HSTAIN, 5X, 7HINPULSE, 5X, 7HSTCMA-1, 5X, 7HSTCMA-2, HIST 133 e f 5X, 3HSEC, 5X, 3HMPA, 5X, 3HMPA, 5X, 3HMPA, 5X, 3HMPA, 5H, 3A, 24 H/SEC, 10X, 2HIN, HIST 135 e 2AH HISTORIES AT MODE NO., 13/4X, 2HNS, 8X, 4HTIME, HIST 135 e 7X, 5HRMECH, 5X, 3HMPA, 5X, 7HSTCMA-2, 4X, 5HPOSTTION, 6X, 6HSTRAIN, HIST 135 e 7X, 5HRMECH, 5X, 3HARA, 5X, 7HSTCMA-2, 4X, 5HPOSTTION, 6X, 6HSTRAIN, HIST 136 e 7X, 5HRMECH, 5X, 3HARA, 5X, 7HSTCMA-2, 5X, 7HSTCMA-2, 4X, 5HPOSTTION, 6X, 6HSTRAIN, HIST 137 e 5X, 7HIMPULSE, 5X, 7HSTCMA-1, 5X, 7HSTCMA-2, 4X, 5HPOSTTION, 6X, 6HSTRAIN, HIST 136 e 15X, 3HSEC, 5X, 7HSTCMA-1, 5X, 7HSTCMA-2, 4X, 3HPOSTTION, 6X, 6HSTRAIN, HIST 137 e 5X, 7HIMPULSE, 5X, 7HSTCMA-1, 5X, 7HSTCMA-2, 4X, 3HPOSTTION, 6X, 6HSTRAIN, HIST 141 restring the state of the sta</pre>			Carl States
<pre></pre>			
$ \begin{array}{c} e & 9X, 3H (4), 2X, 10HDYN-S/CM^2, 9X, 3HMPA, 9X, 3HMPA) \\ 1300 FORMAT (1H, 1), 12A, 12A, 12A, 12A, 2HNPA, 9X, 3HMPA, 9X, 4HTIME, HIST 135 \\ e & 24H HISTORIES AT NODE NO., 13/4X, 2HNS, 8X, 4HTIME, HIST 137 \\ e & 5X, 7HIMPULSE, 5X, 7HSIGMA-1, 5X, 7HSIGMA-2/ HIST 137 \\ e & 5X, 7HIMPULSE, 5X, 7HSIGMA-1, 5X, 7HSIGMA-2/ HIST 137 \\ e & 5X, 7HIMPULSE, 5X, 7HSIGMA-1, 5X, 7HSIGMA-2/ HIST 137 \\ e & 5X, 9H(4), 2X, 10HDYN-S/CM^2, 9X, 3HMPA, 9X, 3HMPA) HIST 137 \\ e & 5X, 9H(4), 2X, 10HDYN-S/CM^2, 9X, 3HMPA, 9X, 3HMPA) HIST 137 \\ e & THESE VALUES ARE STORED AT THE REQUESTED NODES. UPDATE HIST 144 \\ FETURN HIST 142 \\ C & THESE VALUES ARE STORED AT THE REQUESTED NODES. UPDATE HIST 146 \\ C & THESE VALUES ARE STORED AT THE REQUESTED NODES. UPDATE HIST 146 \\ 317 IF (KNT) 510, 510, 510, 318 \\ 318 NSTRT = NOUT(1) HIST 150 \\ NFINSH = NOUT(1)+1 \\ G O T 320 \\ 19 NSTRT = 1 \\ HIST 151 \\ 14 \\ 320 DO 365 I = NSTRT, NFINSH \\ 120 DO 365 I = NSTRT, NFINSH \\ 130 IF (ABS (RAMCH(1)) .LT. ABS (SAVDMX(1,I))) GO TO 320 HIST 151 \\ 325 IF (ABS (RAMCH(1)) .LT. ABS (SAVDMX(2,I))) GO TO 330 HIST 151 \\ 330 IF (ABS (KCH(1)) .LT. ABS (SAVDMX(2,I))) GO TO 330 HIST 161 \\ TMAX(2, I) = TIME \\ HIST 163 \\ TMAX(4, I) = TIME \\ HIST 163 \\ TMAX(4, I) = TIME \\ HIST 161 \\ TMAX(4, I) = TIME \\ HIST 16$			
1300 FORMAT (HH, 10X, 12A6/ HIST 135 e 24 H HISTORES AT NODE NO., 13/4X, 2HNS, 8X, 4HTIME, HIST 136 e 7X, 5HRMECH, 9X, 3HACC, 4X, 8HVELOCITY, 4X, 8HPOSITION, 6X, 6HSTRAIN, HIST 137 e 5X, 7HIMPULSE, 5X, 7HSIGMA-1, 5X, 7HSIGMA-2/ HIST 138 e 9X, 3H(8), 2X, 10HDYM-5/CM*2, 9X, 3HMPA, 9X, 3HMPA, 9X, 3HMPA, 10X, 2HIN, HIST 131 1301 FORMAT (16, 1PIGL2.3) HIST 140 HIST 141 RETURN HIST 141 HIST 142 c ''''''''''''''''''''''''''''''''''''		HIST	133
e 24H HISTORIES AT NODE NO., 13/4X,2HNS,6X,4HTIME, HIST 136 e 7X,5HRMECA,9X,3HAC,4X,6HVELOCITY,4X,8HPOSITION,6X,6HSTRAIN, HIST 138 e 15X,3HSEC,9X,3HMPA,9X,3HG'S,6X,AZ,4H/SEC,10X,2HIN, HIST 139 e 9X,3H(b),2X,10HDYM-S/CM'2,9X,3HMPA,9X,3HMPA) HIST 141 RETURN HIST 141 c ************************************	<pre>@ 9X, 3H(%), 2X, 10HDYN-S/CM^2, 9X, 3HMPA, 9X, 3HMPA)</pre>	HIST	134
e 7X, SHRMECH, 9X, SHACC, 4X, BHVELOCITY, 4X, BHPOSITION, 6X, 6HSTRAIN, HIST 137 e 5X, 7HIMPULSE, 5X, 7HSIGMA-1, 5X, 7HSIGMA-2/ HIST 139 e 9X, 3H(8), 2X, 10BDYM-5/CM*2, 9X, 3HMPA, 9X, 3HMPA) HIST 131 1301 FORMAT (16, 1P10E12.3) HIST 141 RETURN HIST 141 C ************************************	1300 FORMAT (1H1, 10X, 12A6/	HIST	135
e 7X, SHRMECH, 9X, SHACC, 4X, BHVELOCITY, 4X, BHPOSITION, 6X, 6HSTRAIN, HIST 137 e 5X, 7HIMPULSE, 5X, 7HSIGMA-1, 5X, 7HSIGMA-2/ HIST 139 e 9X, 3H(8), 2X, 10BDYM-5/CM*2, 9X, 3HMPA, 9X, 3HMPA) HIST 131 1301 FORMAT (16, 1P10E12.3) HIST 141 RETURN HIST 141 C ************************************		Contraction of the second	Contraction of the
e 55, 7H IMPULSE, 55, 7HSIGMA-1, 55, 7HSIGMA-2/ HIST 138 e 55, 7HLMPULSE, 55, 7HSIGMA-1, 55, 7HSIGMA-2/ HIST 139 e 9X, 3H(b), 2X, 10HDYN-S/CM^2, 9X, 3HMPA, XX, 3HMPA) HIST 140 1301 FORMAT (15, 1P10E12.3) HIST 141 RETURN HIST 141 c ************************************			
<pre></pre>		and the second second	And Contract
@ 9X, 3H (%), 2X, 10HDXN-9/CM^2, 9X, 3HMPA, 9X, 3HMPA) HIST 141 1301 FORMAT (16, 1P10E12.3) HIST 141 RETURN HIST 142 ************************************			
1301 FORMAT (16, 1P10E12.3) HIST 141 RETURN HIST 142 C ************************************		100	1000
RETURN HIST 142 C ************************************			and and the
C ************************************	1301 FORMAT (16,1P10E12.3)	HIST	141
C HIST 144 C - UPDATE - IS CALLED TO UPDATE THE MAXIMUM VALUE TABLE AT EACH CYCLE. HIST 145 C THESE VALUES ARE STORED AT THE REQUESTED NODES. UPDATE HIST 144 C IS CALLED BY -CMPUTE HIST 145 IF (MYT) 319,317,319 HIST 145 HIST 145 317 IF (KNT) 500,500,318 HIST 151 HIST 153 METNSH = NOUT(1) HIST 151 HIST 153 IF (KNT) 500,500,318 HIST 151 GO TO 320 HIST 153 NFINSH = NOUT(1)+1 HIST 154 GO TO 320 HIST 155 IF (ABS (AEC(1)) .LT. ABS (SAVDMX(1,I)) GO TO 325 HIST 155 SAVDMX(1,I) = RMECH(1) HIST 154 S25 IF (ABS (AEC(1)) .LT. ABS (SAVDMX(2,I))) GO TO 330 HIST 164 330 IF (ABS (VEL(I)) .LT. ABS (SAVDMX(3,I))) GO TO 335 HIST 162 SAVDMX(3,I) = VEL(1) HIST 164 331 TH (ABS (MIC) -XZERO(I) .LT. ABS (SAVDMX(4,I))) GO TO 340 SAVDMX(4,I) = TIME HIST 167 SAVDMX(5,I) = TIME HIST 167 SAVDMX(5,I) = TIME HIST 177 G CASECERATION, VELOCIOT, DISPLACEMENT, AND	RETURN	HIST	142
C - UPDATE - IS CALLED TO UPDATE THE MAXIMUM VALUE TABLE AT EACH CYCLE.HIST 145 C THESE VALUES ARE STORED AT THE REQUESTED NODES. UPDATE HIST 147 IF (MVT) 319,317,319 HIST 147 IF (MVT) 319,317,319 HIST 147 IF (MVT) 319,317,319 HIST 149 318 NSTRT = NOUT(1) HIST 150 NFINSH = NOUT(1)+1 HIST 151 GO TO 320 HIST 155 IF (ADS (AMECH(I)).LT. ABS (SAVDMX(1,I))) GO TO 325 HIST 155 IF (ADS (AMECH(I)).LT. ABS (SAVDMX(1,I))) GO TO 325 HIST 155 SAVDMX(1,I) = RMECH(I) HIST 153 30 FINSH = N 325 IF (ADS (AMECH(I)).LT. ABS (SAVDMX(2,I))) GO TO 330 HIST 159 SAVDMX(2,I) = ACC(I) HIST 156 313 MAX (3,I) = CHL(I) HIST 157 TMAX (3,I) = VEL(I) HIST 156 SAVDMX(2,I) = AMEC(I) HIST 156 SAVDMX(2,I) = TIME HIST 157 TMAX (3,I) = VEL(I) LT. ABS (SAVDMX(2,I))) GO TO 335 HIST 162 SAVDMX(2,I) = TIME HIST 157 TMAX (3,I) = VEL(I) LT. ABS (SAVDMX(4,I))) GO TO 340 HIST 155 SAVDMX(3,I) = VEL(I) LT. ABS (SAVDMX(4,I))) GO TO 340 HIST 157 SAVDMX(4,I) = TIME HIST 157 TMAX (5,I) = TIME HIST 157 340 MATL = MAT(I) HIST 155 SAVDMX(5,I) = DENS (I)-RHO (MATL) HIST 167 TMAX (5,I) = TIME HIST 157 TMAX (5,I) = TIME HIST 157 TMAX (5,I) = TIME HIST 157 340 MATL = MAT(I) HIST 157 340 MATL = TIME HIST 172 RETURN HIST 177 TMAX (5,I) = TIME HIST 177 C AND FOR ALL NODES AND CELLS. HIST 177 C AND FOR ALL NODES AND CELLS. HIST 177 C MOD FOR ALL NODES AND CELLS. HIST 178 C MOD FOR TALL NODES AND CELLS. HIST 178 C MOD FOR TALL NODES AND CELLS. HIST 179 IF (MVT EQ. 0) GO TO 420 HIST 180 C MOD FOR TALL NODES AND CEL	C ************************************	HIST	143
C THESE VALUES ARE STORED AT THE REQUESTED NODES. UPDATE HIST 146 C IS CALLED BY -CMPUTE HIST 147 IF (MVT) 319, 317, 319 HIST 147 318 NSTRT = NOUT(1) HIST 151 GO TO 320 HIST 147 319 NSTRT = NOUT(1)+1 HIST 151 GO TO 320 HIST 151 420 DO 365 I = NSTRT, NFINSH HIST 153 NFINSH = N HIST 154 320 DO 365 I = NSTRT, NFINSH HIST 155 SAVDMX(1,1) = RMECH(1) LT. ABS(SAVDMX(1,1))) GO TO 325 HIST 156 SAVDMX(1,1) = RMECH(1) HIST 153 325 IF (ABS(RAECH(I)) .LT. ABS(SAVDMX(2,1))) GO TO 330 HIST 159 SAVDMX(2,1) = ACC(1) HIST 156 330 IF (ABS(VEL(1)) .LT. ABS(SAVDMX(3,1))) GO TO 335 HIST 162 SAVDMX(2,1) = TIME HIST 158 331 IF (ABS(VEL(1)) .LT. ABS(SAVDMX(3,1))) GO TO 335 HIST 162 SAVDMX(2,1) = TIME HIST 164 330 IF (ABS(VL(1)) .LT. ABS(SAVDMX(4,1))) GO TO 340 HIST 165 SAVDMX(4,1) = TIME HIST 164 335 IF (ABS(X(1)-XZERO(1)) .LT. ABS(SAVDMX(4,1))) GO TO 340 HIST 165 SAVDMX(4,1) = TIME HIST 167 TMAX(4,1) = TIME HIST 167 340 MATL = MAT(1) HIST 166 TMAX(4,1) = TIME HIST 167 340 MATL = MAT(1) HIST 177 TMAX(5,1) = DENS(1)-RHO(MATL) LT. ABS(SAVDMX(5,1))) GO TO 365 HIST 169 SAVDMX(5,1) = DENS(1)-RHO(MATL) HIST 177 TAX AND FOR ALL NODES AND CELLS. HIST 173 C AND FOR ALL NODES AND CELLS. HIST 176 C THE CALL IS FROM -CMPUTE HIST 177 C AND FOR ALL NODES AND CELLS. HIST 178 C THE CALL IS FROM -CMPUTE HIST 178 C MODIFY THE MAXIMUM VALUES WITH CALIBRATION FACTORS HIST 169 SAVDMX(2,1) = SAVDMX(2,1)/G HIST 163 SAVDMX(2,1) = SAVDMX(2,1)/ALPHA(1)*1.E-7 HIST 184 HIST 184 SAVDMX(2,1) = SAVDMX(2,1)/G	ENTRY UPDATE	HIST	144
C THESE VALUES ARE STORED AT THE REQUESTED NODES. UPDATE HIST 146 C IS CALLED BY -CMPUTE HIST 147 IF (MVT) 319, 317, 319 HIST 147 318 NSTRT = NOUT(1) HIST 151 GO TO 320 HIST 147 319 NSTRT = NOUT(1)+1 HIST 151 GO TO 320 HIST 151 420 DO 365 I = NSTRT, NFINSH HIST 153 NFINSH = N HIST 154 320 DO 365 I = NSTRT, NFINSH HIST 155 SAVDMX(1,1) = RMECH(1) LT. ABS(SAVDMX(1,1))) GO TO 325 HIST 156 SAVDMX(1,1) = RMECH(1) HIST 153 325 IF (ABS(RAECH(I)) .LT. ABS(SAVDMX(2,1))) GO TO 330 HIST 159 SAVDMX(2,1) = ACC(1) HIST 156 330 IF (ABS(VEL(1)) .LT. ABS(SAVDMX(3,1))) GO TO 335 HIST 162 SAVDMX(2,1) = TIME HIST 158 331 IF (ABS(VEL(1)) .LT. ABS(SAVDMX(3,1))) GO TO 335 HIST 162 SAVDMX(2,1) = TIME HIST 164 330 IF (ABS(VL(1)) .LT. ABS(SAVDMX(4,1))) GO TO 340 HIST 165 SAVDMX(4,1) = TIME HIST 164 335 IF (ABS(X(1)-XZERO(1)) .LT. ABS(SAVDMX(4,1))) GO TO 340 HIST 165 SAVDMX(4,1) = TIME HIST 167 TMAX(4,1) = TIME HIST 167 340 MATL = MAT(1) HIST 166 TMAX(4,1) = TIME HIST 167 340 MATL = MAT(1) HIST 177 TMAX(5,1) = DENS(1)-RHO(MATL) LT. ABS(SAVDMX(5,1))) GO TO 365 HIST 169 SAVDMX(5,1) = DENS(1)-RHO(MATL) HIST 177 TAX AND FOR ALL NODES AND CELLS. HIST 173 C AND FOR ALL NODES AND CELLS. HIST 176 C THE CALL IS FROM -CMPUTE HIST 177 C AND FOR ALL NODES AND CELLS. HIST 178 C THE CALL IS FROM -CMPUTE HIST 178 C MODIFY THE MAXIMUM VALUES WITH CALIBRATION FACTORS HIST 169 SAVDMX(2,1) = SAVDMX(2,1)/G HIST 163 SAVDMX(2,1) = SAVDMX(2,1)/ALPHA(1)*1.E-7 HIST 184 HIST 184 SAVDMX(2,1) = SAVDMX(2,1)/G	C - UPDATE - IS CALLED TO UPDATE THE MAXIMUM VALUE TABLE AT EACH CYCLI	.HIST	145
C IS CALLED BY -CMPUTE HIST 147 IF (MVT) 319,317,319 HIST 148 317 IF (KNT) 500,500,318 HIST 149 318 NSTRT = NOUT(1) NFINSH = NOUT(1)+1 GO TO 320 HIST 151 GO TO 320 HIST 153 NFINSH = N HIST 155 IF (ABS(RMECH(1)) .T. ABS(SAVDMX(1,I))) GO TO 325 HIST 156 SAVDMX(1,I) = TIME 325 IF (ABS(ACC(1)) .T. ABS(SAVDMX(2,I))) GO TO 330 HIST 159 SAVDMX(2,I) = ACC(I) TMAX(2,I) = TIME 330 IF (ABS(ACC(1)) .T. ABS(SAVDMX(3,I))) GO TO 335 HIST 162 SAVDMX(2,I) = VEL(I) TMAX(3,I) = TIME 330 IF (ABS(VEL(1)) .T. ABS(SAVDMX(4,I))) GO TO 340 HIST 161 TMAX(4,I) = TIME 330 IF (ABS(VEL(1)) .T. ABS(SAVDMX(4,I))) GO TO 340 HIST 162 SAVDMX(4,I) = X(1)-XZERO(I) TMAX(4,I) = TIME 1415 163 1416 163 1416 163 1417 163 1417 163 1417 163 1417 164 1417 164 1417 165 1417 164 1418 164 1418 165 1418 165 1418 165 1418 166 1418 167 1418 167		and a second	
IF (MUT) $319, 317, 319$ HIST 148 317 IF (KNT) $500, 500, 318$ HIST 149 318 NSTRT = NOUT(1) HIST HIST 150 $NFINSH = NOUT(1) + 1$ HIST HIST 151 319 NSTRT = 1 HIST 152 $NFINSH = N$ HIST 153 $NFINSH = N$ HIST 155 $1F$ (ABS (RMECH (1)) LT. ABS (SAVDMX(1, 1))) GO TO 325 HIST $TMAX(1, I) = TIME$ HIST 156 SAVDMX(2, I) = TIME HIST 325 IF (ABS (ACC (1)) LT. ABS (SAVDMX(2, I))) GO TO 330 HIST 330 IF (ABS (VEL(1)) LT. ABS (SAVDMX(3, I)) GO TO 340 HIST 330 IF (ABS (VEL(1)) LT. ABS (SAVDMX(4, I))) GO TO 340 HIST 162 340 MATL MAT(1) TT HIST 163 HIST 164 350 CMDX(4, I) TTME		and the second s	Contraction of the
317 IF (KNT) 500,500,318 HIST 149 318 NSTRT = NOUT(1) HIST 151 GO TO 320 HIST 151 GO TO 320 HIST 151 GO TO 320 HIST 152 319 NSTRT = 1 HIST 153 NFINSH = N HIST 154 320 DO 365 I = NSTR,NFINSH HIST 155 IF (ABS(RMECH(I)) .LT. ABS(SAVDMX(1,I))) GO TO 325 HIST 156 SAVDMX(1,I) = RMECH(I) HIST 157 TMAX(1,I) = TIME HIST 159 SAVDMX(2,I) = ACC(I) HIST 160 TMAX(2,I) = TIME HIST 162 SAVDMX(3,I) = VEL(I) HIST 162 MAX(3,I) = TIME HIST 163 TMAX(3,I) = TIME HIST 163 MAX(3,I) = TIME HIST 164 MAX(3,I) = TIME HIST 165 SAVDMX(4,I) = X(I)-X2ERO(I) LT. ABS(SAVDMX(4,I)) GO TO 340 TMAX(4,I) = TIME HIST 165 SAVDMX(5,I) = DENS(I)-RHO(MATL) HIST 165 SAVDMX(5,I) = TIME HIST 171 HIST 164 HIST 171 HIST 165 SAVDMX(5,I) = DENS(I)-RHO(MATL) TMAX(5,I) = TIME HIST 171 HIST 172 HIST 172			
318 NSTRT = NOUT(1) HIST 150 NFINSH = NOUT(1)+1 HIST 151 GO TO 320 HIST 152 319 NSTRT = 1 HIST 152 319 NSTRT = 1 HIST 153 NFINSH = N HIST 155 320 DO 365 I = NSTRT, NFINSH HIST 155 15 (ABS (RMECH (1)) .LT. ABS (SAVDMX(1,1))) GO TO 325 HIST 156 SAVDMX(1,1) = TIME HIST 156 325 IF (ABS (ACC(1)) .LT. ABS (SAVDMX(2,1))) GO TO 330 HIST 159 SAVDMX(2,1) = ACC(1) HIST 161 TMAX(2,1) = TIME HIST 161 330 IF (ABS (VEL(1)) .LT. ABS (SAVDMX(3,1))) GO TO 335 HIST 162 SAVDMX(3,1) = VEL(1) HIST 164 335 IF (ABS (X(1) -XZERO(1)) .LT. ABS (SAVDMX(4,1))) GO TO 340 HIST 165 SAVDMX(4,1) = TIME HIST 167 340 MATL = MAT(1) HIST 167 IF (ABS (DENS(1)-RHO (MATL)) .LT. ABS (SAVDMX(5,1))) GO TO 365 HIST 170 TMAX(4,1) = TIME HIST 171 365 CONTINUE HIST 172 RETURN HIST 172 C ************************************		A STATE OF THE ASS	22 2 5 7 10
NFINSH = NOUT(1)+1 HIST 151 GO TO 320 HIST 152 GO TO 320 HIST 153 SIP NSTRT = 1 HIST 153 NFINSH = N HIST 154 320 DO 365 I = NSTRT,NFINSH HIST 155 IF (ABS (RMECH (I)) .LT. ABS (SAVDMX(1,I))) GO TO 325 HIST 156 SAVDMX(1,I) = TIME HIST 158 325 IF (ABS (ACC (I)) .LT. ABS (SAVDMX(2,I))) GO TO 330 HIST 159 SAVDMX(2,I) = ACC (I) HIST 161 TMAX (2,I) = TIME HIST 161 330 IF (ABS (VEL (I)) .LT. ABS (SAVDMX(3,I))) GO TO 335 HIST 162 SAVDMX(3,I) = VEL (I) HIST 164 340 TF (ABS (VEL (I)) .LT. ABS (SAVDMX(3,I))) GO TO 340 HIST 165 SAVDMX(3,I) = TIME HIST 164 351 IF (ABS (X(I)-XZERO(I)) .LT. ABS (SAVDMX(4,I))) GO TO 340 HIST 165 SAVDMX(4,I) = TIME HIST 167 340 MATL = MAT(I) HIST 167 TMAX(5,I) = DENS (I) -RHO (MATL) HIST 171 365 CONTINUE HIST 173 RETURN HIST 173 C ************************************			
GO TO 320 HIST 152 319 NSTRT = 1 HIST 153 NFINSH = N HIST 154 320 DO 365 I = NSTRT, NFINSH HIST 155 IF (ABS (RACCH(I)) .LT. ABS (SAVDMX(1,I))) GO TO 325 HIST 155 SAVDMX(1,I) = RMECH(I) HIST 157 TMAX(1,I) = TIME HIST 158 325 IF (ABS (ACC(I)) .LT. ABS (SAVDMX(2,I))) GO TO 330 HIST 159 SAVDMX(2,I) = ACC(I) HIST 161 TMAX(3,I) = TIME HIST 161 330 IF (ABS (VEL(I)) .LT. ABS (SAVDMX(3,I))) GO TO 335 HIST 162 SAVDMX(3,I) = VEL(I) HIST 164 TMAX(3,I) = TIME HIST 166 SAVDMX(4,I) = X(I) -XZERO(I) HIST 166 TMAX(4,I) = TIME HIST 167 340 MATL = MAT(I) HIST 166 IF (ABS (DENS(I)-RHO (MATL)) LT. ABS (SAVDMX(5,I))) GO TO 365 SAVDMX(5,I) = DENS(I)-RHO (MATL) HIST 167 340 MATL = MAT(I) HIST 161 IF (ABS (DENS(I)-RHO (MATL)) LT. ABS (SAVDMX(5,I))) GO TO 365 SAVDMX(5,I) = DENS(I)-RHO (MATL) HIST 170 TMAX(5,I) = TIME HIST 172 365 CONTINUE HIST 175	318 NSTRT = NOUT(1)	HIST	150
<pre>319 NSTRT = 1</pre>	NFINSH = NOUT(1)+1	HIST	151
$\begin{aligned} & \text{J19 NSTRT = 1} & \text{HIST 153} \\ & \text{NFINSH = N} & \text{HIST 154} \\ & \text{J20 D0 365 I = NSTRT, NFINSH} & \text{HIST 155} \\ & \text{IF (ABS(RMECH(I)) .LT. ABS(SAVDMX(1,I))) GO TO 325} & \text{HIST 156} \\ & \text{SAVDMX(1,I) = TIME} & \text{HIST 157} \\ & \text{TMAX(1,I) = TIME} & \text{HIST 158} \\ & \text{325 IF (ABS(ACC(I)) .LT. ABS(SAVDMX(2,I))) GO TO 330} & \text{HIST 159} \\ & \text{SAVDMX(2,I) = ACC(I)} & \text{HIST 160} \\ & \text{TMAX(2,I) = TIME} & \text{HIST 161} \\ & \text{TMAX(3,I) = TIME} & \text{HIST 163} \\ & \text{TMAX(3,I) = TIME} & \text{HIST 163} \\ & \text{TMAX(3,I) = TIME} & \text{HIST 164} \\ & \text{335 IF (ABS(VEL(I)) .LT. ABS(SAVDMX(3,I))) GO TO 335} & \text{HIST 163} \\ & \text{TMAX(4,I) = TIME} & \text{HIST 164} \\ & \text{335 IF (ABS(X(I)-XZERO(I)) .LT. ABS(SAVDMX(4,I))) GO TO 340} & \text{HIST 166} \\ & \text{TMAX(4,I) = TIME} & \text{HIST 166} \\ & \text{TMAX(4,I) = TIME} & \text{HIST 166} \\ & \text{TMAX(4,I) = TIME} & \text{HIST 166} \\ & \text{SAVDMX(4,I) = DENS(I)-RHO(MATL)} & \text{LT. ABS(SAVDMX(5,I))) GO TO 365} & \text{HIST 167} \\ & \text{340 MATL = MAT(I)} & \text{HIST 166} \\ & \text{IF (ABS(DENS(I)-RHO(MATL)) .LT. ABS(SAVDMX(5,I))) GO TO 365} & \text{HIST 169} \\ & \text{SAVDMX(5,I) = DENS(I)-RHO(MATL)} & \text{HIST 170} \\ & \text{TMAX(5,I) = DENS(I)-RHO(MATL)} & \text{HIST 177} \\ & \text{RETURN} & \text{HIST 177} \\ & \text{C} & \text{ACCELERATION, VELOCITY, DISPLACEMENT, AND STRAIN, \\ & \text{HIST 178} \\ & \text{C} & \text{THE CALL IS FROM -CMPUTE} & \text{HIST 178} \\ & \text{C} & \text{THE CALL IS FROM -CMPUTE} & \text{HIST 178} \\ & \text{C} & \text{MOD FOR ALL NOES AND CELLS.} & \text{HIST 178} \\ & \text{C} & \text{MOD FOR ALL NOES AND CELLS.} & \text{HIST 178} \\ & \text{C} & \text{MOD FIY THE MAXIMUM VALUES WITH CALIBRATION FACTORS} & \text{HIST 182} \\ & \text{C} & \text{MOD IFY THE MAXIMUM VALUES WITH CALIBRATION FACTORS} & \text{HIST 182} \\ & \text{SAVDMX(2,I) = SAVDMX(2,I)/G} & \text{HIST 185} \\ & \text{SAVDMX(2,I) = SAVDMX(2,I)/G} & \text{SAVDMX(2,I)/G} & \text{SAVDMX(2,I)/G} \\ & SAVDMX(2,I) = SAVDMX(2,I)/$	GO TO 320 ·	HIST	152
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	319 NSTRT = 1	HIST	153
320 DO 365 I = NSTRT,NFINSH IF (ABS(RMECH(I)).LT. ABS(SAVDMX(1,I))) GO TO 325 SAVDMX(1,I) = RMECH(I) TMAX(1,I) = TIME 325 IF (ABS(ACC(I)).LT. ABS(SAVDMX(2,I))) GO TO 330 HIST 159 SAVDMX(2,I) = ACC(I) TMAX(2,I) = TIME 330 IF (ABS(VEL(I)).LT. ABS(SAVDMX(3,I))) GO TO 335 SAVDMX(3,I) = VEL(I) TMAX(3,I) = TIME 335 IF (ABS(VEL(I)).LT. ABS(SAVDMX(3,I))) GO TO 335 SAVDMX(4,I) = TIME 335 IF (ABS(X(I)-XZERO(I)).LT. ABS(SAVDMX(4,I))) GO TO 340 TMAX(4,I) = TIME 340 MATL = MAT(I) TMAX(5,I) = DENS(I)-RHO(MATL)).LT. ABS(SAVDMX(5,I))) GO TO 365 SAVDMX(5,I) = DENS(I)-RHO(MATL) TMAX(5,I) = TIME 340 MATL = MAT(I) TMAX(5,I) = TIME 340 MATL = MAT(I) TMAX(5,I) = TIME 340 MATL = MAT(I) TMAX(5,I) = DENS(I)-RHO(MATL) TMAX(5,I) = TIME 340 MATL = MAT(I) TMAX(5,I) = DENS(I)-RHO(MATL) TMAX(5,I) = TIME 340 MATL = MAT(I) TMAX(5,I) = DENS(I)-RHO(MATL) TMAX(5,I) = TIME 340 MATL = MAT(I) TMAX(5,I) = TIME 340 MATL = MAT(I) TAMX(5,I) = TIME 340 MATL = MAT(I) 340 MATL		and the second s	37-620
IF (ABS (RMECH (I)) .LT. ABS (SAVDMX (1, I))) GO TO 325HIST 156SAVDMX (1, I) = RMECH (I)HIST 157TMAX (1, I) = TIMEHIST 158325 IF (ABS (ACC (I)) .LT. ABS (SAVDMX (2, I))) GO TO 330HIST 159SAVDMX (2, I) = ACC (I)HIST 160TMAX (2, I) = TIMEHIST 161330 IF (ABS (VEL (I)) .LT. ABS (SAVDMX (3, I))) GO TO 335HIST 162SAVDMX (3, I) = VEL (I)HIST 163TMAX (3, I) = TIMEHIST 164335 IF (ABS (X(I) -XZERO (I)) .LT. ABS (SAVDMX (4, I))) GO TO 340HIST 164345 IF (ABS (X(I) -XZERO (I)) .LT. ABS (SAVDMX (4, I))) GO TO 340HIST 166TMAX (4, I) = TIMEHIST 166340 MATL = MAT (I)HIST 167340 MATL = MAT (I)HIST 168IF (ABS (DENS (I) -RHO (MATL)) .LT. ABS (SAVDMX (5, I))) GO TO 365HIST 169SAVDMX (5, I) = DENS (I) -RHO (MATL)HIST 171365 CONTINUEHIST 173C*********************************			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			11112254
TMAX $(1, I) = TIME$ HIST 158325 IF (ABS(ACC(I)) .LT. ABS(SAVDMX(2,I))) GO TO 330HIST 159SAVDMX(2,I) = ACC(I)HIST 160TMAX(2,I) = TIMEHIST 161330 IF (ABS(VEL(I)) .LT. ABS(SAVDMX(3,I))) GO TO 335HIST 162SAVDMX(3,I) = VEL(I)HIST 163TMAX(3,I) = TIMEHIST 164335 IF (ABS(X(I)-XZERO(I)) .LT. ABS(SAVDMX(4,I))) GO TO 340HIST 165SAVDMX(4,I) = X(I)-XZERO(I)HIST 166TMAX(4,I) = TIMEHIST 167340 MATL = MAT(I)HIST 168IF (ABS(DENS(I)-RHO(MATL)) .LT. ABS(SAVDMX(5,I))) GO TO 365HIST 169SAVDMX(5,I) = DENS(I)-RHO(MATL)HIST 170TMAX(5,I) = TIMEHIST 171365 CONTINUEHIST 172RETURNHIST 173C*********************************			
<pre>325 IF (ABS(ACC(I)) .LT. ABS(SAVDMX(2,I))) GO TO 330 HIST 159 SAVDMX(2,I) = ACC(I) HIST 160 TMAX(2,I) = TIME HIST 63 330 IF (ABS(VEL(I)) .LT. ABS(SAVDMX(3,I))) GO TO 335 HIST 162 SAVDMX(3,I) = VEL(I) HIST 163 TMAX(3,I) = TIME HIST 64 335 IF (ABS(X(I)-XZERO(I)) .LT. ABS(SAVDMX(4,I))) GO TO 340 HIST 165 SAVDMX(4,I) = X(I)-XZERO(I) HIST 166 TMAX(4,I) = TIME HIST 167 340 MATL = MAT(I) HIST 168 IF (ABS(DENS(I)-RHO(MATL)) .LT. ABS(SAVDMX(5,I))) GO TO 365 HIST 169 SAVDMX(5,I) = DENS(I)-RHO(MATL) HIST 170 TMAX(5,I) = TIME HIST 170 TMAX(5,I) = TIME HIST 171 365 CONTINUE HIST 172 RETURN HIST 172 RETURN HIST 172 C ************************************</pre>			
SAVDMX(2, I) = ACC(I)HIST 160TMAX(2, I) = TIMEHIST 161330 IF (ABS(VEL(I)).LT. ABS(SAVDMX(3,I))) GO TO 335HIST 161335 IF (ABS(X(I)-XZERO(I)).LT. ABS(SAVDMX(4,I))) GO TO 340HIST 165SAVDMX(3, I) = TIMEHIST 166340 MATL = MAT(I)HIST 165340 MATL = MAT(I)HIST 166IF (ABS(DENS(I)-RHO(MATL)).LT. ABS(SAVDMX(5,I))) GO TO 365HIST 167340 MATL = MAT(I)HIST 166IF (ABS(DENS(I)-RHO(MATL)).LT. ABS(SAVDMX(5,I))) GO TO 365HIST 169SAVDMX(5,I) = DENS(I)-RHO(MATL)HIST 171365 CONTINUEHIST 171RETURNHIST 173C*********************************		HIST	158
$\begin{array}{rcl} \mathrm{TMAX}\left(2,\mathrm{I}\right) = \mathrm{TIME} & \mathrm{HIST} 161 \\ 330 \ \mathrm{IF}\left(\mathrm{ABS}\left(\mathrm{VEL}\left(\mathrm{I}\right)\right) \ \mathrm{LT}. \ \mathrm{ABS}\left(\mathrm{SAVDMX}\left(3,\mathrm{I}\right)\right)\right) \ \mathrm{GO} \ \mathrm{TO} \ 335 & \mathrm{HIST} 162 \\ \mathrm{SAVDMX}\left(3,\mathrm{I}\right) = \mathrm{VEL}\left(\mathrm{I}\right) & \mathrm{HIST} 163 \\ \mathrm{TMAX}\left(3,\mathrm{I}\right) = \mathrm{TIME} & \mathrm{HIST} 164 \\ 335 \ \mathrm{IF}\left(\mathrm{ABS}\left(\mathrm{X}\left(\mathrm{I}\right)-\mathrm{XZERO}\left(\mathrm{I}\right)\right) \ \mathrm{LT}. \ \mathrm{ABS}\left(\mathrm{SAVDMX}\left(4,\mathrm{I}\right)\right)\right) \ \mathrm{GO} \ \mathrm{TO} \ 340 & \mathrm{HIST} 165 \\ \mathrm{SAVDMX}\left(4,\mathrm{I}\right) = \mathrm{X}\left(\mathrm{I}\right)-\mathrm{XZERO}\left(\mathrm{I}\right) & \mathrm{LT}. \ \mathrm{ABS}\left(\mathrm{SAVDMX}\left(4,\mathrm{I}\right)\right)\right) \ \mathrm{GO} \ \mathrm{TO} \ 340 & \mathrm{HIST} 165 \\ \mathrm{SAVDMX}\left(4,\mathrm{I}\right) = \mathrm{TIME} & \mathrm{HIST} 167 \\ 340 & \mathrm{MATL} = \mathrm{MAT}\left(\mathrm{I}\right) & \mathrm{LT}. \ \mathrm{ABS}\left(\mathrm{SAVDMX}\left(5,\mathrm{I}\right)\right) & \mathrm{GO} \ \mathrm{TO} \ 365 & \mathrm{HIST} \ 169 \\ \mathrm{SAVDMX}\left(5,\mathrm{I}\right) = \mathrm{DENS}\left(\mathrm{I}\right)-\mathrm{RHO}\left(\mathrm{MATL}\right) & \mathrm{LT}. \ \mathrm{ABS}\left(\mathrm{SAVDMX}\left(5,\mathrm{I}\right)\right) & \mathrm{GO} \ \mathrm{TO} \ 365 & \mathrm{HIST} \ 169 \\ \mathrm{SAVDMX}\left(5,\mathrm{I}\right) = \mathrm{DENS}\left(\mathrm{I}\right)-\mathrm{RHO}\left(\mathrm{MATL}\right) & \mathrm{HIST} \ 170 \\ \mathrm{TMAX}\left(5,\mathrm{I}\right) = \mathrm{TIME} & \mathrm{HIST} \ 171 \\ 365 \ \mathrm{CONTINUE} & \mathrm{HIST} \ 172 \\ \mathrm{RETURN} & \mathrm{HIST} \ 172 \\ \mathrm{C} & \mathrm{ACCELERATION}, \ \mathrm{VELOCITY}, \ \mathrm{DISPLACEMENT}, \ \mathrm{AND} \ \mathrm{STRAIN}, \\ \mathrm{HIST} \ 176 \\ \mathrm{C} & \mathrm{ACCELERATION}, \ \mathrm{VELOCITY}, \ \mathrm{DISPLACEMENT}, \ \mathrm{AND} \ \mathrm{STRAIN}, \\ \mathrm{HIST} \ 178 \\ \mathrm{C} & \mathrm{THE} \ CALL \ \mathrm{IS} \ \mathrm{FROM} \ -\mathrm{CMPUTE} \\ \mathrm{HIST} \ 180 \\ \mathrm{LCOUNT} = 50 & \mathrm{HIST} \ 181 \\ \mathrm{DO} \ 410 \ \mathrm{I} = \mathrm{I}, \mathrm{N} \\ \mathrm{C} & \mathrm{MODIFY} \ \mathrm{THE} \ \mathrm{MAXIMUM} \ \mathrm{VALUES} \ \mathrm{WITH} \ \mathrm{CALIBRATION} \ \mathrm{FACTORS} \\ \mathrm{HIST} \ 183 \\ \mathrm{SAVDMX}\left(\mathrm{I},\mathrm{I}\right) = \ \mathrm{SAVDMX}\left(\mathrm{I},\mathrm{I}\right) * \mathrm{ALPHA}\left(\mathrm{I}\right) * \mathrm{I} = -7 \\ \mathrm{HIST} \ 185 \\ \mathrm{SAVDMX}\left(2,\mathrm{I}\right) = \ \mathrm{SAVDMX}\left(2,\mathrm{I}\right) / \mathrm{G} \end{array}$	325 IF (ABS(ACC(I)) .LT. ABS(SAVDMX(2,I))) GO TO 330	HIST	159
330 IF (ABS(VEL(I)) .LT. ABS(SAVDMX(3,I))) GO TO 335 HIST 162 SAVDMX(3,I) = VEL(I) HIST 163 TMAX(3,I) = TIME HIST 164 335 IF (ABS(X(I)-XZERO(I)) .LT. ABS(SAVDMX(4,I))) GO TO 340 HIST 165 SAVDMX(4,I) = X(I)-XZERO(I) HIST 165 TMAX(4,I) = TIME HIST 166 TMAX(4,I) = TIME HIST 166 TMAX(4,I) = TIME HIST 167 340 MATL = MAT(I) HIST 168 IF (ABS(DENS(I)-RHO(MATL)) .LT. ABS(SAVDMX(5,I))) GO TO 365 HIST 170 TMAX(5,I) = DENS(I)-RHO(MATL) HIST 171 365 CONTINUE HIST 172 RETURN HIST 173 C ************************************	SAVDMX(2, I) = ACC(I)	HIST	160
330 IF (ABS(VEL(I)) .LT. ABS(SAVDMX(3,I))) GO TO 335 HIST 162 SAVDMX(3,I) = VEL(I) HIST 163 TMAX(3,I) = TIME HIST 164 335 IF (ABS(X(I)-XZERO(I)) .LT. ABS(SAVDMX(4,I))) GO TO 340 HIST 165 SAVDMX(4,I) = X(I)-XZERO(I) HIST 165 TMAX(4,I) = TIME HIST 166 TMAX(4,I) = TIME HIST 166 TMAX(4,I) = TIME HIST 167 340 MATL = MAT(I) HIST 168 IF (ABS(DENS(I)-RHO(MATL)) .LT. ABS(SAVDMX(5,I))) GO TO 365 HIST 170 TMAX(5,I) = DENS(I)-RHO(MATL) HIST 171 365 CONTINUE HIST 172 RETURN HIST 173 C ************************************	TMAX(2,I) = TIME	HIST	161
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{rcl} TMAX (3, I) = TIME & HIST 164 \\ 335 IF (ABS (X(I) - XZERO (I)) .LT. ABS (SAVDMX (4, I))) GO TO 340 & HIST 165 \\ SAVDMX (4, I) = X(I) - XZERO (I) & HIST 166 \\ TMAX (4, I) = TIME & HIST 167 \\ 340 MATL = MAT (I) & HIST 168 & HIST 167 \\ IF (ABS (DENS (I) - RHO (MATL)) .LT. ABS (SAVDMX (5, I))) GO TO 365 & HIST 169 \\ SAVDMX (5, I) = DENS (I) - RHO (MATL) & HIST 171 \\ TMAX (5, I) = TIME & HIST 172 \\ RETURN & HIST 173 \\ C & *********************************$			
335 IF (ABS(X(I)-XZERO(I)) .LT. ABS(SAVDMX(4,I))) GO TO 340 HIST 165 SAVDMX(4,I) = X(I)-XZERO(I) HIST 166 TMAX(4,I) = TIME HIST 167 340 MATL = MAT(I) HIST 168 IF (ABS(DENS(I)-RHO(MATL)) .LT. ABS(SAVDMX(5,I))) GO TO 365 HIST 169 SAVDMX(5,I) = DENS(I)-RHO(MATL) HIST 170 TMAX(5,I) = TIME HIST 171 365 CONTINUE HIST 173 RETURN HIST 174 ENTRY VALMAX HIST 176 C ACCELERATION, VELOCITY, DISPLACEMENT, AND STRAIN, HIST 177 C AND FOR ALL NODES AND CELLS. HIST 179 IF (MVT .EQ. 0) GO TO 420 HIST 181 LCOUNT = 50 HIST 181 DO 410 I=1, N HIST 181 C MODIFY THE MAXIMUM VALUES WITH CALIBRATION FACTORS HIST 181 SAVDMX(1,I) = SAVDMX(1,I)*ALPHA(I)*1.E-7 HIST 185			
SAVDMX(4, I) = X(I) - XZERO(I) HIST 166 TMAX(4, I) = TIME HIST 167 340 MATL = MAT(I) HIST 168 IF (ABS(DENS(I) - RHO(MATL)) LT. ABS(SAVDMX(5,I))) GO TO 365 HIST 169 SAVDMX(5, I) = DENS(I) - RHO(MATL) HIST 170 TMAX(5, I) = TIME HIST 171 365 CONTINUE HIST 172 RETURN HIST 173 C ************************************		and shares a strength	
TMAX (4, I) = TIMEHIST 167340 MATL = MAT (I)HIST 168IF (ABS (DENS (I) - RHO (MATL)) .LT. ABS (SAVDMX (5, I))) GO TO 365HIST 169SAVDMX (5, I) = DENS (I) - RHO (MATL)HIST 170TMAX (5, I) = TIMEHIST 171365 CONTINUEHIST 172RETURNHIST 173C*********************************			when the state
340 MATL = MAT(I)HIST 168IF (ABS(DENS(I)-RHO(MATL)) .LT. ABS(SAVDMX(5,I))) GO TO 365HIST 169SAVDMX(5,I) = DENS(I)-RHO(MATL)HIST 170TMAX(5,I) = TIMEHIST 171365 CONTINUEHIST 172RETURNHIST 173C*********************************	SAVDMX(4, I) = X(I) - XZERO(I)	HIST	166
IF (ABS (DENS(I) -RHO (MATL)) .LT. ABS (SAVDMX(5,I))) GO TO 365 SAVDMX(5,I) = DENS(I) -RHO (MATL) TMAX(5,I) = TIME 365 CONTINUE RETURN C ************************************	TMAX(4, I) = TIME	HIST	167
$\begin{array}{llllllllllllllllllllllllllllllllllll$	340 MATL = MAT(I)	HIST	168
$\begin{array}{llllllllllllllllllllllllllllllllllll$	IF (ABS(DENS(I)-RHO(MATL)) .LT. ABS(SAVDMX(5,I))) GO TO 365	HIST	169
$\begin{array}{rllllllllllllllllllllllllllllllllllll$			1202
365 CONTINUEHIST 172RETURNHIST 173C*********************************			
RETURNHIST 173C*********************************			
C ************************************		Contract of Contraction	Encontrate
ENTRY VALMAXHIST 174ENTRY VALMAXHIST 175C- VALMAX - PRINTS THE TABLE OF MAXIMUM VALUES OF STRESS,HIST 175CACCELERATION, VELOCITY, DISPLACEMENT, AND STRAIN,HIST 176CAND FOR ALL NODES AND CELLS.HIST 178CTHE CALL IS FROM -CMPUTEHIST 179IF (MVT .EQ. 0) GO TO 420HIST 180LCOUNT = 50HIST 181DO 410 I=1,NHIST 182CMODIFY THE MAXIMUM VALUES WITH CALIBRATION FACTORSHIST 183SAVDMX(1,I) = SAVDMX(1,I)*ALPHA(I)*1.E-7HIST 184SAVDMX(2,I) = SAVDMX(2,I)/GHIST 185			
C - VALMAX - PRINTS THE TABLE OF MAXIMUM VALUES OF STRESS, ACCELERATION, VELOCITY, DISPLACEMENT, AND STRAIN, AND FOR ALL NODES AND CELLS. THE CALL IS FROM -CMPUTE IF (MVT .EQ. 0) GO TO 420 LCOUNT = 50 DO 410 I=1,N C MODIFY THE MAXIMUM VALUES WITH CALIBRATION FACTORS SAVDMX(1,I) = SAVDMX(1,I)*ALPHA(I)*1.E-7 SAVDMX(2,I) = SAVDMX(2,I)/G HIST 185	C ************************************	HIST	174
C ACCELERATION, VELOCITY, DISPLACEMENT, AND STRAIN, HIST 177 C AND FOR ALL NODES AND CELLS. HIST 178 C THE CALL IS FROM -CMPUTE HIST 179 IF (MVT .EQ. 0) GO TO 420 LCOUNT = 50 DO 410 I=1,N C MODIFY THE MAXIMUM VALUES WITH CALIBRATION FACTORS HIST 183 SAVDMX(1,I) = SAVDMX(1,I)*ALPHA(I)*1.E-7 SAVDMX(2,I) = SAVDMX(2,I)/G HIST 185	ENTRY VALMAX	HIST	175
C ACCELERATION, VELOCITY, DISPLACEMENT, AND STRAIN, HIST 177 C AND FOR ALL NODES AND CELLS. HIST 178 C THE CALL IS FROM -CMPUTE HIST 179 IF (MVT .EQ. 0) GO TO 420 LCOUNT = 50 DO 410 I=1,N C MODIFY THE MAXIMUM VALUES WITH CALIBRATION FACTORS HIST 183 SAVDMX(1,I) = SAVDMX(1,I)*ALPHA(I)*1.E-7 SAVDMX(2,I) = SAVDMX(2,I)/G HIST 185	C - VALMAX - PRINTS THE TABLE OF MAXIMUM VALUES OF STRESS,	HIST	176
CAND FOR ALL NODES AND CELLS.HIST 178CTHE CALL IS FROM -CMPUTEHIST 179IF (MVT .EQ. 0) GO TO 420HIST 180LCOUNT = 50HIST 181DO 410 I=1,NHIST 182CMODIFY THE MAXIMUM VALUES WITH CALIBRATION FACTORSHIST 183SAVDMX(1,I) = SAVDMX(1,I)*ALPHA(I)*1.E-7HIST 184SAVDMX(2,I) = SAVDMX(2,I)/GHIST 185		HIST	177
C THE CALL IS FROM -CMPUTE HIST 179 IF (MVT .EQ. 0) GO TO 420 HIST 180 LCOUNT = 50 HIST 181 DO 410 I=1,N HIST 182 C MODIFY THE MAXIMUM VALUES WITH CALIBRATION FACTORS HIST 183 SAVDMX(1,I) = SAVDMX(1,I) *ALPHA(I)*1.E-7 HIST 184 SAVDMX(2,I) = SAVDMX(2,I)/G HIST 185		HIST	178
IF (MVT .EQ. 0) GO TO 420 HIST 180 LCOUNT = 50 HIST 181 DO 410 I=1,N HIST 182 C MODIFY THE MAXIMUM VALUES WITH CALIBRATION FACTORS HIST 183 SAVDMX(1,I) = SAVDMX(1,I) *ALPHA(I)*1.E-7 HIST 184 SAVDMX(2,I) = SAVDMX(2,I)/G HIST 185			teres contract
LCOUNT = 50 DO 410 I=1,N C MODIFY THE MAXIMUM VALUES WITH CALIBRATION FACTORS SAVDMX(1,I) = SAVDMX(1,I)*ALPHA(I)*1.E-7 HIST 184 SAVDMX(2,I) = SAVDMX(2,I)/G			1-15-D.B. E.S.
C MODIFY THE MAXIMUM VALUES WITH CALIBRATION FACTORS HIST 182 SAVDMX(1,I) = SAVDMX(1,I)*ALPHA(I)*1.E-7 HIST 184 SAVDMX(2,I) = SAVDMX(2,I)/G HIST 185			
C MODIFY THE MAXIMUM VALUES WITH CALIBRATION FACTORS HIST 183 SAVDMX(1,I) = SAVDMX(1,I)*ALPHA(I)*1.E-7 HIST 184 SAVDMX(2,I) = SAVDMX(2,I)/G HIST 185		and a second second	
SAVDMX(1,I) = SAVDMX(1,I)*ALPHA(I)*1.E-7 SAVDMX(2,I) = SAVDMX(2,I)/G HIST 185		There are a second	CANNER .
SAVDMX(2, I) = SAVDMX(2, I)/G HIST 185	C MODIFY THE MAXIMUM VALUES WITH CALIBRATION FACTORS	HIST	183
SAVDMX(2,1) = SAVDMX(2,1)/G HIST 185	SAVDMX(1,I) = SAVDMX(1,I) * ALPHA(I) * 1.E-7	HIST	184
		HIST	185
	SAVDMX(3, I) = SAVDMX(3, I) * AVELCAL		

			IST	187	
			IST	188	
		IF (MATL .EQ. 0 .OR. RHO(MATL) .EQ. 0.) MATL=MAT(I-1) H	IST	189	
		T CONDUCT T CONDUCT	IST		
		THE ADDRESS CALLER AND ADDRESS	IST		
	100	T GOTTING	IST	and the second second	
	400		IST	and the second	
			IST		
	108		IST	- Allower -	
	400		IST		
			IIST	Di mana	
	6		HIST		
			IIST	Sectore Proven	
			IST		
	410		IST	Teres and the	
		WRITE (7) NNODE, NOUT, BETA, NSTEP, N	IST	203	
			IST	204	
2			HIST	205	
3		***************************************	HIST	206	
		ENTRY PLOTSC	HIST	207	
2	- I		HIST		
2			HIST		
2			HIST		
	430		HIST		
			HIST		
			HIST		
		11 (0 1221 0) 1011	HIST		
		11 (111111 101) 101/100/100	HIST		
		11 (11111 1.0) 102/100/100	HIST		
	432		HIST		
		00 10 400	HIST		
	433	SKL - 1.0	HIST		
		GU 10 450	HIST		
		IE (IEFIX-100./ 400/40//10/	HIST		
	436	SRF - 10.	HIST		
	407	GO TO 438	HIST		
-		IF (TEMX-1600.) 4371,4372,4372	HIST		
4	13/1	SKF = 100.	HIST		
	1272	GO TO 438 SKF = 1000.	HIST	22	7
		ISK = TEMX/4./SKF+1.	HIST	22	8
	430	SKI = ISK	HIST	22	9
		SK(J) = SKI*SKF	HIST	23	0
	440	WRITE (6,1440), J, SK(J)	HIST		
	110	SK(7) = SK(5)	HIST		
		WRITE (6,1440),7,SK(7)	HIST		
		DETTION	HIST		
С		***************************************	HIST		
~		ENTRY ZERO	HIST		
С	-	ZERO - SETS THE MAIN ARRAYS TO ZERO DURING INITIALIZATIONZERO-			
c		IS CALLED BY -READIT	HIS?		
Ĩ		LPRNT = 55/(NNODE+1)	HIS		
		LCOUNT = LPRNT.	HIS		
		DO 455 I=1,N	HIS		
		RMECH(I) = 0.	HIS		
		CELMAS(I) = 0.	HIS		
		ACC(I) = 0.	HIS		
		VEL(I) = 0.	HIS		
		DO 455 J=1,5	HIS		
		SAVDMX(J,I) = 0.	HIS		
		TMAX(J,I) = 0.		-	

	455	CONTINUE	HIST	249
		DO 460 J=1, NNODE	HIST	250
		RROLD(J) = 0.	HIST	251
	460	RIMP(J) = 0.	HIST	252
	500	RETURN	HIST	
С		*******	HIST	
		ENTRY FORCI	HIST	and the second second
С	- I	FORCI - IS CALLED BY -CMPUTE- TO PROVIDE THE PRESSURE AT THE	HIST	A A S A A A A A A A A A A A A A A A A A
C		TOP BOUNDARY AT EACH TIME STEPFORCI- INTERPOLATES	HIST	- and the section
C		BETWEEN VALUES OF THE PRESSURE HISTORY.	HIST	1020 - E (1200)
С			HIST	Contraction of
~		IF (ITIME .GT. 0) GO TO 45	HIST	
С	10	ACQUIRE FIRST TWO POINTS TLAST = THIST(1)	HIST	and the second second
	10	PLAST = PHIST(1) * PRESCAL	HIST	
		ITIME = 2	HIST	A STATE OF
		GO TO 35	HIST	
с		ACQUIRE THE NEXT POINT	HIST	100000
Ĭ	30	IF (ITIME .GE. NFORCE) GO TO 50	HIST	
		TLAST = TNOW	HIST	and the second
		PLAST = PNOW	HIST	269
		ITIME = ITIME+1	HIST	270
	35	TNOW = THIST(ITIME)	HIST	271
		PNOW = PHIST(ITIME) * PRESCAL	HIST	272
С		TEST FOR VERTICAL SLOPE	HIST	273
		DELTAT = TNOW-TLAST	HIST	274
		IF (DELTAT .LT. 1.E-12) GO TO 30	HIST	275
С		CALCULATE SLOPE	HIST	and the second second
		SLOPE = (PNOW-PLAST) / DELTAT	HIST	
	45	IF (TNOW .LT. TIME .AND. ITIME .LT. NFORCE) GO TO 30	HIST	Carlos Colorado
С		COMPUTE FORCE ON TOP SURFACE	HIST	CEL STREET
	50	FORCE = PLAST+SLOPE* (TIME-TLAST)	HIST	
~		RETURN	HIST	NO WAY SE
C		TODWATC	HIST	Terra Gran
C	1014	FORMATS	HIST HIST	
100		FORMAT (1H1,10X,12A6/23X, @ 25HSUMMARY OF MAXIMUM VALUES // 2X,4HNODE, 3X,	HIST	
		@ 5HDEPTH, 4X, 16HREACTION STRESS, 10X, 8HVELOCITY, 11X,	HIST	
		<pre>@ 12HDISPLACEMENT, 11X, 6HSTRAIN, 12X, 12HACCELERATION, 10X /</pre>	HIST	
		@ 2X, 3HNO., 5X, 3HFT., 5(6X, 5HVALUE, 6X, 4HTIME))	HIST	
1.50		FORMAT (19X, 5H (MPA), 6X, 5H (SEC), 4X, 1H (, A2, 3H/S), 6X, 5H (SEC), 6X,	HIST	and and an
		@ 4H(IN), 6X, 5H(SEC), 6X, 5H(%), 6X, 5H(SEC), 6X, 5H(G'S),	HIST	
		@ 6X, 5H(SEC))	HIST	
Settion		FORMAT (2X, I3, F10.4, F10.2, 2(1PE11.3, 0PF10.3), 1P5E11.3)	HIST	
		FORMAT (//10X,12A6/	HIST	293
		@ 10X, 50HTIME SURFACE NODE APPLIED REACTION DAMPING	HIST	1.2.3.5
		@ 42H STRAIN ACCEL PARTICLE POSITION / 18X,	HIST	
		@ 41HSTRESS NO. STRESS STRESS STRESS, 24X, 8HVELOCITY)	HIST	296
1000	1019	FORMAT (20X, 3HPSI, 13X, 3HPSI, 6X, 3HPSI, 7X, 3HPSI, 4X, 7HPERCENT, 7X,	HIST	297
		@ 3HG'S,7X,A2,2H/S,6X,2HIN)	HIST	298
	1021	FORMAT (2X, 1PE12.3, 0PF10.2)	HIST	299
		FORMAT (27X, 15, 3F9.2, F10.5, F12.3, F10.3, F10.3)	HIST	300
1	1440	FORMAT (//9X,14H SCALE FACTOR, I1,8H EQUALS , F6.1)	HIST	Sec. 167
		END	HIST	302

	PROGRAM PLOTIT	PLOT	1
С	PROGRAM TO PLOT HISTORIES FROM -ONED-	PLOT	2
	IMPLICIT REAL*8 (A-H, O-Z)	PLOT	3
	DIMENSION BETA(12), NOUT(20)	PLOT	4
	DIMENSION AA(20), RIMP(20), RR(20), RROLD(20), SS(20),	PLOT	5
(3 ST1(20), ST2(20), VV(20), XX(20)	PLOT	6
	CHARACTER*10 IDAT	PLOT	7
	REAL*4 PTIME(800), PSS(800), PST1(800), PST2(800)	PLOT	8
С		PLOT	9
C	INITIALIZE PLOTTING PARAMETERS	PLOT	10
	CALL GINITL(0)	PLOT	11
	WRITE (95,7216)	PLOT	12
7216	FORMAT ('SET VIEWPORT 1 (95 .9595 .95)')	PLOT	13
C	CALL DATE FOR THE CALCULATION	PLOT	14
~	CALL DATE (IDAT)		15
с		PLOT	16
C	READ THE NUMBER OF NODES (NNODE) AND NUMBER OF CYCLES (NSTEP) READ (7) NNODE, NOUT, BETA, NSTEP, N		17
		PLOT	3525
1001	WRITE (6,1001) NNODE, NOUT, BETA, NSTEP, N	PLOT	18
	FORMAT (' NNODE=', I3/' NOUT=', 2013/' BETA=', 12A6/' NSTEP=', I5/	PLOT	19
	<pre>@ 'NUMBER OF CELLS, N=', I4)</pre>	PLOT	20
C		- PLOT	21
С	FIND NUMBER OF COMPUTATIONAL STEPS: NSTEP	PLOT	22
	DO 400 I = 1, NSTEP	PLOT	23
	IEND = I-1	PLOT	24
	READ (7, END=405, ERR=405) N1	PLOT	25
400	CONTINUE	PLOT	26
405	NSTEP = IEND-N	PLOT	27
C		- PLOT	28
C	BEGIN MAJOR LOOP OVER EACH OUTPUT NODE	PLOT	29
	DO 610 $J = 1$, NNODE	PLOT	30
	REWIND 7	PLOT	31
	READ (7) NSPACE	PLOT	32
	NST = 0	PLOT	33
С	BEGIN LOOP OVER EACH TIME STEP FOR EACH NODE	PLOT	34
	DO $600 I = 1, NSTEP$	PLOT	35
	NST = NST+1	PLOT	36
	READ (7, ERR=605, END=605) TIME, TOPSTRS, (RR(JJ), AA(JJ), VV(JJ),	PLOT	37
	@ XX(JJ), SS(JJ), RROLD(JJ), ST1(JJ), ST2(JJ), JJ=1, NNODE)	PLOT	38
	PTIME(NST) = TIME	PLOT	39
	PSS(NST) = SS(J)	PLOT	40
		DIOM	41
	PST1(NST) = ST1(J)	PLOT	41
	PST1(NST) = ST1(J) $PST2(NST) = ST2(J)$	PLOT	41
600	PST2(NST) = ST2(J)		
600	PST2(NST) = ST2(J) CONTINUE	PLOT	42
	PST2(NST) = ST2(J) CONTINUE GO TO 608	PLOT PLOT	42 43
600 605	PST2(NST) = ST2(J) CONTINUE GO TO 608 NSTEP = NST-1	PLOT PLOT PLOT	42 43 44
605	PST2(NST) = ST2(J) CONTINUE GO TO 608 NSTEP = NST-1 WRITE (6,1002) NSTEP	PLOT PLOT PLOT PLOT	42 43 44 45
605 1002	PST2(NST) = ST2(J) CONTINUE GO TO 608 NSTEP = NST-1 WRITE (6,1002) NSTEP FORMAT (' NSTEP =', I4)	PLOT PLOT PLOT PLOT PLOT PLOT	42 43 44 45 46 47
605	PST2(NST) = ST2(J) CONTINUE GO TO 608 NSTEP = NST-1 WRITE (6,1002) NSTEP FORMAT (' NSTEP =',I4) CONTINUE	PLOT PLOT PLOT PLOT PLOT PLOT	42 43 44 45 46 47 48
605 1002 608	<pre>PST2(NST) = ST2(J) CONTINUE GO TO 608 NSTEP = NST-1 WRITE (6,1002) NSTEP FORMAT (' NSTEP =',I4) CONTINUE CALL GRAFONED(PTIME,PSS,PST1,PST2,NST,NOUT(J),IDAT,BETA)</pre>	PLOT PLOT PLOT PLOT PLOT PLOT PLOT	42 43 44 45 46 47 48 49
605 1002	<pre>PST2(NST) = ST2(J) CONTINUE GO TO 608 NSTEP = NST-1 WRITE (6,1002) NSTEP FORMAT (' NSTEP =',I4) CONTINUE CALL GRAFONED(PTIME,PSS,PST1,PST2,NST,NOUT(J),IDAT,BETA) CONTINUE</pre>	PLOT PLOT PLOT PLOT PLOT PLOT PLOT PLOT	42 43 44 45 46 47 48 49 50
605 1002 608	<pre>PST2(NST) = ST2(J) CONTINUE GO TO 608 NSTEP = NST-1 WRITE (6,1002) NSTEP FORMAT (' NSTEP =',I4) CONTINUE CALL GRAFONED(PTIME,PSS,PST1,PST2,NST,NOUT(J),IDAT,BETA)</pre>	PLOT PLOT PLOT PLOT PLOT PLOT PLOT	42 43 44 45 46 47 48 49 50 51

	SUBROUTINE READIT	READ	1
С	"READIT" READS THE INPUT DATA, EXCEPT FOR FORCE HISTORY AND	READ	2
С	SOME MATERIALS DATA, LAYS OUT THE CELLS, AND FILLS THE ARRAYS.	READ	3
С	THEFT A LETTING ONED LONED CON FOR	READ	4
	INCLUDE '[SEAMAN.ONED]ONEDCOM.FOR'	READ	5
С		READ	6
	CHARACTER*10 IDAT	READ	7
	DIMENSION NFIRST(30),NLAST(30),SP(300),SPMAT(6) DATA G, DENSCAL, PRESCAL, VELCAL, DISTCAL/	READ	8
	DATA G, DENSCAL, PRESCAL, VELCAL, DISTCAL/ @ 981.456, 0.0160185, 6.8948E4, 2.54, 2.54/	READ	9 10
С	(901.450, 0.0100105, 0.0540L4, 2.54, 2.54)	READ	11
c	*** CALL -ZERO- TO INITIALIZE THE ARRAYS ****	READ	12
C	CALL ZERO	READ	13
	CIN3 = 3456.	READ	14
	CALL DATE (IDAT)	READ	15
	WRITE (6,1000)	READ	16
С	ALLAD THE COMMEND OF MUCCUS (MICHAEL AND STATE OF MUCCUS OF AND ALL AND A	READ	17
C	*** READ THE IDENT NUMBER AND TITLE FOR THE CALCULATION ***	READ	18
	DO 100 K=1,2	READ	19
	READ (5,1008) BETA	READ	20
	100 WRITE (6,1008) BETA	READ	21
	READ (5,1001) IDENT, BETA	READ	22
	WRITE (6,1002) BETA	READ	23
	WRITE (6,1003) IDENT	READ	24
	DECODE (10,1008,IDAT) BETA(11),BETA(12)	READ	25
С	***	READ	26
	READ (5,*) NOCOMP, LB, TEND, NSTOP, GACC	READ	27
	WRITE (6,1005)	READ	28
	IF (NOCOMP .LT. 998) WRITE (6,1006) NOCOMP	READ	29
	IF (NOCOMP .EQ. 998) WRITE (6,1060) NOCOMP	READ	30
	IF (NOCOMP .GT. 998) WRITE (6,1007) NOCOMP	READ	31
	IF (LB .NE. 0) WRITE (6,1011) LB	READ	32
	IF (LB .EQ. 0) WRITE (6,1012) LB	READ	33
	WRITE $(6,1014)$ TEND, NSTOP IF (GACC .NE. 0.) GACC = G	READ READ	34 35
	WRITE (6,1015) GACC	READ	36
C	*** ***	READ	37
·	READ (5,*) NLAYRS, MISP, NSP, MATTEN, NMTRLS, NFORCE	READ	38
	WRITE (6,1020)	READ	39
	WRITE (6,1021) NLAYRS	READ	40
	IF (MISP .LE. 0) WRITE (6,1022) MISP	READ	41
	IF (MISP .EQ. 1) WRITE (6,1023) MISP	READ	42
	IF (MISP .GE. 2) WRITE (6,1024) MISP, NSP	READ	43
	IF (MATTEN .LE. 0) WRITE (6,1025) MATTEN	READ	44
	IF (MATTEN .GE. 1) WRITE (6,1028) MATTEN	READ	45
	WRITE (6,1029) NMTRLS,NFORCE	READ	46
С	***	READ	47
	READ (5,*) NNODE, KNTROL, NHIST, MVT, NSV, KVEL, TNDPLT	READ	48
	WRITE (6,1031)	READ	49
	IF (KNTROL(1) .GT. 0) GO TO 131	READ	50
	WRITE (6,1032)	READ	51
	GO TO 139	READ	52
	131 DO 138 I = 1,7 IE (KNTROL(I) EO 0) CO TO 130	READ	53
	IF (KNTROL(I) .EQ. 0) GO TO 139 KNT = I	READ	54 55
	IF (KNTROL(I) .EQ. 1) WRITE (6,1033) KNT, KNTROL(I)	READ	56
	IF (KNTROL(I) .EQ. 2) WRITE (6,1035) KNT, KNTROL(I) IF (KNTROL(I) .EQ. 2) WRITE (6,1035) KNT, KNTROL(I)	READ	57
	IF (KNTROL(I) .EQ. 2) WRITE ($6,1035$) KNT, KNTROL(I) IF (KNTROL(I) .EQ. 3) WRITE ($6,1036$) KNT, KNTROL(I)	READ	58
	IF (KNTROL(I) .EQ. 4) WRITE (6,1037) KNT, KNTROL(I)	READ	59
	IF $(KNTROL(I) .EQ. 5)$ WRITE $(6,1038)$ KNT, KNTROL(I)	READ	60
	IF (KNTROL(I) .EQ. 6) WRITE (6,1039) KNT, KNTROL(I)	READ	61
	IF (KNTROL(I) .EQ. 7) WRITE (6,1040) KNT, KNTROL(I)	READ	62

	138	CONTINUE		~~
	139	IF (NHIST .LE. 0) WRITE (6,1042) NHIST	READ	63 64
		IF (NHIST .GE. 1) WRITE (6,1043) NHIST	READ	65
		IF (MVT .EQ. 0) WRITE (6,1045) MVT	READ	66
		IF (MVT .NE. 0) WRITE (6,1044) MVT	READ	67
		WRITE (6,1046) NNODE	READ	68
		IF (TNDPLT .LT. TEND) TNDPLT = TEND	READ	69
		WRITE (6,1153) TNDPLT	READ	70
		NVELCAL = ' M'	READ	71
		AVELCAL = 0.01	READ	72
		IF (KVEL .NE. 0) GO TO 147 NVELCAL = 'IN'	READ	73
		AVELCAL = 1./VELCAL	READ	74
	147	WRITE (6,1154) KVEL, NVELCAL	READ	75
~	***	WALLE (0,1134) AVEL, AVELCAL ***	READ	76
-		READ $(5, *)$ (DEP (L), L=1, NNODE)	READ	77
		IF (NOCOMP .LT. 998) GO TO 150	READ	78
C	***	***	READ	79
-	148	READ (5,*) SK	READ	80 81
		WRITE (6,1048) SK	READ	82
		IF (NOCOMP .GE. 999) RETURN	READ	83
С			READ	84
C		INPUT MATERIAL PROPERTIES FOR EACH MATERIAL	READ	85
C			READ	86
	150	NSTEP = 0	READ	87
		J = 0	READ	88
		DO 300 M = 1, NMTRLS	READ	89
		DAMPQ(M) = 4.	READ	90
		LS = 0	READ	91
С	***	***	READ	92
		READ (5,*) NAME (M), GAM (M), DAMPL (M), DAMPQ (M), TENSN (M), NPOR (M),	READ	93
	(ONPR(M), NSOL(M), NVAR(M)	READ	94
		WRITE (6,1158) M, NAME (M), GAM (M), DAMPL (M), DAMPQ (M), TENSN (M),	READ	95
	(<pre>@ NPOR(M), NPR(M), NSOL(M), NVAR(M)</pre>	READ	96
		TENSN(M) = -ABS(TENSN(M))	READ	
		IF (TENSN(M) .NE. 0.) NTENSN(M) = 1	READ	
		READ (5, *) SHMOD(M), YIELD(M), TANPHI(M)	READ	
		WRITE (6,1160) SHMOD(M), YIELD(M), TANPHI(M)	READ	and Stands
		SQRTNP(M) = SQRT(1.+TANPHI(M) **2) + TANPHI(M)	READ	
		RHO(M) = GAM(M) * DENSCAL	READ	The second second
		TENSN(M) = TENSN(M) * PRESCAL	READ	
		IF (GAM(M) .EQ. 0.) GO TO 300	READ	
		IF (NPOR(M) .EQ. 0) GO TO 190	READ READ	
		CALL SSONED (LS, J, NSTEP, M, RHO (M), RHO (M), P, EMAX, TENSN (M), PMAX,	READ	
	11.11	Q SPMAT(M))	READ	
	100	GO TO 290	READ	
	190	IF (NPR(M) .EQ. 0) GO TO 210	READ	
		CALL EXPLODE (LS, J, NSTEP, M, RHO (M), P, SPMAT (M))	READ	
	010	GO TO 290	READ	
	210	IF (NSOL(M) .EQ. 0) GO TO 300	READ	
~		CALL EQST(LS, J, NSTEP, M, P, RHO(M), SPMAT(M)) COMPUTE SOUND SPEED FROM SOUND-SPEED-SQUARED FROM PRESSURE	READ	
C		RELATIONS AND SHEAR MODULUS	READ	
С	200	SPMAT(M) = SQRT(SPMAT(M) + 1.333*SHMOD(M)/RHO(M))	READ	
		CONTINUE	READ	
0	300	END OF LOOP TO READ IN MATERIAL PROPERTIES	READ	118
С		NCEL = 1	READ	119
		TOP = 0.	READ	120
		IOP = 0. LAST = 0	READ	121
		LXMAX = 1	READ	
		X(1) = 0.	READ	
		GEOSTR = 0.	READ	124
		OLOUIN V.		

DO 600 NL = 1, NLAYRS	READ 125
C ***	READ 126
READ (5,*) DB, SPL, NSP, M	READ 127
THICK = DB-TOP	READ 128
IF (THICK .GT. 0.) GO TO 310	READ 129
WRITE (6,1312) DB, TOP, THICK	READ 130
1312 FORMAT (' STOP IN READIT, NEGATIVE LAYER THICKNESS. BOTTOM OF '	READ 131
<pre>@ /' CURRENT LAYER, DB =',F12.6,' BOTTOM OF PREVIOUS LAYER =',</pre>	READ 132
@ F12.6,/' THICKNESS =',F12.6)	READ 133
STOP 'READIT, NEGATIVE THICKNESS'	READ 134
310 IF (M .GT. 0) GO TO 315	READ 135
WRITE (6,1315) THICK	READ 136
1315 FORMAT (/' GAP IN THE LAYERS = ',F12.6,' FEET',/)	READ 137
X(LAST+1) = DB*12.*DISTCAL	READ 138
GO TO 600	READ 139 .
315 CONTINUE	READ 140
TOP = DB	READ 141
IF $(GAM(M) . EQ. 0.)$ NSP = 1	READ 142
IF (MISP .EQ. 1) GO TO 330	READ 143
C UNIFORM SIZES FOR CELLS	READ 144
IF (MISP .GT. 0 .AND. NSP .GT. 0) SPL = THICK*12./NSP	READ 145
NSP = THICK*12./SPL+0.5	READ 146
SPL = THICK*12./NSP*DISTCAL	READ 147
SP(1) = SPL	READ 148
GO TO 340	READ 149
C *** FOR MISP = 1: INPUT VARIABLE NODE SPACING ***	READ 150
330 READ (5,*) (SP(I), I=1, NSP)	READ 151
DO 335 I = 1,NSP	READ 152
335 SP(I) = SP(I) * DISTCAL	READ 153
340 NFIRST(NL) = LAST+1	READ 154
NLAST(NL) = LAST+NSP	READ 155
LAST = NLAST(NL) + 1	READ 156
NFST = NFIRST(NL)	READ 157
NLST = NLAST (NL)	READ 158
I = 0	READ 159
LS = 2	READ 160
WRITE (6,1343) BETA	READ 161
1343 FORMAT (//' LISTING OF THE LAYOUT'/10X,12A6)	READ 162

WRITE (6,1344)	READ 16
1344 FORMAT (4X, 1HJ, 10X, 1HX, 8X, 3HSPL, 4X, 7HDENSITY, 7X, 4HSIG1, 5X,	READ 16
@ 6HCELMAS, 7X, 4HTENS, 3H M, 3X, 4HNAME, 6H LVAR, 3X, 6HTRIALS)	READ 16
NLST1 = NLST+1	READ 16
DENSLST = RHO(M)	READ 16
DO 560 $J = NFST, NLST1$	READ 16
ITRY = 0	READ 16
IF (J .EQ. NLST1) GO TO 550	READ 17
I = I+1	READ 17
IF (MISP .EQ. 1) $SPL = SP(I)$	READ 17
X(J+1) = X(J) + SPL	READ 17
DENS(J) = DENSLST	READ 17
SSPEED(J) = SPMAT(M)	READ 17
SPEED2 = SPMAT(M) * 2	READ 17
Y(J) = YIELD(M)	READ 17
MAT(J) = 0	READ 17
IF (GAM(M) .EQ. 0.) GO TO 540	READ 17
C MODIFY INITIAL DENSITY FOR GEOSTATIC STRESS	READ 18
IF (GACC .EQ. 0.) GO TO 425	READ 18
IF (NPR(M) .NE. 1) DENS(J) = DENS(J) +	READ 18
<pre>@ DENS(J)*SPL*GACC/SPEED2</pre>	READ 18
400 ITRY = ITRY+1	READ 18
GEOEST = GEOSTR + 0.5*DENS(J)*SPL*GACC	READ 18
C GET STRESS FROM THE EQUATIONS OF STATE FOR EACH MATERIAL	READ 18

IF (NPOR(M) .EQ. 0) GO TO 410	READ	187
PRESS(J) = 0.	READ	
EMAX = 0.	READ	Contraction of the second
PMAX = 0.	READ	
CALL SSONED (LS, J, NSTEP, M, DENS (J), DENS (J), PRESS (J), EMAX, TENSN (M),	READ	CONTRACTOR OF THE
@ PMAX, SPEED2) ·	READ	
GO TO 420	READ	CT Solling
410 IF (NPR(M) .EQ. 0) GO TO 415	READ	
PRESS(J) = GEOEST	READ	13123-14
SIG1(J) = PRESS(J)	READ	
GO TO 425	READ	2. States 32
415 IF (NSOL(M) .EQ. 0) GO TO 420	READ	
CALL EQST(LS, J, NSTEP, M, PRESS(J), DENS(J), SPEED2)	READ	
420 SIG1(J) = PRESS(J)	READ	200
C WRITE (6,1422) NL, J, ITRY, GEOEST, SIG1 (J), DENS (J), SPEED2, DDENS	READ	201
C 1422 FORMAT (' GEOST READIT, NL, J, ITRY=', 313,' GEOEST, SIG1=', 1P2E17.1	OREAD	202
C @ ' D=',E15.8,' SP2=',E10.3,' DDENS=',E10.3)	READ	203
IF (ABS(SIG1(J) - GEOEST) .LT. 1.E-6*GEOEST .AND. ITRY .GT. 1)	READ	204
0 GO TO 425	READ	205
TRY = 0.5 * ITRY	READ	206
DENSOLD = DENS(J)	READ	207
DENS(J) = DENS(J) + MIN(1.D0, TRY) * (GEOEST-SIG1(J)) *	READ	208
<pre>@ (DENS(J)-RHO(M))/SIG1(J)</pre>	READ	209
DDENS = DENS(J) - DENSOLD	READ	210
IF (ITRY .LT. 20) GO TO 400	READ	211
WRITE (6,1349) NL, J, GEOEST, SIG1(J), RHO(M), DENS(J)	READ	212
STOP 'READIT, 424'	READ	213
425 CELMAS(J) = SPL*DENS(J)	READ	214
RMECH(J) = SIG1(J)	READ	215
ALPHA(J) = 1.	READ	216
MAT(J) = M	READ	217
TENSIL(J) = TENSN(M)	READ	218
DENSLST = DENS(J)	READ	219
GEOSTR = GEOSTR+CELMAS (J) *GACC	READ	220
540 IF (NVAR(M) .EQ. 0) GO TO 550	READ	221
LVAR(J) = LVMAX		222
LVMAX = LVMAX+NVAR(M)		223
550 WRITE (6,1542) J,X(J),SPL,DENS(J),SIG1(J),CELMAS(J),TENSIL(J),		224
330 WRITE (0,1342) 0, A(0), SEL, DENS (0), STOT (0), CHERRIC (0), TEROTE (0),		225

	550	WRITE (6,1542) J,X(J), SPL, DENS(J), SIGI(J), CELIMAS(J), IENSIE(J),	TUDI ID	
	ana ang	MAT (J), NAME (M), LVAR (J), ITRY	READ	
1	542	FORMAT (I5, 1P2E11.3, 0PF11.6, 1P3E11.3, I3, 2X, A6, I5, I4)	READ	226
	512	END LOOP OVER EACH J WITHIN A LAYER	READ	227
	560	CONTINUE	READ	228
	500	SPL = SP(1)	READ	229
		X(NLST+2) = X(NLST+1)	READ	230
		MAT(NLST+1) = 0	READ	231
~		END LOOP OVER EACH LAYER	READ	232
-	600	CONTINUE	READ	233
	600	NLAST (NLAYRS) = NLAST (NLAYRS) +1	READ	234
		N = LAST	READ	235
		CELMAS(N) = CELMAS(N-1)	READ	236
		RMECH(N) = RMECH(N-1) + CELMAS(N) * GACC	READ	237
		WRITE $(6, 1603)$ N, RMECH(N)	READ	238
		FORMAT (' LAST NODE N, RMECH(N) =', 15, 1PE12.5)	READ	239
	.603	FORMAT (. LAST NODE N/IGHOUT (, LOT	READ	240
С			READ	241
		WRITE (6,4101) BETA	READ	242
		DO 610 NL=1, NLAYRS	READ	243
		J = NFIRST(NL)	READ	244
		M = MAT(J)	READ	245
		JEND = NLAST(NL) + 1	READ	246
		DB = X (JEND) / 12. / DISTCAL	READ	247
		SPL = (X(J+1) - X(J)) / DISTCAL	READ	248
		TENS = TENSN(M)/PRESCAL		

	WRITE (6,4102) NL, NFIRST (NL), JEND, DB, GAM (M), DAMPL (M),	READ 249
	@ SPL, TENS	READ 250
61	0 CONTINUE	READ 251
С		READ 252
С	SPATIAL ATTENUATION FACTORS	READ 253
С		READ 254
1.2.4	IF (MATTEN .LE. 1) GO TO 720	READ 255
C *		READ 256
	READ $(5, *)$ (ALPHA(I), I=1, N)	READ 257
	DO 700 I = 1, N	READ 258
7	00 CELMAS(I) = CELMAS(I)/ALPHA(I)	READ 259
	WRITE (6,4202) (ALPHA(I), I=1, N)	READ 260
-	***************************************	READ 201
C_	READ IN THE FORCE HISTORY	READ 262
7	20 IF (NFORCE .LE. 0) GO TO 750	READ 263
	WRITE (6,1720) BETA	READ 264
	READ (5,*) (THIST(I), PHIST(I), I=1, NFORCE)	READ 265
1	WRITE (6,1004) (THIST(I), PHIST(I), I=1, NFORCE)	READ 266
С		READ 267
C	COMPUTE PROPERTIES AT EACH NODE	READ 268
C _		READ 269
	750 CONTINUE	READ 270
С		READ 271
С	DETERMINE FOR WHICH CELLS OUTPUT IS REQUIRED	READ 272
С		READ 273
	WRITE (6,4600)	READ 274
	DO 860 $L = 1$, NNODE	READ 275
	DEPTH = DEP(L) * 12.*DISTCAL	READ 276
	DO 840 $J = 2, N$	READ 277
	IF (DEPTH .GT. X(J)) GO TO 840	READ 278
	NOUT(L) = $J-1$	READ 279
	IF $(MAT(J-1) . EQ. 0)$ NOUT(L) = J-2	READ 280
	GO TO 850	READ 281
	340 CONTINUE	READ 282
	350 WRITE (6,4601) DEP(L),NOUT(L)	READ 283
8	360 CONTINUE	READ 284
С		READ 285
C	OUTPUT NODAL PROPERTIES	READ 286

3	C OUTPUT NODAL PROPERTIES	READ	286
	C	READ	287
	RETURN	READ	288
j	C	READ	289
	C FORMAT STATEMENTS	READ	290
- ()	C	READ	291
	1000 FORMAT (1H1 // 9X,41H ONED: A ONE-DIMENSIONAL WAVE PROPAGATION,	READ	292
	@ 49H SOLUTION IN PIECEWISE LINEAR HYSTERETIC MATERIAL //)	READ	293
	1001 FORMAT (15,1X,12A6)	READ	294
	1002 FORMAT (10X, 12A6)	READ	295
	1003 FORMAT (/9X, 15H PROBLEM NUMBER, I5 //)	READ	296
	1004 FORMAT (5(7X, 4HTIME, 6X, 5HPRESS)/(1P10E11.3))	READ	297
	1005 FORMAT (// 9X, 22H COMPUTATION CONTROLS /)	READ	298
	1006 FORMAT (9X, 10H NOCOMP =, 15, 7X, 31H PLOT AT COMPUTED SCALE FACTORS)	READ	299
	1007 FORMAT (9X,10H NOCOMP =, 15,7X,30H PLOT AT INPUT SCALE FACTORS /	READ	300
	<pre>@ 29X,46H USE SCRATCH TAPE (CALCULATIONS NOT REQUIRED))</pre>	READ	301
	1008 FORMAT (12A6)	READ	302
	1011 FORMAT (9X,10H LB =, 15,7X,24H RIGID BOTTOM BOUNDARY)	READ	303
	1012 FORMAT (9X,10H LB =, 15,7X,26H INFINITE BOTTOM BOUNDARY)	READ	304
	1014 FORMAT (9X,10H TEND =,1PE12.3,27H END OF PROBLEM TIME (SEC) ,	READ	305
	<pre>@ /9X,10H NSTOP =, I5,7X,24H TOTAL NUMBER OF STEPS)</pre>	READ	306
	1015 FORMAT (9X,10H GACC =,1PE12.3,20H ACC OF GRAVITY FOR ,	READ	307
	@ 16HGEOSTATIC EFFECT)	READ	308
	1020 FORMAT (//// 9X,16H INPUT CONTROLS /)	READ	309
	1021 FORMAT (9X,10H NLAYRS =, I5,7X,18H NUMBER OF LAYERS)	READ	310

1022 FORMAT (9X, 10H MISP =, I5, 7X, 30H SPACING CONST W/IN EACH LAYER) READ 311 1023 FORMAT (9X, 10H MISP =, I5, 7X, 30H SPACING VARIABLE - MUST INPUT) READ 312 1024 FORMAT (9X, 10H MISP =, 15, 7X, 26H SPACING COMPUTED FOR EACH, READ 313 @ 8H LAYER. , 12, 18H SPACES PER LAYER READ 314 1025 FORMAT (9X,10H MATTEN =, I5, 7X, 28H ALPHA(I) = 1 FOR EVERY NODE) READ 315 1028 FORMAT (9X, 10H MATTEN =, I5, 7X, 30H ALPHA(I) IS INPUT FOR EA NODE) READ 316 1029 FORMAT (9X, 10H NMTRLS =, 15, 7X, 20H NUMBER OF MATERIALS/ READ 317 0 9X,10H NFORCE =, 15,7X,29H NUMBER OF PRESSURE-TIME PTS.) READ 318 1031 FORMAT (//// 9X, 17H OUTPUT CONTROLS /) READ 319 1032 FORMAT (9X, 15H KNTROL1 = 0, 7X, 10H NO PLOTS) READ 320 1033 FORMAT (9X,7H KNTROL, I1, 2H =, I5, 8X, 20HSTRESS - TIME PLOT) READ 321 1035 FORMAT (9X, 7H KNTROL, I1, 2H =, I5, 8X, 24HACCELERATION - TIME PLOT) READ 322 1036 FORMAT (9X, 7H KNTROL, I1, 2H =, I5, 8X, 24HPART. VEL. - TIME PLOT) READ 323 1037 FORMAT (9X, 7H KNTROL, I1, 2H =, I5, 8X, 24HDISPLACEMENT - TIME PLOT) READ 324 1038 FORMAT (9X, 7H KNTROL, I1, 2H =, I5, 8X, 24HSTRAIN - TIME PLOT) READ 325 1039 FORMAT (9X, 7H KNTROL, I1, 2H =, I5, 8X, 24HIMPULSE - TIME) READ 326 1040 FORMAT (9X, 7H KNTROL, I1, 2H =, I5, 8X, 24HAVG STRAIN - TIME PLOT) READ 327 1042 FORMAT (9X,10H NHIST =, 15,7X,27H GROUND MOTIONS NOT PRINTED) READ 328 1043 FORMAT (9X, 10H NHIST =, 15, 7X, 29H GROUND MOTIONS PRINTED EVERY, READ 329 @ 25H 'NHIST' TIME INCREMENTS) **READ 330** 1044 FORMAT (9X, 10H MVT =, 15, 7X, 24H MAX VALUE TABLE PRINTED) **READ 331** 1045 FORMAT (9X, 10H MVT =, 15, 7X, 28H MAX VALUE TABLE NOT PRINTED) READ 332 1046 FORMAT (9X, 10H NNODE =, I5, 7X, 24H NUMBER OF OUTPUT NODES) READ 333 READ 334 1048 FORMAT (/// 9X,19H SCALE FACTORS ARE ,7F10.1) 1060 FORMAT (9X, 10H NOCOMP =, 15, 7X, 28H PLOT AT INPUT SCALE FACTORS) READ 335 1153 FORMAT (9X, 10H TNDPLT =, F9.4, 3X, 24H END OF PLOT TIME (SEC)) READ 336 =, I5, 7X, 27H OUTPUT PARTICLE VELOCITIES, READ 337 1154 FORMAT (9X, 10H KVEL **READ 338** @ 3H IN, A4, 4H/SEC) READ 339 1158 FORMAT (//10X, ' MATERIAL NUMBER ', 13/ READ 340 @ ' MATERIAL IS ', A8, ' DENS=', F10.5,' DAMPL, Q=', 1P2E10.3, READ 341 @ 'TENSN=',E10.3,' NPOR=',I2,' NPR=',I2,' NSOL=',I2,' NVAR='I2) READ 342 1160 FORMAT (' SHMOD=', 1PE10.3,' YIELD=', E10.3,' TANPHI=', E10.3) 1349 FORMAT (' STOP IN READIT, UNABLE TO INITIALIZE AT GEOSTATIC ', READ 343 READ 344 @ 'STRESS',/' NL, J=', 2I4,' GEOEST, SIG1=', 1P2E10.3,' RHO, DENS=', READ 345 @ 2E12.5) READ 346 C READ 347 FORCE HISTORY ON FIRST NODE') 1720 FORMAT (//10X,12A6/' READ 348 4101 FORMAT (1H1, 12A6, READ 349 @ /30X,18H LAYER PROPERTIES ///4X,5HLAYER,24X,6HBOTTOM, @ 5X, 5HGAMMA, 5X, 15HPCRIT SPACING, 3X, 7HTENSION/9H NUMBER, 9X, READ 350 @ 5HNODES,12X,4H(FT),6X,5H(PCF),5X,5H(%),5X,4H(IN),5X,5H(PSI)//)READ 351 READ 352 4102 FORMAT (5X, 12, 9X, 13, 3H - , 13, 4X, F10.4, 2F10.2, F10.4, E11.3) READ 353 4103 FORMAT (//4X, 5HLAYER, 18X, 26H LOADING MODULI (PSI), 28X, 28H UNLOADING MODULI (PSI) /3X, 6HNUMBER, 6X, 3H1ST, 7X, 3H2ND, READ 354 ß 7X, 3H3RD, 7X, 3H4TH, 7X, 3H5TH, 7X, 3H6TH, 12X, 3H1ST, 7X, 3H2ND, 7X, 3HERD, READ 355 0 READ 356 @ 7X, 3H4TH/) READ 357 4104 FORMAT (5X, 12, 3X, 6F10.1, 5X, 4F10.1) 4105 FORMAT (//4X, 5HLAYER, 5X, 41HSTRAINS AT KNEES OF LOADING CURVES (% READ 358 0 ,15X,43H% OF MAX STRESS AT KNEES OF UNLOADING CURVE /3X, **READ 359** @ 6HNUMBER, 6X, 3H1ST, 7X, 3H2ND, 7X, 3H3RD, 7X, 3H4TH, 7X, 3H5TH, 22X, 3H2ND, READ 360 **READ 361** @ 7X, 3H3RD, 7X, 3H4TH /) READ 362 4106 FORMAT (5X, 12, 3X, 5F10.3, 15X, 3F10.3) 4202 FORMAT (/// 40X, 30H SPATIAL ATTENUATION FACTORS//(10X, 10F10.4)) READ 363 4600 FORMAT (///10X,18H OUTPUT DESIRED AT /5X,9HDEPTH(ft),13X,4HNODE /)READ 364 READ 365 4601 FORMAT (2X, F10.4, 13X, 15) READ 366 END

SUBROUTINE SSONED (LS, J, N, M, D, DOLD, P, EMAX, TENSIL, PMAX,	SSID	1
@ SPEED2)	SS1D	2
IMPLICIT REAL*8(A-H,O-Z)	SS1D	3
C ADAPTATION OF STANDARD VARIABLE MODULUS MODEL USED AT WES	SS1D	4
C EXPANDED FOR MULTI-DIMENSIONAL PROBLEMS	SS1D	5
C DEFINITION OF NTYPE FOR TREATMENT OF UNLOADING PROCESSES	SS1D	6
C NTYPE = 1, UNLOADING CURVE TRANSLATES, MODULI AND STRESS ARE	SS1D	7
C UNCHANGED.	SS1D	8
C NTYPE = 2, UNLOADING CURVE IS MODIFIED IN PROPORTION TO THE	SS1D	9
C PEAK STRESS REACHED, MODULI ARE UNCHANGED.	SS1D	10
C NTYPE = 3, UNLOADING CURVE IS MODIFIED IN PROPORTION TO THE	SS1D	11
C PEAK STRESS REACHED, STRAIN INCREMENTS ARE UNCHANGED.	SS1D	12
C EL(I,M) PERTAINS TO THE STRAIN INTERVAL FROM I TO I+1.	SS1D	13
DIMENSION EL(10,6), FL(10,6), SL(10,6), RHOS(6), KPEAK(6), KFIN(6)	SS1D	14
DIMENSION MTRANS(6), NTYPE(6), DORSTR(10), PORMOD(10)	SS1D	15
DATA MAT/0/	SS1D	16
DATA PRESCAL/6.8948E4/	SS1D	17
CHARACTER*4 LPRESS, LDENS	SS1D	18
C	SS1D	19
C ***** INITIALIZATION *******	SS1D	20
NPRNT = 1	SS1D	21
IF (LS .GT. 0) GO TO 100	SS1D	22
MAT = MAT+1		23
MTRANS(M) = MAT	SS1D	24
RHOS(MAT) = D	SS1D	25
READ (5,*) KFIN(MAT), NTYPE(MAT), LPRESS, LDENS, PUNIT, DUNIT	SS1D	26
KFINM = KFIN(MAT)		27
IP = 0		28
ID = 0		29
IF (LPRESS.EQ.'PRES' .OR. LPRESS.EQ.'PRE' .OR. LPRESS.EQ.'PR'		30
(0.0R. LPRESS .EQ. 'P') IP = 1		31
IF (LDENS.EQ.'PRES' .OR. LDENS.EQ.'PRE' .OR. LDENS.EQ.'PR'	SS1D	32
(0.0R. LDENS . EQ. 'P') IP = 1	SS1D	33
IF (LPRESS.EQ.'DENS' .OR. LPRESS.EQ.'DEN' .OR. LPRESS.EQ.'DE'	SS1D	34
0 .OR. LPRESS .EQ. 'D') ID = 1	SS1D	35
IF (LDENS.EQ.'DENS' .OR. LDENS.EQ.'DEN' .OR. LDENS.EQ.'DE'	SS1D	36
(LDENS.EQ. DENS .OR. LDENS.EQ. DEN .OR. LDENS.EQ. DE 0 .OR. LDENS .EQ. 'D') ID = 1	SS1D	37
IF (IP .EQ. 1) LPRESS = 'PRES'	SS1D	38
IF (IP .EQ. 1) LPRESS - PRES IF (ID .EO. 1) LDENS = 'DENS'	SS1D	

IF (ID .EQ. 1) LDENS = 'DENS'	SS1D	39
IF (PUNIT .EQ. 0.) PUNIT = PRESCAL	SS1D	40
IF (DUNIT .EQ. 0.) $DUNIT = 1$.	SS1D	41
WRITE (6,1001) KFINM, NTYPE (MAT), LPRESS, LDENS, PUNIT, DUNIT, MAT, S	SS1D	42
@ RHOS (MAT) S	SS1D	43
KMAX = KFINM	SS1D	44
IF (LPRESS .EQ. 'PRES') KMAX = KFINM-1	SS1D	45
READ (5, *) (PORMOD(I), I=1, KMAX) S	SS1D	46
WRITE (6,1005) (PORMOD(I), I=1, KMAX)	SS1D	47
READ (5, *) (DORSTR(I), I=2, KFINM) S	SS1D	48
WRITE (6,1005) (DORSTR(I), I=2, KFINM)	SS1D	49
FL(1,MAT) = 0.	SS1D	50
DORSTR(1) = RHOS(MAT)	SS1D	51
DO 30 I = 1, KFINM S	SS1D	52
EL(I, MAT) = PORMOD(I)	SS1D	53
	SS1D	54
FL(I, MAT) = PORMOD(I-1)	SS1D	55
SL(I,MAT) = DORSTR(I) *DUNIT	SS1D	56
IF (LDENS .EQ. 'DENS') SL(I,MAT) = (DORSTR(I) *DUNIT/RHOS(MAT)-1.)*S	SS1D	57
0 100. S	SS1D	58
DORSTR(I) = RHOS(MAT) * (0.01 * SL(I, MAT) + 1.)	SS1D	59
IF (LPRESS .NE. 'PRES')	SS1D	60
$P_{I}(I, MAT) = FL(I-1, MAT) + EL(I-1, MAT) * (SL(I, MAT) - SL(I-1, MAT)) / 100.5$	SS1D	61
IF (SL(I,MAT) .LT. SL(I-1,MAT) .AND. KPEAK(MAT) .EO. 0)	SS1D	62

(KPEAK(MAT) = I - 1			
		SS1D	
C = L(I-1, MAT) = (FL(I, MAT) - FL(I-1, MAT)) / (SL(I, MAT))	(T) CT (T 1 MATT))	SS1D	64
@ *100.	(1) - SL(1-1, MAI))	SS1D SS1D	65 66
30 CONTINUE		SS1D	
C CALIBRATE MODULI AND PRESSURES ON THE HYDROST	TAT (TO DYN/CM2)	SS1D	68
DO 55 I = 1, KFINM		SS1D	69
EL(I, MAT) = EL(I, MAT) * PUNIT		SS1D	70
FL(I, MAT) = FL(I, MAT) * PUNIT		SS1D	71
55 CONTINUE		SS1D	72
C PUT PRESSURES AND MODULI IN PSI UNITS		SS1D	73
DO 60 I = 1, KFINM EL (I MAT) - EL (I MAT) (DDECCAL		SS1D	74
EL(I,MAT) = EL(I,MAT)/PRESCAL 60 FL(I,MAT) = FL(I,MAT)/PRESCAL		SS1D SS1D	75 76
C PRINT THE SET OF STRAINS, DENSITIES, PRESSUR	ES. AND MODILLT	SSID	77
WRITE (6,1040) M, (I, I=1, KFINM)	LO, MID MODULI	SS1D	78
WRITE (6,1045) (SL(I,MAT), I=1, KFINM)		SS1D	79
WRITE (6,1060) (DORSTR(I), I=1, KFINM)		SS1D	80
WRITE (6,1050) (FL(I,MAT), I=1, KFINM)		SS1D	81
WRITE (6,1055) (EL(I,MAT), I=1, KFINM)		SS1D	82
C PUT PRESSURES AND MODULI BACK INTO DYN/CM2		SS1D	83
DO 65 I = 1, KFINM		SS1D SS1D	84 85
EL(I, MAT) = EL(I, MAT) * PRESCAL		SS1D SS1D	86
FL(I,MAT) = FL(I,MAT) * PRESCAL 65 $SL(I,MAT) = SL(I,MAT) * 0.01$		SS1D	87
SPEED2 = EL(1, MAT) / RHOS(MAT)		SS1D	88
1001 FORMAT (' KFIN=', I3,' NTYPE=', I3,' LPRESS= ', A4		SS1D	89
@ ' LDENS= ', A4, ' PUNIT=', 1PE12.5, ' DUNIT=', E12		SS1D	90
@ ' MAT=', I3, ' RHOS=', 1PE12.5, ' FROM -SSONED-')		SS1D	91
1005 FORMAT (3X, 1P8E10.3)		SS1D	92
1040 FORMAT (6X,8H MAT'L =, I2,9X,26(1H-),23H LOADING	G AND UNLOADING ,	SS1D	93
Q = 26(1H-)/6X, 9H PT = , 6X, 10I10)		SS1D SS1D	2000
1045 FORMAT (6X,13H STRAIN (%) =,10F10.4)		SS1D	
1050 FORMAT (6X,13H PRESS(PSI) =,1P10E10.3) 1055 FORMAT (6X,15H MODULI (PSI) =,3X,1P10E10.3)		SS1D	
1055 FORMAT (6X, 15H MODOLI (PS1) $-, 5X, 1210E10.5$) 1060 FORMAT (6X, 13H DENS(G/CM3)=, 10F10.6)		SS1D	
RETURN		SS1D	99
C ******	*****	SS1D	100
C COMPUTE PRESSURE		SS1D	
C ******	****	SS1D	
100 MAT = MTRANS (M)			103
NPRNT = 1			104
KLOAD = 0			105
KFINM = KFIN(MAT)			100
KPEKM = KPEAK(MAT)			108
KPEKP1 = KPEAK(MAT) + 1		Party and a start	109
KPEKM2 = KPEAK(MAT) - 2		SS1D) 110
KFINM1 = KFINM-1		SSIE) 111
POLD = P EPS = D/RHOS(MAT) - 1.) 112
IF (EPS .LT. EMAX) GO TO 190) 113
C ******	****	and a second second second	0 114
C VIRGIN LOADING CURVE) 115) 116
DO 120 IL = $1, KPEKM2$) 117
IF (EPS .LT. SL(IL+1, MAT)) GO TO 150			0 118
120 CONTINUE			0 119
IL = KPEKM-1			0 120
EMAX = EPS			121
150 $P = FL(IL, MAT) + EL(IL, MAT) * (EPS-SL(IL, MAT))$		SS1	122
PMAX = MAX(P, PMAX)			0 123
EMAX = MAX (EMAX, EPS)		SS1	0 124
STFACT = 1.			

	KLOAD = 1	SS1D 125
С	*****	SS1D 126
С	UNLOADING AND RELOADING ROUTE (AND SOUND SPEED^2 FOR ALL CASES)	
	190 GO TO (200,250,300) NTYPE (MAT)	SS1D 128
С	PSEUDO STRAIN FOR TYPE 1 UNLOADING - TYPE 1 -	SS1D 129
	200 DO 210 IP = KPEKP1, KFINM	SS1D 130
	IF (PMAX .GE. FL(IP, MAT)) GO TO 220	SS1D 131
	210 CONTINUE	SS1D 132
	IP = KFINM+1	SS1D 133
	220 CONTINUE	SS1D 134
	DEPSH = -(FL(IP-1, MAT) - PMAX) / EL(IP-1, MAT) - EMAX + SL(IP-1, MAT)	SS1D 135
	EPSUDO = EPS+DEPSH	SS1D 136
	GO TO 350	SS1D 137
С	PSEUDO STRAIN FOR TYPE 2 UNLOADING - TYPE 2 -	SS1D 138
	250 EPSUDO = EPS	SS1D 139
	IF (PMAX .GT. 0.)	SS1D 140
	<pre>@ EPSUDO = SL(KPEKM, MAT) +FL(KPEKM, MAT) /PMAX*(EPS-EMAX)</pre>	SS1D 141
	GO TO 350	SS1D 142
С	PSEUDO STRAIN FOR TYPE 3 UNLOADING - TYPE 3 -	SS1D 143
	300 EPSUDO = SL(KPEKM, MAT) + EPS-EMAX	SS1D 144
	STFACT = PMAX/FL(KPEKM, MAT)	SS1D 145
С	COMMON ROUTE FOR PRESSURE AND SOUND SPEED SQUARED	SS1D 146
	350 DO 360 I = KPEKM, KFINM1	SS1D 147
	IF (EPSUDO .GT. SL(I+1,MAT)) GO TO 380	SS1D 148
	360 CONTINUE	SS1D 149
	I = KFINM	SS1D 150
	380 IF (KLOAD .EQ. 0) $P = (FL(I, MAT) + EL(I, MAT) * (EPSUDO-SL(I, MAT))) *$	SS1D 151
	@ STFACT	SS1D 152
	SPEED2 = EL(I, MAT)/D	SS1D 153
	IF (ABS(D-DOLD) .GT. 1.E-6) SPEED2 = $(P-POLD)/(D-DOLD)$	SS1D 154
	IF (SPEED2 .GT. 0.) GO TO 385	SS1D 155
С	WRITE (6,1390) J,N,KLOAD,I,SPEED2,P,POLD,D,DOLD	SS1D 156
С	1390 FORMAT (' J,N=',2I4,' K,I=',2I3,' SP=',1PE10.3,' P,PO=',2E10.3,	SS1D 157
С	. @ ' D,DO=',2E12.5)	SS1D 158
	SPEED2 = EL(I, MAT)/D	SS1D 159
	GO TO 387	SS1D 160
	385 IF (NPRNT .EQ. 0) GO TO 390	SS1D 161
	387 CONTINUE	SS1D 162

	387 CONTINUE	SS1D	162
С	IF (KLOAD .GT. 0) WRITE (6,1153) J,N,I,IL,MAT,D,EPS,EMAX,P,PMAX,	SS1D	163
С	@ SPEED2	SS1D	164
С	IF (KLOAD .EQ. 0) WRITE (6,1382) J,N,I,MAT,D,EPS,EMAX,EPSUDO,P,	SS1D	165
С	@ PMAX, SPEED2	SS1D	166
	390 IF (P.GT. TENSIL) RETURN	SS1D	167
	400 P = TENSIL	SS1D	168
	SPEED2 = EL(KFINM, MAT)/D	SS1D	169
	RETURN	SS1D	170
С	1153 FORMAT (' SS J,N,I,IL,MAT=',514,' D=',1PE12.5,' E,EMAX=',1P2E10.	3SS1D	171
С	@ ' P,PMAX=',2E10.3,' SP=',E10.3)	SS1D	172
С	1382 FORMAT (' SS-UN J,N,I,MAT=',4I4,' D=',1PE12.5,' E,EMAX,ESUD=',	SS1D	173
С	@ 3E10.3,' P,PMAX=',2E10.3,' SP=',E10.3)	SS1D	174
	END	SS1D	175

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

Director Defense Nuclear Agency ATTN: SPST (Dr. K. L. Goering) SPST (Mr. C. B. McFarland) SPST (CPT M. A. Reed) SPST (Dr. C. Canada) SPST (Dr. C. Canada) SPST (MAJ M. Pelkey) Technical Library Washington, DC 20305-1000

Director

Defense Advanced Research Project Agency ATTN: Technical Library 1400 Wilson Blvd. Arlington, VA 22209

Director

Defense Intelligence Agency ATTN: Technical Library Washington, DC 20301

Defense Technical Information Center Cameron Station ATTN: TC (2 cys) Alexandria, VA 22314

DEPARTMENT OF THE ARMY

Commander

US Army Corps of Engineers ATTN: CERD-L (Ms. Sharon Vannucci) CERD-M (Mr. B. O. Benn) CEEC-ET (Mr. R. L. Wight) CEIM-SL Washington, DC 20314

Division Engineer US Army Engineer Division, Huntsville ATTN: Technical Library P. O. Box 1600, West Station Huntsville, AL 35807 Commandant US Army Engineer School ATTN: Technical Library Ft. Belvoir, VA 22060

Commander US Army Laboratory Command ATTN: Technical Library 2800 Powder Mill Road Adelphi, MD 20783-1145

Director

US Army Ballistic Research Laboratory ATTN: Technical Library Aberdeen Proving Ground, MD 21005

Commander

US Army Nuclear and Chemical Agency ATTN: Technical Library 7500 Backlick Road, Bldg. 2073 Springfield, VA 22150

DEPARTMENT OF THE NAVY

Naval Civil Engineering Laboratory ATTN: Technical Library Port Hueneme, CA 93043

Naval Facilities Engineering Command ATTN: Technical Library 200 Stovall Street Alexandria, VA 22332

DEPARTMENT OF THE AIR FORCE

Air Force Institute of Technology Air University ATTN: Technical Library Wright-Patterson Air Force Base, OH 45433

District Engineer US Army Engineer District, Omaha ATTN: CEMRO-ED-S (Mr. Bob Kelly) CEMRO-ED-SH (Mr. Bill Gaub) 215 N. 17th Street Omaha, NE 68102-4978

Director

US Army Construction Engineering Research Laboratory ATTN: Technical Library P. O. Box 4005 Champaign, IL 61820

Commander/Director US Army Cold Regions Research and Engineering Laboratory ATTN: Technical Library P. O. Box 282 Hanover, NH 03755 Air Force Office of Scientific Research ATTN: Technical Library Bolling Air Force Base, DC 20332

Air Force Weapons Laboratory (AFSC) ATTN: NTE (Dr. M. A. Plamondon) NTEDE (Mr. J. N. Thomas NTESG (CPT C. W. Felice) NTEDE (Mr. J. Renick) Technical Library Kirtland Air Force Base, NM 87117

Air Force Engineering and Services Center (AFSC) ATTN: Technical Library Tyndall Air Force Base, FL 32403

Air Force Armament Laboratory (AFCS) ATTN: Technical Library Eglin Air Force Base, FL 32542

Commander

Ballistic Missile Office (AFSC) ATTN: ENFP (1LT R. M. Coleman) MYEB (LTC D. H. Gage) Technical Library Norton Air Force Base, CA 92409

DISTRIBUTION LIST (CONTINUED)

DEPARTMENT OF ENERGY

Lawrence Livermore National Laboratory ATTN: Technical Library P. O. Box 808 Livermore, CA 94550

Los Alamos National Laboratory ATTN: Technical Library P. O. Box 1663 Los Alamos, NM 87545

Sandia National Laboratories ATTN: Technical Library P. O. Box 5800 Albuquerque, NM 87185

Sandia National Laboratories ATTN: Technical Library Livermore, CA 94550

DEPARTMENT OF DEFENSE CONTRACTORS

Mr. J. L. Bratton Applied Research Associates, Inc. 4300 San Mateo Blvd., NE, Suite A220 Albuquerque, NM 87110

Mr. J. D. Shinn Applied Research Associates, Inc. South Royalton, VT 05068

Mr. J. L. Drake Applied Research Associates, Inc. 1204 Openwood Street Vicksburg, MS 39180-2610

Dr. J. G. Trulio Applied Theory, Inc. 930 S. LaBrea Avenue Los Angeles, CA 90036 Technical Library New Mexico Engineering Research Institute University of New Mexico Box 25, University Station Albuquerque, NM 87131

Dr. R. T. Allen Pacifica Technology P. O. Box 148 Del Mar, CA 92014

Mr. J. G. Lewis R&D Associates P. O. Box 9695 Marina del Rey, CA 90291

Technical Library R&D Associates 6940 S. Kings Highway, Suite 210 Alexandria, VA 22310

Technical Library Science Applications International Corporation P. O. Box 2351 La Jolla, CA 92038-2351

Dr. P. L. Coleman Technical Library S-Cubed P. O. Box 1620 La Jolla, CA 92038-1620

Dr. Lynn Seaman (10 cys) Dr. D. R. Curran Dr. J. D. Colton SRI International 333 Ravenswood Avenue Menlo Park, CA 94025

Technical Library

Technical Library Boeing Aerospace Company P. O. Box 3999 Seattle, WA 98124

Technical Library California Research & Technology, Inc. 20943 Devonshire Street Chatsworth, CA 91311-2376

Dr. D. L. Orphal California Research & Technology, Inc. 5117 Johnson Drive Pleasanton, CA 94566-3343

Dr. E. J. Rinehart California Research & Technology, Inc. 2017 Yale Blvd., SE Albuquerque, NM 87106

Mr. John Karagozian Karagozian and Case Structural Engineers 1100 Fair Oaks Avenue South Pasadena, CA 91030-3312 Terra Tek, Inc. 420 Wakara Way Salt Lake City, UT 84108

Mr. N. Lipner Dr. M. G. Katona Dr. R. J. Hoar TRW Defense Systems Group P. O. Box 1310 San Bernardino, CA 92402

Dr. D. J. Ness, Bldg. 134/Rm 9835 TRW Defense and Space Systems Group One Space Park Redondo Beach, CA 90278

Dr. I. S. Sandler Weidlinger Associates 333 Seventh Avenue New York, NY 10001

Dr. J. Isenberg Weidinger Associates 620 Hansen Way, Suite 100 Palo Alto, CA 94304