

MISCELLANEOUS PAPER SL-86-6

STUDY OF STORED ENERGY SYSTEMS PROPOSED FOR TESTING A PRESSURE-REGULATING VALVE

by

James B. Cheek

Structures Laboratory

DEPARTMENT OF THE ARMY
Waterways Experiment Station, Corps of Engineers
PO Box 631, Vicksburg, Mississippi 39180-0631

US-CE-CProperty of the United States Government

July 1986 Final Report

Approved For Public Release; Distribution Unlimited

Library Branch
Technical Information Center
U.S. Army Engineer Waterways Experiment Station
Vicksburg, Mississippi

Prepared for Defense Nuclear Agency Washington, DC 20305 Under Work Unit 31588 SECURITY CLASSIFICATION OF THIS PAGE .

7 x 7 W34 m no. 5L-86-6

REPORT DOCUMENTATION PAGE					OMB NO	pproved o 0704-0188			
1a. REPORT SECURITY CLASSIFICATION Unclassified				1b. RESTRICTIVE MARKINGS Exp. Date: Jun 30, 1986					
2a. SECURITY	CLASSIFICATIO	N AUTH	HORITY		3. DISTRIBUTION	V/AVAILABILITY C	OF REPORT		
2b. DECLASSIE	2b. DECLASSIFICATION / DOWNGRADING SCHEDULE				Approved for public release; distribution unlimited.				
4. PERFORMIN	NG ORGANIZAT	ION RE	PORT NUMBE	R(S)		ORGANIZATION	REPORT NO	JMBER(S)	
	neous Pap			0.01345					
				6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION				
6c. ADDRESS	(City, State, an	d ZIP Co	ode)		7b. ADDRESS (Ci	ity, State, and ZIF	P Code)		
PO Box 63 Vicksburg	31 g, MS 391	80-06	31						
ORGANIZA			ıG	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER				
Defense N	(City, State, and		del		10. SOURCE OF FUNDING NUMBERS				
			Je)		PROGRAM	PROJECT	TASK		WORK UNIT
Washingto	on, DC 20	305			ELEMENT NO.	NO.	NO.		ACCESSION NO. 31588
11. TITLE (Incl							TOTAL		
Study of	Stored En	ergy	Systems 1	Proposed for Tes	sting a Pres	sure-Regula	ting Va	lve	A 15 15 15 15 15 15 15 15 15 15 15 15 15
12. PERSONAL	AUTHOR(S)								1000
Cheek, Ja			70.7		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	100			
13a. TYPE OF Final rep			13b. TIME CO FROM	OVERED TO	14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT July 1986 48				
16. SUPPLEMENTARY NOTATION Available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.									
17.	COSATI				(Continue on reverse if necessary and identify by block number)				
FIELD	GROUP	SUE	B-GROUP	Drop testing Dynamic analys	sis rotatio	Pump nal Shoc		tion	systems
				Pressure-regul	State of the state				1 energy
100 1 12000 1 10 10				and identify by block r	number)		The same		
Two systems using stored mechanical energy, rotational and translational (drop), were proposed for use in testing a high discharge, high-pressure-regulating valve. A computer-based dynamic analysis of those systems indicates the drop test system to be less costly, but near the practical limits of drop height and weight. The rotational system will exercise the valve for one-half of a pump cycle provided the pump begins at the start of a pump output cycle. The rotational system must be able to withstand very large forces. Neither system exercises the valve for enough time, but the rotational system appears to be capable of longer testing time.									
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS				21 ABSTRACT SECURITY CLASSIFICATION Unclassified					
22a. NAME OF	A ULBANISH AND A STREET	NAME OF TAXABLE PARTY.		With Brite Oseks	22b. TELEPHONE		de) 22c. C	FFICE SY	MBOL

CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI (metric) units as follows:

Multiply	By	To Obtain		
degrees (angle)	0.01745329	radians		
feet	0.3048	metres		
foot-pounds (force)	1.355818	joules		
gallons (US liquid)	3.785412	cubic decimetres		
inches	2.54	centimetres		
pounds (force) per square inch	6.894757	kilopascals		
pounds (mass)	0.4535924	kilograms		
	0.4535924	kilograms		

SUMMARY

Two valve test systems were studied. They each use a stored energy approach; one is rotational, the other is translational (drop). An idealized dynamic analysis indicates the rotational system will generate peak forces and torques that will require a massive test fixture. The test fixture needs a thorough design and dynamic analysis to assure it will operate under such severe dynamic forces.

The drop test will almost equal the performance of the rotational system. It also appears to be less costly. However, it is near the practical limits of ball weight, drop height and available reaction structure.

Neither system produces the design discharge for enough time to evaluate the regulating valve's performance. Precise timing of the start of pumping in the rotational test is critical to attaining the desired discharges.

PREFACE

This study was conducted in January 1986, by personnel of the US Army Engineer Waterways Experiment Station (WES), under the sponsorship of the Defense Nuclear Agency (DNA) in support of the Silo Test Program-Shock Isolation Systems. The DNA project officer was Mr. James Cooper. Mr. Larry Selzer, Aerospace Corporation, proposed the concept as a means of evaluating a valve for a full-scale shock isolation system.

The investigation was conducted under the supervision of Messrs. Bryant Mather, Chief, Structures Laboratory (SL); James T. Ballard, Assistant Chief, SL; Dr. Jimmy P. Balsara, Chief, Structural Mechanics Division (SMD), SL; and Mr. Robert E. Walker, Project Manager, SMD. This report was prepared by Mr. James B. Cheek, SMD.

The Director of WES during the investigation and preparation of this report was COL Allen F. Grum. The Technical Director was Dr. Robert W. Whalin.

Teststall Conditions of the second second second second

BOURT LON TON TOTAL DESCRIPTION TANGED AND ALL AND ALL

CONTENTS

		Page
SUMMARY	•••••••••••••••••••••••••••••••••••••••	1
PREFACE		2
PART I:	INTRODUCTION	4
PART II:	IDEALIZED ANALYSIS, ROTATIONAL	4
	Valve Specification Test Fixture Data Dynamic Analysis	4
PART III:	IDEALIZED ANALYSIS, DROP TEST	6
	Drop Test System	6
PART IV:	CONCLUSIONS	8
APPENDIX A:	ROTATIONAL TEST RESULTS	A1
APPENDIX B:	ROTATIONAL TEST RESULTS, PUMP START AT ZERO DEGREES	B1
APPENDIX C:	ROTATIONAL SYSTEM PROGRAM "JPUMP"	C1
APPENDIX D:	METHOD FOR CALCULATING SLOWDOWN OF FLYWHEEL	D1
Inch (pol),	Initial Conditions	D2
APPENDIX E:	ANALYSIS OF THE DROP TEST SYSTEM	E1
	Output of the Drop Test Analysis Program "JPEND" Listing of the Drop Test Analysis Program "JPEND" Equation for Drop Height Equation for Total Discharge Time	E3

PROPOSED FOR TESTING A PRESSURE REGULATING VALVE

PART I: INTRODUCTION

1. The analysis documented in this report was accomplished as part of a feasibility study to develop design requirements for a device proposed for testing a hydraulic pressure regulating valve. Because of the valve's high operating pressure and discharge, designing the test device presents many difficult analysis problems. This study looks at but one of those problems in a highly idealized fashion. Nevertheless, the analysis is useful in that it establishes the best performance attainable from a "perfect" system. That performance can be used to see how well it meets test system requirements. From that evaluation, decisions on any changes needed to a practical system can be made and more extensive engineering analysis can be conducted.

PART II: IDEALIZED ANALYSIS, ROTATIONAL

Valve Specification

2. The following analysis was done on a fixture proposed to test a regulating valve at a constant regulating pressure of 4,350 pounds per square inch (psi), at a design maximum flow of 26.4 gallons per second (gps).

Test Fixture Data

3. The Test Fixture consists of two, 30 inch diameter, solid disc flywheels weighting 1,000 pounds (1b). Each is connected to a crankshaft having a one-inch offset (throw) which is in turn linked by a connecting rod to a pump as shown in Figure 1 below. The pump cylinder's ID is 16 inches and the pump shaft's OD is 9 inches.

Dynamic Analysis

- 4. The analysis is based on a perfect system (no mechanical or pumping loss). The results, presented in Appendix A, indicate the following:
 - a. At 424 revolutions per minute (rpm), the pump will discharge 26.4 gps, peak, provided the pumping starts when the crankshaft angle is 90°. The discharge will decline, as shown in Figure A2, to zero in 71 milliseconds (msec).
 - b. Peak torque in the drive is near 50,000 foot-pounds (ft-lbs) (see Figures A1 and A3).
 - c. The drive will slow from 424 rpm to zero rpm in 70° of crank rotation which is $70.8^{\circ}/360^{\circ} = .197$ revolutions.
 - d. The force required to operate the pump shaft is almost 600,000 lb at design pressure.
 - e. Operating the system at 577 rpm and starting the test at zero degrees crankshaft angle produces the desired peak discharge and increases the time of regulated discharge (See Figure B7).
- 5. Appendix B, like Appendix A, graphs the test fixture performance. However, pumping starts at a crank angle of zero degrees. Peak pump output is only 16 gps using 424 rpm as above (see Figures B1 and B2).
- 6. A second series of calculations was made keeping all conditions the same except the shaft speed which was changed to 577 rpm in order to raise the peak pump discharge to near the design specification (26.4 gps). The results of those calculations are presented on Figures B7 through B12.
- 7. Those calculations indicate a longer discharge time at a higher discharge. However, the total discharge time of a single cycle system such as this is unlikely to be long enough to thoroughly exercise the test valve.
- 8. The computer program used for the rotational system analysis is presented in Appendix C.
- 9. Appendix D presents the calculations upon which the dynamic analysis is based. It also outlines the program logic used in modeling the slowdown of the drive system.

Drop Test System

10. For comparison purposes, a swinging ball test fixture was evaluated. The system consisted of a ball suspended by a sling from a fixed point. When directly below the suspension point, the ball will impact the piston of a hydraulic cylinder connected to the regulating valve. Energy is stored in the ball by raising it to height H has shown in Figure 2.

Dynamic Analysis, Drop

- 11. The dynamic analysis calculations and the computer program, shown in Appendix E, are based on total transfer of momentum from the ball to the pump system, ie., the ball does not rebound. The results show the following:
 - a. The drop height controls the peak flow rate. Consequently, for a given cylinder diameter, H is fixed in order to attain the valve's design flow.
 - b. For a given cylinder diameter (thus drop height) increasing the weight of the ball increases the discharge time of the cylinder.
 - c. A 3.5 inch diameter cylinder, a 43.1 foot drop height, and a 2,000 lb ball will produce the design peak flow followed by a linear decline to zero flow for 78 msec.
 - d. Figure 3 is a composite plot showing the discharge versus time graphs of the best rotational test (from Figure B8) and the best drop test. This plot clearly shows the superior performance of the rotational system.
 - e. Time-discharge graphs of other cylinder diameters and ball weights are shown in Figure E2.

FIGURE 3

PART IV: CONCLUSIONS

- 12. The following conclusions are based on the idealized analysis of the two systems.
 - a. Provided the initial rpm of the rotational test is increased from 424 to 577, the Drop Test will do an inferior job of exercising the regulating valve because of the Drop Test's linear decline in discharge. However, the drop test will cost less.
 - b. The drop test is near the practical limits of ball weight and drop height. Going beyond the design discharge requires a four fold increase in drop height to double the peak discharge. Changing to a larger cylinder diameter increases discharge directly with the square of D, but decreases flow time with D⁴.
 - c. The very short test time of the rotating system produces extremely large forces in the bearings as well as other parts of the mechanism.
 - d. The ability to increase rpm allows the rotational system to test at high discharges, provided the fixture can handle the peak forces. Consequently, it is more flexible.
 - e. Precise timing for the start of the test is critical to getting meaningful results.
 - f. Neither system provides enough time at high discharge to thoroughly test the regulator performance.

APPENDIX A: ROTATIONAL TEST RESULTS

- 1. The figures presented in this appendix show the rotational testing system's performance at the design shaft speed of 424 rpm. Other analysis (not presented) showed that the design discharge (26.4 gps) would be attained only when pumping action starts at a shaft angle of ninety degrees. This analysis shows the system's performance under those conditions.
- 2. Figure A1 provides a tabulation of various system parameters versus time. Figures A2 through A6 are plots of those same parameters versus time.

```
TEST START ANGLE, RPM =?
=90 424
  N
      T(SEC)
                THETA
                           RPM
                                  KE (FT-LB)
                                               Q (GAL/SEC)
                                                              TORQ (FT-LB)
   0
      0.
                90.00
                         424.0
                                   47833.
                                                    26.49
                                                                 -49824.
      0.0044
 100
               100.71
                         380.6
                                   38539.
                                                    23.51
                                                                 -49259.
      0.0089
               110.28
 200
                         338.3
                                   30454.
                                                    20.06
                                                                 -47276.
 300
      0.0133
               118.74
                         298.2
                                   23661.
                                                    16.60
                                                                 -44384.
      0.0178
 400
               126.18
                         260.9
                                   18106.
                                                    13.42
                                                                 -41007.
 500
      0.0222
               132.66
                         226.6
                                   13658.
                                                    10.65
                                                                 -37467.
      0.0266
 600
               138.27
                         195.3
                                   10153.
                                                     8.33
                                                                 -33988.
 700
      0.0311
               143.09
                         167.1
                                    7427.
                                                     6.43
                                                                 -30721+
      0.0355
               147.19
 800
                         141.5
                                    5330.
                                                                 -27754.
                                                     4.92
 900
      0.0400
               150.64
                         118.4
                                    3733.
                                                                 -25134.
                                                     3.74
1000
      0.0444
               153.51
                          97.5
                                    2529.
                                                     2.80
                                                                 -22883.
      0.0488
1100
               155.85
                          78.3
                                    1633.
                                                                 -21004.
                                                     2.07
1200
      0.0533
               157.70
                          60.7
                                     979.
                                                     1.48
                                                                 -19492.
1300
      0.0577
               159.09
                          44.2
                                     519.
                                                     1.01
                                                                 -18338.
      0.0622
1400
               160.05
                          28.5
                                     216.
                                                     0.63
                                                                 -17531.
1500
      0.0666
               160.61
                          13.4
                                      48.
                                                     0.29
                                                                 -17064.
PUMPING ENDS AT
                       0.071 SEC.
    PUMP CUTOUT ANGLE =
                           70.8 DEGREES
    NUMBER OF TIME STEPS =
                               1591
```

PROGRAM ROSSCOBRA/JPUMP -- JAY CHEEK, SMD, SL, WES. 16 JAN 1986
PISTON DIAMETER = 16.00 IN
SHAFT DIAMETER = 9.00 IN
PUMP PRESSURE = 4350.00 PSI
FLYUHEEL DIAMETER = 30.00 IN
FLYUHEEL WEIGHT = 2000.00 LB
CRANK THROW = 1.00 IN
CONNECTING ROD LENGTH = 30.00 IN
INITIAL RPM = 424.00
CRANK ANGLE AT START = 90.00 DEG 25.

PROGRAM ROSSCOBRA/JPUMP -- JAY CHEEK, SMD, SL, WES, 16 JAN 1986
PISTON DIAMETER = 16.00 IN
SHAFT DIAMETER = 9.00 IN
PUMP PRESSURE = 4350.00 PSI
FLYUHEEL DIAMETER = 30.00 IN
FLYUHEEL WEIGHT = 2000.00 LB
CRANK THROW = 1.00 IN
CONNECTING ROD LENGTH = 30.00 IN
INITIAL RPM = 424.00
CRANK ANGLE AT START = 90.00 DEG

A4

PROGRAM ROSSCOBRA/JPUMP -- JAY CHEEK. SMD, SL. WES, 16 JAN 1986
PISTON DIAMETER = 16.00 IN
SHAFT DIAMETER = 9.00 IN
PUMP PRESSURE = 4350.00 PSI
FLYUHEEL DIAMETER = 30.00 IN
FLYUHEEL WEIGHT = 2000.00 LB
CRANK THROW = 1.00 IN
CONNECTING ROD LENGTH = 30.00 IN
INITIAL RPM = 424.00
CRANK ANGLE AT START = 90.00 DEG

PROGRAM ROSSCOBRA/JPUMP -- JAY CHEEK, SMD, SL, UES, 16 JAN 1986
PISTON DIAMETER = 16.00 IN
SHAFT DIAMETER = 9.00 IN
PUMP PRESSURE = 4350.00 PSI
FLYUHEEL DIAMETER = 30.00 IN
FLYUHEEL WEIGHT = 2000.00 LB
CRANK THROW = 1.00 IN
CONNECTING ROD LENGTH = 30.00 IN
INITIAL RPM = 424.00
CRANK ANGLE AT START = 90.00 DEG

APPENDIX B: ROTATIONAL TEST RESULTS, PUMP START AT ZERO DEGREES

- 1. The figures presented in this appendix show the rotational testing system's performance at two shaft speeds. Other analysis (not presented) shows that the design discharge (26.4 gps) would be attained at the design rpm (424) only when pumping action started at a shaft angle of ninety degrees. However, at that point the piston and fluid are moving at the maximum velocity making pump starting very difficult under those conditions. This analysis shows two sets of results for starting the test at zero degrees.
- 2. Figure B1 provides a tabulation of various system parameters versus time. That output shows the peak discharge reduced to about 16 gps when the shaft speed at pump start is 424 rpm. Figures B2 through B6 show plots of discharge and other system parameters versus time for the 424 rpm test.
- 3. Figures B7 and B8 show the peak system discharge to be at the design discharge when the shaft speed at pump start is increased to 577 rpm. Figures B9 through B12 show other system parameters versus time at 577 rpm.

```
TEST START ANGLE, RPM =?
=0 424
 N
      T(SEC)
               THETA
                        RPM
                                KE (FT-LB) Q (GAL/SEC)
                                                          TORQ (FT-LB)
  0
      0.
                0.
                        424.0
                                 47833.
                                                 0.03
                                                                  0.
     0.0044
 100
               11.26
                        419.9
                                 46914.
                                                  4.93
                                                              -9410.
 200
     0.0089
               22.30
                        407.8
                              44243.
                                                 9.35
                                                             -18323.
 300
      0.0133
               32.92
                        388.2
                                 40103.
                                                 12.79
                                                             -26317.
 400
     0.0178
             42.92
                        362.2
                                 34907.
                                                 15.02
                                                             -33101.
 500
      0.0222
               52.16
                        330.8
                                 29121.
                                                 15.98
                                                             -38542.
 600
      0.0266
               60.50
                        295.3
                                 23199.
                                                 15.78
                                                             -42654.
 700
      0.0311
             67.86
                      256.7
                                 17529.
                                                 14.66
                                                             -45569.
      0.0355
800
             74.15
                        216.0
                                 12409.
                                                 12.85
                                                             -47493.
 900
      0.0400
              79.34
                       173.9
                                  8047.
                                                 10.61
                                                             -48662.
1000
     0.0444
               83.40
                        131.1
                                  4572.
                                                 8.10
                                                             -49304.
1100
     0.0488
               86.31
                        87.9
                                  2053.
                                                  5.46
                                                             -49614.
1200
     0.0533
               88.07
                       44.4
                                   525.
                                                  2.77
                                                             -49739.
1300
      0.0577
               88.66
                          1.0
                                     0.
                                                  0.06
                                                             -49771.
PUMPING ENDS AT
                     0.058 SEC.
    PUMP CUTOUT ANGLE =
                         88.7 DEGREES
   NUMBER OF TIME STEPS = 1303
```

PROGRAM ROSSCOBRA/JPUMP -- JAY CHEEK. SMD. SL. UES. 16 JAN 1986
PISTON DIAMETER = 16.00 IN
SHAFT DIAMETER = 9.00 IN
PUMP PRESSURE = 4350.00 PSI
FLYUHEEL DIAMETER = 30.00 IN
FLYUHEEL DEIGHT = 2000.00 LB
CRANK THROW = 1.00 IN
CONNECTING ROD LENGTH = 30.00 IN
INITIAL RPM = 424.00
CRANK ANGLE AT START = 0. DEG

TIME IN MILI-SEC

-45000

-50000

PROGRAM ROSSCOBRA/JPUMP -- JAY CHEEK, SMD, SL, WES. 16 JAN 1986 PISTON DIAMETER - 16.00 IN SHAFT DIAMETER = 16.00 IN
PUMP PRESSURE = 4350.00 PSI
FLYUHEEL DIAMETER = 30.00 IN
FLYUHEEL WEIGHT = 2000.00 LB
CRANK THROW = 1.00 IN
CONNECTING ROD LENGTH = 30.00
INITIAL RPM = 424.00
CRANK ANGLE AT START = 0. DEG

PROGRAM ROSSCOBRA/JPUNP -- JAY CHEEK, SMD, SL, UES, 16 JAN 1986
PISTON DIAMETER = 18.00 IN
SHAFT DIAMETER = 9.00 IN
PUMP PRESSURE = 4350.00 PSI
FLYUHEEL DIAMETER = 30.00 IN
FLYUHEEL UEIGHT = 2000.00 LB
CRANK THROW = 1.00 IN
CONNECTING ROD LENGTH = 30.00 IN
INITIAL RPM = 424.00
CRANK ANGLE AT START = 0. DEG

PROGRAM ROSSCOBRA/JPUMP -- JAY CHEEK, SND. SL. WES, 16 JAN 1986 PISTON DIAMETER - 16.00 IN 450


```
TEST START ANGLE, RPM =?
=0 577
      T(SEC)
 N
               THETA
                         RFM
                                KE (FT-LB)
                                            Q (GAL/SEC)
                                                         TORQ (FT-LB)
      0.
               0.
   0
                        577.0
                                 88582.
                                                 0.06
                                                                  0.
      0.0060
               20.79
 100
                        566.8
                                 85472.
                                                12.12
                                                             -17136.
 200
      0.0121
              40.86
                        537.4
                                 76851.
                                                             -31771.
                                                21.36
      0.0181
 300
               59.57
                       493.0
                                 64679.
                                                26.09
                                                             -42233.
             76.47
     0.0242
 400
                       438.9
                                 51265.
                                                26.44
                                                             -48063+
 500
      0.0302
             91.32
                        380.4
                                 38501.
                                                23.78
                                                             -49849.
 600
      0.0363
              104.03
                        321.6
                                 27511.
                                                19.65
                                                             -48728.
      0.0423
 700
             114.64
                       265.2
                                 18707.
                                                15.27
                                                             -45915.
 800
      0.0483
              123.28
                       212.6
                                 12025.
                                                11.31
                                                             -42414.
 900
     0.0544
             130.09
                      164.2
                                 7177.
                                                 8.02
                                                             -38934.
     0.0604
             135.22
1000
                      119.8
                                  3817.
                                                 5.40
                                                             -35925.
     0.0665
             138.80
1100
                      78.5
                                  1639.
                                                 3.31
                                                             -33642.
             140,92
1200
     0.0725
                      39.4
                                 413.
                                                 1.59
                                                             -32219.
      0.0786
             141.66
1300
                       1.5
                                     1.
                                                 0.06
                                                             -31718.
FUMPING ENDS AT
                     0.079 SEC.
    PUMP CUTOUT ANGLE =
                           141.7 DEGREES
    NUMBER OF TIME STEPS = 1304
```

PROGRAM ROSSCOBRA/JPUMP -- JAY CHEEK. SMD. SL. UES. 16 JAN 1986
PISTON DIAMETER = 16.00 IN
SHAFT DIAMETER = 9.00 IN
PUMP PRESSURE = 4350.00 PSI
FLYUHEEL DIAMETER = 30.00 IN
FLYUHEEL UEIGHT = 2000.00 LB
CRANK THROU = 1.00 IN
CONNECTING ROD LENGTH = 30.00 IN
INITIAL RPM = 577.00
CRANK ANGLE AT START = 0. DEG 25

В9

PROGRAM ROSSCOBRA/JPUMP -- JAY CHEEK. SMD. SL. UES. 16 JAN 1986
PISTON DIAMETER - 16.00 IN
SHAFT DIAMETER - 9.00 IN
PUMP PRESSURE - 4350.00 PSI
FLYUHEEL DIAMETER - 30.00 IN
FLYUHEEL UEIGHT - 2000.00 LB
CRANK THROW - 1.00 IN
CONNECTING ROD LENGTH - 30.00 IN
INITIAL RPM - 577.00
CRANK ANGLE AT START - 0. DEG

PROGRAM ROSSCOBRA/JPUMP -- JAY CHEEK, SMD. SL, UES. 16 JAN 1986
PISTON DIAMETER = 16.00 IN
SHAFT DIAMETER = 9.00 IN
PUMP PRESSURE = 4350.00 PSI
FLYUHEEL DIAMETER = 30.00 IN
FLYUHEEL UEIGHT = 2000.00 LB
CRANK THROW = 1.00 IN
CONNECTING ROD LENGTH = 30.00 IN
INITIAL RPM = 577.00
CRANK ANGLE AT START = 0. DEG

APPENDIX C: ROTATIONAL SYSTEM PROGRAM "JPUMP"

1. This appendix presents a listing of program JPUMP that was used for the idealized dynamic analysis of the rotational test system. This program produced the tabulations and plots presented in Appendixes A and B.

```
JFUMF
 10C$TITLE FILED IN ROSSCOBRA/JPUMP
       PUMP RUN-TIME TEST PROGRAM
 200
       JAY CHEEK, SMD, SL, WES, 14 JAN 1986
 300
 40C
 50C
               FISTON DAMETER (IN.)
       DF
 60C
       DS
               FUMP SHAFT DIAMETER (IN.)
 70C
       AF
               EFFECTIVE AREA OF PISTON (FT**2)
 80C
       SF
               STROKE OF THE PISTON (IN)
 90C
      DF
               FLYWHEEL DIAMETER (IN.)
        WF
 100C
                FLYWHEEL WEIGHT (LBS.)
 110C
        PI
                3.1415927
 120C
        DIE
                FACTOR TO CONVERT DEGREES TO RADIANS
 130C
                32.2
 140C
                WORKING PRESSURE IN THE PUMP (P/IN**2)
 150C
                FLYWHEEL MASS
        FM
 160C
        RMI
                ROTATIONAL MOMENT OF THE FLYWHEEL
 170C
        RPM
                INITIAL REV. PER MIN. OF THE FLYWHEEL
 180C
       AVF
                CURRENT ANGULAR VELOCITY OF THE FLYWHEEL (RAD./SEC)
       AVFI
 190C
                INITIAL ANGULAR VELOCITY OF THE FLYWHEEL (RAD./SEC)
 200C
       EK
                KINETIC ENERGY OF THE FLYWHEEL
 210C
        THETAI
                SHAFT ANGLE WHEN PUMPING TEST STARTS (DEG)
 220C
       THETA
                CURRENT SHAFT ANGLE DURING PUMP TEST
 2300
        ZMI
                INITIAL MOMENTUM OF THE FLYWHEEL
 240C
        ZM
                CURRENT MOMENTUM OF THE FLYWHEL
 250C
        ZIMF
                TOTAL IMPULSE ON FLYWHEEL FROM PUMP ACTION
 260C
                TIME STEP(SEC)
        TDEL
 270C
        TI
                CURRENT TIME SINCE START OF THE TEST.
 280C
        CL
                CONNECTING ROD LENGTH.
 290C
        TOR
                TORQUE APPLIED DURING ONE TIME STEP
        ALPHA
 300C
                ANGULAR DECELERATION DURING ONE TIME STEP.
 310C
                DISCHARGE OF THE PUMP IN GAL/SEC.
 320C
        XF
                DIST. FROM CL OF CRANK TO PUMP AT STEP N
 330C
       XFL DIST. FROM CL OF CRANK TO PUMP AT STEP N-1
 340C
 350C
 360
          DIMENSION V(1500,6)
 370
           DATA FI/3.1415927/, G/32.2/, DF/16.0/, DS/9.0/,
 380
                DTR/57,295780/, WF/1000.0/, SF/2.0/, F/4350.0/,
 390
                DF/30.0/, CL/30.0/
 400C
 410C
       PLOT SETUP
 420
           CALL USTART
           CALL UPSET('SPEED', 120.)
 430
 440
           CALL USET ('SMALL')
 450
           CALL USET ('XBOTHLABELS')
           CALL USET ('YBOTHLABELS')
 460
 470
           CALL UERASE
           CALL UHOME
 480
           CALL UALPHA
 490
 500C
```

```
JPUMP
     GET INITIAL CONDITIONS
 510C
      100 WRITE (6,110) ' TEST START ANGLE, RPM =?'
 520
      110 FORMAT (V)
 530
 540
          READ (5,110) THETAI, RPM
       FISTON AREA
 550C
          AF = FI * (DF * DF - DS * DS) / 576.0
 560
 570C
       MASS OF THE TWO FLYWHEELS
          FM = WF * 2.0 / G
 580
       ROTATIONAL MOMENT OF INERTIA
 590C
 600
          RMI = FM * DF * DF / 1152.0
 610C
       INITIAL ANGULAR VELOCITY
          AVFI = RPM * PI / 30.0
 620
 630C
       CALC CONSTANTS FOR THE INTEGRATION LOOP.
 640C
 650C
       CRANK ARM LENGTH IN FT
          TH = SF / 24.0
 660
 670C
       SQUARE OF THE CONNECTING ROD LENGTH
          CLS = CL * CL / 144.0
 680
       TIME STEP IN SEC.
 690C
          TDEL = AVFI / 1000000.0
 700
       PUMP FORCE TIMES CRANK ARM LENGTH
 710C
 720
          FR = AF * F * TH * 144.0
 730C
       STEP COUNTER
 740
          N = 0
 7500
       INITIAL ANGULAR VELOCITY OF THE CRANKSHAFT (RADIANS/SEC)
 760
          AVF = AVFI
       CRANKSHAFT ANGLE AT START OF PUMPING (O DEG IS
 770C
       TOP DEAD CENTER OF STROKE)
 780C
 790
         THETA = THETAI
       NUMBER OF POINTS TO BE PLOTTED
 8000
      NVF = 0
 810
 820C
 830C
     HEADING.
 840 - WRITE (6,120)
      120 FORMAT (' N T(SEC) THETA RPM KE (FT-LB) Q'
 850
 860
        % (GAL/SEC) TORQ (FT-LB)')
 870C
 8800
       START THE PUMP TEST LOOP
 890C
       ELAPSED TIME IN SEC
      130 \text{ TI} = N * \text{TDEL}
 900
 910C
       CURRENT CRANKSHAFT ANGLE IN RADIANS
 920
       TR = THETA / DTR
       KINETIC ENERGY IN FT LBS
 930C
          EK = RMI * AVF * AVF / 2.0
 940
       TEST FOR SPECIAL CALCULATION FOR Q AT START
 950C
          IF (N .NE. 0) GO TO 140
 960
       CALC PUMP POSITION JUST BEFORE THE FIRST STEP.
 970C
         TRR = TR - AVF * TDEL
 980
 990
        ST = SIN(TRR)
 1000 TEMP1 = TH * CDS(TRR)
```

```
JPUMP
           TEMP2 = SQRT(CLS-(TH*ST)**2)
 1010
           XPL = TEMP2 - TEMP1
 1020
       140 ST = SIN(TR)
 1030
        X COMPONENT OF THE CRANK ARM
 1040C
 1050
           TEMP1 = TH * COS(TR)
        PROJECTION OF CONN. ROD ON X AXIS
 1060C
 1070
           TEMP2 = SQRT(CLS-(TH*ST)**2)
 1080C
        POSITION OF THE PUMP AT STEP N
 1090
           XP = TEMP2 - TEMP1
        FUMP DISCHARGE DURING THIS STEP
 11000
 1110
           Q = ABS(XP-XPL) * AP * 7.5 / TDEL
 1120
           XPL = XP
        SLOWDOWN TORQUE ON CRANK DUE TO PUMPING FORCE
 1130C
 1140
           TOR = -ABS(FR*ST*(1.0-TEMP1/TEMP2))
 1150C
        ANGULAR DECELERATION
 1160
           ALPHA = TOR / RMI
 1170
           IF (MDD(N,100) .EQ. 0) WRITE (6,150) N, TI, THETA, AVF /
 1180
          & 2. / PI * 60, EK, Q, TOR
       150 FORMAT (1X, I4, F8.4, F8.2, F8.1, F10.0, F14.2, F14.0)
 1190
 12000
 12100
        SAVE EVERY FIFTH POINT FOR PLOTTING
 1220
           IF (MOD(N,5) , NE. 0) GO TO 160
 1230
           NVF = NVF + 1
 1240
           V(NVP,1) = TI * 1000.0
 1250
           V(NVP,2) = 0
 1260
           V(NVP_33) = TOR
 1270
           V(NVP,4) = EK
           V(NVP,5) = THETA
 1280
           V(NVP,6) = AVF / 2.0 / PI * 60.0
 1290
 1300C
        NEW ANGULAR VELOCITY DUE TO SLOWDOWN TORQUE
       160 AVF = AVF + ALPHA * TDEL
       COUNT STEP
 1320C
 1330
           N = N + 1
 1340C STILL ROTATING?
 1350 IF (AVF .LT. 0.0) GO TO 170
 1360C YES. ADVANCE TO NEXT CRANK ANGLE
 1370
          THETA = THETA + AVF * TDEL * DTR
 1380
           GO TO 130
 1390C
 1400C
       DONE
       170 WRITE (6,180) TI, THETA - THETAI, N
 1410
       180 FORMAT (' PUMPING ENDS AT ', F10.3, ' SEC.' /
 1420
               ' PUMP CUTOUT ANGLE = ', F8.1, ' DEGREES' /
 1430
              ' NUMBER OF TIME STEPS = ', I5 //// )
 1440
         CALL UPAUSE
 1450
 1460C
 1470C
        PLOT THE CURVES
           CALL PLOTPU(V, NVP, DP, DS, P, DF, WF, SP, CL, RPM, THETAI)
 1480
           GO TO 100
 1490
           END
 1500
```

```
JPUMP
           SUBROUTINE PLOTPU(V, NV, DP, DS, P, DF, WF, SP, CL, RPM,
 1510
 1520
         & THETAI)
 1530C
        PLOT ANY OF THE 5 ARRAYS AS A FUNCTION OF TIME (ARRAY1).
 1540C
        JAY CHEEK, SMD, SL, WES, 16 JAN 1986
 1550C
 1560C
 1570
           CHARACTER*20 T(20)
 1580
           DIMENSION V(1500,6)
           DATA T(1)/'TIME IN MILI-SEC\ '/, T(2)
 1590
 1600
          % /'Q IN GAL PER SECY
                                    1/2 T(3)
        & /'TORQUE IN FT LB\
 1610
                                     1/2 T(4)
         & /'KE IN FT LB\
 1620
                                     '/, T(5)
         & /'CRANK ANGLE IN DEG\ '/, T(6)
 1630
          & /'REV PER MIN\
 1640
 1650C
        START PLOTTING
 1660
           FN = NV
 1670
           CALL UPSET('XLABEL', T(1))
 1680
           DO 120 I = 2, 6
 1690C
 1700C
        IS THIS GRAPH NEEDED?
 1710
             WRITE (6,100) T(I)
 1720
       100
             FORMAT (' FLOT ', A20, '?')
 1730
             CALL IANSR(IST)
 1740
             IF (IST .EQ. 0) GO TO 120
 1750C
 1760C
        YES. DO IT.
 1770
             CALL UPSET ('YLABEL', T(I))
 1780
             CALL UERASE
 1790
             CALL UDAREA(4.0, 14.0, 0.0, 10.0)
             CALL USET ('GRIDAXIS')
 1800
 1810
             CALL UPLOT1(V(1, 1), V(1, I), FN)
 1820
             CALL UHOME
 1830
             CALL UALPHA
 1840
             WRITE (6,110) DF, DS, F, DF, WF * 2.0, SF / 2.0, CL, RFM,
 1850
                  THETAI
 1860
             FORMAT (' PROGRAM ROSSCOBRA/JPUMP -- JAY CHEEK, SMD, '
       110
 1870
                  , 'SL, WES, 16 JAN 1986' / ' PISTON DIAMETER =',
 1880
                  F8.2, 'IN' / 'SHAFT DIAMETER =', F8.2, 'IN' /
 1890
                ' PUMP PRESSURE =', F8.2, ' PSI' /
 1900
                     FLYWHEEL DIAMETER = ', F8.2, ' IN' /
                  ' FLYWHEEL WEIGHT =', F8.2, 'LB'/
 1910
                     CRANK THROW =', F6.2, 'IN' / 'CONNECTING ROD LENG'
 1920
                , F8.2, ' IN' / ' INITIAL RPM = '
 1930
                  , F8.2 / ' CRANK ANGLE AT START =', F8.2, ' DEG')
 1940
 1950
             CALL UPAUSE
 1960
       120 CONTINUE
 1970
           RETURN
 1980
           END
```

```
JPUMP
 1990
           SUBROUTINE IANSR(IWHAT)
 2000C SEE WHETHER THE USER GIVES A Y (OR A CARRIAGE RETURN)
        FOR YES OR A N FOR NO TO A PREVIOUSLY ASKED QUESTION.
 20100
 20200
        CODE FILED IN ROSSCOBRA/JHEST-S.
 20300
       JAY CHEEK, SMD, SL, WES; DEC 1981
 2040C
 2050C
           DATA IBLK/' '/, IYES/'Y '/, NO/'N
 2060
 2070 100 IWHAT = 0
 2080
           READ (5,110) II
 2090
       110 FORMAT (A4)
 2100
           IF (II .EQ. NO) RETURN
 2110
           IWHAT = 1
 2120
           IF (II .EQ. IYES) RETURN
 2130
           IF (II .EQ. IBLK) RETURN
 2140
           WRITE (6,120)
 2150
       120 FORMAT (' ERROR: ONLY Y OR RETURN (FOR YES) OR N (FOR '
 2160
        & , 'NO) ALLOWED, RETRY')
 2170
       GO TO 100
 2180
       END
```

Initial Conditions

1. As shown in Figure D1, a flywheel (solid disc) of weight W is rotating at an initial rpm. The flywheel diameter is D. The flywheel is connected to a crankshaft whose offset (throw) is T. A connecting rod of length C connects the crank to the pump that resists motion with a constant force F. That force is directed on a line from the crankshaft center-line through the center-line of the pump shaft.

Pump's End Plates and Valves not shown

Idealized Pump and Drive System
Figure D1

Calculating Procedure For Flywheel Slowdown

- 2. The following steps are used to calculate the flywheel slowdown:
 - a. Calculate the Rotational Moment of Inertia (I).

$$I = \frac{W}{g} \left(\frac{D}{2}\right)^2 \frac{1}{2}$$

 \underline{b} . Calculate the Angular Velocity (ω) .

$$\omega = 2\pi \left(\frac{\text{rpm}}{60}\right)$$

and choose a small time step (Δt) so that the wheel will rotate less than .1° at the initial rpm during time Δt .

- c. At each time Step i, Calculate:
 - 1. The angle traversed $(\Delta\theta)$ during this time step (constant angular velocity (ω) is assumed).

$$\Delta\Theta = \omega_{i} \Delta t$$

2. The current angular location (Θ) of the crank.

$$\Theta_{i} = \Theta_{i-1}^{\dagger} \Delta \Theta$$

- 3. The component of F, acting through the connecting rod that is perpendicular to the crank arm (F_M) .
- 4. The torque (Γ) at angle Θ .

$$\Gamma = F_M T$$

5. The angular deceleration (α) produced by this constant torque.

$$\alpha = - \Gamma / I$$

6. The new angular velocity due to the slowdown torque from the pumping force.

$$\omega_{i} = \omega_{i-1} + \alpha \Delta t$$

- 7. Add 1 to i and repeat steps C1 through C7 until $\omega_i \leq 0$.
- 8. Done.

Calculating Moment Applied To The Crankshaft

3. As illustrated in Figure D2: T is crankshaft throw, F is force to operate the pump, C is connecting rod length, E is the moment arm, θ is crankshaft angle, and G is the force normal to E.

Calculating the Torque (I) about point Q.

$$\Gamma = G E \qquad \qquad B = (C^2 - T_y^2)^{1/2} \qquad \sin \phi = \frac{T_y}{C} = \frac{T \sin \theta}{C}$$

$$E = A \sin \phi \qquad \qquad T_y = T \sin \theta$$

$$A = B - T_x \qquad \qquad T_x = T \cos \theta \qquad \qquad G = \frac{F}{\cos \phi}$$

$$\Gamma = \frac{F}{B} (B - T_x) \frac{T_y}{C} = F T_y (1 - \frac{T_x}{B})$$

$$\Gamma = F T \sin \theta \left[1 - \frac{T \cos \theta}{(C^2 - T^2 \sin^2 \theta)^2} \right] \text{ for } C > T$$

APPENDIX E: ANALYSIS OF THE DROP TEST SYSTEM

1. This appendix contains the output of the drop test analysis program, JPEND (Figure E1), the listing of the program (E3), and the development of the equations used (E4 and E5). The output is given for both 1,000 and 2,000 pound balls impacting on the pistons of various diameter cylinders. The drop height is paired with the cylinder diameter to produce the rated discharge peak of 26.4 gps. Discharge pressure is assumed to be constant at 4,350 psi. Note that an increase in ball weight, holding other parameters constant, serves to increase the test time (t) directly as the ratio of the new weight to the old

$$t_N = \frac{W_N}{W_0} t_0$$
 where subscripts 0 and N refer to old and new values.

Figure E2 gives the discharge versus time curves for several ball weight, cylinder diameter and drop height combinations.

Output of the Drop Test Analysis Program "JPEND"

DROP TEST OF VALVE
FOR BALL WEIGHT OF 1000. LB PEAK DISCHARGE OF 26.4 GAL / SEC AND DISCHARGE PRESSURE OF 4350. PSI

1000 DINNSTER OF HYDRAULIS CYCINDER (DEE STROKE PURP)

CYLINDER DIAMETER (INCHES) 3.50 3.75 4.00 4.25 4.50 4.75	DROP HEIGHT (FEET) 43.10 32.71 25.26 19.82 15.77 12.71	RETARD FORCE (POUNDS) 41852. 48044. 54664. 61710. 69184. 77084.	IMPACT VELOCITY (FT / SEC) 52.68 45.89 40.34 35.73 31.87 28.60	DISCHARGE TIME (SECONDS) 0.039 0.030 0.023 0.018 0.014 0.012	KINETIC ENERGY (FT - LBS) 43101. 32706. 25265. 19824. 15773. 12705.	
5.00	10.35	85412.	25.82	0.009	10348.	

DROP TEST OF VALVE FOR BALL WEIGHT OF 2000. LB PEAK DISCHARGE OF 26.4 GAL / SEC AND DISCHARGE PRESSURE OF 4350. PSI

CYLINDER	DROP	RETARD FORCE	IMPACT VELOCITY	DISCHARGE	KINETIC
DIAMETER	HEIGHT		AFFOCTII	7. (27.2) (2.22)	TO THE RESERVE OF THE PARTY OF
(INCHES)	(FEET)	(POUNDS)	(FT / SEC)	(SECONDS)	(FT - LBS)
3.50	43.10	41852.	52.68	0.078	86201.
3.75	32.71	48044.	45.89	0.059	65413.
4.00	25.26	54664.	40.34	0.046	50530+
4.25	19.82	61710.	35.73	0.036	39649.
4.50	15.77	69184.	31.87	0.029	31545.
4.75	12.71	77084.	28.60	0.023	25410.
5.00	10.35	85412.	25.82	0.019	20697.

Listing of the Drop Test Analysis Program "JPEND"

```
JPEND
 10C$TITLE FILED IN ROSSCOBRA/JPEND
      CALC OF PENDULUM TEST OF VALVE PERFORMANCE.
 200
      JAY CHEEK SMD, SL, WES, 17 JAN 1986
 300
 40C
      DATA FI/3.1415926/, F/4350.0/, Q/26.4/
 50
 60C
 70
         100 130 J = 1, 2
      WEIGHT OF BALL
 800
           WT = J * 1000.0
 90
      DIAMETER OF HYDRAULIC CYLINDER (ONE STROKE PUMP)
 100C
 110
            D = 3.250
 120
            WRITE (6,100) WT, Q, P
            FORMAT ( //// ' DROP TEST OF VALUE' /
 130
      100
 140
                   FOR BALL WEIGHT OF', F6.0,
 150
                 ' LB
                        PEAK DISCHARGE OF', F5.1, ' GAL / SEC' /
               ' AND DISCHARGE PRESSURE DF', F6.0, ' PSI' //
 160
 170
                 ' CYLINDER
                               DROP
                                      RETARD IMPACT
 180
               , 'DISCHARGE KINETIC' /
 190
             ' DIAMETER
                               HEIGHT FORCE VELOCITY
                                                               TIME '
 200
                        ENERGY' /
 210
             (INCHES) (FEET) (FOUNDS) (FT / SEC) '
 220
                 , '(SECONDS) (FT - LBS)')
 230C
 240C
       CALC FOR SEVERAL CYL. DIAMETERS
 250
            DO 120 I = 1, 7
 260C
       DIAMETER
 270
              DI = D + I * .25
       PISTON (CYLINDER) AREA
 280C
              A = FI * DI * DI / 4.0
 290
       MASS OF THE BALL
 300C
              ZMASS = WT / 32.2
 310
       DROP HEIGHT TO PRODUCE PEAK DISCHARGE
 3200
 330
              H = 9.280 * Q * Q / DI ** 4
       IMPACT VELOCITY
 340C
 350
              V = SQRT(2.0*32.2*H)
       RETARDING FORCE OF THE CYLINDER
 360C
 370
              F = F X A
 380C
       TIME OF DISCHARGE
 390
              TI = ZMASS * V / F
 400C
       KINETIC ENERGY
              EK = ZMASS * V * V / 2.0
 410
 420C
 430C
       RESULTS
              WRITE (6,110) DI, H, F, V, TI, EK
 440
              FORMAT (1X, F7.2, F10.2, F12.0, F10.2, F10.3, F10.0)
 450
      110
 460
      120
            CONTINUE
      130 CONTINUE
 470
          STOP
 480
          END
 490
```

Equation For Drop Height

2. Calculating combinations of cylinder diameter (D) and drop height (H) that yield a specific value of fluid discharge Q.

a. Impact velocity =
$$U_T = (2gH)^{\frac{1}{2}}$$

where U is in ft/sec

H is in ft

g is in ft/sec²

<u>b</u>. Discharge = Q = $\frac{V}{\Delta t}$ where V is volume in ft³.

$$Q = \frac{V}{\Delta t} = \frac{A\Delta x}{\Delta t} = AU_{I}$$

where A is cylinder area = $\frac{\pi}{4}$ D² D is cylinder diameter in ft

$$\frac{c}{1} \cdot H = \frac{Q_{I}^{2}}{2g \left(\frac{\pi}{4} D^{2}\right)^{2}} = \frac{Q_{I}^{2}}{1.234gD^{4}}$$

where Q_{I} is discharge at impact, i.e., peak discharge.

d. Converting for Q in gps, and D in inches.

$$H = \frac{\left(\frac{Q_{I}}{7.5}\right)^{2}}{1.234 \left(\frac{D}{12}\right)^{4}g} = \frac{9.280 Q_{I}^{2}}{D^{4}}$$

Equation For Total Discharge Time

3. As shown on E4, Drop Weight (H) relates to Peak Discharge ($Q_{\rm I}$) and cylinder diameter (D) by:

$$H = \frac{9.280Q^2}{D^4}I$$
 Where Q is in gps, D is in inches.

Conservation of momentum gives $MU_I = Ft$

Where t is the time in seconds that the constant force F exists, M is the ball mass, W is the ball weight and M = $\frac{W}{g}$.

F is the constant piston force = $\frac{\pi D^2 P}{4}$

Where P is pressure in psi, F is in 1bs.

 U_{I} = impact velocity = (2gH) $\frac{1}{2}$

Total discharge time (t) is

$$t = \frac{MU_{I}}{F} = \frac{\frac{W}{g} (2gH)^{\frac{1}{2}}}{\frac{\pi}{4} D^{2} P} = \frac{\frac{W}{g} \left(2g9.280Q_{I}^{2}\right)^{\frac{1}{2}}}{\frac{\pi}{4} D^{2} P} = .9667 \frac{W}{P} Q_{I}$$

Where: W is weight in 1b, D is diameter in inches, Q is discharge in gps, P is pressure in psi, and t is time in sec.

For
$$P = 4,350 \text{ psi}$$
, $Q_T = 26.4 \text{ gps}$

$$t = .005866 \frac{W}{D^4}$$

DROP TEST OF PRESSURE REGULATING VALVE

Figure E2