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2 LIST OF FIGURES 

1. Pressure field from the detonation of an infinite cylinder of TNT explosive, t = 
10 msec, computed on a uniform grid. 

2. Pressure field from the detonation of an infinite cylinder of TNT explosive, t = 
10 msec, computed on an adaptive grid. 

3. Calculated values for a finite cylindrical charge weighing 250 grams, t = 200 
p, sec. 

4. Calculated values for a finite cylindrical charge weighing 250 grams, t = 1 msec. 

5. Calculated values on an adaptive grid, t = 200 p, sec. 

6. Calculated values on an adaptive grid, t = 1 msec. 

7. Explosion of 66 kilotons of TNT in 400 ft of water, t = 20 msec. 

8. Explosion of 66 kilotons of TNT in 400 ft of water, t = 100 msec. 
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AN AUTOMATIC ADAPTIVE REZONE 
SCHEME FOR HULL CODE 

3 INTRODUCTION 

The success or failure of a hydrodynamic computation often depends on the grid 
that is used. This is especially true in water shock problems where large solution 
gradients must be resolved by the numerical algorithm. An insufficient number of 
grid points in the region near a shock wave leads to either oscillations or smearing in 
the solution. A grid with uniform spacing in each coordinate direction could be used 
for solving problems of this type, but that would be wasteful since there are typically 
large regions where the solution is nearly constant. It would be desireable to have a 
grid with a high concentration of grid points in regions where the solution gradients 
are large, and very few points where the solution is nearly constant. However, this 
cannot be done a priori, since the shock wave location is determined by the solution. 
What is needed is an adaptive rezoning capability that regenerates the grid at each 
step of the computational procedure, based on the current values of the numerical 
solution. 

The HULL code has several existing rezone capabilities for two-dimensional prob
lems; however, none of methods described in the accompanying documentation (1) 
are truly general purpose solution adaptive algorithms. This report describes the 
development of an adaptive grid algorithm for the two-dimensional, Eulerian, finite
difference method. The same technique could be used in three dimensions, but there 
was no three-dimensional rezoning routine in the existing program. There was a mov
ing grid procedure which could be helpful in future work of this type. The adaptive 
rezoning method has been used in the solution of several problems involving under
water explosions. The method has worked well on the these problems, given the grid 
restrictions of the HULL code; namely, the grid must be composed of horizontal and 
vertical lines. 

4 TECHNICAL DISCUSSION 

The HULL code solves the equations of continuum mechanics in two or three di
mensions. For an axisymmetric solution, the equations can be written in cylindrical 
coordinates as: 

0 (1) 

0 (2) 
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-pg (3) 

-pvg (4) 

where 

x, y radial and axial coordinates 

u, v radial and axial velocity components 

Sap deviatoric stress tensor components 

p material density 

E total specific energy 

p hydrostatic pressure 

g gravitational body force 

The difference scheme used to solve these equations is based on a method of Gentry, 
Martin, and Daly (2]. That method is itself derived from the Lagrangian Particle-In
Cell (PIC) method of Harlow (3]. The finite difference grid is composed of vertical 
and horizontal lines 

X Xi, i=0,1,···,imax 

Y Y j, j = 0, 1 , · · · , j max 

The spatial intervals are 

~Xi Xi- Xi-b i = 1, · · ·, irnax 

fl.yj Yi - Yi-b j = 1, · · · ,jmax 

The values of the numerical solution are defined at the cell centers so that, for a 
typical solution variable f, 

A two-step numerical method is used to advance the solution from time step t = tn 
to time step t = tn+I· The first step is a Lagrangian calculation which assumes the 
grid moves with the material. This step advances the solution using the above system 
(1-4) without the convection terms. The next step is the transfer of the Lagrangian 
solution to the actual computational grid at time tn+I in such a way that the mass, 
momentum, and energy are conserved. 

An adaptive grid must sense variations in the solution and adjust the grid accord
ingly. Since there are several solution variables, more than one adaptive grid could 
be constructed. However, in explosives problems, the pressure is a key variable in 
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assessing blast effects. Thus, the rezoning algorithm will be based on the variations 
in the pressure. 

Since the same scheme is used to redistribute points in each coordinate direction, 
only the redistribution along the x-axis will be explained in detail. The first con
sideration will be the selection of a weight function to be used to control the grid 
spacing. Each weight function will control spacing in only one direction and must be 
a function of a single variable. Therefore we will . start out by defining a function P 
by the formula 

P(xi) =max {p(x,, Yi) : 0 < j < Jmax} 

In order that the grid spacing be influenced by the values of both P and its derivatives, 
the weight function will be given as 

The coefficients c, are included to add flexibility to the scheme. If eo is the dominant 
coefficient, then the grid spacing will be smallest where the pressure is greatest. The 
c1 term causes grid points to cluster where the pressure gradient is largest, such 
as near shock waves. The c2 term would cluster points where large changes in the 
pressure gradient occur, such as near oscillations in the numerical solution. Nearly all 
numerical algorithms work best when there is a smooth change in grid spacing. Since 
w is defined in terms of P and its derivatives, it may change drastically from point 
to point and from time step to time step. In such cases it is advisable to smooth the 
function P before computing w. A diffusion-based smoother, given by the following 
formula, is used in our algorithm: 

where 

T 

a = 

1 . 
-min 
4 

1 
~,1 

Llxi+t + Llxi-1 + 2Llxi 

After each smoothing sweep, the endpoint values are reset to the values of their 
interior neighbors: 

P(xo) 

P(xim&x) 

P(x1 ) 

P( Ximu -1) 

At least one smoothing step is recommended; however, it should be noted that re
peated smoothing will reduce the function P, and hence w, to a constant which would 
result in a uniform grid. 
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The weight function which has been defined is for rezoning in the x-direction and 
will henceforth be denoted as Wx. If x is replaced by y and i is replaced by j, an 
analogous weight function w 11 can be derived for rezoning in the y-direction. Now the 
maximum weight function value in both directions can be computed as 

Wmax =max { mrxwz(x;),mfXWy(yj)} 

A parameter w > 1 will be introduced which will determine the degree to which the 
grid adapts to the weight functions. In order to see how this is done, consider the 
grid function 

Wi = 1 + ( W - 1) Wx (xi) 
Wmax 

(5) 

We are going to rezone so that the intervals Llxi for the new grid will satisfy 

(6) 

where Cx is a constant to be determined. Now it can be seen that if Wx is near the 
maximum value Wmax, then ~ is approximately equal tow and Llxi ~ Cxfw. On the 
other hand, if Wx is much less than Wmax, then wi is nearly 1 and Llxi ~ Cx. Therefore, 
when Wx assumes values near both extremes, the quantity w is approximately the ratio 
of the maximum to minimum grid spacing. To determine the constant Cx, note that 

. -1 
lm&x 1 
E-
i=l wi 

which implies that 

The new grid intervals along the x-axis can be computed from (6) as 

Cx 
Llxi =-wi 

(7) 

with Cx given in (7) and Wi given in (5), and the coordinates along the axis are given 
as . 

' 
Xi= l:Llxk 

k=l 

A new distribution of grid points along the y-axis can also be computed using the 
following analogous formulas. . 

J 

Yi = LLlYk 
k=l 

0 
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-1 
Jm&X 1 

Hwi 
Wj = ·1 + (w- 1) wy(Yi) 

Wma.x 

5 COMPUTATIONAL RESULTS 

The adaptive rezoning procedure was used on three different types of problems in
volving underwater explosions. The procedure was most successful in improving the 
qualitative rather than the quantitative nature of the numerical solution. It greatly 
reduced the oscillations (or ringing) in the solution without the addition of artificial 
viscosity. However, the grids were still not fine enough in the neighborhood of shocks 
to give reliable estimates of peak pressures and impulse values. The adaptive grid 
algorithm was implemented with w = 5 to give a ratio of five for the maximum
to-minimum grid spacing. This had the effect of reducing the grid spacing in the 
neighborhood of the shock by a factor of three. 

The gridding scheme was capable of producing extremely fine grids near the shock, 
but the HULL code documentation recommended that the grid aspect ratio not exceed 
three. This ratio was exceeded on some of our computations with no noticeable loss 
of accuracy, but in some cases erroneous results were obtained when the aspect ratio 
was extremely large. The weight function was computed with Co = c1 = 1 and c2 = 0, 
since it is doubtful that the second derivatives can be reliably approximated for these 
types of problems. Only one smoothing iteration was used. No artificial viscosity 
was used in the first two examples. There is essentially no increase in core storage 
with the adaptive grid since the code is already written with variable spacing in each 
coordinate direction. 

The first example is the computation of the underwater explosion of a cylindrical 
charge of TNT. This was solved as a one- dimensional problem with a 500-by-2 grid. 
The radius of the charge was 7 em and the grid extended 2500 em from the axis of 
the charge. Figures 1 and 2 may be used to compare the solutions at t = 0.1 seconds, 
computed using a uniform and an adaptive grid. The location of every tenth cell is 
indicated along the top borders of the plots. The adaptive grid clearly generated a 
smoother and more realistic pressure profile; however, neither peak pressure was near 
the theoretical value given in Cole[4]. In this particular example, the peak for the 
uniform grid was actually closer to the reference value, but in other computations the 
opposite was true. The adaptive rezoning increased the CPU time by a factor of two. 
However, it would have taken three times as many grid points with a uniform grid to 
achieve the same resolution near the shock wave. 

The second example is the solution of an axisymmetric problem. A 250-gram 
charge of TNT, in the shape of a cylinder with a height of 10 em and a radius of 7 
em, is detonated underwater. Two plots show the solution computed on a uniform 
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grid. Figure 3 is a plot at an early time when the shock wave is near the charge, and 
Figure 4 is a plot at a later time when the shock wave has reached the outer boundary 
of the computational region. 

Oscillations in the solution can be observed, especially near the axis of sytnmetry. 
The solution also fails to develop into a spherically symmetric solution as discussed 
by Cole [4]. Two plots are also included for the solution of the same problem on an 
adaptive grid. Figure 5 displays the high concentration of grid points near the charge 
that is needed at the early stage of the computations in order to keep oscillations from 
initiating and propagating. At a later time, as indicated in Figure 6, the distribution 
of grid points becomes more uniform as the shock front moves out over a larger section 
of the computational region. The pressure contours and velocity profiles are also much 
more spherical in shape. 

The final example demonstrates the application of adaptive rezoning to the solu
tion of problems involving several materials. The explosive is a spherical charge of 
TNT weighing 66 kilotons. The TNT is lying on a concrete bottom which is covered 
by 400 ft of water. An axisymmetric solution is computed with a column of air ex
tending to a height of 200ft above the water and the concrete extending 100ft below 
the water. The computational region is truncated at a distance of 700 ft from the axis 
of symmetry. Since this problem took a lot of computer time, it was only solved with 
the adaptive rezoning. Even with the adaptive grid, no reasonable solution could be 
obtained without artificial viscosity. Figure 7 illustrates the solution at an early time. 
The concentration of grid points at the axis of symmetry was especially important at 
this stage of the solution. 

Large negative pressures were produced along the intersection of the axis of sym
metry and the concrete. A later solution is plotted in Figure 8. The shock wave and 
the fine grid region have moved away from the axis of symmetry. The full horizon
tal extent of the grid has not been included in these plots so that the details of the 
solution can be more easily seen. 

6 CONCLUSIONS AND RECOMMENDATIONS 

It has been demonstrated that adaptive rezoning can significantly improve the qual
ity of numerical solutions computed by the HULL code. For problems involving 
explosions, the adaptive grid algorithm can be automated so that the grid points are 
concentrated in regions of high pressure gradient. As with all short-term projects, we 
did not have time to complete all that we would have liked. The code still does not 
have a three- dimensional rezoning capability. The rezoning procedure appears to be 
straightforward, and there does not seem to be any problem in extending it to three 
dimensions. We also did not modify the code so that several rezoning options could 
be used simultaneously. With the new adaptive method, there are presently nine re
zone options in the HULL code. For certain types of problems it may be desireable to 
use more than one type of rezoning. For example, one may want to both adaptively 
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redistribute the grid points and expand or translate the physical region at the same 
time. This cannot be done as the code is now structured; however, the rezone option 
can be changed between successive runs. 

The construction of solution adaptive grids is limited by the current grid restric
tions in the HULL code. A long-term effort should be made to lift the restriction of 
having to compute on a single rectangular grid formed by the Cartesian product of 
two one-dimensional grids. Two projects could be undertaken, either of which would 
greatly expand upon the utility of the current code. First, the differential equations of 
continuum mechanics can be formulated in terms of arbitrary curvilinear coordinates 
and solved on a curvilinear coordinate system. This would require a reformulation 
of the finite difference algorithm and added storage for additional terms and variable 
coefficients in the difference equations. However, it would allow the user to fit the 
boundary lines or surfaces to the true charge shapes and other physical boundaries 
in the problem. The grid lines could also be placed so that they more nearly follow 
shock waves in the solution. Of course, a true two-dimensional rezoning could be 
done on this type of grid structure. 

A second enhancement of the code would be the ability to compute solutions on 
multiple arrays of grid points. Each array of points would correspond to a rectan
gular block and each block would have its own grid spacing in each direction. In an 
adaptive implementation, rectangular sub-blocks of a global grid could be cut out and 
replaced by blocks with more grid points. When using rectangular coordinates, much 
of the HULL code would remain unchanged. A new main program would be needed 
which would organize the sweeps over each rectangular block of points and transfer 
information between blocks at each time step. In the case of unequal grid spacing 
at block interfaces, interpolation schemes would have to be developed which preserve 
the conservation properties of the numerical solution. The initial effort could begin 
with either of these projects. If both are eventually completed, the result would be a 
code which could treat multiple blocks of curvilinear grid systems of any size or shape 
and any grid point density. The basic code would still compute on rectangular arrays 
so that there would be much greater freedom in positioning grid points without the 
overhead costs associated with completely unstructured grids. 
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8 APPENDIX A 

This appendix will explain how to use the adaptive rezone option and the grid plotting 
capability which have been added to the HULL code. A rezone option is called by 
specifying a value for the parameter REZONE in the HULL Euler module main 
routine. For the new adaptive option, set 

REZONE =9 

after the keyword IN PUT on the input file. All parameters in the rezone algorithm 
have been set to values which appear to give the optimal grid for the problems which 
have been considered in this report. They are set in the following data statement, 
which can be changed using the SAIL edit facilities. 

DATA OM EGA, COEFO, COEFl, COEF2, NOSM00/5., 1., 1., 0., 1/ 

Relating these variables to the notation in Section 2 of this report, 

OMEGA w 

COEFO eo 
COEFI c1 

COEF2 c2 , 

and NOSMOO is the number of smoothing iterations applied to the function P. 
Plots of the computational grid can be made by running program PULL. The 

code for producing the grid plots was inserted with only a few changes in the PULL 
program. A plot of the grid is the default option when making any contour plot. 
Thus, pressure contours and the grid would be plotted by inserting the keyword 

PCONT 

in the data file. The parameter used to suppress the printing of cell indices is also 
used to suppress grid plotting. For example, to plot pressure contours without a grid, 
use 

PCONT ( NOCELLS ). 

Since the grid is generated during a contour plot, it is not possible to generate a 
separate plot of only the grid. It is also not possible to print cell indices on the 
border of a contour plot without drawing the grid. 
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Figure 7. Explosion of 66 kilotons of TNT in 400 ft of water, t = 20 msec. 
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Figure 8. Explosion of 66 kilotons of TNT in 400ft of water, t = 100 msec. 
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