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PREFACE 

This paper was prepared to document a presentation given during 

Session III--Cratering, Ejecta, Ground Shock--of the Defense Nuclear 

Agency (DNA) Strategic Structures Division Review Conference held at 

SRI International, Menlo Park, California, on 4-6 May 1982. 

The purpose of the presentation was to outline the site charac

terization methodology developed for DNA in support of the Air Force MX 

Multiple Protective Shelter program and to illustrate some recently 

developed probabilistic ground shock prediction and analysis tools. 

The presentation was prepared by Dr. J. G. Jackson, Jr., and his 

associates in the Geomechanics Division of the Structures Laboratory 

(SL), U. S. Army Engineer Waterways Experiment Station (WES). 

Mr. Bryant Mather was Chief of SL during the preparation of this 

paper. The Commander and Director of WES was COL Tilford C. Creel, CE, 

and the Technical Director was Mr. F. R. Brown. 
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CONVERSION FACTORS, NON-SI TO SI (METRIC) 
UNITS OF MEASUREMENT 

Non-SI units of measurement used in this paper can be converted to SI 

(metric) units as follows: 

Multiply 

feet 

inches 

pounds (mass) 

square miles (U. S. statute) 

By 

0.3048 

0.0254 

0.45359237 

2.589998 

3 

To Obtain 

meters 

meters 

kilograms 

square kilometers 



SITE CHARACTERIZATION FOR PROBABILISTIC GROUND SHOCK PREDICTIONS 

Viewgraph 1 

The codes that we currently use to calculate explosive-produced 
ground shock environments are deterministic tools; i.e., their input 
parameters are specified as single-valued quantities. But in reality, 
much of this input--such as the earth material properties and the 
applied blast loading characteristics--are random variables, which means 
that the resulting state of stress and ground motion are also random 
variables. Thus, the ground shock calculation problem should be treated 
probabilistically. 

There is nothing new about that conclusion--a probabilistic 
approach to ground shock prediction has long been recognized as the 
ideal way to go. But it took the ill-fated MX Multiple Protective 
Shelter (MPS) concept to convince us that it is the only way to go. 

Viewgraph 2 

Geologic profile and soil property estimates related to our land
based ICBM systems are usually provided on a site-specific basis. Titan 
involved only 18 sites within each of three relatively compact deploy
ment areas. Site-by-site characterization for Minuteman was much more 
difficult--involving 150 to 200 sites in each of six areas--but it was 
still manageable. But when the Air Force proposed playing a "shell 
game" with 4600 shelters scattered over an 8000- to 9000-square-mile* 
area of Nevada and Utah, a probabilistic approach was no longer nice--it 
was absolutely necessary. 

Viewgraph 3 

The Nevada-Utah siting area for MX/MPS consisted of 47 alluvial 
valleys of the Basin and Range physiographic province. Soil deposits 
that result from similar geologic processes and have similar composition 
(such as density, water content, and gradation) generally have similar 
engineering properties (such as compressibility and shear strength). So 
our site characterization approach was to quantify the variability of 
the key ground shock-relevant geotechnical properties within one of 
these valleys and then statistically correlate the results with parame
ters which could readily be measured in the other 46 valleys. 

The question then was 
geotechnical properties?" 
designer's problem! 

"What are the key ground shock-relevant 
The answer, of course, depends on the 

* A table of factors for converting non-SI units of measurement to SI 
(metric) m1its is presented on page 3. 
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Viewgraph 4 

BMO said that the amount of vertical rattlespace--defined as the 
m~xi~um relative ~isplacement between the shelter and a free-falling 
m1ss1le--was a maJor cost driver, and wanted a statistical distribution 
of ~his requirement for the Nevada-Utah area. Rigid-body motion of the 
hor1zontal MX shelter can be approximated by the free-field vertical 
ground motion at the invert depth, which is dominated by the airslap 
impulse and the uniaxial strain compressibility of the dry alluvial soil 
above the first major reflector--usually either the groundwater table or 
bedrock. But groundwater tables and bedrock can be quite deep in the 
Nevada-Utah valleys, so determining the compressibility of all of the 
dry alluvium in them would still have been quite a job. We were fortu
nate, however, in that a series of sensitivity calculations showed that 
vertical rattlespace for the MX horizontal shelter problem was 
unaffected by anything below a depth of 150 feet. 

With the above as a background, we developed a program to address 
the rattlespace issue. 

Viewgraph 5 

The time driver for the program was the date required for B-4 
Specifications to support design of the horizontal shelter. There were 
three parts to the program--(1) a detailed study of soil compressibility 
in Ralston Valley, Nevada, (2) two large high-explosive Dynamic In ~itu 
Compressibility (or DISC) tests in Ralston Valley, and (3) acquisition 
of seismic velocity and other geotechnical data from eight valleys that 
were statistically distributed across the siting area. 

Viewgraph 6 

The Ralston Valley Soil Compressibility Study was a statistical 
study of one valley to generate baseline data applicable to other 
geologically-similar valleys. With the assistance of Professor Erik 
Vanmarcke of MIT, a probabilistic sampling and testing program was 
designed (Reference 1) to define the valley-wide variation of uniaxial 
strain compressibility to a depth of 150 fee t--and if possible, to 
correlate compressibility with data that were either already available 
or could readily be obtained (such as the P-wave velocities from seismic 
refraction surveys). 

Viewgraph 7 

Fugro National, Inc. (now Ertec Western, Inc.) defined the suit
able siting area for Ralston Valley (Refer ence 2). Within this area we 
obtained soil samples and seismic velocity data from four widely-space d 
borings at each of 17 locations; at two of these locations, additional 
soil samples and seismic P-wave data were obtained from a large numbe~ 
of closely-spaced borings (References 3-5). And we conducted DISC t estn 
at 2 of the 17 sites (References 6 and 7). 
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Viewgraph 8 

This viewgraph shows the random variation in static uniaxial strain 
results from 16 tests conducted on samples from one site--the samples 
were all extracted from the upper 6 meters from 12 borings that were all 
drilled within a 6-meter radius (Reference 8). There is substantial 
variation in the loading data, but very little in the unloading data. 

Viewgraph 9 

Dynamic uniaxial strain tests were conducted with rise-times to 8 
MPa ranging between 3 and 4 msec. 

This viewgraph shows the depth-biased variation in dynamic uniaxial 
strain from eight tests conducted on samples from six different sites-
these samples were extracted at 6-meter intervals from a depth of 3 
meters down to 46 meters (Reference 8) . 

Results from over 350 uniaxial strain tests were digitized and 
stored in a computer data bank along with all the seismic velocity, 
density, and gradation data (Reference 9). Statistical correlation 
analyses were then performed. 

Viewgraph 10 

This viewgraph illustrates the statistical correlation we developed 
between seismic P-wave velocity and dynamic laboratory compressibility. 
Given only a seismic velocity and a density, the program computes 
seismic compressibility and then predicts dynamic lab compressibility. 
The value of dynamic lab compressibility expected between 1.5 and 5.9 
meters at the DISC Test I site is shown with a 90 percent confidence 
interval. 

But what we want to predict is not seismic compressibility or 
dynamic lab compressibility, but dynamic in-situ compressibility--to do 
that, we needed the DISC tests. 

Viewgraph 11 

The DISC test surface loading was produced by a circular explosive 
charge designed by AFWL--15,000 lbs of Iremite was placed in a 90-foot
diameter cavity and confined by a 10-foot-high soil berm. Ground 
motions were measured by a double array of accelerometers placed at 
preselected intervals to a depth of 15 meters. A state of uniaxial 
strain was produced in the ground to a depth of about 6 meters; lateral 
restraint on the gages below 6 meters was reduced by relief waves from 
the cavity edge . 
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Viewgraph 12 

This photograph shows the circular foam- REST charge being laid out 
for center detonation. 

Viewgraph 13 

This photograph shows the soil berm being constructed to confine 
the charge. 

Viewgraph 14 

If you have seen one, you have seen them all! 

Viewgraph 15 

This is a composite plot showing the rise portions of the particle 
velocity waveforms that were measured in the upper 6 meters of DISC Test 
I. Wave speeds for different particle velocity amplitudes were computed 
for each depth interval and one- dimensional plane wave theory used to 
deduce stress-strain relations. 

Viewgraph 16 

The average in-situ stress- strain relation that was deduced from 
the 0- to 6-meter particle velocity wavefront measurements is plotted in 
this viewgraph for comparison with the seismic and dynamic lab com
pressibilities that were previously shown in Viewgraph 10. 

Now I plan to illustrate some recently developed probabilistic 
analysis tools by using the DISC Test I data to make a probabilistic 
ground shock prediction for DISC Test II. We assumed in- situ compress
ibility in the upper 6 meters of Ralston Valley to be a random 
variable--and since the curve deduced from the DISC Test I particle 
velocities is the only dynamic in-situ compressibility relation for 
Ralston Valley, we assumed it to be the mean relation. 

Viewgraph 17 

We then used coefficients of variation computed from the lab 
uniaxial strain loading data to derive standard deviation bounds for the 
in-situ uniaxial strain loading relation. As previously shown, there 
was very l ittle variation in the lab unloading stress-strain data, 
so we used a constant unloading relation in the probabilistic calcula
tions. Soil density was also input as a constant, since its coefficient 
of variation was only about 5 percent . 

There were only two random variables in the calculations-- the 
in-situ compressibility relation and the airblast loading function. The 
explosive charge design for DISC Test II was identical to that for DISC 
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Test I, so we used the DISC Test I data to define airblast variability 
for the DISC Test II predictions. 

Viewgraph 18 

This viewgraph shows the nine blast pressure measurements for DISC 
Test I. But it is the airblast impulse that primarily affects particle 
velocity at depth, so we statistically analyzed the nine impulse plots 
obtained by integrating the DISC Test I blast pressure measurements--

Viewgraph 19 

and produced this mean impulse function and its standard deviation 
bounds. Airblast pressure drivers for the probabilistic lD calculations 
were then obtained by differentiation. 

We have two probabilistic analysis codes--one is based on the 
method of partial derivatives described by Benjamin & Cornell (Reference 
10); the other uses a point-estimate method published by Rosenblueth in 
1975 (Reference 11). When there are n uncorrelated random variables, 
both methods require 2n+l deterministic calculations; since our 
problem had two independent variables, five lD calculations were 
required. We used both methods and obtained essentially identical 
results. 

Viewgraph 20 

This viewgraph shows our prediction of particle velocity at the 3-
meter depth for DISC Test II. The solid line is the expected value 
obtained from the probabilistic analysis. The dashed-line result was 
obtained from a lD calculation in which mean values were used for all 
input variables--and is akin to the "best estimate" we -vmuld obtain 
using "representative" properties for input. While in this case the 
difference is small, it does illustrate the fact that simply using 
average or mean input does not necessarily lead to the most probable 
solution. 

But a probabilistic analysis does a lot more than just provide 
expected values--it also provides information about uncertainties. 

Viewgraph 21 

This viewgraph shows the coefficient of variation associated with 
the expected value--or the uncertainty of the output due to the combined 
uncertainties of the input. It also shows--as a percentage--the rela
tive contribution of each input uncertainty to the overall output 
uncertainty. 

Note that the largest uncertainties are associated with the rise 
portion of the particle velocity waveform and are due almost entirely to 
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uncertaint~ in soil compressibility--uncertainty in the airblast impulse 
has very l1ttle effect on rise time. But as time goes on, the airblast 
impulse contribution steadily increases while the soil compressibility 
contribution steadily decreases--and it should decrease, because com
pressibility during unloading was a constant and not a random variable . 

Viewgraph 22 

This viewgraph shows our DISC Test II prediction compared with the 
DISC Test II data. The comparison looks pretty good to me, but then 
beauty is in the eye of the beholder--which leads me to say that we have 
long needed a l ess subjective (or prejudiced) way of assessing the 
degree of agreement or disagreement between computational and experi
mental results. That is by no means an original conclusion, i.e., at 
the last one of these conferences (in 1979) Torn Geers of Lockheed Palo 
Alto said precisely the same thing during an underwater shock session. 

Geers suggested an objective method for computing relative differ
ences (or errors) both in magnitude and in phase-and-frequency between 
two transient response histories (Reference 12). We picked up on it and 
used it to compare each of the three measured DISC Test II waveforms to 
the calculated waveform. 

Viewgraph 23 

This viewgraph shows the magnitude errors and the phase-and
frequency errors computed for each of the three measured waveforms. The 
errors associated with two of these waveforms are small and essentially 
identical. They appear to be somewhat larger for the dashed line, but 
that is really only true during the initial 2- to 3-msec toe (or 
precursor). 

Viewgraph 24 

We also compared the mean of the three DISC Test II measurements 
with the calculated expected value. The magnitude error has a plus-and
minus oscillation during the rise portion and then settles on a value of 
about minus 10 percent. The phase-and- frequency error is essentially 
zero. 

Viewgraph 25 

And finally, for the rattlespace calculations , we were intere~ted 
in when things started moving at the 3-meter depth, not when the alr
blast initially loaded the ground surface--so we replotted the expec ted 
value of particle v e locity in terms of time minus arrival time at 3 
meters. We then produced the probabilistic ground shock product of 
primary interest to all system designers, i.e., confidence intervals 
about the expected value. 
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PROPOSED NEVADA-UTAH SITING AREA FOR MX/MPS 
(47 CANDIDATE VALLEYS) 
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RALSTON VALLEY 
SOl L COMPRESS STUDY 

• SELECT/ACCESS SITES 

• DRILL & SAMPLING 

• P-WAVE VEL MEAS 

• COMPRESS TESTS 

• STANDARD LAB TESTS 

• STATISTICAL ANAL 

RALSTON VALLEY 
DISC TESTS 

• SELECT/ ACCESS SITES 
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VERTICAL RATTLESPACE FOR MX HORIZONTAL SHELTERS: 
STATISTICAL DISTRIBUTION FOR NEVADA-UTAH DEPLOYMENT AREA 
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RALSTON VALLEY SOIL COMPRESSIBILITY STUDY 

STATISTICALLY ORIENTED STUDY OF RALSTON VALLEY TO GENERATE 
BASELINE DATA APPLICABLE TO OTHER GEOLOGICALLY SIMILAR VALLEYS 

• Probabilistic sampling and testing program designed to yield: 

( 1) Valley-wide variation of uniaxial strain compressibility to a depth 
of 150 feet 

(2) Correlations with available/more-readily-obtained measurements, 
for example: 

a. topographic data 

b. surficial geology 

c. seismic refraction P-wave velocity 

d. unified soil classification, gradation curve, etc. 

e. in situ density, porosity, etc. 
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