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CHAPTER I 

INTRODUCTION 

Background and Objective 

In the last few decades, the Department of Defense has developed a 

keen interest in the measurement of explosive phenomena. With recent 

advances in strain gage technology, signal recording, and other related 

fields, it has become possible to measure the loads and stresses 

produced by a wide variety of weapons. Previously, it was known that 

Bomb X produced a certain amount of damage to a particular target. If 

any of the parameters were to change, however, such as using different 

bombs or hardening the target, only an educated guess could be made 

regarding the change in the vulnerability of the target. Obtaining a 

better answer normally meant constructing more targets and conducting 

more tests. Such a procedure is dangerously slow and painfully 

expensive in this age of rapid technological advances. It was 

eventually realized, and correctly so, that test results must be 

analyzed sufficiently not only to indicate how much damage Bomb X 

produces, but how and why it produced the damage that it did. With 

this knowledge, better judgements can be made regarding the target's 

vulnerability under different conditions, with fewer tests and less 

risk required. 

1 
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Numerous examples of this approach can be given. Airblast 

measurements are obtained at various distances from developmental 

munitions to define their effectiveness in imparting blast pressure. 

Hardened structures, such as fighting bunkers or missile silos, are 

instrumented with blast pressure gages and motion transducers to 

characterize their response when subjected to explosive loadings. 

Specially-configured charges, referred to as high explosive simulators, 

are used to subject such structures to loadings that are characteristic 

of those produced by nuclear explosions. These simulators are heavily 

instrumented with airblast, ground motion, and ground shock 

transducers, to evaluate the simulator's performance against the 

desired load conditions. The pressures and stresses that must be 

measured from high explosive tests such as these are very severe. The 

blast pressure wave form displayed in Figure 1 is a representative 

example. The peak pressure is approximately 173 MPa1 , the specific 

impulse is 0.57 MPa-sec, and the pressure has not completely returned 

to zero at the end of the plot. The severity of the environment, 

coupled with the transient nature of the measurement, places extremely 

difficult demands on the instruments used to obtain these measurements. 

One instrument often used for making high-pressure airblast 

measurements is the strain-gaged Hopkinson bar, or bar gage. The bar 

gage is a simple device, consisting of a strain-gaged, high-strength 

steel bar surrounded by a protective PVC jacket. One end of the steel 

bar is placed at the desired measurement location, where the pressure 

1A table of factors for converting SI (metric) units of measurement to Non
S! uni ts is presented on page viii . 
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pulse is applied. This pressure pulse propagates down the length of 

the bar as a stress wave with very little change of form. Figure 2 

describes the propagation of the stress wave and the corresponding 

strain gage output. When the stress wave is at position "A" in Figure 

2, there is no strain gage output, since the stress wave has yet to 

reach the strain gages. Once the stress pulse reaches them, however, 

the strain gages produce a voltage which is linearly related to the 

pressure input through a calibration factor. Eventually, the stress 

pulse reaches the opposite end of the bar, where most of the pulse is 

reflected back into the bar as a tensile stress wave. If the duration 

of the stress pulse is sufficiently short, the strain gages will 

completely record it before the tensile reflection arrives at the 

strain gage position. For most problems of interest however, the 

duration of the stress wave is long enough that the tensile reflection 

arrives before the strain gages have completely recorded the stress 

pulse. Consequently, the tensile stress wave travels from the bottom 

towards the top of the bar while the "tail" of the initial pressure 

pulse is still propagating downward from the top of the bar (Position 

"B", Figure 2). 

When the tensile reflection reaches the strain gage location, it 

masks the "tail" of the pressure wave form, effectively hiding the 

useful data. Such is the situation when the reflected stress wave is 

at Position "C", Figure 2. The reflected tensile stress wave will 

propagate up to the top of the bar and reflect a second time, but now 

as a compressive wave. When the compressive reflection reaches the 

strain gages, two reflections are superposed upon the data, as evident 
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at Position "0", Figure 2. Reflections will continue to propagate up 

and down the bar long after the initial pressure pulse is over, 

assuming the cables and strain gages remain undamaged. Due to the 

limitations of current data reduction techniques, only the data prior 

to the first tensile reflection is considered to be valid, and the 

subsequent reflections are discarded. 

6 

A technique of numerically "unfolding" the reflections to extend 

the valid record length was proposed by Welch in 1983 (Reference 1). A 

computer routine, based upon the D'Alembert solution to the basic wave 

equation governing wave propagation in a thin rod, was used by White 

(1985) to unfold several bar gage records (Reference 2). While the 

technique appeared promising, no opportunities for comparing unfolded 

bar gage records of a known input wave form occurred to establish the 

method's credibility. Meanwhile, critics pointed out potential flaws 

in the unfolding technique. In this thesis, an error analysis is 

performed on the D'Alembert unfolding technique. The objective is to 

ascertain the overall credibility of D'Alembert unfolding as a data 

reduction technique for bar gage measurements. 

Brief Historical Account 

Bar gages are not new arrivals to the field of dynamic 

measurement. As early as 1914, Hopkinson (Reference 3) reported the 

first use of a cylindrical bar to measure peak pressure, and hence, 

many bar gages to this date are referred to as Hopkinson bar gages. In 

Hopkinson's method, the pressure to be measured is applied to one end 

of the bar, while the magnitude of that pressure is deduced from the 



measurement of the momentum of a detachable timepiece at the opposite 

end of the bar. Pressure as a function of time is not obtainable with 

this technique (Reference 4). 

7 

Later in the century, electrical methods of strain and 

displacement measurement were applied to the Hopkinson bar gage to 

obtain pressure measurements as a function of time. Condensers and 

microphones were used in conjunction with analog recording devices to 

measure the longitudinal strains in the bar resulting from a dynamic 

pulse applied at the end. In some instances, the motion of one end of 

the bar was monitored to deduce the characteristics of the pressure 

pulse applied to the opposite end. The advent of small, wire strain 

gages permitted even finer measurements of the strain pulse propagating 

down the bar. Researchers such as Davies (Reference 4), Fox and Curtis 

(Reference 5), and Miklowitz (Reference 6) employed condenser and 

strain gage technology to study the detailed wave mechanics involved 

with the propagation of pulses in thin cylindrical bars. Their 

research revealed phenomena such as pulse distortion and vibrational 

modes of the bar, both of which apply to the use of the bar gage as an 

airblast measurement device. 

Baum, of the University of New Mexico Engineering Research 

Institute (NMERI), was one of the first to use strain-gaged bars to 

measure explosion effects. Specifically, he used bar gages to evaluate 

the performance of high explosive charges designed to simulate the 

dynamic load environments produced by nuclear explosions. Baum used 

foil strain gages attached to a high-strength steel bar, which was 

surrounded completely by a steel sleeve and a short water jacket near 
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the top of the bar (Reference 7). These added features were designed 

to contend with the ground shock and high-speed detonation products 

peculiar to high explosive simulators. Other groups, such as S-Cubed 

(La Jolla, CA) and the U.S. Army Engineer Waterways Experiment Station 

(WES), have produced bar gages similar to those of NMERI with good 

results. However, since some simulators and munitions have pulse 

durations on the order of many milliseconds, it has been impractical to 

design bar gages which measure for a sufficient length of time before 

the measurement becomes complicated by the arrival of tensile 

reflections from the bottom end of the bar gage . 

Research is currently underway to measure the late-time airblast 

histories which are masked by the reflections within the bar gage. One 

approach taken by S-Cubed is to create an end condition for the bar 

gage which will damp out all reflections (Reference 8). Another 

approach is to develop other gage types which will capture the late

time airblast data. The data from the bar gage could then be 

considered in tandem with that of the late-time airblast gage to "piece 

together" the airblast measurement. If numerical unfolding can be used 

to remove the reflections from the bar gage record, a very simple and 

direct remedy might be obtained for extending the bar gage record 

length. Even unfolding just one tensile and compressive reflection 

would more than double the record length, providing the analyst with 

valuable data that was previously unavailable. However, the 

practicality of such notions has been subject to debate, and hence, is 

addressed in this thesis. 
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Approach 

In order to unfold a bar gage record, the low-frequency wave 

speed, C0 , and the reflection coefficients for each end of the bar must 

be identified. The author contends that errors in identifying these 

parameters lead to considerable error in the unfolded result. Other 

error sources exist, such as dispersion and material nonlinearities, 

but these errors are thought to be less significant. Consequently, an 

effort is made in this thesis to quantify the uncertainties due to 

incorrect wave speed and reflection coefficients, while the other error 

sources are merely mentioned. Classical uncertainty analysis, as 

presented by Coleman and Steele (Reference 9), is adhered to as much as 

possible throughout the thesis. For the case of c 0 , classical 

uncertainty analysis proves difficult, so a numerical approach is 

employed to give insight into the errors resulting from incorrect wave 

speed. 

The WES bar gage is described in detail in Chapter 2. Its 

installation and operation is discussed to aid the reader in 

understanding how tensile reflections appear and disturb the 

measurement. In Chapter 3, the mathematics and theory pertaining to 

wave propagation in a bar gage, and the D'Alembert unfolding method, is 

presented. The assumptions and limitations of D'Alembert unfolding are 

also pointed out. An error analysis of the D'Alembert unfolding 

technique is conducted in Chapter 4. A numerical approach is used to 

determine the error due to the use of incorrect wave speed. An 

analytical solution is developed to determine the error caused by the 

use of incorrect reflection coefficients. These errors are then 
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combined to give the uncertainty in the unfolded wave form. The error 

• 
analysis is demonstrated using actual field data in Chapter 5. Bar 

gage records from an explosive test are analyzed and unfolded. The 

resulting unfolded wave forms are compared to those acquired by other 

gage types to draw conclusions about the performance of the bar gages. 

Lastly, the conclusions and recommendations of the thesis are discussed 

in Chapter 6. 



CHAPTER II 

BAR GAGE DESCRIPTION 

A detailed cross-section of a typical WES bar gage is shown in 

Figure 3. The heart of the instrument is a l-in. diameter, high

strength steel bar with four semiconductor strain gages installed in a 

full bridge configuration at a prescribed location down the length of 

the bar. The lengths of typical bar gages vary, depending on the 

measurements to be obtained, but typical lengths might range from 2 to 

7 meters. Correspondingly, strain gage locations typically range from 

0.6 to 2 meters from the top end of the bar. The steel bar is placed 

.inside a 3-in. diameter PVC pipe. The pipe serves to temporarily 

protect the bar from lateral loadings produced by the explosion, 

whether through airblast or ground shock. Under harsh loadings, the 

PVC pipe may fail, but generally not until after the measurement has 

been obtained. Wooden spacers center the bar within the PVC pipe. 

The bottom end (or dump end) of the bar gage rests on a stack of 

alternating disks of styrofoam and wood. This arrangement was chosen 

to simulate a free end condition at the dump end, causing almost all of 

the pressure pulse to be reflected back into the bar. This was thought 

to be the most advantageous situation for the subsequent unfolding of 

the wave form. It has since been suggested that other dump end support 

conditions would be better, and these are being considered for future 

11 
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testing. At the top end of the bar gage, the annulus between the stee l 

bar and the PVC pipe is left open, except for a small quantity of water 

added shortly before conducting the test. This annular column of 

water, extending from the top end of the bar to a short distance above 

the strain gages, is called the water jacket. 

The water jacket is an important part of the bar gage. Often , the 

top end (or measurement end) of the bar gage is placed in contact with , 

or very near, explosive charges. Detonation of the explosive produces 

very high-pressure, high-temperature gases. Early bar gage designs 

without water jackets suffered early failures from these high velocity 

gases propagating along the bar gage, destroying the strain gages and 

cables. To prevent this, the upper portion of the bar gage was 

surrounded with water, creating the "water jacket". While the water 

jacket has been very effective at increasing the survival times of bar 

gage measurements, its effect on bar gage measurements has not been 

quantified. 

Instrument cables are routed through a hole in the PVC pipe and 

back to a recording van, with care taken to ensure that they are not 

damaged by the explosive test. The instrument cables are often buried 

until they have extended a safe distance from the test area. Cable 

protection, such as rubber hose or steel tubing, is an option with bar 

gages, but has usually not been used because the length of the bar 

allows the attached cable to be buried at a considerable distance from 

the explosion, and thereby protected. 
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Installation 

Bar gages can be installed in a number of ways to obtain a 

meaningful measurement. However, the installation technique shown in 

Figure 4 is used most often, and offers some unique advantages. With 

this installation, the bar gage is buried in the soil test bed, with 

just the measurement end exposed to the explosive charge. This 

technique takes advantage of the differing wave speeds in the bar gage 

materials and the surrounding media. The blast pressure wave strikes 

the measurement end of the bar, the water jacket, and the surrounding 

soil at essentially the same time. The wave travels rapidly down the 

steel bar, since its low-frequency wave speed, c0 , is about 5090 m/s 

(16700 ft/s). The pressure pulse travels more slowly through the water 

jacket (about 1525 m/s), and slower yet through the soil (305 m/s to 

1525 m/s). As a result, any lateral inputs to the bar from the water 

jacket or the ground shock are delayed until after the initial arrival 

of the stress pulse at the strain gage position. If present, lateral 

inputs from these sources might then be more noticeable because of 

their delayed input into the bar. If the bar gage were simply placed 

in the free air near the charge, the wave speeds in the highly 

compressed air near the charge could be excessively high, destroying 

the acoustic delay effect and putting large lateral loads on the steel 

bar. 

Physically, the installation of Figure 4 is usually achieved by 

drilling a borehole or excavating a trench or pit and backfilling 

around the bar gages. Cables are usually routed through intersecting 

horizontal boreholes or cable trenches. This installation technique 
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Figure 4. Typical installation techniques for a bar gage. 
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is tailored for those tests where high pressures and long durations are 

expected. For other applications, simpler deployments may suffice. 

Design 

The installation technique depicted in Figure 4 provides some 

unique contributions toward good bar gage design. The length of the 

bar gage has been determined by the length of measurement desired. 

Often, the measurement desired is too long to obtain with a practical 

length of bar gage, in which case the longest practical bar gage is 

used (6 to 12m). The pulse duration recorded prior to the arrival of 

tensile reflections at the strain gage position is 

2 (L -x) 
2. 1 

co 

where L is the length of the bar 

x is the distance between the top of the bar and the strain 

gages 

C0 is the wave speed in the bar. 

As can be seen from Equation 2.1, the record length can be increased 

only • limited number of ways: 1n a 

1. Increase the bar length, L. 

2. Decrease the distance x. 

3. Eliminate the occurrence of reflections. 

4. Unfold the bar gage record, removing the reflections 

numerically. 
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As pointed out earlier, there are practical limits pertaining to the 

length of bar gage that can be successfully constructed and installed. 

Forty-foot long bar gages have been fielded, but only with limited 

success. Decreasing the distance from the top of the bar to the strain 

gages is limited due to the presence of the water jacket. Also, it is 

undesirable to place the strain gages less than 10 to 20 bar diameters 

from the measurement end (top) of the bar gage (Reference 5). 

Unfolding the bar gage record also holds promise, and successful 

unfolding could serve to relax some of the physical constraints on bar 

gage design. 

Choosing the position of the water jacket with respect to the 

strain gages is somewhat judgmental . The effects of the water jacket 

length depend upon the severity of the test and several other factors. 

In some severe cases, the spalling of the water jacket might damage the 

cables attached to the strain gages. Some bar gage designs have taken 

this into account, and have dimensioned the water jacket in such a way 

that spalled water cannot reach the strain gages until after the first 

tensile reflection has arrived at the strain gage position. Then, if 

the strain gages and cabling survive, the subsequent reflections can be 

unfolded. If the strain gages and cabling do not survive, then at 

least the portion of the record prior to the first tensile record will 

be obtained. 

Calibration and Recording 

Semiconductor strain gages are used on the WES bar gages because 

of their superior sensitivity, compared to foil strain gages. One 



18 

drawback of the semiconductor strain gage is the variability of the 

gage factors; i.e., manufacturer-stated values of the gage factors are 

only approximate. This is in contrast to foil strain gages, whose gage 

factors are known with confidence, permitting the sensitivity of the 

bar gage to be calculated. WES bar gages are calibrated to overcome 

this problem. 

The preferred method of calibration is the ball-drop calibration 

technique. A steel ball is dropped from a known height onto the end of 

the steel bar. Its rebound height is recorded on video tape, and then 

read from a scale in the field of view. Knowing the height of the ball 

drop, its rebound height, and the ball's mass, the impulse imparted to 

the bar can be obtained. The output from the bar gage is also 

recorded, and then integrated to obtain the impulse seen by the bar 

gage. When the electrical quantities (gains, excitation voltages, 

etc.) and the cross-sectional area of the bar gage are properly 

considered, the quotient of the two impulses defines the sensitivity 

level of the bar gage. Impulse hammers have also been used in similar 

fashion, and with good results, to input a known stress pulse to the 

bar gage. 

The electronics necessary to operate and record strain gage 

readings will, in general, operate bar gages sufficiently well. WES 

uses specially-designed amplifiers capable of balancing strain gage 

bridges which, due to installation difficulties, may be considerably 

out of balance. The amplifiers also allow easy implementation of shunt 

calibration techniques. In the past, recording of the signals was done 

with analog tape recorders. Tape recorders are still used, but digital 
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recorders are now being used whenever possible. Frequency response 

must be adequate throughout the signal conditioning and recording 

system to capture the rise times and peak values of the blast pressures 

anticipated. 



CHAPTER Ill 

THE D'ALEMBERT UNFOLDING TECHNIQUE 

The D'Alernbert Solution to the Wave Equation 

Several simple solutions, approximate solutions, and algorithm

based classical wave equations have been used to describe the 

longitudinal propagation of stress pulses in thin rods. The more 

complex approximate solutions and algorithms consider factors such as 

lateral and rotary inertia, in an effort to predict the dispersion of 

the stress pulse as it travels down the rod. One of the most simple 

classical solutions is the D'Alembert solution, developed by D'Alembert 

in 1748. In one dimension, this solution is expressed by the equation 

(3.1) 

where u(z,t) is the displacement of a particle caused by the 

propagating wave. The D'Alembert solution treats the stress pulse as a 

harmonic wave propagating up and down the rod (or bar gage) without 

change in shape. This allows for easy superposition of pulses as they 

propagate, and hence is a good choice for an unfolding algorithm. 

Choosing approximate solutions that attempt to account for dispersion 

would become exceedingly complex for purposes of numerical unfolding. 

Since the D'Alembert solution is the basis of the unfolding 

routine, leading to the name "D'Alembert unfolding", a brief derivation 

20 
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is provided. The basic wave equation for longitudinal waves in a thin 

bar is: 

where 

-- 1 
c 2 

0 

c = rx 
o vr; 

( 3.2) 

Equation 3.2 is obtained by considering the dynamically varying forces 

acting on an element of the bar. In these equations, z refers to a 

cross-section of the rod, while the longitudinal displacement of that 

cross-section is given by u. E is the modulus of elasticity of the bar 

material, and p is the material's density. 

Mathematically, Equation 3.1 is obtained by introducing the 

following change of variables: 

(3.3) 

So, rather than the particle displacement being a function of z and t, 

u becomes a funtion of € and ~· The first step is to use chain-rule 

differentiation to obtain second partial derivatives of u with respect 

to both z and t. The first differentiation yields 
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And the second differentiation yields 

(3.4) 

When substituting Equations 3.4 into the wave equation (3.2), many 

terms cancel out, leaving 

~u(~,!J) == 0 
a~m, 

(3.5) 

Equation 3.5 must be integrated to obtain the expression for u(~,~). 

First, the integration is performed with respect to ~, and then with 

respect to €. Realize that, since u is only a function of € and~, its 

partial with respect to one of those variables is simply some function 

of that variable (by the definition of partial differentiation). This 

integration process is: 



So, the most general expression satisfying Equation 3.5 is 

u(z, t) = f(~) + g{~) 

and by changing variables back according to Equation 3.3, the 

D'Alembert solution to the wave equation is obtained (Reference 10). 
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Two characteristics of the D'Alembert solution are particularly 

noteworthy. First, it is easy to see how the arbitrary functions f and 

g represent propagating disturbances in the bar. In order for the 

arguments of the functions to remain constant, z must increase as t 

increases. This corresponds to a propagating wave. As the solution is 

written in Equation 3.1, the function f represents a wave propagating 

in the positive z direction, and the function g represents a wave 

propagating in the negative z direction. Secondly, realize that there 

is no mechanism in the D'Alembert solution for the shape of the 

functions f and g to change as they propagate up and down the bar. The 

functions will remain the same as they were initially, with only the 

position of the waves changing as they are propagating up and down the 

bar. These attributes prove useful in assembling the framework upon 

which numerical unfolding can be based. 

Derivation of Unfolding Equations 

The D'Alembert solution illustrates how the general wave equation 

allows for the propagation of a pulse up and down the length of a bar. 

D'Alembert unfolding uses that concept to unravel the tensile and 

compressive reflections that are superposed upon the airblast input to 

the bar gage. For the sake of brevity, D'Alembert unfolding will be 



referred to simply as "unfolding" or "numerical unfolding" throughout 

the remainder of this thesis. 
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To begin the derivation of the unfolding equations, it is prudent 

to first discuss some of the basic phenomena taking place. After a 

length of time, L/c
0

, the stress wave has advanced to the dump end of 

the bar gage. Because this end is in direct contact with some other 

material (usually wood), some of the pulse is transmitted into the 

contact material, and the remainder of the stress pulse is reflected 

back into the bar. Since the acoustic impedance of the steel bar is 

much greater than that of wood and other contact materials, the 

majority of the stress pulse reflects as a tensile wave and travels 

upward in the bar. The percentage of the incident stress wave 

reflected back into the bar is called the reflection coefficient. For 

the dump end of the bar, this coefficient is assigned the variable A. 

The tensile wave continues to travel back up the bar and, as 

mentioned earlier, when it reaches the strain gage position, begins to 

mask the late time portion of the incoming airblast signal that is 

still being applied to the top of the bar. The tensile wave reaches 

the measurement end of the bar at time 2L/c0 • Here again, some of the 

tensile wave transmits into the material in contact with the 

measurement end of the bar (usually air or detonation products), and 

some of the tensile wave reflects back into the bar as a compressive 

wave. The percentage of the tensile wave reflecting back into the bar 

as a compressive wave is defined as the reflection coefficient B. This 

wave reflection process continues indefinitely at each end of the bar, 



with the reflection coefficients reducing the wave form at each 

reflection by their prescribed percentages. 
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The actual values of the reflection coefficients for a particular 

bar gage are determined empirically from the data record. Figure 5 

describes this technique. The reflection coefficient, A, is the ratio 

between the magnitude of the peak reflected stress and the magnitude of 

the initial peak stress that strikes the end of the bar. Both 

magnitudes are read from the data record, as shown in Figure 5. The 

record shows the peak reflected stress riding upon the tail end of the 

original incoming wave. The sharp rise times associated with the peak 

stress and the peak reflected stress make it possible to judge when the 

reflection begins and what its magnitude is. Attempting to judge 

reflection coefficients at times other than initial arrivals of 

reflections is not recommended, since a sharp, recognizable departure 

from incoming data to a reflection is not assured. The same approach 

is used in determining the reflection coefficient B. The reflection 

coefficient B is the ratio of the magnitude of the reflected 

compressive peak stress to the magnitude of the reflected tensile peak 

stress. Since the measurement end of the bar is in contact with air or 

detonation products (nearly a free-end condition), B usually has a 

value of approximately one. These reflection coefficients are assumed 

to be constant throughout the entire measurement. 

In Figure 6, an example wave form is used to illustrate the 

unfolding process. The input and output wave forms are shown for a bar 

gage having a length of 6.1 m and a distance of 1.8 m between the 

strain gages and the measurement end of the bar. The peak stress is 
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B = reflection coefficient for measurement 

end of bar 

Figure 5. Technique for determining reflection coefficients 
from a bar gage record. 
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normalized to a value of one for this example. The input airblast wave 

form applied to the measurement end of the bar gage is referred to as 

F(t), while the actual output recorded from the bar gage is called 

f(t). The arrival time and magnitude of reflections are correctly 

computed by using the values for A, B, and c 0 shown on the figure. The 

input wave form has been shifted in time, xjc0 , to lie directly over 

the bar gage output for comparison. 

Markers A through F are placed on the wave form, labelling each 

reflection. Let us begin at the front of the wave form and work 

through to the end, stopping at each marker to account for all the 

pulses (both incoming and reflected waves) that pass the strain gage 

position (Note: Compressive stresses are positive and tensile stresses 

are negative in sign). Figure 7 shows all of the waves at the instant 

before they pass the strain gage position for Markers A through F. 

After a time interval of 2(L-x)jc0 , measured from the arrival of the 

stress pulse, the input and output wave forms are the same, since no 

reflections have arrived at the strain gage position . Marker A, 

however, denotes the arrival of the first tensile reflection. This 

reflection is the original pressure pulse that arrived at a time 2(L

x)jc0 earlier in the wave form, but after being influenced by 

reflection coefficient A. Simply adding all of the stress waves shown 

in Figure 7a yields the following equation for the output of the strain 

gages. 
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Figure 7. Schematic diagram of stress waves and reflections influencing strain gage output in 
a bar gage for time markers A through F. 



30 

f( t) = F( t) -AF( t- 2 (L-x) ) 
co 

(3.6) 

Marker B indicates the arrival of the first compressive pulse at 

time 2Ljc
0

• Hence, another compressive input is influencing the strain 

t t d · t d · f4 ure 7b Keep 4 n mind that the stress gage ou pu , as ep~c e ~n .g . • 

waves being measured by the strain gages are the original inputs to the 

bar, F(t), but after being diminished successively by reflection 

coefficients. Observing Figure 7b, three inputs are influencing the 

strain gage output: the incoming data, F(t); incoming data from the 

first tensile reflection, AF(t-2(L-x)jc0 ); and the data from the first 

compressive reflection. The first compressive reflection has been 

influenced by both reflection coefficients A and B. The input wave 

becomes a compressive reflection when it has traversed the distance: 

(L-X) +(L-X) +X+X = 2L 

The strain gage output for the first set of reflections (one tensile 

and one compressive); i.e., n- 1, is the sum of these three waves, or 

f( t) = F( t) -AF( t- 2 (L-x) ) +ABF( t- 2L) (3.7) 
Co Co 

At Marker C, we have all of the inputs shown in Equation 3.7, but 

also the arrival of the second tensile reflection. This second tensile 

reflection has been influenced by three reflection coefficients; A 

twice, and B once. The second tensile reflection is recorded by the 

strain gages after the input wave has traversed the distance 



31 

(L-x) + (L-x) +X+X+ (L-x) + (L-x) - 4L-2x 

after initial contact with the strain gages. So, observing Figure 7c, 

the input waves are summed together to obtain the strain gage output: 

f( t) - F( t) - AF( t- 2L-2X) + ABF( t- 2L) 
co co 

_ A2BF( t- 4L-2x) 
co 

(3.8) 

At Marker D, all of the inputs from Equation 3.8 are present, 

plus the second compressive reflection. The second compressive 

reflection has been influenced by four reflection coefficients; A 

twice, and B twice. The second compressive reflection is recorded when 

the input wave has traversed the distance 

(L-X)+ (L-X) +X+X+ (L-X)+ (L-X) +X+X = 4L 

after initial contact with the strain gages. Accordingly, the inputs 

shown on Figure 7d can be summed as before to obtain the strain gage 

output through the second set of reflections; i.e., n = 2: 

f(t)- F(t) 
(3.9) 

At Marker E, all of the inputs of Equation 3.9 are present, but 

the third tensile reflection also comes into play. This reflection has 

been influenced by five reflection coefficients; A three times, and B 



twice. The third tensile reflection is recorded when the input wave 

has traveled 

(L-x)+(L-x)+x+x+(L-x)+(L-x)+X+X 

+ (L-x) + (L-x) = 6L-2X 
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after initial contact with the strain gages. Summing all of the stress 

wave inputs indicated by Figure 7e gives the strain gage output: 

f( t) - F( t) 

(3.10 ) 

At Marker F, the third compressive reflection is added to the 

inputs of Equation 3.10 are present. This reflection has been 

influenced by six reflection coefficients; A three times, and B three 

times. The third compressive reflection is recorded when the input 

wave has traveled 

(L-x) +(L-x) +x+x+(L-x) +(L-x)+x+x 

+ (L-x) + (L-x) +X+X = 6L 

after initial contact with the strain gages. As before, summing all of 

the stress wave inputs displayed on Figure 7f yields the strain gage 

output for the third set of reflections, i.e., 

n - 3: 
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(3.11) 

After this laborious exercise, a pattern becomes obvious. Observe 

Equation 3.7 for the case of n- 1, Equation 3.9 for the case of n ~ 2, 

and Equation 3.11 for the case of n- 3. Several of the terms are 

similar, and can be simplified into the series expression shown below 

f( t) - F( t) -LA nBn-1 F( t- 2 (nL-x) ) 
n•l Co - (3.12) 

+ LA ns n F( t- 2nL) 
D•l Co 

This shows that the total strain gage output is the original 

input to the bar, F(t), with tensile and compressive reflections 

superposed on F(t). However, in the practical situation, the data 

analyst has the bar gage record, f(t), and desires to know the true 

input to the bar gage, F(t). This is accomplished by rearranging 

Equation 3.12 to solve for F(t). 

(3.13) 

Equation 3.13 is referred to as the general unfolding equation. 

Notice that the series terms in Equation 3.13 always operate upon data 

that has already been recorded by the strain gages, facilitating 



reconstruction of the original input wave form by working from the 

beginning to the end of the bar gage record. 

The Unfolding Computer Program 
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Equation 3.13 lends itself well to implementation in a computer 

program. Welch (1983) wrote an initial computer program to run on a 

Tektronics 4051 computer. Since the limited memory of these early 

computers did not allow processing of many data points, the unfolding 

computer program was rewritten in FORTRAN to run on a VAX 11/750 

computer. The program was named UNFOLD, and is used when unfolding 

wave forms with a large number of data points (more than 16,000). The 

unfolding program has been updated to run on IBM personal computers (or 

other compatible PC's) as part of this thesis. The PC-based unfolding 

program, still written in FORTRAN code, works well for wave forms 

having less than 16,000 points. This size of data file allows for 

acceptable speed and memory size, and also permits the use of several 

off-of-the-shelf plotting programs to display the results. 

Since the unfolding program is used (and modified) so often in 

this thesis, a brief explanation of its operation is given in this 

section. A flow chart of the unfolding program is shown in Figure 8 

and a program listing is given in the Appendix. The analyst must input 

the bar gage dimensions and wave speed, time of arrival, reflection 

coefficients, and file names for the input bar gage record and the 

unfolded output. The input file must be of a certain format, namely, 
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Figure 8. Flow chart of the unfolding computer program. 
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LINE 1: TIME VALUE OF FIRST POINT 

LINE 2: TIME INCREMENT 

LINE 3: NUMBER OF DATA POINTS 

LINE 4: X(1), Y(1) 

LINE 5: X(2), Y(2) 

II II II 

II " " 

ETC. 

Two arrays are established; A(I) is the input bar gage data, and 

F(I) is the unfolded output of the program. The calculational kernel 

begins by reading the first data points from the input file and 

deciding if they occur before the arrival of the first tensile 

reflection. If they do, the data points are simply copied to the 

output file because no unfolding is necessary. Once beyond the first 

tensile reflection, the program determines which set of reflections 

contains the point "I". This is analogous to the index n in Equation 

3.13 and also sets the counter on the first DO loop. Once within the 

inner DO loop, the summing operation is performed. The calculational 

kernel determines if point "I" lies within a tensile or compressive 

reflection and applies the summation process indicated in the second 

and third terms of Equation 3.13. The summations indicated in the 

second term of Equation 3.13 are the variable Gl, and the summations 

indicated in the third term of Equation 3.13 are the variable G2. When 

the summation has been performed "n" times, the inner loop is exited. 

The value of the unfolded wave form at point "!" is then: 
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F(I) = A(I) + Gl - G2 (3.14) 

The value of the time interval at point "I" and F(I) are written to the 

output file and the whole process is continued for the next point "I". 

When "I" has reached the last point in the file, as specified in line 3 

of the input file, execution is terminated. 

The output of the program is a two-column ASCII file. This file 

can be plotted using various plotting routines. Such routines are not 

included in the unfolding program. Since the data files are written in 

an ASCII format, the files can become quite large. 

Demonstration of the Unfolding Technique 

To illustrate the effect of the unfolding computer program, a 

wave form from a high explosive test will be unfolded. The bar gage 

record and its integrated impulse are shown in Figure 9a. The low-

frequency wave speed, c 0 , is customarily determined by measuring the 

time between the arrival of the initial pressure pulse and the first 

tensile reflection. The wave speed is then obtained by 

c = 0 

2 (L-x) 
t 

The reflection coefficients are determined using the procedure 

indicated earlier in this section. The time of arrival of the initial 

pressure pulse is obtained by observation. The bar dimensions are, of 

course, known prior to the test. Besides specifying file names, this 
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constitutes all of the information needed to unfold the wav~ form of 

Figure 9a. The values used for this particular wave form were: 

C 0 - 5089 m/s 

x - 0. 86 m 

TOA - 0.00323 s 

L - 2.25 m 

A - 0. 92 

B - 0.97 
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The result of the unfolding procedure is shown in Figure 9b. As 

expected, the reflections have been removed from the record, producing 

a reasonable restoration of the original pressure pulse entering the 

bar. The drastic fluctuations in the impulse wave form have also been 

removed, resulting in an impulse wave form of classical appearance. 

The process did not provide a perfect unfolding of the high-amplitude 

portions of the wave form (peak values of the input waveform and also 

the reflections), as evidenced by the spikes occurring at positions 

where reflections had previously existed. This produces corresponding 

anomalies in the impulse wave form, although not severely so. If the 

spiky behavior is ignored, the unfolded result is a reasonable pressure 

wave form. 

Criticism of the Unfolding Technique 

From a mathematical prospective, the D'Alembert unfolding method 

is difficult to refute. If indeed the pulse is not changing shape 

significantly as it propagates down the bar, then the unfolding 

technique should accurately remove the reflections. However, potential 

shortcomings do exist. The shortcomings arise primarily from the 

inability of the analyst to provide exactly correct input to the 

unfolding routine. 



40 

Consider the spiky behavior present on the unfolded wave form of 

Figure 9b. The spikes result from using a slightly incorrect value of 

wave speed, c
0

• If the analyst specifies a value of C0 that is too 

large, the unfolding routine will anticipate the arrival of the first 

tensile reflection too soon. While the routine should be summing the 

high-amplitude portion of the initial pulse with the high-amplitude, 

negative portions of the first tensile reflection, it actually is 

adding a high-amplitude positive value to a low-amplitude positive 

value. A high-frequency spike results from this sort of superposition. 

Since the unfolding routine uses these values over again later in the 

wave form, the error repeats itself, sometimes even growing with 

additional recurrences. While it is felt that this behavior will not 

cause large errors in the impulse measurement, the propagation of this 

error through the unfolded wave form has not been sufficiently studied. 

Another concern lies with the choice of values for the reflection 

coefficients. Theory suggests that there is one precise reflection 

coefficient for each end of the bar gage, and the method described 

earlier in this section should reveal the value of these coefficients. 

However, observation of subsequent reflections often shows a change in 

the value of the reflection coefficients. Figure 10 illustrates such a 

bar gage record, recorded on a high explosive test. Notice how the 

reflection coefficients change throughout the record. This forces the 

analyst to make a judgement regarding which value of the reflection 

coefficient to use for unfolding purposes. Inspection of the unfolding 

equation (Equation 3.13) indicates that the reflection coefficients A 

and B influence the value of each point after the first tensile 
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Figure 10. Illustration of reflection coefficients changing during a typical 
high explosion test record. 



reflection. The net effect that varying values of reflection 

coefficients may have on the unfolded pressure and impulse wave form 

has not been studied. 

In summary, while the unfolding technique will indeed remove 
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reflections from the bar gage wave form, the significance of errors 

induced by the technique are subject to question. The value of 

unfolding is sub~tantial, for if even one set of reflections are 

unfolded, the length of the measurement is more than doubled. But 

questions surrounding the errors induced by the use incorrect wave 

speeds and reflection coefficients lead to controversy in using the 

unfolding technique. Accordingly, this thesis seeks to quantify the 

errors inherent to the D'Alembert unfolding method, defining situations 

where unfolding is appropriate. 



CHAPTER IV 

ERROR ANALYSIS OF THE UNFOLDING TECHNIQUE 

Bar gage records from high explosive tests can be influenced by 

phenomena that is not fully understood. For instance, ground shock may 

put lateral loads on the bar through the water jacket. If so, then 

that part of the wave form we observe, and treat as data, may in fact 

be a measure of lateral loading. The reflection coefficient at the 

dump end of the bar can change during the high explosive test because 

of bar translation, which causes the bar to push into the material at 

the end of the bar. This "rigid-body" motion of the bar can occur 

after two wave transit times. Also dispersion of the stress pulse may 

complicate the analyst's selection of reflection coefficients. 

When unfolding bar gage records from high explosive tests, it may 

be difficult to sort out which discrepancies are do to the numerical 

aspects of unfolding and which are due to the "limitations" of bar 

gages as currently designed. With this in mind, the next study will 

investigate the merits of bar gage unfolding through the use of 

analytical and numerical means. This will minimize the confusion 

imparted by the response of the bar gage to high-frequency inputs from 

explosive tests, and permit us to concentrate on the errors strictly 

due to the unfolding process. 
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In this section three sources of error in the D'Alembert unfolding 

techniqueare identified and analyzed. The three error sources 

addressed are: 

1. Errors due to using an incorrect, low-frequency wave speed. 

2. Errors due to specifying incorrect reflection coefficients, or 

assigning constant values to reflection coefficients that, in 

reality, are changing. 

3. Other errors, such as incorrect bar gage dimensions and 

dispersion. Errors which apply to bar gages, though not 

necessarily numerical unfolding errors, are also included in 

this section. 

The first error is addressed by modifying the unfolding computer 

program in such a way that it calculates not only the unfolded wave 

form based upon the best estimate of the wave speed, c0 , but also based 

upon user-specified upper and lower bounds of c0 • The second error 

source is addressed by applying classical uncertainty analysis to the 

unfolding equation presented in Chapter 3. An analytical expression is 

obtained which relates the uncertainty of an unfolded wave form to an 

uncertainty in the reflection coefficients. The errors due to both of 

these primary sources are then combined in a manner consistent with 

uncertainty analysis, to arrive at upper and lower bounds of where the 

"true" unfolded wave form must lie. 

The last error source is addressed only qualitatively, as no 

analytical or concise experimental technique could be devised to 

isolate those unfolding errors that are due to subtleties such as 



dispersion. The manner in which such errors manifest themselves on 

typical wave forms is discussed, and shown to be relatively 

insignificant when impulse is the desired quantity. 

Errors Due To Incorrect Wave Speed 
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The low-frequency wave speed, c 0 , must be known accurately in 

order for the timing to be correct during the unfolding process. If 

the wave speed is incorrect, the unfolding routine will sum incorrect 

terms while reconstructing the wave form. For instance, summing terms 

from the high-amplitude front end of the wave form with those 

representing low-amplitude parts of the wave form (rather than the 

high-amplitude portions which are opposite in sign), will result in 

noise-like or spiky output from the unfolding routine. This procedure 

is illustrated in Figure 11. 

The analyst must measure the time between reflections, and 

calculate the wave speed based upon the known dimensions of the bar 

gage. Choosing places to measure the time between reflections is 

somewhat judgmental, resulting in slightly different values of wave 

speed. Since we tend to measure the time differences between peaks or 

arrival times (i.e., high-frequency content), dispersion can cause the 

analyst to choose an incorrect value of wave speed. As will be 

discussed later, dispersion itself results from the wave speed changing 

as a function of the frequency of the input. Consequently, high

frequency portions of the wave form are prone to being unfolded 

incorrectly. Such shortcomings make it almost impossible to perfectly 

unfold a wave form. The wave form of Figure 12a was unfolded using 



A. Suppose that Co is too small. Then the computer 
routine begins unfolding the first tensile 
reflection too late, leaving a negative spike. 
When the computer routine does begin unfolding 
the first reflection, it adds the high amplitude 
initial peak (times reflection coefficient A) to 
negative values which are too small. This 
results in a positive •recovery• spike. 

UNFOLDS TO 

B. Suppose that ~ is too large. Then the computer 
routine begins unfolding the first tensile 
reflection too soon, leaving a positive spike. 
When ~he unfolding process reaches the true time 
of t t first reflection, it adds the lower amplitude 
posi t 'e values (times reflection coefficient A) to 
large . negative values. This results in a negative 
"recovery" spike. 

UNFOLDS TO 
)I . 

C. This unfolding program propagates these spikes 
throughout the rest of the waveform. 

Figure 11. Mechanism by which the unfolding method produces 
spikes in unfolded wave forms. 
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common textbook value for the wave speed of steel (5030 m/s), and the 

output displayed in Figure 12b. The input wave form to the bar gage in 

Figure 12a was a 100-~s pulse, with no subsequent inputs to the bar. 

Consequently, all of the noise-like inputs later in the wave form are 

due to the data reduction process and the incorrect wave speed used in 

the unfolding routine. This illustrates the necessity of choosing an 

accurate value of c0 for the steel bar. 

The proper wave speed value to choose is the low-frequency wave 

speed, C0 • Wave speeds determined from the time differences between 

peak values, or between times-of-arrival of reflections, tend to be 

different than the true low-frequency wave speed. This is because 

these features of the wave form are comprised of wave speed high

frequency content, which is being dispersed, or distorted, as it 

propagates down the bar. Choosing a wave speed based upon unfolding 

high-frequency data with the best performance might cause substantial 

errors in the unfolding of low-frequency data. Errors in unfolding 

low-frequency data might lead to large errors in impulse, which is 

particularly undesirable for many applications. 

Two recommendations are given to minimize the error imparted by 

use of an incorrect wave speed. First, whenever possible, choose the 

wave speed for a particular bar gage from the gage calibration record, 

rather than the actual data record. A ball drop calibration, for 

instance, generates frequencies up to roughly 7000 Hz. This frequency 

content is too low for dispersion to be prevalent, so the wave speed is 

more easily discerned. Secondly, measure the time required to shift 

the wave form 2L/c0 by determining the time shift which causes 
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subsequent compressive (or tensile) pulses to best over-lay each other. 

This technique measures the time expired between low-frequency events 

in the wave form (i.e., the whole compressive pulse rather than just 

peaks) and produces more consistent results. 

Since we wish to combine two or more errors (wave speed and 

reflection coefficients) to arrive at the total error present in an 

unfolded wave form, classical uncertainty analysis will be used. 

Classical uncertainty analysis provides an accepted and concise 

technique for calculating uncertainties and combining them to give the 

total uncertainty in an experimental or numerical result. The general 

expression for the uncertainty in the unfolded wave form, UF<t>, is 

u2 = [ aF( t> u ]
2 

+ [ aF< t> u ]
2 

+ ••• + [ aF< t) u ]
2 

F { t) aa 411 aa 412 aa An 
1 2 n 

where 

F(t) - the unfolded wave form at any time t 

a - variable upon which F(t) depends and which contains 1,2, . . n 

uncertainty 

U = uncertainty associated with each variable a ll 

(4.1) 

UF(t) = total uncertainty in the unfolded wave form due to all 

of the variable uncertainties 

Recall the analytical expression for the unfolded wave form from 

Chapter 3: 

- -F( t) =f( t) +LA nBn-lF[ t-+ (nL-x)] -I: A nB nF[ t-2 ~L] 
n•l o N•l o 
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It is not practical to utilize uncertainty analysis directly to 

arrive at a general expression for UFct> as a function of the 

uncertainty in c
0

• This requires taking the partial derivative of F(t) 

with respect to c
0

, which in turn requires F(t) to be a differentiable 

(in closed-form) function of its argument. 

Accordingly, an indirect method will be devised for obtaining UF<t> 

as a function of specified uncertainty in c0 • The unfolding computer 

program will be adjusted to so calculate F(t) for an upper and lower 

bound of c0 • The uncertainty in c0 will be specified, i.e., Uco' and 

the computer program will be used to unfold the wave forms for the 

additional cases where: 

C = C 0 + 

c = c -0 

In this way, the error present in F(t) due to the uncertainty in C0 

will be obtained for a particular wave form by comparing the resultant 

wave forms. UF<t> will thus be the difference of the two wave forms at 

each point, or 

The above mathematical nomenclature is used frequently in this chapter. 

The vertical bar following UF<t> indicates the variables contributing to 

the uncertainty of F(t). It is read, "The uncertainty of F(t) due to 

uncertainty in c 0 , is equal to ... ". The values in the arguments ofF 

are those which are being considered in the particular equation. The 

nomenclature identifies the value of the function, F, ·when the specific 



arguments are used. It does not imply that the function F is only a 

function of the arguments listed; obviously the unfolded bar gage 

record, F(t), is a function of many variables. Only those variables 

being changed in the particular equation are listed, along with t, to 

indicate the dynamic nature of these equations. 
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The unfolding computer program was modified to incorporate these 

changes and named "UNFOLD!". A program listing is included in the 

Appendix. UNFOLD! computes three unfolded wave forms, one each for c0 , 

co + Uc
0

, and C 0 - Uco. This computer program was applied to two wave 

forms; one from a ball drop calibration on a precision bar gage ( i.e . , 

a bar gage where the dimensions were precisely known), and a pressure 

record denoted a high explosive experiment. After careful study of 

many bar gage records, the uncertainty associated with c0 was chosen to 

be plus or minus 15 m/ sec, i.e., the three wave speeds used were 5074, 

5088, and 5104 mj sec. 

In Figure 13a, each of the three unfolded wave forms from the ball 

drop calibration of the precision bar gage are plotted on the same 

plot. The records from the precision bar gage were used because the 

bar length and strain gage positions were known to within 0.03 inches. 

The ball drop calibration also produces wave forms which consist of 

low-frequency content, therefore minimizing the effects of dispersion . 

The impulse records from the wave forms were obtained by integrating 

the pressure records, and are plotted in Figure 13b. Consider the 

pressure wave forms. The errors in c0 produced spikes at the times 

where reflections occur in the wave form. This is reasonable, since 

high-amplitude values are being summed upon one another at these points 
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in the wave form. The error in c0 causes the unfolding routine to sum 

the wrong values, and high-amplitude spikes result. Note that these 

spikes grow with time as the errors accumulate. The wave forms are 

nearly identical except for these spikes, regardless of the wave speed 

used. This is evident from the impulse wave forms. Since no other 

data is being recorded by the bar gage in the ball drop calibration, 

the spikes produce large fluctuations in impulse. But the periodic 

nature of the spikes cause the impulse to return to the mean value, 

regardless of the wave speed used. 

The unfolded pressure wave forms for the WLBl record are given in 

Figure 14a and the corresponding impulse wave forms in Figure 14b. The 

same trends are noted on these records as were noted on the unfolded 

precision bar gage records. The pressure plots show that the only 

significant errors produced by the uncertainty in wave speed are the 

spikes occurring at the times when reflections had occurred. Since 

this is a record from a high explosive test, the frequency content is 

much higher than that of the ball drop calibration test on the 

precision bar gage. The unfolded wave forms exhibit erratic, spiky 

behavior in the region where reflections occurred. Because the 

reflections are characterized by high-frequency content, it is believed 

that the poor performance of the unfolding routine in these regions is 

due to dispersion. If dispersion is indeed the cause of the spikes, no 

value of wave speed will eliminate them. 

The unfolded wave forms using the higher and lower wave speeds do 

not exhibit clear, symmetric trends as was the case with the precision 

bar gage example. In general, such trends should not be expected from 





explosive test records that contain a considerable amount of high 

frequency content. Once again, however, it is clear from the impulse 

wave forms that the error in wave speed causes very little error in 

impulse. 

Two conclusions are drawn from these examples of the use of an 

incorrect wave speed when unfolding bar gage records. First, spikes 

are to be expected in the portions of the wave form where reflections 
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had previously occurred. Although spikes are likely to occur even when 

the correct value of c 0 is used, they will be even more prevalent and 

erratic when incorrect values of c 0 are used. Also, spikes become more 

obvious (and unavoidable) as the frequency content of the wave form 

increases. Wave forms containing only low-frequency data can be 

unfolded with little or no high-amplitude spikes, provided the correct 

value of c 0 is chosen. 

Secondly, it can be concluded that errors in wave speed tend to 

produce little change in the mean value of the impulse wave form. 

Consequently, if impulse is the parameter to be derived, errors due to 

wave speed may be insignificant. However, the uncertainty in wave 

speed in our examples was small (15 mjsec). If a reckless choice of 

wave speed were made, resulting in a large value of Uc , then impulse 
• 0 

might be affected substantially. In general, the errors produced by 

incorrect wave speed are easily discerned by the experienced analyst, 

and can be easily ignored, or even removed, if the need exists. 
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Errors Due To Incorrect Reflection Coefficients 

Errors due to incorrect reflection coefficients can be quantified 

more precisely than errors due to incorrect wave speeds. This is 

accomplished by exploiting classical uncertainty analysis, as presented 

by Coleman and Steele (Reference 9). The analytical expression for 

the unfolded wave form is (Equation 3.13): 

- -F( t) =f( t) +LA 12B 12- 1F( t- 2 (nL-x) ) -LA 12B 12F( t- 2~L) 
n•l Co n•l o 

The classical uncertainty equations are well suited for such an 

equation. Applying Equation 4 . 1 and limiting our uncertainty analysis 

to errors in the reflection coefficients, A and B, the uncertainty of 

the unfolded wave form, F(t), is 

(4.2) 

where UA and UB are the uncertainties of the reflection coefficients A 

and B. 

A technique is not obvious for taking partial derivatives with 

respect to A and B when these reflection coefficients are preceded by 

the summation signs. This difficulty was overcome by taking the 

partial derivative for successive values of "n" until a pattern became 

obvious. To illustrate, consider the root of the first term under the 

radical of Equation 4.2: 
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This term is written out below for n-1, n-2, and n-3 below: 

for n-1: 

for n-2: 

+ 2AB [F( t - 4 L + 2X) - BF( t -
co co 

for n-=3: 

[
F(t- 2L + 

co 

- BF ( t - 6 L )] l 
co 

The series thus becomes: 

u 1 = t~ nAn-1Bn-1[F( t- 2nl + 2X) -BF( t- 2nL) ]} [U 1 F( t) A LJ C C C A 
•1 0 0 0 

(4.3) 

The second term is derived similarly. The complete solution for the 

uncertainty in the unfolded wave form due to the uncertainty in the 

reflection coefficients is: 

1/2 

+ (t AnBn-2 [ (n-1) F( t- 2nL + 2x) -nBF( t- 2nL) 1) [Us] ]2 
n-1 Co Co Co 

(4.4) 
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A computer routine, called UNFOLD2 (see Appendix), was developed to 

solve Equation 4.4 and assemble the plus and minus uncertainties of the 

unfolded wave form. The portion of the code which considered the 

effect of incorrect wave speed is not included in UNFOLD2; hence, it 

looks at errors due to reflection coefficients alone. This useful 

modification to the unfolding routine generates the error bounds for a 

specific wave form with specific uncertainties in reflection 

coefficients. 

The same two wave forms studied earlier are used here again as 

examples. The output from the ball drop calibration test of the 

precision bar gage is unfolded using UNFOLD2 to comprise the first 

example. The uncertainties in the reflection coefficients (UA and UB) 

were each taken to be plus or minus two percent for this case. The 

unfolded wave form, and the plus and minus uncertainties, are displayed 

in Figure 15. The errors in the unfolded wave form tend to increase 

with time. This is reasonable since the errors are raised to higher 

powers with increasing "n". Substantial uncertainty occurs only when 

the high-amplitude portions of the wave form are being operated upon by 

the unfolding routine. The features between the spikes of the 

uncertainty wave forms are essentially identical to comparable features 

of the unfolded wave form. Some insight into this behavior can be 

obtained by observing Equation 3.13. The uncertainty at each point is 

comprised of the sum of reflection coefficients raised to powers, 

multiplied by the amplitude of the reflecting pulse at the particular 

time. If the amplitude of the reflecting pulse at the particular time 

is very low, the uncertainty must also be low. If the amplitude of the 



CJ) 

~ 
0 
> 

2,0 

1.5 

1.0 

0.5 

~ 
I 
I 
I 
I 
I 

II 
•• 

PRECISION BAR GAGE PAAAME I EBS . 

c=50&8 mjs, L•2.4, X•0.91 m, A•0.98, UA•0.02, 8•1.0, UB=0.02, T0Ae0.000017s 

--UNFOLDED WAVEFORM 
- UNFOLDED WAVEFORM 

·- -- PLUS UNCERTAINTY 
PLUS UNCERTAINTY 

3.0 E-4 ----
· · · • • • MINUS UNCERTAINTY 

· · · · • • MINUS UNCERTAINTY I , 

, , _, 

- .;, I 

. . 
.. 
. . 

• • • 0 

• 0 •• . . . . .. . . .. :. , . . . .. : .. .. 

0 
Q) 
UJ 

2.0 E-4 X 

~ 
:.J 

~ 
1.0 E-4 I 

I 
I 

, 
,I , , 

.... -

, 
, ,I , , 

,.,. --
_,_, _, 

, .. -.. _, 

....... .... ·. 

, _, 
I 

.•.. 0. • . . . . . 
. ..... . . . . . . : 

. . . . . . . . . . . . . 
. 

• • • 0 •• 

. ... . 

_,_ 
, 
I 
I 

. , 
I 

I _ , 

·0.5 
t 

f I 
• I 

• 0.0 1---.1------------,...-___;·~. -~ 

0.0 2.5 5.0 
TIME(ms) 

0.0 2.5 5.0 
TIME(ms) 

a. PRESSURE b. IMPULSE 

Figure 15. Uncertainty in a ball drop calibration wave f orm due to uncertainty in re f l ection 
coefficients . 



60 

reflecting pulse is high, the uncertainty can be more obvious, as 

demonstrated by this example. It can be concluded from this 

observation that the uncertainty of an unfolded wave form is dependent 

upon the character of the input wave form. 

The WLB-1 record was unfolded using the program UNFOLD2. The 

reflection coefficients for this wave form were more difficult to 

choose than those of the ball drop calibration record. The uncertainty 

values for the dump end and input end coefficients were taken to be +S% 

and ±3%, respectively. The unfolding routine calculated the plus and 

minus extremes of the unfolded wave form due to these uncertainties in 

reflection coefficients. These bounds are plotted on Figure 16a, along 

with the unfolded wave form. The three wave forms are barely 

distinguishable, requiring careful inspection of the spikes to tell 

them apart. While the bounds on the pressure record are quite tight, 

the errors become much more prominent on the impulse wave forms. Even 

though the uncertainties in the pressure records may be slight the 

errors become significant when integrated over several reflections. 

This may be observed in Figure 16b, a plot showing the impulse wave 

form of the unfolded data and its plus and minus uncertainties. It can 

be seen that the unfolded impulse wave form is only accurate within 

about +10.8 percent during the second reflection due to the uncertainty 

in reflection coefficients. 

This ability to calculate the uncertainty of a wave form due to 

reflection coefficients comprises a useful tool for determining the 

length of record that can be unfolded without incurring too much error. 

In other words, if an error greater than +10% is unacceptable, the 
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analyst can choose to only consider the first one or two reflections of 

a specific wave form. 

Combining Errors Due To Wave Speed and Reflection Coefficients 

The error due to uncertainty in the values of reflection 

coefficients must be combined with the error due to using an incorrect 

wave speed to determine the total uncertainty in the unfolded result. 

The proper method of combining these errors is subject to debate, but 

the most widely accepted method of combining uncertainties is the Boot

~um-~quare (RSS) method, as illustrated earlier in Equation 4.1. The 

RSS method is ordinarily preferred over a linear combination of the 

errors (adding them all together) since the probability is low that the 

most extreme values of all the uncertainties will occur in a given 

event. Furthermore, it is even less likely that all of the variables 

will suffer errors in the same direction (or same sign). It is much 

more likely that some variables will be subject to error near their 

largest uncertainty, while some variables will be subject to less 

error. In turn, some variables will be higher than their mean value, 

and some lower, for a particular experiment. The RSS method removes 

the sign dependency and gives an overall uncertainty that is somewhat 

less than the most extreme values would suggest with a linear 

combination, thus providing a more statistically valid combination of 

errors. 

The RSS method is used here to combine the error due to wave speed 

with the errors due to incorrect reflection coefficients. The computer 

program was modified to square the error due to uncertainty in c0 , and 



add it to the square of the error due to incorrect reflection 

coefficients, and then take the square root of the sum. This simple 

calculation was performed at each point to obtain the plus and minus 

bounds of the unfolded wave form. This computer program is called 

UNFOLD3. 
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Before applying this program to an example, consider what the 

output should look like. The differences in the pressure wave forms 

should be slight, since neither error source produced noticeable 

changes in the pressure values. The impulse was largely unaffected by 

the error in C0 , but errors due to reflection coefficients generated 

substantial errors in the impulses of the unfolded wave forms. 

Consequently, the combined error should be similar to that caused by 

the error due to reflection coefficients, being only slightly larger. 

Now consider the result of this combination of errors for the 

example of the WLB-1 wave form, shown in Figure 17. Notice that the 

combination of errors produces plus and minus uncertainties much larger 

than those produced by erroneous reflection coefficients, which seems 

contrary to logic. Simple inspection of the wave forms did not help to 

explain this phenomena. Numerous checks were made on the modified 

computer program, no errors were found in the coding. The anomaly is 

attributed to the RSS method as applied to wave forms such as these. 

In the general case, it is considered advantageous to square the 

errors, because the true signs of the errors are not known. With the 

error analysis method used here, however, the signs for the errors in 

wave speed are known precisely. After all, they were calculated at 

each point for both upper and lower bounds of the unfolded result. By 
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squaring the errors due to c0 , and then taking the square rcot of the 

sum of the errors, all of the errors due to c 0 are forced to be 

positive, even when some were actually calculated to be negative. To 

see the resulting error, consider the expanded plot in Figure 18. The 

unfolding routine was modified to calculate the unfolded wave form and 

the plus and minus values of uncertainty due to an error in c 0 only (as 

in UNFOLDl). This removed the added complexity of the uncertainty due 

to errors in reflection coefficients. This modified unfolding program 

outputted: 

1. The unfolded wave form, F(I). 

2. The plus uncertainty, short-dashed trace, via: 

3. The minus uncertainty, long-dashed trace, via: 

4. The minus uncertainty, dotted trace, via: 

Figure 18 is plotted to an expanded time scale to show the 

specific differences between the RSS method and direct linear 

combination, with proper signs associated with the errors. The dashed 

traces represent uncertainty calculated with linear combination of the 

error due to incorrect c 0 • The dashed traces are identical to the 

output from UNFOLDl, the program used earlier to calculate the 

uncertainty due to incorrect c 0 • Notice that these traces tend to 
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exhibit more error in "phase" than error in amplitude, which is 

consistent with the earlier findings. Errors in phase produce little 

error in impulse, which was one of the conclusions regarding 

uncertainty due to incorrect c 0 • The RSS method however, as shown in 

the dotted trace, produces error in amplitude and is in phase with 

F(I). The second term in the equations above represent the error due 

to the incorrect c 0 • While the unfolding routine may accurately 

calculate its direction to be negative, the squaring/square root 

process forces it to be positive. Hence, a positive error is always 

subtracted from the unfolded wave form to generate the minus 

uncertainty. Accordingly, the minus uncertainty depicted by the dotted 

trace (RSS method) is always lower than the unfolded wave form. This 

causes the gross error in impulse with the RSS technique. 

For combining errors due to uncertainty in wave speed and 

reflection coefficients while unfolding bar gage records, the author 

suggests using linear combination for the errors due to wave speed and 

RSS combination for the errors due to the reflection coefficients. 

With this approach, the technique can no longer be labeled "classical" 

uncertainty analysis, as it has become specialized for this 

application. Mathematically, the plus and minus uncertainties would be 

expressed as: 

u,lco,A,B = UF(t) lco•Uco + J[UF(t) lAY + [UF(t) 1s]2 

Umlc
0
,A,B = UF<t> lc

0
-Uc

0 
- J[uF<t> lAY + (UP(t) ls]2 

This technique of combining errors was incorporated into the unfolding 

routine and labeled UNFOLD4 (see Appendix). It is considered to be the 
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best of the unfolding routines, since it combines the errors in the 

most reasonable manner. UNFOLD4 was used to unfold the wave forms 

studied earlier in this section. Figure 19 shows the unfolded pressure 

wave forms for the WLBl record. The only significant difference 

between the combination of both error types and that including error 

only due to reflection coefficients is a slight increase in the impulse 

uncertainties. This is as expected since the uncertainty in impulse 

due to incorrect c0 was slight. 

Dispersion and Other Errors 

While errors due to uncertainty in low-frequency wave speed and 

reflection coefficients can be addressed analytically or numerically, 

errors due to dispersion and other more subtle sources are difficult to 

quantify. Dispersion leads to errors in an unfolded wave form in a 

manner similar to that of unfolding with an incorrect wave speed. 

Dispersion in the bar gage causes the high-frequency portion of the 

stress pulse to change shape as it propagates down the bar gage. 

Specifically, the high frequency content propagates more slowly down 

the bar than the low frequency content. As a result, the rise to peak 

is "rolled off", as the low-frequency components outrun the high 

frequency peak information and superimpose themselves upon the high 

frequency data. As the stress wave travels up and down the bar, the 

peak continues to roll off. 

To include uncertainty due to dispersion in the unfolding 

technique, the variance of wave speed with frequency would have to be 

defined and incorporated into the calculational portion of the 
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unfolding routine. In turn, the unfolding routine would have to keep 

track of the frequency of data which was being handled at each point in 

time. This would be a difficult task and is beyond the scope of this 

thesis. 

If the wave form contains limited high frequency data, dispersion 

will not cause significant errors. Also, errors due to dispersion will 

manifest themselves much the same way as errors due to incorrect C0 • 

When the routine unfolds the high frequency data, which in most all 

cases is limited to the high amplitude initial peak and the subsequent 

reflections, it will sum together improper portions of the wave form. 

As a result, a noise-like or spiky character would be expected at those 

places in the wave form where high amplitude reflections were present. 

Such errors are not expected to produce much error in impulse. In the 

unusual case where a bar gage was used to measure a pulse which 

contains a great deal of high frequency content, more error may be 

inherent to the unfolded wave form. However, the use of a bar gage for 

such a high frequency measurement is questionable, even before 

considering the validity of unfolded data obtained by the bar gage. 

Sometimes the analyst does not know the length of the bar and 

position of the strain gages along the bar with precision. Such 

precision is unnecessary if the bar gage records are not to be 

unfolded, and consequently such precision has often not been applied to 

the manufacture of bar gages. The only time that the unfolding routine 

uses the bar gage dimensions is in the argument of the functions, just 

as was the case with C0 • Consequently, errors due to incorrect bar 

gage dimensions lead to the same sort of errors as c0 , causing the 
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unfolding routine to sum the improper sequence of amplitudes. Gross 

errors in bar gage dimensions can be troublesome. For instance, a 6-mrn 

discrepancy in bar length has the same effect as a 10 m/s error in wave 

speed. 

The most correct way of handling errors due to bar gage dimensions 

would be to perform a separate uncertainty analysis on the arguments of 

the functions before using the unfolding program. With the arguments 

being composed of simple expressions, this uncertainty analysis would 

be easy compared to the analysis performed in this chapter. The 

resulting uncertainty for the whole argument, due to the uncertainty in 

C0 , x, and L, could be input to the unfolding program as the 

uncertainty in c 0 . Even this thorough of approach has problems though. 

Uncertainties in c 0 , L, and x are not independent of one another, i.e. , 

x and L are used to determine c 0 • This makes for a more complex and 

judgmental uncertainty analysis, and hence it is only mentioned here. 

Generally though, if care has been taken in the manufacture of the bar 

gages, errors due to incorrect bar gage dimensions should be relatively 

insignificant . 

Other error sources can be conceived that would effect the 

accuracy of the unfolding process. Things such as material variations 

throughout the length of the bar gage, material nonlinearities, etc., 

cannot be considered by the unfolding technique, and hence lead to 

errors. Such errors are thought to be quite small. Accordingly, they 

are not considered in this thesis. 

The intent of this chapter is not to suggest that the error 

sources discussed here are the only sources of error associated with 
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measurements made by bar gages. Indeed, calibration errors, ground 

shock effects, frequency response limitations, etc., lead to errors in 

bar gage measurements. Some of these errors will be evident in the 

next chapter, where actual field data is examined. However, these 

errors are not caused by the numerical unfolding process, which is the 

concern of this thesis. 



CHAPTER V 

APPLICATION OF BAR GAGE UNFOLDING TO 

FIELD DATA 

Test Description 

The uncertainty analysis will be applied to an actual high 

explosive test in this chapter. In this experiment, bar gage data was 

obtained at regions where other types of blast pressure gages made 

measurements as well. This is an unusual situation because bar gages 

are typically used in regions where very few types of airblast gages 

can function reliably, due to the high peak pressure levels. On this 

test, however, bar gages were intentionally placed at pressure levels 

low enough to compare to other airblast gages. The other airblast 

gages in this case were Kulite HKS series airblast gages (Reference 

11). HKS airblast gages are quite reputable in the peak pressure range 

from 3.45 to 345 MPa (500 to 5,000 psi) and, being a diaphragm-type 

gage, yield a long term pressure measurement with no interruption from 

tensile reflections. Hence, with the Kulite airblast gages being 

placed at the same distance as the bar gages from an axisymmetric 

charge, the Kulite gage records can be compared to the unfolded bar 

gage records. 

The experiment of interest involved the detonation of an explosive 

charge that was suspended at a certain height above the ground surface. 
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Airblast gages were placed on the ground surface to measure the blast 

pressure on the ground surface at different radial positions. 
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Figure 20 is a plan view of the instrument layout. The explosive 

charge is suspended above the origin depicted on this plan view. The 

bar gages are denoted by Bl, B2, etc., at the pressure ranges close to 

the charge. The Kulite pressure gages are denoted by ABlS, AB16, etc. 

They are located at the same radial distance, and also close to the bar 

gages. Bar gage B3 was located at the center of the instrument array. 

Bar gages B2, B4, and B6 were located at the same radial distance from 

the charge center, arbitrarily referred to as radial "A". Bar gages Bl 

and BS were placed at another radial distance arbitrarily referred to 

as radial "B". It is the data from these instruments that is of 

interest to us in this thesis. Comparisons will be made between these 

bar gages and their corresponding Kulite airblast gages. The 

appropriate gage comparisons and their radial positions are presented 

in Table 1. 

In this chapter, we will compare the records from those 

combinations listed in the previous table. The bar gage records will 

be unfolded to the best capability and the uncertainties calculated 

using the UNFOLD4 program explained in Chapter 4. The impulses from 

the unfolded bar gage records will then be plotted on the same scales 

as the Kulite airblast gage impulses. If the gage performance were 

similar, then the Kulite airblast impulses would lie within the upper 

and lower bounds of the unfolded bar gage impulses. If the Kulite 

airblast gage impulses lie outside of these bounds, it means that 

either the gages are performing (or measuring) differently, or else 
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COMPARISON 
NO. 

1 

2 

3 

4 

5 

6 

TABLE 1 

BAR GAGES AND KULITE AIRBLAST GAGES AT 
COMPARABLE TEST BED POSITIONS. 

KULITE 
RADIAL BAR GAGE AIRBLAST GAGE 

POSITION DESIGNATION DESIGNATION 

CENTER B3 AB15 

RADIAL A B2 AB29 

RADIAL A B4 AB16 

RADIAL A B6 AB28 

RADIAL B Bl AB31 

RADIAL B B5 AB19 

the charge is not producing a uniformly axisymmetric airblast 
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environment. An analysis will be performed along these lines to see if 

any interesting conclusion can be drawn about the accuracy or utility 

of bar gage unfolding. 

Analysis 

The bar gages used on this test were 5.8 m long with the strain 

gages placed 1.83 m from the top of the bar . This is a standard bar 

gage design used on high explosive tests which have no special 

measurement requirements, e.g., spatial constraints, long measurement 

times, etc. The bar gage records were unfolded using the computer 

program UNFOLD4 to calculate both the unfolded wave form, and the 

uncertainties due to incorrect wave speed and reflection coefficients. 

A low frequency wave speed of 5089 mjsec was found to be the best 

choice for these bar gage records (as it was for the other bar gage 

types investigated). This value of low-frequency wave speed will 
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likely apply to all bar gages made from the same lot of high-strength 

steel. Reflection coefficients and all of the uncertainties were 

chosen in a manner consistent with that described earlier. 

The results of the unfolding are given in Figures 21 through 26 . 

The unfolded pressure wave forms, with the plus and minus 

uncertainties, are shown in the left-hand plot, while the corresponding 

integrated impulses are displayed in the right-hand plot. Two points 

are noteworthy from these plots. First, Bl and BS are peculiar looking 

unfolded pressure wave forms when compared to the other unfolded wave 

forms. Bl has a repeating pulse, which judging from the timing, is 

propagating up and down the bar. This record was unfolded several 

times with carefully chosen parameters. The same results were always 

achieved. Therefore, it is presumed that Bl was unfolded correctly, 

and the oscillations represent a mechanical pulse not due to the 

pressure applied to the measurement end of the bar gage. 

BS displays late-time pulses different than that of Bl. The late

time inputs evident on BS are not as periodic in nature. These are 

above the baseline indicating positive pressure. BS may be responding 

to a mechanical input, perhaps from the explosive or some anomalous 

behavior in the bar. The other unfolded bar gage records appear to be 

reasonable. The uncertainties in the pressure wave form reveal 

themselves in the high-frequency spikes at times when the reflections 

are being unfolded, as was observed in the previous chapter. 

Note that had the records not been unfolded, it is possible that 

Bl and BS would not have been singled out as suspect. Since their 

initial pulses looked reasonable, and the rest of the records looked 
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Figure 21. Unfolded wave form from Bar-1, including plus and minus uncertainties. 
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Figure 22. Unfolded wave form from Bar-2, inc luding plus and minus uncertainties . 
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"bar gage-like", it would be easy to conclude that records were valid. 

By unfolding the records, the differences became obvious. With regard 

to this example, it is concluded that unfolding the bar gage records 

can be useful in evaluating the quality of the bar gage measurement. 

The uncertainties due to the reflection coefficients yield large 

uncertainties in the unfolded impulses. This is a second noteworthy 

point regarding the unfolding of these bar gage records. Even the most 

careful examination of the bar gage records could not yield a constant 

reflection coefficient. The reflection coefficient varied as much as 

eight percent, requiring that amount of uncertainty to be input to the 

unfolding program. As can be seen in Figure 23, these sorts of 

uncertainties in reflection coefficients cause gross errors in the 

unfolded impulse. An analyst could only use one or two reflections of 

an unfolded impulse wave form with uncertainties that large. Some of 

the records had less uncertainty in their reflection coefficients and 

the unfolded impulse waveforms are more reasonable. BS and B6 in 

Figures 25 and 26 are good examples of this. 

Each unfolded bar gage record is plotted along with its 

corresponding Kulite airblast gage record in Figures 27 through 32. As 

before, the pressure wave forms are grouped together on one plot and 

the integrated impulses on another. The plus and minus uncertainties 

of the unfolded pressure wave form are left off of these plots for 

clarity. The airblast data from the Kulite airblast gages required 

little or no data manipulation. Prior to making these plots, 100-ms 

plots of the Kulite airblast data were studied to determine the maximum 
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Figure 30. Comparison of the unfolded wave form of Bar-4 with the wave form recorded by the 
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15 

00 
00 



co a. 
~ 

75 

50 

25 

0 

-25 

-50 

COMPARISON OF BAR-5 WITH KULITE AB-19 

C=5088 mjs, Uc= 15.24 mjs, L=5.8 m, X= 1.83 m, A=0/97, UA=0.03, 8=0.93, UB=0.03, TOA=0.001086s 

-UNFOLDED BAR GAGE 
RECORD 

-- -KULITE AIRBLAST DATA 

0 
Q) 
(/) 

X 
co a. 
::2 

0.075 

0.06 

0.045 

0.03 

0.015 

0.0 

UNFOLDED BAR GAGE 
IMPULSE 

- --PLUS UNCERTAINTY 
• · · · • · · • Ml NUS UNCERTAINTY 
--- KULITE IMPULSE DATA 

,..,-------~---.....-....---...---

-75~~~--~~~~----_._.~~~~ 

5 10 
0 5 10 

TIME(ms) 
15 0 

TIME(ms) 

a. PRESSURE b. IMPULSE 

Figure 31. Comparison of the unfolded wave form of Bar-5 with the wave form recorded by the 
Kulite airblast gage AB-19. 
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Figure 32. Comparison of the unfolded wave form of Bar-6 with the wave form recorded by the 
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pulse lengths. It was determined that 16-ms plots would be adequate to 

display all of the useful data. Since the Kulite airblast gage trace 

returns to the baseline (zero pressure) and stays there, the dashed 

trace is difficult to see on the pressure plots. 

Impulses from the unfolded bar gage records range from 40 to 100 

percent higher than the impulses measured by the Kulite airblast gages. 

With differences this extreme, the impulses measured by the Kulite 

airblast gages remain well below the minus uncertainty in the unfolded 

wave forms. Recall that numerical unfolding leaves the portion of the 

wave form prior to the first tensile reflection untouched. In each of 

Figures 27 through 32 the impulse measured by the bar gage exceeds the 

impulse measured by the Kulite airblast gage well before the first 

reflection is unfolded. Hence, the discrepancy between the two gage 

types is established before numerical unfolding can contribute. For 

these reasons, numerical unfolding could not have caused the 

discrepancies between the two gage types. 

Because the bar gages were located close to their companion Kulite 

airblast gage, it is highly unlikely that the pressure field generated 

by the symmetric charge caused the systematic differences observed by 

the two gage types. These differences appear to fall well outside of 

data scatter (see, for example the Kulite and bar gage measurements 

along Radial A). Therefore, one can conclude that the discrepancies 

between gage types are not due to position in the test bed, or just 

excessive scatter in the data. 

The likely cause for differences between gage types is some 

fundamental difference in the measurement techniques. Observe the 
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pressure plots. The bar gage recoreds indicate a second pressure pulse 

arriving about 0.5 to 1.2-msec after the arrival of the primary 

pressure pulse. This second pulse is not evident on the wave forms 

measured by the Kulite airblast gages. Since this second pulse on the 

bar gage records has substantial amplitude and duration, it affects the 

impulse significantly. This second pulse accounts for the difference 

in impulse measured by the two gage types. 

Recent analysis of the data indicate that the bar gages are in 

error, i.e., the second pulse is not representative of the actual 

pressure environment at the end of the bar gage (Reference 12). It has 

been hypothesized that ground shock loadings, water jacket effects, or 

shear loads induced by relative motion between the bar and the 

surrounding jacket, might cause the peculiar bar gage output. 

For completeness, it should be pointed out that there is no 

guarantee that the unfolding routine will correctly unfold data that is 

input to the lateral surfaces of the bar gage. Hence, from a purist 

point of view, errors due to poor bar gage performance can also be 

unfolded incorrectly and contribute to further unfolding errors. 

Future research and development will likely lead to bar gage designs 

which minimize influences from lateral loadings. In the absence of 

lateral loading induced errors, the uncertainties due to wave speed and 

reflection coefficients are the primary sources of error in the 

unfolding routine. 

While the numerical unfolding of the these bar gage records was 

not necessary to reveal the differences between the two types of 

airblast gages, this application demonstrates how numerical unfolding 



can be used during data analysis. Had there been no grievous 

differences between the gage types, more profound conclusions might 

have been made. In general, numerical unfolding with the calculated 

uncertainties can be used for the following purposes during data 

analysis: 
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1. Determine for each individual wave form the length of unfolded 

bar gage record that can be used without incurring too much 

error. 

2. Gain insight into the quality of the bar gage record. Bar 

gage records of good quality tend to produce predictable wave 

shapes when unfolded. 

3. Allow comparisons with other airblast gages having longer 

duration records. If other wave forms lie outside of the 

error bounds of the numerical unfolding, the discrepancy is 

due to some source other than the numerical unfolding. If the 

wave forms lie inside the error bounds of the numerical 

unfolding, then it is possible that discrepancies are due to 

the unfolding and further explanations for the discrepancies 

must be presented carefully, or withheld all together. 



CHAPTER VI 

CONCLUSIONS 

Review 

Bar gages are frequently used to measure airblast on explosive 

tests. The unique design and configuration of a bar gage allows it to 

measure high peak pressure and impulse close to an explosive charge. 

Unfortunately, the arrival of reflections from the ends of the bar gage 

limit the length of time that the primary pressure pulse can be 

measured. In this thesis we investigated the errors associated with 

the use of D'Alembert unfolding to numerically remove the reflections 

from the bar gage record, thereby restoring the original pressure 

pulse. 

D'Alembert unfolding is a numerical technique by which the tensile 

reflections from the bottom of the bar gage, and the compressive 

reflections from the top of the bar gage, are added and subtracted from 

the measured wave form in such a way as to restore the original 

pressure pulse. The numerical technique makes the same assumptions as 

D'Alembert did in formulating his classical wave propagation equation. 

The most notable assumption being that the pulse propagates up and down 

the bar at a constant wave speed without changing shape. By further 

assuming that accurate and constant reflection coefficients can be 

identified for the ends of the bar gage while it makes the measurement, 
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the reflections can be subtracted from the measured wave form. In 

1983, computer programs were written to perform this numerical 

technique on actual bar gage records. 
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Although D'Alembert unfolding often yielded reasonable results, 

critics pointed out potential flaws in the technique. Dispersion in 

high-frequency data is contrary to the principle assumptions on 

D'Alembert unfolding; namely, the wave speed varies with frequency 

content, and hence the pulse changes shape as it propagates down the 

bar. Also, reflection coefficients seem to vary throughout the record 

slightly. By assuming a constant reflection coefficient for each end 

of the bar, considerable error could be introduced into the numerical 

result. It was argued that this error could cause large errors in 

specific impulse (first integral of pressure), a very important 

quantity for explosive testing. Alternatively, proponents of unfolding 

indicated that if even one reflection could be unfolded with acceptable 

error, it would greatly increase the value of the bar gage measurement . 

This thesis sought to quantify the errors inherent to D'Alembert 

unfolding, permitting a sound judgement to be made regarding the 

credibility of the numerical technique. 

The governing equation for D'Alembert unfolding was examined and 

three error sources were chosen for study. These error sources (listed 

below) comprise most of the error in the unfolding technique: 

1. Specifying incorrect low frequency wave speed, C0 • 



2. Choosing incorrect reflection coefficients, or assuming 

constant reflection coefficients when in reality, reflection 

coefficients were changing. 

3. Dispersion and incorrect bar gage dimensions. 

The first two errors were addressed analytically and numerically 

to arrive at the uncertainty in the unfolded wave form. The last 

errors were merely discussed to qualitatively assess their 

significance. 
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Recent experiments, suggest that bar gage output may be influenced 

by lateral loading during high explosive tests. The purpose of the bar 

gage and the unfolding routine are to deduce the pressure loading at 

the end of the bar. Lateral loads originate at places other than the 

end of the bar and propagate away hence forth. The unfolding routine 

is not designed to correct for these sorts of input. It is conceivable 

that the unfolding routine could generate further errors when used on 

bar gage records generated by multiple loading sites. Determination or 

treatment of errors induced by lateral loading are beyond the scope of 

this thesis. In the absence of such lateral loading errors, the 

uncertainty analysis presented in this thesis has addressed the primary 

error sources. 

Errors in the unfolded wave form due to uncertainty in the wave 

speed were identified numerically. Upper and lower bounds were placed 

on the wave speed, and the wave form unfolded for each case. The 

uncertainty in the unfolded wave form due to uncertainty in wave speed 

was then simply the difference between the wave forms. 
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Errors in the unfolded wave form due to uncertainty in the 

reflection coefficients were determined analytically by applying 

classical uncertainty analysis to the mathematical expression for the 

unfolded wave form. This yielded exact expressions for the uncertainty 

due to reflection coefficients, which could then be applied to specific 

wave forms. 

The effect of these errors was then examined by unfolding 

candidate wave forms and calculating the uncertainty due to both error 

sources individually. Two types of wave forms were used. The first 

type, was a record from a ball drop calibration on a specially made bar 

gage where all of the dimensions were precisely known. The ball drop 

calibration is a controlled laboratory test. The input to the bar gage 

from a ball drop calibration is well known and is complete before the 

first tensile reflection arrives. Consequently, it was a good choice 

for evaluating the effect of unfolding errors. Ball drop calibrations 

also have lower frequency content, so dispersion is not prevalent. 

The second type of wave form was a typical high explosive test 

record, specifically the WLB-1 record. Unfolding this wave form 

revealed the effect of the individual uncertainties on a wave form 

which contained considerable high frequency content. The wave form 

from the high explosive test also had larger uncertainties in 

reflection coefficients, which is typical of most explosive test data . 

Therefore, this wave form was representative of practical applications . 

The proper method for combining these two errors; i.e., that due 

to uncertainty in wave speed, and that due to uncertainty in reflection 

coefficients, was then studied. It was determined that adding the 
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uncertainty due to incorrect wave speed to the RSS combination (square 

root of the sum of the squares) of the uncertainties due to the 

reflection coefficients was the best method of arriving at the total 

uncertainty of the unfolded wave form. This was incorporated into a 

computer program that calculated the uncertainties for the specific 

wave form of interest. In this way, upper and lower bounds on the true 

unfolded wave form could be established for the data analyst. 

This error analysis was applied to airblast data from a candidate 

high explosive test. This test allowed for the comparison of unfolded 

bar gage records with another reputable type of airblast gage, the 

Kulite HKS airblast gage. All of the bar gage records were unfolded 

and then compared to their Kulite airblast gage counterpart. This 

analysis demonstrated the D'Alembert unfolding technique upon actual 

field test data and revealed systematic differences between bar gage 

measurements and the Kulite HKS airblast gage. 

Conclusions 

Several conclusions are drawn from this study. They are: 

1. An uncertainty analysis method was developed which 

treats the uncertainties inherent in the 

D'Alembert unfolding technique as applied to 

strain-gaged Hopkinson bar gage records. A 

modified unfolding program was written which 

provides the analyst with the useful upper and 

lower bounds of uncertainty for a particular wave 
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form. The magnitude of the uncertainty is wave 

form specific, i.e., dependent on the character of 

the particular wave form being analyzed. 

2. Errors in the reflection coefficients may yield 

large errors in unfolded impulse. These errors 

are the primary factor limiting the usefulness of 

D'Alembert unfolding. With the unfolding of 

subsequent reflections, the error in impulse from 

these sources increases geometrically. 

3. Errors in wave speed produce spikes on the 

unfolded pressure wave form, but do not yield 

large errors in impulse. In general, with higher 

frequency content airblast data, and with larger 

uncertainty in wave speed, the spiky, noise-like 

behavior will be more prevalent. 

4. Dispersion, uncertainties in bar gage dimensions, 

and other errors are less significant. and 

manifest themselves in a manner similar to errors 

in wave speed. 

5. The differences between the unfolded bar gage 

measurements and Kulite airblast measurements are 

not due to errors in the D'Alembert unfolding 

technique. Evidence suggests that bar gage 

measurements were influenced by phenomena other 

than airblast (e.g., lateral loading), and that 



the Kulite airblast gages were not affected by 

these phenomena. 
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6. Unfolding bar gage records can aid the data 

analyst in assessing the quality of the bar gage 

measurement. Peculiar behavior that is "hidden" 

in the reflections sometimes is revealed by 

D'Alembert unfolding. 

These conclusions assume that the analyst has made reasonable 

choices of wave speed and reflection coefficients, and the 

uncertainties associated with these parameters. Performing D'Alembert 

unfolding with grossly incorrect parameters or very large uncertainties 

can lead to results which are contrary to the above conclusions. 

Recommendations 

The objective of this thesis was to ascertain the credibility of 

D'Alembert unfolding as a data reduction technique for bar gage 

records. The error analysis of the D'Alembert unfolding method 

accomplished that objective by quantifying the errors due to unfolding 

a particular wave form. This error analysis included only the effects 

of uncertainty in wave speed, reflection coefficients, and dispersion . 

If other significant sources of error are found, effort should be made 

to incorporate these errors into the uncertainty calculations. 

The most important recommendation from this work is to apply the 

modified D'Alembert unfolding program to more field data. As was 

eluded to in earlier chapters, bar gages exhibit phenomena which are 

not fully understood. By unfolding the bar gage records and comparing 
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them to other airblast measurements, bar gage performance might be 

better understood. Having the upper and lower bounds on the numerical 

unfolding errors, the analyst can confidently choose the length of 

unfolded record to use and assess the validity of its comparison to 

other measurements or predictions. 



APPENDIX 

This appendix contains the computer program listings for the 

unfolding programs used in this thesis. Refer to Chapter 3 for a 

description of the basic organization of these codes. A flow chart of 

the basic workings of these programs is shown in Figure 8 of Chapter 3. 

The computer program UNFOLD is essentially the same program 

developed by Welch and White for operation on Tektronics and VAX 

computer systems. This program was modified to run on IBM personal 

computers and compatibles for this thesis, and named UNFOLD. UNFOLDl 

uses the first program as its core, but also calculates a plus and 

minus uncertainty in the unfolded wave form due to uncertainty in wave 

speed. UNFOLD2 uses the first program as its core, but calculates plus 

and minus uncertainty in the unfolded wave form due uncertainties in 

both reflection coefficients. UNFOLD4 is the final program developed 

for this thesis. UNFOLD4 combines the uncertainties in the unfolded 

wave form due to wave speed and reflection coefficients. 

The computer program UNFOLD3 is conspicuously missing from this 

appendix. UNFOLD3 was written to identify the differences between two 

different schemes of combining the uncertainties in the unfolded wave 

form due to both wave speed and reflection coefficients. UNFOLD3 was 

subsequently used to generate the data for Figure 18 (Chapter 4). One 

of those schemes was deemed inappropriate. Accordingly, the listing of 
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UNFOLD3 is not included in this thesis to avoid confusion. 

The listings of UNFOLD, UNFOLDl, UNFOLD2, and UNFOLD4 follow this 

narrative in their respective order. 



PROGRAM UNFOLD 

C*****REVISED ON 10-13-90 TO MAKE THE PROGRAM MORE EFFICIENT*** 

C*****ROUTINE NOW DISCERNS WHICH REFLECTION POINT •1• IS IN**** 

C*****AND ONLY RUNS LOOP THAT MANY TIMES. OTHER THINGS ARE**** 

C*****TO MAKE PROGRAM MORE LOGICAL AND EFFICIENT. MORE******** 

C*****COMMENTS STATEMENTS ARE ADDED FOR CLARITY**************** 

C*****INITIALIZE AND DEFINE SOME VARIABLES AND ARRAYS********** 

CHARACTER*30 BARFILE1 ,BARUNFOLD 

PARAMETER (NN=17000) 

DIMENSION A(NN), F(NN) 

NFIRST=4. 

C*****INPUT BAR GAGE PARAMETERS AND OTHER INFORMATION********** 

PRINT*,'INPUT WAVE SPEED OF BAR {FT /S) ' 

READ(*,*) C 

PRINT*,'INPUT LENGTH OF BAR (FT) ' 

READ(*,*) BARLEN 

PRINT*, 'INPUT DISTANCE BETWEEN TOP OF BAR AND GAGE (FT) ' 

READ(*,*) X 

PRINT*, 'INPUT REFLECTION COEFFICIENT FOR DUMP END OF BAR ' 

READ(*,*) GAMMA1 

PRINT*, 'INPUT REFLECTION COEFFICIENT FOR INPUT END OF BAR ' 

READ(*,*) GAMMA2 
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PRINT*,'INPUT TIME OF ARRIVAL (SEC) ' 

READ(*,*) TOA 

PRINT*,'WHAT IS NAME OF BAR GAGE DATA FILE TO UNFOLD? ' 

READ(* ,1 000) BARFILE1 

PRINT*,'WHAT IS NAME OF FILE FOR UNFOLDED DATA? ' 

READ(*,1000) BARUNFOLD 

PRINT*,'HOW MANY TENSILE REFLECTIONS ARE THERE? ' 

READ(*,*) NREFL 

C*****OPEN FILES, READ HEADER INFORMATION*********************** 

OPEN(15,FILE=BARFILE1,STATUS='OLD',FORM='FORMATTED') 

OPEN{16,FILE = BARUNFOLD,FORM ='FORMATTED') 

READ{15,2000) TFIRST,TINC,FKOUNT 

WRITE(16,2000) TFIRST,TINC,FKOUNT 

KOUNT = IFIX(FKOUNT) 

C*****UNFOLD WAVEFORM******************************************* 

TWOC=2./C 

DO 100 I=NFIRST,KOUNT 

G1 =0.0 

G2=0.0 
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DO 200 N = 1,NREFL 

TEMP= TWOC*(FLOAT(N)*BARLEN-X) 

VAL1 =TIME-TEMP-TOA 

IF (VAL 1.GT.O) THEN 

J =I FIX (TEMP JTINC) 

J=I..J 

IF(J.GT.O) THEN 

IF(J.GE.NFIRST) THEN 

G1 =G1 +(GAMMA1**N)*(GAMMA2**(N-1))*F(J) 

TEMP= TWOC*FLOAT(N)*BARLEN 

VAL2. = TIME-TEMP-TOA 

IF(VAL2..GT.O) THEN 

J =I FIX (TEMP JTINC) 

J=I..J 

IF(J.GT.O) THEN 

IF(J.GE.NFIRST) THEN 

G2 = G2 +(GAMMA 1 **N)*(GAMMA2**N)*F(J) 

END IF 

END IF 

END IF 

END IF 

END IF 

END IF 

200 CONTINUE 
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READ(15, *) TIME, A(l) 

F(l) =A(I) +G1-G2 

WRITE(16,4000) TIME, F(l) 

100 CONTINUE 

50 CLOSE (UNIT= 15) 

CLOSE (UNIT= 16) 

C*****FORMAT STATEMENTS***************************************** 

1000 FORMAT(A30) 

2000 FORMAT(E12.4,/,E12.4,/,E12.4) 

3000 FORMAT(E12.4) 

4000 FORMAT(F10.8,1X,F12.5) 

END 
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PROGRAM UNFOLD1 

C*****THIS PROGRAM CALCULATES UPPER AND LOWER BOUND*********** 

C*****UNFOLDED WAVEFORMS FOR SPECIFIED CHANGES IN WAVE******** 

C*****SPEED. THREE WAVEFORMS ARE OUTPUT, UNFOLDED************ 

C*****WAVEFORM, PLUS AND MINUS UNCERTAINTY********************* 

C*****REVISED ON 11-26-90 TO MAKE THE PROGRAM MORE EFFICIENT*** 

C*****ROUTINE NOW DISCERNS WHICH REFLECTION POINT •1• IS IN**** 

C*****AND ONLY RUNS LOOP THAT MANY TIMES. OTHER THINGS ARE**** 

C*****TO MAKE PROGRAM MORE LOGICAL AND EFFICIENT. MORE******** 

C*****COMMENTS STATEMENTS ARE ADDED FOR CLARITY**************** 

C*****INITIALIZE AND DEFINE SOME VARIABLES AND ARRAYS********** 

CHARACTER*30 BARFILE1,BARUNFOLD,MINUSUNC,PLUSUNC 

PARAMETER (NN=16000) 

DIMENSION A(NN), F(NN) 

DIMENSION G1 (3), G2(3) 

NFIRST=4. 

C*****INPUT BAR GAGE PARAMETERS********************************* 

PRINT*,'INPUT WAVE SPEED OF BAR (FT /S) ' 

READ(*,*) C 

PRINT*,'INPUT UNCERTAINTY OF WAVE SPEED ( + /- •x• FT /S) ' 

READ(*,*) UC 
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PRINT*, 'INPUT LENGTH OF BAR (FT) ' 

READ(*,*) BARLEN 

PRINT*,'INPUT DISTANCE BETWEEN TOP OF BAR AND GAGE (FT) ' 

READ(*,*) X 

PRINT*,'INPUT REFLECTION COEFFICIENT FOR DUMP END OF BAR ' 

READ(*,*) GAMMA 1 

PRINT*,'INPUT REFLECTION COEFFICIENT FOR INPUT END OF BAR' 

READ(*,*) GAMMA2 

PRINT*,'INPUT TIME OF ARRIVAL (SEC) I 

READ(*,*) TOA 

PRINT*,'WHAT IS NAME OF BAR GAGE DATA FILE TO UNFOLD? ' 

READ(*,1000) BARFILE1 

PRINT*,'WHAT IS NAME OF FILE FOR UNFOLDED DATA? ' 

READ(*, 1 000) BAR UNFOLD 

PRINT*,'WHAT IS NAME OF FILE FOR MINUS UNCERTAINTY? ' 

READ(*, 1 000) MINUSUNC 

PRINT*,'WHAT IS NAME OF FILE FOR PLUS UNCERTAINTY? ' 

READ(*, 1 000) PLUSUNC 

C*****OPEN FILES, READ HEADER INFORMATION*********************** 

OPEN(15,FILE=BARFILE1,STATUS='OLD',FORM='FORMATTED') 

OPEN{16,FILE = BARUNFOLD,FORM ='FORMATTED') 

OPEN(17,FILE = MINUSUNC, FORM= 'FORMATTED') 

OPEN{18,FILE = PLUSUNC, FORM= 'FORMATTED') 
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READ(15,2000) TFIRST,TINC,FKOUNT 

WRITE(16,2000) TFIRST,TINC,FKOUNT 

KOUNT = IFIX(FKOUNT) 

C*****UNFOLD WAVEFORM******************************************* 

DO 100 I= NFIRST,KOUNT 

READ(15,*,END=50) TIME, A(l) 

DO 125 L=1,3 

G1 (L) =0.0 

G2(L)=O.O 

125 CONTINUE 

DO 150 K1 = 1,3 

IF (K1.E0.1) THEN 

C1 =C-UC 

ELSE IF (K1.EQ.2) THEN 

C1=C 

ELSE IF (K1.E0.3) THEN 

C1=C+UC 

END IF 

C*****IF •1• UES PRIOR TO FIRST TENSILE REFLECTION, WRITE****** 

C***** POINT DIRECTLY TO OUTPUT FILE**************************** 
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lWOC=2./C1 

IF (TIME.LT.(TOA+ lWOC*(BARLEN-X))) THEN 

GOT05 

ELSE 

C*****IF •1• UES AFTER FIRST TENSILE REFLECTION, FIND********** 

C*****OUT WHICH REFLECTION IT UES IN, AND SET VARIABLE .N.***** 

C*****TO THAT NUMBER******************************************** 

DIF = (TIME-(TOA+ TWOC*(BARLEN-X)))/(TWOC*BARLEN) 

WNUM=AINT(DIF) 

DEC= DIF-WNUM 

IF (DEC.LT.O.SO) THEN 

DIF=DIF+O.SO 

END IF 

N=NINT(DIF) 

ENDIF 

C*****PERFORM SUMMATIONS OF SECOND TERM************************* 

DO 200 K=1,N 

TEMP= (2./C1)*(FLOAT(K)*BARLEN-X) 

J = IFIX(fEMP fTINC) 

J=I-J 

G1 (K1)=G1 (K1)+ (GAMMA1**K)*(GAMMA2**(K-1))*F(J) 
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C*****DETERMINE IF SUMMATIONS OF THIRD TERM ARE NECESSARY, ***** 

C*****AND IF SO, PERFORM THEM*********************************** 

TEMP=(2./C1)*FLOAT(K)*BARLEN 

VAL2 = TIME-TEMP-TOA 

IF(VAL2.GT.O) THEN 

J =I FIX (TEMP JTINC) 

J=I-J 

200 CONTINUE 

150 CONTINUE 

G2(K1) = G2(K1) +(GAMMA 1 **K)*(GAMMA2**K)*F(J) 

END IF 

C*****COMPUTE AMPLITUDE OF UNFOLDED VALUE OF POINT •1• AND***** 

C*****WRITE IT TO THE OUTPUT FILE******************************* 

5 F(I)=A(I)+G1(2)-G2(2) 

FMINUS=A(I) +G1 (1)-G2(1) 

FPLUS=A(I) +G1 (3)-G2(3) 

WRITE(16,4000) TIME, F(l) 

WRITE(17,4000) TIME, FMINUS 

WRITE(18,4000) TIME, FPLUS 

100 CONTINUE 
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50 CLOSE (UNIT= 15) 

CLOSE (UNIT= 16) 

CLOSE (UNIT= 17) 

CLOSE {UNIT= 18) 

C*****FORMAT STATEMENTS***************************************** 

1000 FORMAT{A30) 

2000 FORMAT{E12.4,/,E12.4,/,E12.4) 

3000 FORMAT(E12.4) 

4000 FORMAT(F10.8,1X,F12.5) 

END 
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PROGRAM UNFOLD2 

C*****PROGRAM IS THE SAME AS UNFOLD EXCEPT THAT IT ALSO***** 

C*****CALCULATES THE UNCERTAINTY IN THE UNFOLDED WAVEFORM*** 

C*****DUE TO THE UNCERTAINTY IN THE REFLECTION COEFFICIENTS* 

C*****REVISED ON 11-12-90 TO INCORPORATE CHANGES WHICH MAKE* 

C*****PROGRAM MORE LOGICAL AND EFFICIENT.******************* 

C*****INITIAUZE AND DEFINE SOME VARIABLES 

CHARACTER*30 BARFILE1 ,BARUNFOLD,UNCFILEP,UNCFILEM 

PARAMETER (NN=17000) 

DIMENSION A(NN), F(NN) 

NFIRST=4. 

C*****INPUT BAR GAGE PARAMETERS********************************* 

PRINT*,'INPUT WAVE SPEED OF BAR (FT /S) ' 

READ(*,*) C 

PRINT*,'INPUT LENGTH OF BAR (FT) ' 

READ(*,*) BAR LEN 

PRINT*,'INPUT DISTANCE BETWEEN TOP OF BAR AND GAGE (FT) ' 

READ(*,*) X 

PRINT*,'INPUT REFLECTION COEFFICIENT FOR DUMP END OF BAR ' 

READ(*,*) GAMMA 1 
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PRINT*,'UNCERTAINTY OF THE DUMP END REFL COEFFICIENT ' 

READ(*,*) UA 

PRINT*. 'INPUT REFLECTION COEFFICIENT FOR INPUT END OF BAR ' 

GAMMA2 

PRINT*, 'UNCERTAINTY OF THE INPUT END REFL COEFFICIENT ' 

READ(*,*) UB 

PRINT*,'INPUT TIME OF ARRIVAL (SEC) ' 

READ(*,*) TOA 

PRINT*,'WHAT IS NAME OF BAR GAGE DATA FILE TO UNFOLD? ' 

READ(* ,1 000) BARFILE1 

PRINT*, 'WHAT IS NAME OF FILE FOR UNFOLDED DATA? ' 

READ(* ,1 000) BAR UNFOLD 

PRINT*,'GIVE A FILENAME FOR THE PLUS UNCERTAINTY VALUES ' 

READ(* ,1 000) UNCFILEP 

PRINT*,'GIVE A FILENAME FOR THE MINUS UNCERTAINTY VALUES ' 

READ(* ,1 000) UNCFILEM 

C*****OPEN FILES, READ HEADER INFORMATION*********************** 

OPEN(15,FILE=BARFILE1,STATUS='OLD',FORM='FORMATTED') 

OPEN(16,FILE = BARUNFOLD,FORM ='FORMATTED') 

OPEN(17,FILE=UNCFILEP,FORM='FORMATTED') 

OPEN(18,FILE = UNCFILEM,FORM ='FORMATTED') 
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READ(15,2000) TFIRST,TINC,FKOUNT 

WRITE{16,2000) TFIRST,TINC,FKOUNT 

WRITE(17,2000) TFIRST,TINC,FKOUNT 

WRITE{18,2000) TFIRST,TINC,FKOUNT 

KOUNT = IFIX(FKOUNT) 

C*****UNFOLD WAVEFORM******************************************* 

TWOC=2./C 

DO 100 I=NFIRST,KOUNT 

READ(15,*,END=50) TIME, A(l) 

G1 =0.0 

G2=0.0 

A1 =0.0 

A2=0.0 

B1 =0.0 

82=0.0 

C*****IF •1• LIES PRIOR TO FIRST TENSILE REFLECTION, WRITE****** 

C***** POINT DIRECTLY TO OUTPUT FILE**************************** 

IF (TIME.LT.(TOA+ TWOC*(BARLEN-X))) THEN 

GOT05 
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ELSE 

C*****IF •1• UES AFTER FIRST TENSILE REFLECTION, FIND********** 

C*****OUT WHICH REFLECTION IT UES IN, AND SET VARIABLE .N.***** 
. 

C*****TO THAT NUMBER******************************************** 

DIF = (TIME-(TOA + TWOC*(BARLEN-X))) /(TWOC*BARLEN) 

WNUM =AINT(DIF) 

DEC= DIF-WNUM 

IF (DEC.LT.O.SO) THEN 

DIF=DIF+0.50 

ENDIF 

N=NINT(DIF) 

END IF 

C*****PERFORM SUMMATIONS OF SECOND TERM************************* 

DO 200 K=1,N 

TEMP= TWOC*(FLOAT(K)*BARLEN-X) 

J = IFIX(TEMP fTINC) 

J=I.J 

G1 =G1 +(GAMMA1**K)*(GAMMA2**(K-1))*F(J) 

A1 =A1 +K*(GAMMA1**(K-1))*(GAMMA2**(K-1))*F(J) 

81 =81 +(K-1)*{GAMMA1**K)*(GAMMA2**(K-2))*F(J) 
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C*****DETERMINE IF SUMMATIONS OF THIRD TERM ARE NECESSARY, ***** 

C*****AND IF SO, PERFORM THEM*********************************** 

TEMP= TWOC*FLOAT(K)*8ARLEN 

VAL2 = TIME-TEMP-TOA 

IF(VAL2..GT.O) THEN 

J =I FIX (TEMP JTINC) 

J=I-J 

G2 = G2 +(GAMMA 1 **K)* (GAMMA2**K)*F(J) 

A2=A2+K*(GAMMA1**(K-1))*(GAMMA2**K)*F(J) 

82= 82+ K*(GAMMA1 **K)*(GAMMA2**(K-1 ))*F(J) 

END IF 

200 CONTINUE 

C*****COMPUTE AMPUTUDE OF UNFOLDED VALUE OF POINT •1• AND***** 

C*****WRITE IT TO THE OUTPUT FILE******************************* 

5 F(l) =A(I) +G1-G2 

UNCA= ((A1·A2)/F(I))*UA 

UNC8 = ((81-82)/F(I))*U8 

U = ((UNCA **2) + (UNC8**2)) **0.5 

UP=F(I) + (U*ABS(F(I))) 

UM = F(I)-(U*ABS(F(I))) 
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WRITE(16,4000) TIME, F(l) 

WRITE(17,4000) TIME, UP 

WRITE(18,4000) TIME, UM 

100 CONTINUE 

50 CLOSE (UNIT= 15) 

CLOSE (UNIT= 16) 

CLOSE (UNIT= 17) 

CLOSE (UNIT= 18) 

C*****FORMAT STATEMENTS***************************************** 

1000 FORMAT(A30) 

2000 FORMAT(E12.4,/,E12.4./,E12.4) 

3000 FORMAT(11X,E12.4) 

4000 FORMAT(F10.8,1X,F12.5) 

END 
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PROGRAM UNFOLD4 

C*****THIS PROGRAM CALCULATES UNCERTAINTY DUE TO C, A, AND 8,**** 

C*****AND WRITES THE PLUS AND MINUS UNCERTAINTIES TO A FILE.***** 

C*****REVISED ON 11-26-90 TO MAKE THE PROGRAM MORE EFFICIENT*** 

C*****ROUTINE NOW DISCERNS WHICH REFLECTION POINT •1• IS IN**** 

C*****AND ONLY RUNS LOOP THAT MANY TIMES. OTHER THINGS ARE**** 

C*****TO MAKE PROGRAM MORE LOGICAL AND EFFICIENT. MORE******** 

C*****COMMENTS STATEMENTS ARE ADDED FOR CLARITY**************** 

C*****INITIALIZE AND DEFINE SOME VARIABLES AND ARRAYS********** 

CHARACTER*30 BARFILE1 ,BARUNFOLD,MINUSUNC,PLUSUNC 

PARAMETER (NN=16000) 

DIMENSION A(NN), F(NN) 

DIMENSION G1 {3), G2(3) 

NFIRST=4. 

C*****INPUT BAR GAGE PARAMETERS********************************* 

PRINT*,'INPUT WAVE SPEED OF BAR (FT /S) ' 

READ(*,*) C 

PRINT*,'INPUT UNCERTAINTY OF WAVE SPEED(+/- •x• FT/S) ' 

READ(*,*) UC 

PRINT*,'INPUT LENGTH OF BAR (FT) ' 
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READ(*,*) BAR LEN 

PRINT*,'INPUT DISTANCE BETWEEN TOP OF BAR AND GAGE (FT) ' 

READ(*,*) X 

PRINT*,'INPUT REFLECTION COEFFICIENT FOR DUMP END OF BAR' 

READ(*,*) GAMMA 1 

PRINT*, 'UNCERTAINTY OF THE DUMP END REFL COEFFICIENT ' 

READ(*,*) UA 

PRINT*, 'INPUT REFLECTION COEFFICIENT FOR INPUT END OF BAR ' 

READ(*,*) GAMMA2 

PRINT*,'UNCERTAINTY OF THE INPUT END REFL COEFFICIENT ' 

READ(*,*) UB 

PRINT*,'INPUT TIME OF ARRIVAL (SEC) ' 

READ(*,*) TOA 

PRINT*,'WHAT IS NAME OF BAR GAGE DATA FILE TO UNFOLD? ' 

READ(*,1000) BARFILE1 

PRINT*, 'WHAT IS NAME OF FILE FOR UNFOLDED DATA? ' 

READ(* ,1 000) BAR UNFOLD 

PRINT*,'WHAT IS NAME OF FILE FOR MINUS UNCERTAINTY? ' 

READ(* ,1 000) MINUSUNC 

PRINT*,'WHAT IS NAME OF FILE FOR PLUS UNCERTAINTY? ' 

READ(* ,1 000) PLUSUNC 

C*****OPEN FILES. READ HEADER INFORMATION*********************** 
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OPEN{15,FILE=8ARFILE1,STATUS='OLD',FORM='FORMATTED') 

OPEN{16,FILE=8ARUNFOLD,FORM='FORMATTED') 

OPEN{17,FILE = MINUSUNC, FORM= 'FORMATTED') 

OPEN{18,FILE = PLUSUNC, FORM= 'FORMATTED') 

READ{15,2000) TFIRST,TINC,FKOUNT 

WRITE{16,2000) TFIRST,TINC,FKOUNT 

KOUNT = IFIX(FKOUNT) 

C*****UNFOLD WAVEFORM******************************************* 

DO 100 I=NFIRST,KOUNT 

READ{15,*,END=50) TIME, A{l) 

A1 =0.0 

A2=0.0 

81 =0.0 

82=0.0 

DO 125 L=1,3 

G1 (L) =0.0 

G2(L)=O.O 

125 CONTINUE 
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DO 150 K1 = 1,3 

IF (K1.EQ.1) THEN 

C1 =C-UC 

ELSE IF (K1.EQ.2) THEN 

C1=C 

ELSE IF (K1.EQ.3) THEN 

C1=C+UC 

ENDIF 

C*****IF •1• LIES PRIOR TO FIRST TENSILE REFLECTION, WRITE****** 

C***** POINT DIRECTLY TO OUTPUT FILE**************************** 

TWOC=2./C1 

IF (TIME.LT.(TOA+ TWOC*(BARLEN-X))) THEN 

GOTOS 

ELSE 

C*****IF •1• LIES AFTER FIRST TENSILE REFLECTION, FIND********** 

C*****OUT WHICH REFLECTION IT LIES IN, AND SET VARIABLE "N"***** 

C*****TO THAT NUMBER******************************************** 

DIF = (TIME-(TOA + TWOC* (BAR LEN-X)))/ (TWOC*BARLEN) 

WNUM=AINT(DIF) 

DEC=DIF-WNUM 

IF (DEC.LT.O.SO) THEN 
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DIF = DIF +0.50 

ENDIF 

N=NINT(DIF) 

ENDIF 

C*****PERFORM SUMMATIONS OF SECOND TERM************************* 

DO 200 K=1,N 

TEMP= (2. /C1 )* (FLOAT(K)*8ARLEN-X) 

J =I FIX (TEMP /TIN C) 

J=I-J 

G1 (K1) =G1 (K1) + (GAMMA1 **K)*(GAMMA2**(K-1))*F(J) 

IF(K1.EQ.2) THEN 

A1 =A1 +K*(GAMMA1**(K-1))*(GAMMA2**(K-1))*F(J) 

81 =81 +(K-1)*(GAMMA1**K)*(GAMMA2**(K-2))*F(J) 

ENDIF 

C*****DETERMINE IF SUMMATIONS OF THIRD TERM ARE NECESSARY, ***** 

C*****AND IF SO, PERFORM THEM*********************************** 

TEMP= (2./C1 )*FLOAT(K)*8ARLEN 

VAL2 = TIME-TEMP-TOA 

IF(VAL2.GT.O) THEN 

J =I FIX (TEMP /TIN C) 

J=I-J 

G2(K1) = G2(K1) +(GAMMA 1 **K)*(GAMMA2**K)*F(J) 
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END IF 

200 CONTINUE 

150 CONTINUE 

IF(K1.EQ.2) THEN 

A2=A2+K*(GAMMA1**(K-1))*(GAMMA2**K)*F(J) 

B2=B2+K*(GAMMA1**K)*(GAMMA2**(K-1))*F(J) 

END IF 

C*****COMPUTE AMPUTUDE OF UNFOLDED VALUE OF POINT •1• AND***** 

C*****WRITE IT TO THE OUTPUT FILE******************************* 

5 F(I)=A(I)+G1(2)-G2(2) 

FMINUS = F(I)-(A(I) + G1 (1 )-G2(1)) 

FPLUS= F(I)-(A(I) +G1 (3)-G2(3)) 

UNCA=(A1-A2)*UA 

UNCB= (B1-B2)*UB 

UP= F (1)-FPLUS + ( (UNCA **2) + (UNCB**2)) **0.5 

UM = F (1)-FMI NUS-( (UNCA **2) + (UNCB**2)) **0.5 

WRITE(16,4000) TIME, F(l) 

WRITE(17.4000) TIME, UM 

WRITE(18,4000) TIME, UP 

100 CONTINUE 

50 CLOSE (UNIT= 15) 

CLOSE (UNIT= 16) 

CLOSE (UNIT= 17) 
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CLOSE (UNIT= 18) 

C*****FORMAT STATEMENTS***************************************** 

1000 FORMAT(A30) 

2000 FORMAT(E12.4,/,E12.4./,E12.4) 

3000 FORMAT(E12.4) 

4000 FORMAT(F10.8,1X,F12.5) 

END 
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