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PREFACE

The investigations'reported herein comprise a collection of pertinent
literature applicable to one-dimensional stress wave propagation in soils.
The work was performed in connection with research on propagation of
ground shock through earth media being conducted by personnel of the
Soils Division, WES, for DASA,

The work was accomplished during the period February 1968 through
August 1968 under the supervision of Dr. J. S. Zelasko and the general
direction of Messrs. V. J. Turnbull, A. A. Maxwell, R. W. Cunny, and
Jo. G, Jackson, Jr., of the Soils Division.

This report was prepared by Mr. B. Rohani and the material contained
herein was submitted as a technical paper in partial fulfillment of the
requirements administrated in a Civil Engineering graduate course at
Texas A&M University, Ccllege Station, Texas.

COL John R. Oswalt, Jr., CE, and COL Levi A, Brown, CE, were
Directors of the WES during this investigation. Mr. J. B. Tiffany

was Technical Director.



This 1999 report is a reprint of a technical paper prepared by the author in 1968 in partial
fulfillment of the requirements in a graduate course offered by the Department of Civil Engineering, Texas
A&M University, College Station, Texas. The work was performed in connection with research on
propagation of ground shock through earth media conducted by members of the staff of the Structures
Laboratory (SL), U.S. Army Engineer Waterways Experiment Station (WES), Vicksburg, MS, a complex
of five laboratories of the Engineer Research and Development Center (ERDC), for the Defense Threat

Reduction Agency, Alexandria, VA.

The work was accomplished by Dr. Behzad Rohani, Geomechanics and Explosion Effects

Division (GEED), SL, WES, during February through August 1968 under the supervision of Dr. J. S.
Zelasko and the general direction of Messrs. W. J. Turnbull, A. A. Maxwell, R. W. Cunny, and Dr. J. G.

Jackson, Jr., GEED. Dr. Bryant Mather was Director, SL, during the publication of this report.

The purpose of the study was to assemble pertinent theoretical literature applicable to one-
dimensional stress wave propagation in soils, rewrite the mathematics in detail using consistent notations
and terminology, computerize each solution, prepare instructions for each computer program, and to make
comparative studies with the various mathematical models for a wave propagation problem. The
theoretical developments were documented in a format that can be used for engineering training and self-
study and are published for such purposes. The computer programs, based on the technology of the 1960's,

are published here for historical and reference purposes.

Commander of ERDC during the publication of this report was COL Robin R. Cababa, EN. This
report was published at the WES complex of ERDC.
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I

Introduction

A. Ba.cgrou_ng

The first major research concerning the behavior of soils under
transient loadings was sponsored by the United States Army Corps of
Engineers to aid in the design of underground protective structures. The
work was carried out at the Massachusetts Institute of Technology (MIT)
under the directions of D. W. Taylor and R. V. Whitman. A brief summary
of this work was published by Whitman (1) in 1957; it states

A hydraulic apparatus and special instrumentation
were constructed to test triaxial soil samples. Failure
was achieved in times as short as 0.001 second. Curves
of compressive strength versus strain rate (rapidity of
loading) were determined for cohesive soils, dry sand,

and saturated sands. Transient pore-water pressures were
recorded during tests on saturated sands.

Another apparatus was constructed to study wave
propagation. Soil samples, 2 in. in diameter and 32 in.
long, were struck at one end by a ram. Results for a
dry sand were compared with theoretical solutions for
the wave propagation problem.

Other tests were devised to study creep and re-
laxation phenomena in dry sand, and to study the permea-
bility of saturated sands to pressure gradients applied
suddenly.

Whitman compared the results of the wave propagation experiments
with the one-dimensional rate-independent plastic wave propagation theory
developed by Von Karman and Duwez (see Chapter II, Section -D). The
theory did not predict the initial peak stress or spike at the impact end
of the sand column (fig. I-1) and he concluded that lateral inertia effects

were responsible for the occurrence of the stress peak. 1In 1961, B. R.

Parkin (2) developed a rate-dependent elastic-plastic theory to study

1
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one-dimensional stress wave propagation in sand. This theory predicted
the occurrence of the impact stress peak of the MIT experiments without
considering lateral inertia effects (fig. I-1). Parkin concluded that
the initial peak stress was due entirely to interaction of strain-rate
sensitivity and static stress-strain properties of the medium with the
elastic compliance of the impacting stress gage. Parkin's conclusion
aroused much interest and resulted in a symposium (3) on impact waves

in sand.

The subject of wave propagation in soils was given much attention
after Parkin's work. New advances in nuclear technology and space ven-
tures, in particular, provided considerable impetus towards this effort.
Presently (1968) a number of research organizations are working on dif-
ferent phases of the problem with an overall objective of predicting wave
propagation phenomena in an in situ soil mass.

B. The Problam

The problem to be considered in wave propagation in soils is that of
predicting the form and the effect of an input wave after it has propagated
through the soil, at a specified point in space and time. In particular,
the attenuation of peak stress and particle velocity with depth is of
interest. The solution of this problem, like any other boundary value
problem, requires a knowledge of':

a. the equations governing the motion of the soil mass,

b. the equation of continuity which expresses the conservation of
mass,

c. tThe constitutive equations which relate stress to strain and
strain rate, and

d. the boundary and initial conditions.

2
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Fig. I-1. Impact stress-time history for Ottawa sand.
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The solution of the equations of motion with specified boundary and initial
conditions and constitutive equations is the solution to the problem.

Major difficulties arise when attempts are made to solve such problems for
soils. The fact that the stress-strain relations for soills are highly
non-linear, hysteretic and rate-dependent makes the task of obtaining an
analytical solution a difficult one. The problem becomes even more
complicated when one considers the inhomogeneity of in situ soll masses

and the fact that a soil medium is not strictly a continuum.

C. Equations of motions and continuity

The equations of motion expressing the equality of applied force and

time-rate of change of momentum, neglecting body forces, are given as

ou o0 folo} o0

x . xXx Xy XZ
- il
ou o0, fole] Fole)
I (SR £ S R I-1
ot ox oy oz
Bﬁz agzx BGZ Bcéz
p = = - L
ot ox oy oz
where
p 1is the mass density of the material,
a_ , u_ , u are the velocity components in the x ,
X Y Z
Yy , and 2z Cartesian directions
respectively, and
o) O v e , etc., are components of the stress tensor in
XX Xy XZ VX

Cartesian coordinates.
These equations of motion will hold, irregardless of the stress-strain

behavior of the medium.
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The equation of continuity expressing the conservation of mass in

Cartesian coordinates is given by

o du i
dp i y 2N _
at " p(ax T o ) = 126

Equations I-1 and I-2 are 4 equations in 10 unknowns (6 stress components,
3 velocity components, and the mass density of the medium). To solve
Equations I-1 and I-2 six additional equations are needed. These addi-
tional equations must be obtained from the constitutive relations of the
material.

D. Constitutive relations

Constitutive relations are equations which relate in some manner the
respective components of the stress and strain tensors. These relations
must be determined from property tests conducted on samples of the material
of interest to measure the appropriate material properties. For a lin-
early elastic, isotropic and homogeneous material only two constants are
needed to completely formulate the constitutive equations. These constants
can be determined by performing appropriate property tests. The most
conventional property test is the simple tension test from which both
Young's modulus of elasticity, E, and Poisson's ratio, v, can be obtained.

These constants are related to other elastic material parameters as

follows:

N E(1 - v) o 3K = n)  26(1. - v) I3
T (1 + V)L -2v) (1L + V) (1 - 2v)

M

where

M is the constrained modulus of elasticity



K is the bulk modulus of elasticity

G 1is the shear modulus

The constitutive equations for a linearly elastic, isotropic and
homogeneous material can be written in terms of any two of these elastic

constants. In terms of YOung's modulus and Poisson's ratio, these

equations are given by

Y S .- 2%)(1 + ) [(l e (ew (- r::zz)]

vy T T - 25:)(1 + V) [(l - yy TV (e * GZZ)]

B
Y2 T1 = B%) (L + vT[(l = ) S22 TV (eﬂ ™ eyy)]

I-4

E
xy - 2T + v) xy

Q
[

E
xz  2(1 + v) "xz

Q
I

E

vz = 2(1 + v) vz

Q
I

€ s € § €. 3 eyx , etc., are components of the strain tensor in
Carteslian coordinates.

Stress-strain relations for soils are not unique and in general they
assume a variety of forms depending upoﬁ.many factors such as state of
stress, previous stress history, rate of loading, degree of satura-
tion, etc. Unlike the linear elastic material, each property test for

soils will yield a highly non-linear relation between the appropriate stress

and strain components. There are no representative equations that can




completely relate these components in a rigorous manner as is done in the
classical theory of linear elasticity (equation I-L4).

In order to minimize rate effects, soil property tests for dynamic
problems should be conducted at rates appropriate to the type of dynamic
problem investigated. Two types of dynamic soil property tests currently
in use are the uniaxial strain test (fig. I-2) and the triaxial compression
test (fig. I-3). Radial symmetry is established in both of these tests.
The slope of the uniaxial strain test defines the constrained modulus M
while the slope of the triaxial compression test curve defines the shear
modulus G where radial strain is known. The complexity of formulating

constitutive equations for soils is illustrated by the diverse nature
property test results.

E. Boundary loads

The dynamic boundary loads which are of interest in wave propagation
studies in soils are shown in fig. I-4. These loads may be generated by
explosions or vibrating machinery. Fig. I-ba depicts a typical
overpressure-distance curve resulting from a nuclear explosion. This type
of loading is probably the most complicated boundary load that has to be
dealt with in solving a dynamic problem. The fact that the velocity of
the traveling shock wave changes as it moves away from ground zero is a
major component of the complexity of this problem.

Fig. I-4b shows a single pulse characterized by a peak stress at the
shock front and an exponentially decaying behavior thereafter. This type
of loading may be generated by a single charge explosion.

A steady-state type input generated by vibrating machinery is shown




Fig. 1-21
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Typical load-unload stress-strain curve for soils in uniaxial strain.
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Fig. I-3. Typical load-unload stress-strain curves for soils in triaxial
compression.
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Fig. I-4. Typical boundary loads.
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in fig. I-4c. This type of loading is usually of low amplitude and rela-

tively long duration.

F. Scope of the present study
In this study, the response of a semi-infinite homogeneous body of

soll due to a time-dependent pressure wave applied at the free surface of
the medium is to be studied. The loading is assumed to be applied uni-
formly over the entire surface of the medium. Under this assumption, one-
dimensional geometry is obtained, i.e., there are no lateral deformations
and the equations of motion (equation I-1) and continuity (equation I-2)

simplify as follows:

2% _ 3o
P 3t T 3z hm2
dp ou _
at T Pz " I-6

The subscripts have been dropped since only vertical components are
to be considered.

The stress-strain relation required by the one-dimensional geometry
is the uniaxial strain relation (fig. I-2). This relation is not unique
and there are a number of regions in this curve in which different types
of material behavior are dominate. For example, for dry cohesionless
materials, during the early stages of loading, the stress-strain curve may
be concave downward reflecting a rearraﬁgament of particles. As the load
is increased the particles begin to lock together and the strains that
take place are due primarily to the deformation of the particles at the
points of contact. As the stress continues to increase, the contact forces

become so large that the particles begin to crush. As the stress 1is

11



further increased, the particles lock again and the curve becomes concave
to the stress axis with the particles smaller and more angular than
before resulting in a progressively higher modulus. During unloading,
the curve exhibits a higher modulus than the loading curve and permanent
strain occurs. For cohesive soils, rate-dependency is also a factor to
be considered in utilizing the stress-strain relation of fig. I-2.

To overcome the mathematical difficulties in the solution to these
problems, real soil stress-strain response may be ildealized by various
linear and/or nonlinear hysteretic approximations as shown in fig. I-5.

A considerable body of scientific literature on one-dimensional stress
wave propagation for such models has been published in recent years by
various researchers both in the United States and abroad. It was the aim
of this study to assemble all pertinent literature applicable to wave
propagation in soils, rewrite the mathematics in detail, computerize each
solution, prepare operating instructions for each computer program, and to
make comparative studies with the various models for a wave propagation
problem. In Chapter II, the elements of elastic, plastic, visco-elastic
and shock-wave propagation are reviewed in detail as a background for the

remainder of the report.

12
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IT

Elements of One-Dimensional
Stress Wave Propagation

A. Historical background

Interest in the theory of pfoPa.gation of longitudinal waves dates
fram the 17th éentury when Newton attempted to solve the problem of sound
wave propagations, a solution finally completed by Lord Rayleigh in the
19th century (4). Much of the theory in this period was developed for
matefials with highly idealized stress-strain relations. The theory of
propagation of longitudinal waves in elastic bars is presented in a
number of publications (5). The solution for this case is virtually
complete if the lateral inertial forces are negligible.  Pochhammer solved
the problem considering lateral inertia for a c:y'lind:rr'ical bar (6). Stress
wave propagation in visco-elastic materials has been studied by Kolsky (5)
and Morrison (7) for linear visco-elastic materials. An excellent summary
of one-dimensional wave propagation theory for standard models of visco-
elasticity as well as three and four parameters models is given by Kolsky
(1963). The first development of plastic wave propagation theory is
credited to Donnell (8). He suggested that if the stress-strain curve for
a plastic material could be approximated by two straight lines, then the
time history of a wave propagating through that material can be deduced by
superposition of the time histories of the two elastic waves. The com-
plete theory of one-dimensional plastic wave propagation was developed
during the Second World War. Solutions were obtained independently by
Von Karman (9), Taylor (10), and Rokhmatulin (11). The theory was later
extended by White and Griffis (12 ) tr;lulaﬁale both ;.;La..stic- and. shock wa:;re

1L




propagation and by Malvern to handle materials which exhibit strain rate
effects (13).

B. Longitudinal elastic waves

In the simple theory of longitudinal wave propagation (no lateral
strain) it is assumed that plane cross sections remain plane; only axial
stresses are considered, being uniformly distributed over the cross section
(fig. II-1). The cross-sectional area of the element is denoted by A ,
the thickness by dz and the mass density by p . The displacement of the

element in 2z direction is given by u . Newton's second law of motion

for the element of fig. II-1 gives

3%y | dg
-pAdz.——2-=-.ﬂ.a+Acr+ydz II-1
Ot £
or
de d
o=l II-2
Ot “

where ¢ 1is the axial compressive stress., For infinitesimal strain, the

equation of continuity in the one-dimensional case reduces to the defini-

tion of strain

Su II-
E=----*FZ 3

where € is the axial compressive strain. The constitutive relation for

an elastic medium with no lateral motion allowed is given by

oco=M_ € 3 B

where Mb is the constrained modulus of elasticity. ZMO is related to

15
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+
o Medium property
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Fig., II-1. One-dimensional wave propagation.
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Lame's constants A and u or to Young's modulus E and Poisson's

ratio v as follows

= E(1 -
N e MR e v)(lzg'zv)

II-5

Substituting equation II-3 in equation II-4 and differentiating with re-

spect to the space variable results in

dg %y
Sies g;g' I1-6

The substitution of egquation II-6 into equation II-2 yields the well

known equation

52
S

II-7
ate

where CO 1s the propagation velocity of longitudinal waves

= (L -
“a = po =’\/;(1 +("+.J)(J.v2 2v) =

The general solution of equation II-7 is of the form

u=}t—g—)+g6+§—) TT-9
o) o

This solution represents the sum of two traveling waves. The first term

represents a wave traveling in the positive 2z direction, and the second
term represents a wave traveling in the negative 2z direction. For a

medium of infinite extent where the waves travel only in the positive

z direction the solution is given by

u=,£t-%—) TT-10
(@)

17



Differentiating both sides of equation II-10 with respect to z and t ,

respectively, gives

d
3%: = :(']3;—-}' '['_', —‘g_) II—:L].
O O
R .
St=f'(t - '(':';) II-12

where #' denotes differentiation with respect to the argument (t - 2—) 5
o

o)
T}cl is the particle velocity 1 . Combining equations II-11 and II-12 gives

oy ou
S II-13

Using the definition of strain (equation II-3)

A =20C € : TT~-14
o

Substituting for strain from equation II-k

M
O = .
ot i CD "= pcou I1-15

Equation II-14 relates particle velocity and strain; equation II-15 re-

lates particle velocity and stress.

Z

The function #£(t - 5 ) must be evaluated from the boundary con-
o

gitions. AL 2 =90 _.

o(0,t) = P(t) II-16

where P(t) is a known arbitrary input pressure. A convenient time param-

¥ :CG . %—) TT-17
(@)

eter, defined by




is usually used to adjust the real time at the surface, by the factor %— .
o

to account for the travel time of the wave to the point of interest.
Substituting equation II-12 for particle velocity into equation II-15

and utilizing equation II-17 gives

o = pCf'(t - -g-;)= oC_#' (t*) I1-18

conditions at the boundary, equation II-16, require that
pco,t'(t*) = P(t¥*) I1I-19

where P(t*) is the surface overpressure at time t = t*¥ . An expression

for £'(t - Z-) can then be derived from equation II-19.

Co
The expressions for stress, strain, and particle velocity, in terms

of the surface overpressure are given by
o = P(t¥%)

2
e = P(t¥)/oC_ II-20

and
b -
u = P(t*)/pC

Equation II-20 demonstrates that there is a linear relation between the
three given wave-form parameters and the surface overpressure P(t) ,
and that for conditions of one-dimensional wave propagation *n an elastic
homogeneous medium an unaltered wave form pr0pa.gat§s‘ through the
mediuﬁ.

The acceleration at a point -can be determined from equation II-20 by

differentiating the expression for particle velocity

19
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o - S |
i— = pco It [P(t*)] I1-21

Equation II-21 demonstrates that the acceleration depends on the time rate
of change of the surface overpressure.

The absolute displacement of a point, at time, 1:a , can be obtained

by integration of equation II-20 for particle velocity

3 ‘e
o = e J’ P(£*) dt IT-22
DCO
0

The integral

t
a
f P(t*) dt
0

in equation II-22 is the input impulse (area under the surface overpressure-

time curve) between the times t = %— and t =%, -
O

Cs Longituﬁinal elastic waves in layered elastic media

Consider the semi-infinite body of fig. II-2 made up of two elastic
media with different properties separated by a plane interface. The prop-
erties in the two layers are subscripted o and 1 . A wave in the first

layer incident to the interface is given by equation II-10

u=;t-%.) II-10
o)
The corresponding incident stress, O is given by equation II-18

. 2 E
0; = pOCO;F S Co) I1-18

At the iInterface a reflected wave will form and travel in the negative 2z

20
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Reflection and transmission of a wave at a boundary.
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direction in layer 1. The reflected wave is given by the second term of

equation II-9

y = g(b + g—) II-9
o

The reflected stress wave is given as

g =% pocog'(t + g—) II-23
O

A transmitted wave

T h(b g 5—) II-24
o

will also form at the interface and will travel in the positive 2z direc-

tion in layer 2. The transmitted stress wave 1s given as
0, = P;C.h ( - 2 II-25

The corresponding particle velocities for the incident, the reflected and

transmitted waves, from equation II-18, are respectively

1 - S g
£1(x C) e II-26
O O 6
)
' zZ \_ _TI <
g(t+c)_pc II-27
O + O O
0]
h'(t - %—): g 1T-28
1) Hyen

There are two distinct conditions which must be satisfied on both

sides of the interface

e




(&) For equilibrium

g. * 0 =90
1 r g o

(b) For compatibility of particle velocity

Ui ) Ur Ut
poco poco Qlcl

II-30

The negative sign in front of the reflected particle velocity is due to
the fact that its direction is in the negative 2z direction. Substituting

for e Ut = G from equation II-29 in equation II-30 and solving for

o ives
£ g

ol i
i g
G, = Eg. IT-31
t Y, poco - plcl

Substituting for o in equation II-31 from equation II-29 and solving

T

for o gives

BaCy = Beb
U = B30 + p.C L1-32
0 O 1N &

Interesting conclusions can be drawn from equations II-31 and II-32 re-
garding the nature of the reflected and transmitted waves at the inter-
face. TFor instance, at a free surface, chl = 0 . From equation II-31,
Dy = O ; there is no transmitted wave. ZFrom equation II-32, O, = —9: 3
the reflected wave is equal in magnitude to the incident wave, but opposite
in sign. Thus, a compressive wave is reflected as a tensile wave at a free

boundary. At a rigid boundary, plcl = o . From equation II-32, the re-

flected wave 0. = 0y ; the reflected wave is equal in sign and magnitude
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to the incident wave. Therefore, at a rigid boundary the stresses are
doubled.

In general, from equation II-32, if pbco >-Qlcl , a compressive wave
is reflected as a tensile wave. If, on the other hand, p-oc0 < 9101 s &

compressive wave is reflected as a compressive wave.

13 Erogégation of E;astic waves in strain-rate indeggndent me@i&

The first development of plastic wave propagation was published by
Donnell (8) in 1930. Donnell suggested the use of the principle of
superposition if the stress-strain curve for a plastic material can be
épproximated'by'two straight lines. Consider the plastic stress-strain
curve and its approximation in fig. II-3a. If a step pulse of stress o

is applied on the surface of a semi-infinite body having such a linearized

stress-strain curve, the step pulse will propagate into the body with a

velocity

N W II-33

as shown in fig. II-3b. If a second step pulse of stress 0y is super-

imposed on the body it will propagate with a velocity

Thus, at some time, t , the front of the wave o < R would have traveled

to a position
2y = Cot II-35

while the remainder of the wave o >'00 would have traveled only to a

position
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Fig. II-3. Donnell's apprﬁximation of plastic wave propagation.
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Z. = Q% II-36

as shown in fig. II-3b. Donnell's development simply indicates that if the
two stress pulses were applied simultaneously, the action would have been
the same and the wave front would have the appearance shown in fig. II-3b.
Thus, from Donnell's deductions, one would expect the higher stress levels
(for the real plastic stress-strain curve) to travel at lower velocities.
The gap (Cot - Clt) between the two wave fronts, fig. II-3b, would increase
with time and the sharp-fronted stress pulse would rapidly become softened.
Obviously, stresses greater than the yield stress would not propagate in a
plastic medium. From the above reasoning, one would expect that the wave
front corresponding to the simultaneous action of two-step waves O and
04 on the surface of a medium having a stress-strain curve such as the
one shown in fig. II-4a would have the form shown in fig. II-4b. The
mathematical solution of plastic wave propagation obtained by Von Karman
and others during the Second World War verifies the correctness of
Donnell's superposition approach as will be shown subsequently.

Consider a semi-infinite body extending from z =0 to 2z = c© ,

having a unique stress-strain curve which is plastic in character or

concave to the strain axis, as shown in fig. II-5. The stress-strain

curve can be given as

Oy = GP(EP) II-37

where the subscript P 1indicates that the curve is concave to the strain
axis, or "plastic." The problem being one-dimensional, the equations of

motion and continuity from the previous section are given as
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Fig, II-4. Plastic wave propagation as deduced from Donnell's approximation.
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Boundary conditions u

Fig. II-S.
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P —p == 5 II-2
Ot ‘-
and
Oy
EP = - a—z II-3
For any point on the stress-strain curve, the constrained modulus, MP g L8
BUP
MP(EP) — E; II—38

The initial tangent modulus is Mo . From equations II-37, II-3, and II-38

o dg_ O
UP— GP:E—_ (e)fy'. T
3z ~9e, 3z PP 32 -39
Substituting equation II-39 into equation II-2 the equation of motion
becomes
2% 3y
p— =M_(e.) — IT-40
3 ‘t2 B 522
For boundary conditions, assume that a constant velocity - ul , corre-

sp.canding to a compressive stress - gy is suddenly imposed and maintained
at the surface of the body (z = 0).

Then

and

|
@
®
N
Il
8

u

To integrate equation II-40O, assume that the compressive strain c—:P is

‘a function of z/t = ¥ , i.e.

e = =F(V¥) II-41
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2

Then dz =t dV and d4dt = - EL-aw-, the dlsplacement u is then deter-
mined as e e
A 5 Z A
_[éu jlfu fﬁwu
(0 0] o .
v
“ f:c(\lr) dy II-k2
o0
52
The second space derivative, g—gi, becomes
Z
6211_ 3 d £'(1}r)
5;—'— §E'€P & 5E'f(¢) o II-43
and
3 ¥ .
e f:c(w) ay -t g— f F(¥) ay II-Lh
00 o0
But
o) o0 d z O
‘téft--':té—‘l'}'a-%:-gw II-45
and
v
25 [ av- - 25w - - W II-46
&)

Substituting equation II-46 into equation II-LL

e

1[; :
j (¥) dv + vf(v) IT-47
QO

Therefore
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Q/

Q/
n

2. 3 ¥
2" 3% vF(¥) - ii(*) dv

v
: %,- |}r£(*) - f #(v) dif]
Q0

= - L [ + v () - )

<1 b

t
S AN O 48
b A RS S A I1-

Substituting equations II-43 and II-48 into equation II-40 the equation of

motion becomes
v 0]
b= £'(¥) = M (€,) &3 II-49
or
F'(v) [r.nlr2 - M_(¢€ )] = 0 II-50
Mplep
Equation II-50 indicates that either

F'(¥) =0 or #$(¥) = constant II-51

or

M'.P(EP) - 'ﬂwg II-52

The first solution given by equation II-51 indicates that there is a strain

€ which is constant. The displacement, from equation II-42 and the boun-

dary conditions, can be written as




11«35

F
%

The second solution given by equation II-52 corresponds to

M_(€.)
Z i e
= =¢\/ 5 II-54

The complete solution of the problem can be written as follows

(a) The strain €, = € = constant , from z =0 to z = C;t

where €. 1s the plastic increment corresponding to stress o induced by

5 L J.

the applied velocity u:L .
MP(‘EP)
P

holds. The strain varies and each strain increment propagates with a

(b) Between z = C;t and z = C_t , the relation %=,\/

o e ~

(e) €p =0 for z >C_t .

This strain distribution is shown in fig. II-6. The elastic strain front

M_(e_) M
P o)
velocity —— , C_ 1is the elastic velocity —_,

travels with velocity Co and an amplitude €, - The peak plastic strain

1 and a constant amplitude € -

Between the two fronts the propagation velocity of any strain increment

front propagates with a velocity C

depends upon the local slope MP(EP) and the strain varies from ¢ at
the elastic front to € at the peak pl;'a.stic front. The propagation
velocity of the plastic wave peak, C; > can be related to €, and W, in
the following way. From the boundary conditions and equation II-L2

=t
ﬁl=u$t = - f F(v) ay II-55

QO
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Peak plastic strain front

Strain

Elastic strain front

Fig. II-6. OStrain distribution for a plastic pulse in a
bar according to the strain-rate independent
theory.
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or

h = f F(v) av I11-56
O

This integral is the area under the curve in fig. II-6. It may be written

as

1 i
ﬁ1= f \;;a_e—_—-[ T de LL=57
0

Substituting for = from equation II-54

t
) M_(€
ﬁ1=f\/—-2-5-i)de I1-58
0

e relation €_) 1s known from the stress-strain curve for the medium.
Th lati MP( P) 1s kn i the st trai for th di

Equation II-58 gives the relation between € and ﬁl . The velocity C

(e5)

M
is equal to the wvalue of;v/.Pé- at el . The stress distribution is

deduced from the distribution of strain and the stress-strain curve.

1

P e

I THp ProEggation of stress waves in linear visco-%lasE}c_gedia

Linear visco-elastic materials are generally defined by linear dif- ;

ferential equations which relate stresses to strain and strain rate. The

e ————

elasticity of the material is presented by linear springs while the

viscosity of the material is presented by viscous elements called dashpots.

The elastic and viscous elements are combined to form the constitutive 4

equations of the material. The governing differential equations describing

I T

the propagation of one-~dimensional stress waves in visco-elastic materials

are obtained from the equilibrium equation of motion, equation II-2,

3k '“




by substituting the appropriate constitutive equation for stress o

3y dg
P a—t'a- AL II-59

Various models of visco-elastic materials can be constructed by suitable
combinations of springs and dashpots. The best known models are the two-
element Kelvin-Voigt and Maxwell solids and the three-element standard
linear solid shown in fig. II-7. The constitutive relation for the Kelvin=-

Voigt model is, from fig. II-T,

6 = Me + M %% (Kelvin-Voigt) TT-60
For the Maxwell model
dEE
0 = T] E:-b-— = Mel II"‘61
or |
d(e - €.) de
A de ik
g=" 3t = E i E:E— II-62
but
d
! _ L+ do II-63
dt M dt

Substituting equation II-63 in egquation II-62 results in

de M do
= — . — — T
o= N =g - oo (Maxwell) II-64
For the standard linear solid
del
o =Me + TN ===Me, II-65
Since € = & + &, and
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(Kelvin-Voigt)

Fig., TI-7.

M =< xiﬁL A
€
M - V
(Maxwell)

V
(Standard-Linear Solid)

Models for linear visco-elastic materials.
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dt "‘EE";.TO‘EE II-66
equation II-65 becomes
- nd€ _ 1 do
g =1 = M at " i LI=GT
but
o]
€E, = € = €. = € = =
e 2 Mo
therefore
M nM
g = dMi € + oo ﬂ (Standard Linear Solid) II-68

do
= + Mi. MO + Mi dat .Mb + Mi dt
Substitution of equations II-60, II-64, and II-68 for o , in equation

IT1-59, will result in the following equations of motion for the Kelvin-

Voigt, Maxwell, and standard linear solids, respectively (note that strain

and displacement are related by equation II-3, that is, € = - g% )i
2 2 3
P Q—E;= M.§—2-+ M 52u (Kelvin-Voigt) II-69
ot oz dz“ 0t
2 3 3 |
o é-lel- = M 5211 - 1% ou (Maxwell) II-70
ot 0z ot ot
3y 3y e R
oM + M ) —S=MM —5 - o1 — + M (Standard Linear Solid) II-T71
B st FoT 33 ° 37°t

Equations II-69, II-70, and II-71 are not in general satisfied by a solu-

t + & which satisfies the elastic wave equation

-C
(equation II-7). However, solutions for equations II-69, II-70, and II-71

tion of the type u = f
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can be obtained from the solution u = f@: 53 Z—) of the elastic wave
equation using the "correspondence principle" (14) provided the boundary
conditions for the two problems are the same. The "correspondence
principle"” states that the solution to a visco-elastic problem may be
obtained from the solution for the corresponding problem for an elastic
case by applying the one-sided Fourier transform to the elastic solution,
replacing the elastic constants by the corresponding visco-elastic moduli
‘or compliances and finally inverting the transform. The complex visco-
elastic compliances for the models in fig. II-7 are given as follows

(see Bland, p. 114-115)

J(iw) = —é—lﬂ—g-g— - 10.}712 (Kelvin-Voigt) II-72
M~ + o™ M + arﬂz
J(iwm) = d _ 2 (Maxwell) II-73
M ol |
ok ; iy | .
J(iw) = = == =5 - 0 |1~ 55 (Standard Linear Solid) II-Th
o M, +whT M: + wT
1 i
where 1 = ﬁ/—l and o is-the*frequency'(rad/%ec) of the oscillating
1
force. l
The one-sided Fourier transform of a function such as #(t i_g—- is
defined by
0
f(w) = f e g 2 2) I1-75
0]

The inverse transform is




Egprs -
;C(t + %) = %R f % f(w) an II-76
L0

where R denotes the real part of the expression in brackets. Therefore,
the first step in the solution of a linear visco-elastic dynamic problem
is to find the solution for the elastic case. As an example consider the

solution II-10 given for a semi-infinite elastic medium.

u=;c( -%) (a)
6= f(x - (b)
II-T7
=g #(t-%) (e)
o= %=§'(j --%) (d)

The form of § is determined by the conditions on the boundary (z = 0).
If an impulse of magnitude I 1is applied on the boundary at time t =0 ,

the boundary condition 1is
g(0,t) = I 8(t) II-78

where ©&(t) is the Dirac delta function. From equation II-T77 (d)

Q=

fr(t) = I 8(t) I1-79

Integrating with respect to time
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II-80

C

Let us find the stress for a visco-elastic medium under the same

where H(t - _z_) is the Heaviside step function.

boundary load. Applying the "correspondence principle," the one-sided

Fourier transform of stress o 1is found first

(® 0]

o(w) = I f g 5(1; - é"‘-) dt II-81
O
or
g(w) = 1e-102/C II-82
Next the elastic compliance I% is replaced by the complex compliance
J(iw) of the visco-elastic medium. Since C =4/M/p equation II-82
becomes
o(w) = Ie'lm."/';J(lm) II1-83
The stress itself is found from the inverse of equation II-83
glee
a(zyE) = % R el‘”(t "\/F’J(l‘*’)"") dw TI-84
= o

LO




For a Maxwell material, J(iw) = b_Jd-' - %ﬁ (equation II-73). After substitu-

ting in equation II-84 and integrating

Mt
o(z,t) = Ie- Eﬂg( - %) +

-1/2 [ 4
A pMz 2 22 M 2 22 Z
T Bt Il a0 B = H( --é-) II-85

C C

— p—

where I, 1is the first order Bessel function of imaginary argument. The

1
impulse I is propagated with velocity C and attenuation :\/M -
Similar expressions can be obtained for Kelvin-Voigt and standard linear
material by substituting their corresponding compliances, J(iw) , in
equation II-84 and performing the integrations. Thus, the solution to
any visco-elastic problem can be found from the solution of the corre-
sponding elastic problem by using the "correspondence principle" as was
demonstrated for the case of the impulsive load. In Chapter IV this

principle is used for obtaining the solution for a standard linear material

from the corresponding solution for the linear hysteretic material.

¥. §_hock wave propagation

In Section D it was shown that for a nonlinear material each stress

level 0. travels at a velocity which is given by

¥
M do
— -—P- = Y g'- P -

If the stress-strain relation for the material is such that increasing

Jo
stresses are accompanied by increasing values of BEE (fig. II-8), then

P
higher stress waves will travel at higher velocities and eventually catch

up with the lower stress waves which preceded them (fig. II-8). This is
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"shocking up"
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e
C, = (-5_9)

Fig. II-8. Typical stress—strain curve causing "shocking up"
of the stress wave.
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the process of "shocking up" which is governed by the fundamental shock-
wave equations known as the Rankine-Hugoniot equations derived from the
equations of conservation of mass and momentum.

Consider a semi-infinite column of material, having a stress-strain
curve shown in fig. II-8, subjected to an instantaneous step pressure applied
to its surface (fig. ITI-9). Under the action of the applied pressure P ,

a shock wave is initiated and propagates down the column with some velocity

of propagation CS . At a time ¢t = ta , the front will reach a position

Z = Csta , as shown in fig. II-9. During an infinitesimal time dt , the
shock front will have moved to position 2z = Cs(ta + dt). The infinitesimal

volume, ACS dt , where A is the cross-sectional area of the element, will

then obtain a particle velocity U . From Newton's second law, the relation

for impulse-momentum across the shock front is expressed as

P A db = CS dt.Apiu

P=C p.1 TI-87

where Di is the initial density of the material. The strain € 1in the

infinitesimal volume .ACS dt is defined as the change in displacement per

unit length

o =%— TI-88
S S

By combining equation II-88 with equation II-87, the shock wave velocity

[ -8
c_?s._,,/E 3 II-89
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Shock-front conditions.
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From equation II-89, it can be concluded that the shock velocity is a

function of the secant modulus % of the material as shown in fig. II-8.




I1lL

Stress Wave Propagation Through
A Laterally Constrained Column of
Linear Hysteretic Material

A. Description of model

The linear hysteretic model was first used by Salvadori, Skalak, and
Weidlinger (16) to approximate the behavior of soils in a uniaxial state of
strain. The model is independent of the rate of load application; hence,
energy dissipation is due only to the compaction (hysteretic) character-
istics of the model.

Consider the stress-strain curve of fig. III-l. The stress-strain
curve is a straight line OA on initial loading to A . The slope of this
line defines an initial modulus MO defined as the elastic constrained
modulus. 'Mo is related to Lame's constants A and pu , or to Young's

modulus E and Poisson's ratio v , as follows:

M b R g )

0 (1L +v)1Q - 2v) 1il=d

Upon unloading the stress-strain curve is another straight line AB
which defines a second modulus My (it is assumed herein that Poisson's
ratio is the same for loading and unloading). If the material is reloaded,

it follows line BA to A and then continues along the initial loading

line AC . In the limit when Ml approaches MO , the medium will behave

as a linear elastic material.
If the initial peak stress, peak strain and residual strain are re-
spectively denoted as © , € and € (fig. III-1), the initial
max max r

loading modulus Mo is then given by:

L6




Uniaxial State of Strain

Fig. III-1. Stress-strain curve for linear hysteretic material.
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M = 22 TIT-2
o) €
max
The unloading modulus Ml. is given by:
“max
Ml = 5 IT1T-3
max r

The propagation velocity of an initial loading stress wave is given by:

C, = VMO/b IITI-4

where p 1is the mass density of the material. The propagation velocity

of an unloading or subsequent reloading stress wave is given by:

C, = '\/Ml/p III-5

The dynamic boundary load used with this model for blast-type problems

B. Boundary load

is a pulse characterized by a peak stress at a shock front and an exponen-

tially decaying behavior thereafter (fig. III-2) given by

P(b) = B e Vi IIT-6
where:
PO = the peak applied pressure
t = time, the independent variable

T = the exponential time constant (%ime at which pressure has
decayed to 0.368 Po)

C. Formulation of the problem

Consider a plane compression wave of general nature (arbitrary rise
and decay) propagating into a column of linear hysteretic material ex-
tending from z =0 to 2z = . The distribution of pressure along the

column length, at a given time ta , might be as shown in fig. III-3. The
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Fig., III-2. Applied pressure pulse on the boundary.
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pressure varies from zero at the front of the wave, point A, to a maximum
located some distance behind the wave front, point B, to the decayed over-
pressure existing at the surface, point C. In the portion of the wave AB
the pressure is continuously rising and, hence, this portion of the wave
will propagate with velocity CG corresponding to the loading branch, OA,
of the stress-strain curve in fig. III-1. The one-dimensional wave equa-

tions governing the motion in zone AB are therefore:

520 i 520
= = — III-7
5;2. c® d3¢°
@
2, 2.
9—% = -1-5 9—12!- III-8
dz C0 ot

where o 1is the stress in the direction of wave propagation, u repre-
sents the particle displacement in the direction of wave propagation,
and u is the particle velocity. In this zone the behavior is the same

as that of a linear elastic material; the stress, particle velocity,

particle displacement, and strain are related by:

o= Coﬂu
u = Coe
R Cofedt | III-9

where € 1is the strain in the direction of wave propagation. In the
portion of the wave BC, the stress is less than at B and is continuously
decreasing. This portion of the wave will propagate with velocity Cl

corresponding to the unloading branch, AB, of the stress-strain curve in

S




fig. III-1. The governing equations in this zone are:

d2 D¢ |

—-g- = -1—2- ——% ITI-10
az Cl 5t

52 52'

— =32 ITI-11
Oz Cl at

The response of the medium in this zone is not governed by elastic
theory because the unloading stress-strain curve is offset from the

origin. Since velocity C., is greater than Ce , the unloading wave

i
front BC eventually overtakes the loading wave front AB. The result-
ing interaction, known as internal reflection, will cause a decrease in
both peak particle velocity and peak stress. This process continues

with time as will be shown in the following section.

D. Response of the medium to a
discontinuous surface overpressure

A semi-infinite body of linear hysteretic material, such as that
in fig. III-3, is loaded uniformly at its surface by a pressure pulse
described by P(t) . Surface displacement and stress are assumed to be
zero before the application of the load. Strains are considered small and,
therefore, density is considered constant. The surface pressure pulse is
suddenly applied at the time +t = 0 and it remains constant at a value

Pb until a time t =t the pressure then suddenly drops to a value

1 >
Pl and remains constant until time t = . The more general surface
pressure (fig. III-2), p(t) = Pbe_t/k , will be analyzed in the next
section. At the time t =0 and at z = 0 a wave begins to propagate

into the body as shown in fig. III-4. For the time 0 <t < t, » a step

o2




loading wave of pressure Pb Propagates into the body with a velocity
C, - The stress in zone O of fig. III-4 is determined by the boundary

conditions at the surface and is given as

Uo = Pb III-12

The particle velocity is determined from the elastic theory (equation

III-9) and is given by:

PD
uo = ﬁ- III"'13

At the time t = tl , & step unloading wave of pressure P0 - 31
begins to propagate into the body with a velocity Cl which is the slope
of the line separating zones O and 1 in fig. III-4. The stress in zone 1

is determined from the boundary conditions at the surface and 1s given
as:

o, =P III-14

The particle velocity in zone 1, ﬁl , 1s determined from an equation ex-

pressing the uniqueness of ﬁl
u, = uO - Auol ITT-15

where ﬂﬁol is the change in particle velocity caused by changing the

stress from © to ©
0 1

. o) i [ o) 1.
N = = II-16
ol pC 1

Substituting equations III-13 and III-16 in equation III-15, one obtains

for ﬁl
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P(t)

Q
=
mw P
Eﬂ 0
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t4 tan BO = C0
| tan Bl = C1
e (t. - =)
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Medium Property ’
— (t5+E_)
v 1
=¥
a
A

Fig. III-4., Space-time diagram for discontinuous loading in linear
| hysteretic material.
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The unloading step wave Pb - Pi traveling at velocity Ql overtakes the
loading step wave Pb at the point 2 at the time t2 . From

fig. ITII-4 it can be seen that:

o kot = Cyitn A, )
Cot2 = Clt2 - Cltl IT1-18
by = P8y
where
Q’ Cl/bo
= ITI-19
C,/C, -1
At time t2 , all the material in zone 1, from z = 0 to Z, = Cot2 .
is at a stress of 9 and has a particle velocity of ﬁl . The material
below 2z is unstressed and at rest. It may be considered that the

2
material in zone 1 is a body of elasticity Mi striking the lower undis-

turbed mass of elasticity Mo . The resulting elastic interaction is
governed by the equations of continulty of stress and particle velocity
across the boundary. The transmitted wave travels downward with velocity

CO , and the reflected wave, which divides zones 1 and 2, travels upward

with velocity Cl . The particle velocity in zone 2, for the transmitted
wave 1S
95
R ITT-20
e pC

where 02 is the stress in zone 2. The particle velocity for the re-

flected wave is

22



u2 = ul - E—l- II1I-21
where GR is the reflected stress. From continuity of stress across the
boundary:
+ = -
cl UR 02 I11-22

Substituting equation III-22 in equation III-21 obtains

g _ -
& allagd = a S
i, 5, —-——pcl III-22

From equations III-17, ITII-20, and IITI-23 it is found that:

o . =P +o(P -P IIT-24
2 0

1 l)

where:

_ g./C. =1 .
cl/co +1 20 -1

o III-25

Since o > 0 for all cases, the upward traveling wave is a reloading wave.
Substituting equation III-24 in equation III-20 yields the particle veloc-

ity in zone 2

- Al
B, = C_ [Pl + a(PO - Pl)] III-26
The reflected wave reaches the surface (z = 0) at time t3 which is
determined from fig. III-4 as
—— -+ -
t, = t, (t3 tl)/é
=2t -t III-27
+ I|
— Cl CO t = E:!; |
C, - C0 1) o




Conditions at time t are similar to those at time t

3

is defined from the boundary condition at t3

1 ° The stress

o. =P I1I-28

The particle velocity may be written down by analogy to ﬁl , replacing

ﬁb by ﬁ2 and o, by 0, » respectively, in equations III-15 and

ITII-16 obtains

3 2 23
o, -0
BRIl 5t 3 -
= u, oC III-29

Substituting equations III-24, III-26, and III-28 in equation III-29, one

obtains for u

B

2

o ok 20 _
Q. = -—O [Pl ¥ e (Po Pl):] III-30

The reflection from the moving wave front at th , Tig. III-4, may be
analyzed in the same way as the reflection at t2 . The unloading wave
traveling at velocity Cl overtakes the loading wave at the point Z),

at the time ¢ . From fig. ITII-4 it can be seen that

£
10 IIT-31
o4 oY

The particle velocity for the transmitted wave in zone 4 is

)
uJ+ = EE;- IT1I-32

o1



where o) 1is the stress in zone L. The particle velocity for the re-

flected wave 1s

Wy u3 - o III-33
From equations III-28, III-30, III-32, and III-33 it is found that
Gy, = 2. & cxe(P - B ) ITI-34
L 1 G -

Substituting equation III-34 in equation III-32 for particle velocity in

zone 4,

&, = "":é—o [Pl + o (P - Pl):l III-35
The above process can be continued indefinitely by finding the stress
at the surface from the boundary condition, computing the new velocity,
taking into account the change of stress, and then anal&ging the inter-
action from the unloading wave overtaking the initial loading wave. From
equations III-18, III-31, ITI-24, IIT-3L4, III-26, and III-35, one can
deduce the following general expressions for arrival time tn , Stress

o, and particle velocity ﬁn in any even numbered zone, that is,

Ho EOIE e e

_ -n /2
b= g Ny III-36
. n/2
e [Pl + O (Po - Pl)} ITII-37
. 1

Similar expressions can be deduced for any odd numbered zone, that is,
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n=1, 3, 5,..., from equations III-27, ITI-14, III-28, III-17, and III-30

_ (1=n)/2
b= o:( / ty III-39
c, =5 ITI-40
1)/2 ]
(e e
U = N _Pl e (Po - Pl) ITIT-41

It is apparent from equations III-40 and ITII-37 that the stress

oscillates from El for n odd to the value given by equation III-37 for

n even, and approaches Pi for large values of t since @ <1 because
C,/€, >1 and

Limit an/é =0 ' TTT <42
1 =00

Therefore, for large values of t , equation III-37 yields the same re-

sults as equation III-LO.

o (z , o) = By III-43

The limiting particle velocity from both equations III-38 and III-41 is

31
u (a5 o) = ol TIT-L4k4
0

It is now desirable to write expressions for stress and particle
velocity, as functions of time, which are valid in the zone 0 <z < Cot .
Examination of equations III-37 and III-40, for stress in even and odd

numbered zones, reveals the fact that the stress in each new zone is made

up of values from the previous zone plus a contribution due to the wave

29



traveling upwards or downwards at velocity Cl . The upwards traveling

wave is a reloading wave, it has a positive contribution on stress. The
downwards traveling wave is an unloading wave and it has a negative con-

tribution on stress. For instance, the stress in zone 3, from equation

53 31 .
Op = B a(P0 - Fi). Thus, the contributing wave is an unloading wave

of magnitude a(Pb - 31) separating zones 2 and 3. The stress in zone L,

ITIT-4O, is The stress in zone 2, from equation III-37, is

from equation III-37, is S), =.Pl s ag(Pb - Pi) indicating a contributién

of czg(Po - Pl) from the reloading wave w;:i.“c;h_;e-par;tes zoné_ 3 from 4.

In general, stress in zone n #’O 1s equal to stress in zone n - 1 plus a
contribution due to the unloading or reloading wave which separates zones
nandn -1, Stress in zone n - 1 is also made up of stress in zone n - 2
plus a contribution from the unloading or reloading wave separating zones
n-2andn-=2>1 Therefore, stress in any zone n is made up of the sum of
all waves traveling downwards and upwards plus a contribution T PO from

zone 0. The sum of all waves traveling upwards, from fig. III-4 and equa-

tions III-37 and III-4O is

Oy

G(‘t 4 Z—-)z (P - P) + cx‘?(PD - ) + a3(PO - B,

L n
+ 2 (P, ~ B )it ahs @ (P =B ITT-k5

where 2Z— is the travel time of the reloading wave from point z to the

G

surface. Equation III-45 can be written in the following form,

e8]
Gt + =) = e III-U6
( C:L) nzzl n( Cl) ;




where

0, t <t/

£ (t) <an(P SRl III-47
o L7 7 1

\

The sum of all waves traveling downwards (unloading waves), from fig. ITII-k4

and equations III-37 and III-40 is

?(t - %:[) = (B 1) - a(P, - P )

2
-d° (P, - P) - ... - an(PO ey IIT-48

or using equation III-L47

a
F( -(Z:—l) - (2, - B) -nzzl :f‘n(t --é-;)

= - (PO ~ Pl) - G(t - g—) IIT-49

L

Therefore, stress in any zone n # 0, fig. III-4, can be expressed as

ofzst ) = G(t + g—) - F ( -g—)+ P,

1 i3
=Gt +2=)=@ft =2=)|=(P -P)+P III-50
! C o L o)
1 1
VA b A
= P + G|t + —)| =G|t = —
a ( Cl) ( Cl)

To include zone O and thus write an expression for stress which is valid
in the zone 0<z <C_t , one must replace P, with a function P(t)

so that
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P(t) =< III-51

" 1

This function is the original input wave P(t) corrected by the travel

time %—, that is, P --g—- . Jlherefore
it il
U(z,t)=Pt-g— +Gt+g—-Gt-%— III-52
e i 1

As an example we will compute the stress at some arbitrary point z,

fig. ITII-k4, at a time t = t5 ;

('}lN
('JIN

SO R T RO ) BT PR B ) III-53
z (5 1) (5 Cl) (5 1

Plt. - 2| is the value of the input wave at [t. - =) , from fig. III-4

this value 1is P (t5 + ———) is the sum of all the reloading waves

from t =0 to t - z_) from equation III-U46

c:n
Z Z
Glt- + — f ([t + — III-5J+
(5 C) A n(5 Cl) |

To evaluate equation ITI-54, one must use equation III-47 in the following

way
Z tl zZ
for Il=l,'t5+'c—,':'|':>a—=t3,fl(t5+-6-]-')=a(1:’ -Pl)
Z tl Z 2
for Il‘2,‘b5+61->a—2'=t5,f2<t5+EI)=CI(PO—Pl)
Z tl Z
for 1'1_::3,t5+q<;§=t7,f3(t5+-é-]—:)=fn=o




therefore

G(t5 7k 2—1-) = a(PO - Pl) + ae(PO - Pl) I11-55

The last term in equation III-53, which is the sum of all the unloading

C

waves from t =0 +to (t5 -'E-), can be evaluated in the same manner
i &

®.9)
G(t5 : g—-)= Z 4 (t5 : -g—) TII-56
L = 1

from equation III-L47

t
4 geR 00k ) SEEY s
for n-l,t5 Cl>a -t3,fl(t5 C)-Q’(PO Pl)
3.
Z tl Z
for n>2 ,t. ~=4—=<-5=t., f,ft. -2=|=Ff =0
5 Cl a2 5 2( 5 Cl) n
therefore
Z
G( 'E:“') a(P, - P,) III-57
1
Substituting equations ITII-55, III-57, and the value of P(t5 - %E) = Pl
in equation IIT-53, one obtains for c(z,t5)
g(z,t.) = P, + az(P - P ) III-58
S 1 o) i

which is the stress in zone 4 obtained from equation III-37.

The particle velocity time history can be derived in the same manner by
considering the particle velocity in each new zone of fig. III-4 to be made
up of values from the previous zone plus a contribution £ (equation III-47)

due to the wave traveling upwards or downwards. Since Cl >-CO , from the
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interaction equations the reflected (reloading) particle velocity will have
the same sign as the incident (unloading) particle velocity. Therefore, the

contributions of all the reloading waves on particle velocity are

= (t +-E—)
i
: ITI-59

pCl

and the contributions of all the unloading waves are

Z
i (t - C ) L b 1
— - TII-60
PCy pCl

The contributions of the original input wave should be written in a form

that the following conditions will be satisfied

r!"‘

P
o}
EE-'when t f;tl
Particle velocity due &
L3 Ld - = III-61
to original input wave
PO PO - Pl
—_— - when t >t
LDCO pC4 2 &

These conditions are satisfied if the contributions of the original input

wave on particle veloclity are expressed as

P (t "%‘)
il i AL
+ P — e — III=-62
DCl o (DCO | Dql)

as can be checked by direct substitution. The velocity time history, from

equations III-59, III-60, and III-62, becomes

y b % Z Z ik 4.

u(z,t) = —=— |P(t - = |-Gt +=—|=~-C [t - =— +P(——-—-—-)III-63
7o [( R bl ) cl)] o35 - 50

E. Response of the medium to & con-
tinuously wvariable surface pressure

Consider the decreasing surface pressure as shown in fig. III-2. The

6L




pressure P(t) rises from zero to PE at t=0 . For t->-0 s the
pressure decays continuously to zero. This surface pressure may be re-
gardgd.as a step wave of amplitude Pb plus a series of infinitesimal,
negative steps, dP . Each pressure change dP may be treated in the man-
ner of the single pressure change from Pb to Pl of the previous
section. When the surface pressure shown in fig. ITII-2 is applied to the
boundary of a semi-infinite body of linear hysteretic material, there will

result a term like P(t - z/bl) (equation III-51) where in this case

P (t - Z—-) - B % TTI-64

There will also be a series of contributions like G(t j:z/bl) in

equation III-52. In the case of the continuously decreasing surface pres-
sure each term of the series in equations III-46 and ITII-49 will itself be
a series. For a time t , the sum of contributions of the first term

fl(t), from equation III-47, will be

£, (%) =< =gt III-65

o E:: =dpe 't >0

\_ | ;b=0_
Integrating equation III-65 over all times for which contributions of the

form fl(t) are different from zero, one obtains

at

dp
fl(t) =X f ==cdbt = aP - aP(at) III-66
0

Tn the same manner contributions of the form fn(t) may be written as
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£ (t) = anpo - &"'P(a™t) III-67

where

<t

T

P(c"t) = Pe ' III-68

From equations III-L46, III-67, and III-68 the contributions of all the

reloading and unloading waves, G(t j:z/bi), become

- i

Z
-a [t + 5
oo ( _Cl)
G(t_—t%—): Z Q" P s B e A III-69
- n=1 | - =

Substituting equations III-64 and III-69 in equations III-52 and III-63 one

obtains the following expressions for stress and particle velocity for the

continuously variable surface pressure.

e
1 oo 1 A
G(2:t) = P e i + T E{: o | e J -e % ITI-70

At = B (..J.L__i.) gt

o) DCO DCl DCl
5 -o:n(t-%—) -czn(t +§—)
o oo 1 = 1
PC, Z 2" - e * —e ¥ TII-71

F. Computer program

A computer code is available for the numerical evaluation of equations

III-70 and III-71l. The results of the code computations are valid for any
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positive T and for any « in the range

0 <a<1.0 III-67
The computations are made for successive times at selected depths so that
stress-time and particle velocity-time wave forms can be constructed.

Code output is provided in two forms:

Form 1 Attenuation of peak vertical stress and particle velocity
with depth
DEPTH (ft) SIGMAX (psi) VMAX (fps)
Form 2 Stress and velocity time histories at specified depth
TIME (sec) SIGZZ (psi) VELOCITY (fps)
where
SIGMAX = Maximum vertical stress at a given depth
VMAX = Maximum particle velocity at a given depth
SIGZZ .= Vertical stress

VELOCITY = Particle velocity

The input variables for the code consist of the following:

Variable Description Format
EL Loading modulus (psf) - Mo(fig. III-1) E 10.2
EU Unloading modulus (psf) - Ml(fig. III-1) E 10.2
POP Pegk applied overpressure (psi) - Po(fig. III-2) E 10.2
DM Mass density (slugs/cu ft) - p E 10.2
TO Exponential time constant (sec) - T(fig. III-2) E 10.2
IZ Maximum number of depth increments + 1 E 10.2
(Continued)
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Variable Description Format

DZ Iength of each depth increment (ft) E 10.2
DT Time increment E 10.2

TEND Time after arrival of the front at each depth
at which the program ends (sec) B 10.2

The first five input variables need no explanation. The selection of
N and IZ specifies the uniform.spaéing and total number of evenly
spaced depths at which output is required. TEND provides a fixed amount
of total time-history to be computed at each output depth; since it is
referenced to the time of arrival of the front at each depth, computed
durations at each depth will be the same. DT regulates the number of .
history points to be computed between the time of arrival and TEND at
each output depth.

The program is written in FORTRAN II card language. Computer time on
a GE 225 for a typical problem is approximately three minutes. A com-
plete listing of the program and an example of typical resulting output
is presented in Appendix-IT1I.

Figure III-5 shows computed stress-time histories at three different

depths for an example problem. This figure shows the principal features

of the linear hysteretic model, that is, attenuation of peak stress and

the lengthening of the duration of the stress pulse with depth. The

attenuation of peak particle velocity is equal to that of stress.
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Fig. III-5. Typical stress-time histories for several depths; linear
hysteretic model.
69



APPENDIX III

LINEAR HYSTERETIC MODEL
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«F1Z, OCT 9 /0CT 9 , CARD *AAU+ FLOATING PNINT

i

C PROGRAM TITLE 01
C STRESS WAVE PROPAGATION THROUGH A LATERALLY CONSTRAINED COLUMN OF 02
C LINEAR HYSTERETIC MATERIAL 03
C PROGRAM NO, 41-725-093 04
C PROGRAMMER ROHANI,R 05
C SHORT TITLF 1D LINEAR HYSTERETIC MODEL 06
C 07
C * | 08
C ASSUMED S « : 09
- O STRESS T = - 10
C STRAIN R = LOANING .. 11
L RELATION E = ‘ 12
C S = o 13
C o 14
C * ARl 15
i B ok . 16
C S w - « UNLOADING 17
C [ * . 18
C % : 19
P . 20
& "y ’ | 21
gk AR RS SRS R R RSS2 &% 28 8 R 22
£ 23
_C STRAIN 24
C QUTPLT 25
A PEAK STRESS AND PARTICLE VELOCITY AT DIFFERENT DEPTHSIATTENUATICN 26
C OF PEAX STRESS AND VELQCITY) 261
ne STRESS=TIME AND VELOCITY-TIME HISTORY AT DIFFERPENT DEPTH 262
& REQUIRED INPUT DATA 27
B EL=_OADING MODULUS[PSF) 2R
C EusUNLOADINR MODULUSI[PSF) 29
e POP=PEAK OVER PRESSUREIPS]] 30
C DM=MASS DENSITYI[SLUGS/CU.FT.] 31
'L TC=EXPONENTTAL TIME CONSTANTI[SEC) 32
C [Z=TUTAL NO, OF DEPTH INCREMENTS+1 323
€ DZ=DEPTH INCREMENTI[FT.) 322
C DT=TIME INCREMENTISEC)! 323
LG TEND=TIME AFTER ARRIVAL OF THE FRONTI[SE"] 324
C GLNSSARY 33
S LLPHA=THE PARAMETER WHICH CAUSES THF PEAK STRESS TO ATTENUATE 34
i CUsUNLOADING WAVE VELOCTITYI[FFS] 35
e CL=LUsDING WAVE VELNCTTYI[FPS] 36
C SIGMAX=PEAK STRESS[PST] 37
C Z=VAKIARLE DEPTHIFT.] S8
C S13ZZ=STRESSI[PSI] 381
C VELOCITYI[FPS] 3R?
T UMAX=MAX VELOCITYIFFS] 3R3
C TF=NUNDIMENSIONAL ARRTVAL TIME, 39
e TA=TFP*TN=ARRIVAL TIME OF THE FRONTISEC] 3971
C TFINAL=TEND+TA 392
€ END (F GLOSSARY 4c
C RFAD 1G:EL:EU:POP;DM:TU:TZ,DZ:DT:TEND ;1
?

17 FORMATI[7E10.2]
CL=SGRTFIEL/DM)
CU=SCRTFIEU/DM]

43
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ALPHA=[1le.=[CL/CU))1/[1.,+[CL/CU]] 4
____PRINT 312,EL,EU,DM,CL-CU,ALPHA 454 .
12 FORMATIINI,21X,5HEL = F1in.1,4H PSF,3¥,5HEU = F10.1,4H PSF,3Xs5HDM 455
1= F3.1,16H SLGS.PER CU.FT.,//»21X,5HCL = F10.3,4H4 FPS,3X,5HCU = F1 453

20.3,4H FFS,3X,RHALPHA = F6.2,//,21Xs68HATTENUATION OF PEAK VERTICA 454
3L STRESS AND PARTICLE VELONITY WITH DEPTH,//5>28X,10HDEPTHIFT.],10X 455

4,11HSIGHMAX[PSI),10Xs1CHVMAYIFPS] 7/ 45¢
2", ) o 8 |
DO 600 1=1,12 B 3
TP=Z/{CL*T0] 4p
SIGMAX=POP 45
50
Je 501
10" KsJ+1 502
' TERMOE==POP*[1,~ALPHAI * [ALPRA*X*J)*[1.-EXPF [ [=2.*TPwALPHA**KT7T1.+A 51
1LPHA) ] 52 |
IF[AESFITERMSE) =0, iuub*PNnPy 120,110,110 B
117 CONTINUE o4 |}
SI3MAX=SIGMAX+TERMSE 55 ||
J=J+1 26 k-
30 TO 10C 57
20 SI3MAX=SIGMAX+TERMSE 58 L
VMAX=[SIGMAX*144) /7 [DM*CL | 5h1 )|
_ PRINT 11,7Z,SIGMAX,VMAX 58 |-
2=7+07 61 ||
11 FORMATI1K ,2BX,F5.1515%X,F7.2515XsF7.2] 601 |IL
0! COMNTINUE sl
62 | L
63 /|
64 lL.
65 /||
2="" 66 |._
Do 6u1 N=1,17 67 |||
TA=Z/CL of | (L
TFINAL=TENN+TA o
PRINT 13,2, TA 691 ||
130FO03MAT[1H1,21X,33HSTRESS AND VELOCITY TIME HISTORY.»/7/,22X, 697 | |
14H7 = F742,3HFT.»5Xs5HTA = F7.4,4H SEC,//s22X,9HTIMEISEC],9X»10HSI 693 |
2GZ7(FSI1Js9X,13HVELOCITYIFPR], /7] 597 | |
T=TA AL !
19 SIRZZ=PUF=EXFF[=(T=Z/CUI/TN] o |
VV=[FOP*EXPFI[=[T=2/CU)/TN0)1/[DM*CUI+[PNP)/IDMxCL)=(POP]1/[DM=xCU] 713
Vy=VVix144, 7P |
M=1 e |
57 TEQN=POP*2.+#[ALPHA**N I *EXPF=[ALPHA**MI*T/TOT* [EXPFITALPRA®*MI+Z7T 72 | |
1TO*CU) 1 =EXPF[=[ALPHA**M])*Z/[TO*CU]I11]72. IR |
NXX=[[=2.*POP)/(DMwCU) ) * [[A| PFA#**M] = 5% [ALPHA**M] * [FXPF[=1ALPHAw*M] 751
1*T/TO) ) * [EXPF [ [ALPHA*«M]»Z/[TO*xCU] 1 +FXPF =1 ALPHA**M]*Z/[TO*xCU)1)] 752 L
XX=XX%*144, 753 |
IF(AESFITERM]=0.00N5*PNP1 220,210,21r 76 | |
17 CONTINUE i
S1527=S1GZ7+TEPM 78 | |
VV=V\+XX el N
M=+l 79 iil
Go TC 20 80 ﬁ
20 S157272=S16Z7+TEPM 81 | ||
VU=VV+XK B11
PRINT 145T,SIGZZ,VV 82 ! ||
14 FORMATILIF ,21X,F6.4,10X,F7.2,12X,F7.21 8y | |
T=T«+DT 831
72 |




21

IFLI=TFINAL] 19,19,21

Z=7+D7

—

84
85

60

1 CONTINUE

30 TC

9

87

1314

END
S7s 177
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Typical input for the linear hysteretic model
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2110N00.0 PSF  EU = 12440000.01 PSF DM = 3.1 SLGS.PER PU.FT.

EL =

1000.C0° FPS Cu 2000.000 FPS ALPHA = Ned3

ATTENUATINN OF PEAK VERTICAL STRESS AND PARTICLF VELOCTITY WITH NEPTH

DEPTHIFT.,] SIGMAX[PSI) VMAX[FPS]
0.0 100.00 4.63
50.0 69.91 .24
1001 50«68 2% 00
150.0 38.18 172
200.0 29.87 s i50
250.0 24.20 1.1¢
3ang.,n 2N .22 0.94
350,0 17352 N.80
4n0,0 156.15 0.70

TYPICAL CODE OUTPUT, LINEAR HYSTERETIC MODEL
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STRESS AND VELOCITY TIME HISTORY.

———

2 = 0,0°FT. TA = 0.000D0 SEC
TIMEISEC) SIGZZIPST] : VELOCITY(FPS]
0.0uCn 100.00 4,63
G.C10p R1.87 4.11
0.u20p 67 .03 3.67
0.0300 54,88 e
0.040¢ 44,93 2.99
0.0500 236.79 27D
0.0600 20.12 2.50
0.0700 24,66 R
G.080¢ 20.19 2.14
0.0900 16.53 2.00
0.,1¢00 1993 1.88
0.1100 11.(8 N I
g.1200n 9,07 1.68
0.1360 7.43 1.59
0.140¢0 6.08 1.52
0.1500 4.98 T
0.1600 4,08 1.40
0.170C 3.34 1.35
U.1800 2.73 1.30
0.1900 2.24 T.26
G.2ilU0 1.8%3 128
0,210¢0 1.50n 1.19
0.2290 1.3 116
D,2300 1.61 113
N.2460 N.62 130
0.2500 0.67 1.08
0, 2600 0.585 1.06
0.2706G0 0.45 1.04
G.280( 0.37 102
0.2900 G.30 1.00
5.3000 0.25 0.99
0,.310C D20 N .97
0.32U0 37 D.96
0.3300 014 0.95
0.3400 Ol .93
0.3500 0,19 N.02
h.3600 iV 7 0.91
0.3760 0.!'6 .90
0,3800 0,05 2.90
0.3900 0.7 4 (. RY
0.4700 0.03 0.88

TYPICAL CODE OUTPUT, LINEAR HYSTERETIC MODEL
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STRESS AND VELOCITY TIME HISTORY.

Z = 50.0N0FT, TA = D500 SEC

TIMEISEC! SIGZZI(PST] VELOCITY(FPS)
nD,3500 £9.90 3.24
0.060G 58,37 2.90 q
0.07060 a8 ,86 2.61
0.u8C0 41 .69 2e87
0.990¢ 34.53 2.16
0.10Ge 26.18 1.98
0.110¢ 24,74 1.82
06.1200 T 1.69
D.1S60 18.00 1.57
0.1400 15.46 1.46
C.150¢ 13.354 137
0.16C( 11.56 129
5.1700 10.10. 8 1,22
2,180 §.83 1615
0.190¢0 7.78 Tt
G.2u0( 6,89 1.04
0.21G( 6.13 1.00
N.2z200 5.49 0.95
0.2300 4,94 0.91
0.240C( 4,46 (.86
2,256 4,06 0 .84
5,260 3s 70 0,81 1
1.270C 3.39 0.78
C.28UD E,12 B 75 1
0.2900 2.89 0,73

s S T 2.68 0.70
0.3100 2.49 .68 3
a,320C Z2eoP N.66
C.336¢C 2.18 0.64
0,340¢C 2. L4 0.62
N0.350¢ 1.92 U.61
0.36UC 1.81 C.59
0.3706C 1.7 0.57
0,380 162 0.56
0.3900 1.53 0.54
0.4u00¢( 1.45 0.53
0.4200 1.3R 0.52
0.4200 1.32 050
0.4300 1.25 0.49
0.440¢( 1.2n .48
J.4500 1.14 N.47

TYPICAL CODE OUTPUT, LINEAR HYSTERETIC MODEL




STRESS AND VELOCITY TIME HTSTORY.

Z = 10, 00FT. TA = B.13000 SEC
TIMEISEC) SIGZZIPSI) * VELOCITY(FPS]
0,1000 50,68 2.35
0.1200 43,21 2003
0.12G6¢( 37.61 1.94
6.130¢0 31.84 1.78
0.1400 27 52 1.64
0.1500 23 . 91 1.52
U.1600 20.88 1.42
G.1700 18,93 1.32
0.1800 16.17 1.24
0.19u0 14,35 o
C.20600 12.80 113
0.2100 11.47 1.05
0.2290 10.54 1.00
0.2300 9.36 0.95
0.2400 8§.52 0.91
0.2500 T« 1B 0.87
0.26U00 7.14 .84
02700 6.5R 0.80
0.280n 6.009 Be77
0.290¢C 5.65 U.75
GoSLEE 5.26 0,72
n,.310¢ 4,91 0.70C
0.320¢0 4.59 0.67
0.33EC 4,31 N.65
0.340¢(0 4,05 D63
0.3500 3.82 0.62
0, 360D 3.61 0,60
B340 3.41 1«58
0.3800 S.23 b2
0.3900 Bl 0.5
0.4000p 2.91 0.54
0.41G0 277 D.52
0,420 2.64 0.51
7.4300 202 0.50
C.4400 2.40 0.49
1.4500 2.29 0.48
g.46u0 2.19 .46
0.4700 2.10 n.,4ao5
0.480C0 AR N.44
3.4940 1.93 .44
g.9:=0n 1.85 0.43

TYPICAL CODE OUTPUT, LINEAR HYSTERETIC MODEL
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STRESS AND VELOCITY TIME HISTORY.

Z & 150.00FT, TA = 0.1500 SEC
TIME[SEC) SIGZZIPST) VELOCITY(FPS)
0.1500D X8.17 1 .77
0.1600 33.24 1.62
c.1700 29.10 1.50
0.1800 25,61 1.39
0.19C0 22.66 1. 30
0.200¢0 20,15 1o @3
6.21C0 48 LD 114
0.2200 16.19 1.08
0.23900 14,62 1:0¢
0.2400 13.27 0N.97
0.2500 e N.92
0.2600 11.08 n.R8
0.2700 10.19 0.84
G.280¢( 9.40 N,81
0.290¢C 8.71 078
0.31:00 8.00 D.7D
0.310C 1925 3 .
0.3200 7.05 GCe70
0.330¢0 6,61 Ceb7
C.3400 6.21 .69
0.350n 5.85 Neb6S
0.3600 5.52 D.61
0.3700 ~ 5 Ne59
0.384dn 4,93 0.58
0.390¢ 4.68 0.56
0.4000 4,44 N.55
n,410rn 4,27 N.53
U.4200 4,02 0.52
0.4300 S.83 N«51
0.4400 3,65 N.49
0.4500 3.49 N.48
0.46C¢C 3.34 0e47
0.470C0 3.19 0.46
0.480¢C 3.06 C.45
0.490¢0 2,93 N.44
N.5LUQ 2 .81 N.43
1.53200 2s?0 0,42
0.5200 ?2.00 .41
0.53u0 2.490 0.41
0.5400N 2.40 .40
0.25500 2s ol Ue39

TYPICAL CODE OUTPUT, LINEAR HYSTERETIC MODEL
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STRESS AND VELOCITY TIME HISTORY.

b - Y T

T =

T.20NN SEC

"TIMEISECI SIGZZIPST] : VELOCITY(FFS]
VL. 28006 29.87 x [, 5
0.2100 26.03 1.29
0.2200 23.69 1.20
0.2300 21.26 I I
0.2400 19.18 1.06
0.2500 17«09 1.00
§.260¢0 15.83 0.95
0.2/00 14,40 0.90
G.2800 13 .31 0.86
C.2900 12,27 0,82
0.3G00 11,386 6.79
0,.3100 10.55 N.76
0.32C0 9.83 e 78
0,330LC 9.109 Do 70
0.3400¢0 8.61 0.68
05 3959606 B.i8 0.656
D0.36U0 7 . O 0.63
U.3700 7.18 0.61
§.,3808 6.78 0.,&C
0.3900 6.42 0.56
0.45060 6.09 01.56
0.410(0 5 7R N.55.
D.4czC0 5 .51 0.53
3.43U0 5. 23 0.52
U.4400 4,99 0,51
0.45u0 4.76 0,409
h.4600N 4,54 0.48
0.4700 4,34 0,47
0.4800 4,16 0.46
0.49C0 3.98 0.45
D.50120 3,82 .44
1,5180 3.66 0.43
g.5200 S DS 0.42
.5360 J.3R .41
0.54C¢(0 S 25 N.40
G.55060 4 e 0,40
0.5000 S.01 039
g.,57u0 2.9N 0.38
0.5800 2.80 0.37
D.59uN 2.70 PRV
0.64:00 2,60 0.36

TYPICAL CODE OUTPUT, LINEAR HYSTERETIC MODEL
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STRESS AND VELOCITY TIME HISTORY.

Z = 250,00FT. TA'=  B.2500 SEC
TIMEISEC) SIGZZIPST) VELOCITY[FPS]
06.250(0 24 .20 5 I
06.2600 o1 .87 102
0.270¢0 19.86 099
0,28L0 16.12 0.94
0.2900 16.60 C.89
0.3CCn 15,28 n.85
0.3100 14,11 0.81
0.3200 13.08 0.78
0.3300D 12:17 0.74
0.3400 11.36 0.72
0.3200 10.62 0.69
0.3600 9.97 0.66
0.3700 9.37 D.64
0.3800 8.83 0e62
0.3900 8.34 0.60
0.4u00 7.89 N.58
0.41C0n 7.48 0.57
00,4200 7.1¢0 6.55
0.4300 6,74 D.54
0.4400 6.42 0,52
0.4500 6,12 0.51
0.4600 5.84 §.49
G.4700D >t 0.48
0.4800 - (PR Q.47
0.490¢ 5 .10 0.46
0.5000 4,88 0.45
0.5140 4,6R N.44
6.5200 4,49 (le43
0.5300 4,31 0,42
.54 4.14 C.41
0.55060 3.98 0440
0.5600 B3 B2 0.40
0.57C0 3.69 0.39
0.58C 3.56 0 .38
g.5%un 3.43 e B7
g.6GCuQ O3 e 87
0.6100 3.19 N.36
Nn.620p 8 N, 3D
0.63C0D 2.98 U35
0.6400 2.88 0.34
0.6500 2.08 .34

TYPICAL CODE OUTPUT, LINEAR HYSTERETIC MODEL
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STRESS AND VELOCITy TIME HISTORY.

74N L. VY T TA 0.3000 SEC

TIMEISECH

SIGZZIPST] VELOCITY[FPS]

0.3600p 20,21 0.94
B 510D 18.53 0.89
0.3200 17,07 0.84
0.3300 15.78 0.80
0.3400 14.64 0.77
0.3500 13.63 0.74
0.3600 12.72 0.71
0.3700 11973 0.68
0.3800 B I - 0.66
0.3900 10,92 0.63
D.4uvibpe 9.93 0.61
0.4100 9.38 Ue59
0.4200 B.&R 0.57
0.4300 8.47 .56
0.440¢ 8.00 0.54
0.450¢( 7.61 0.53
0.46U¢C 7.24 N.51
0.47GCn 6.91 0.50
0.48i0 6.60 .49
0.4900 6.30N 0.47
D.5u00 6.3 .46
0.516¢( B 77 0.45
G§.520¢ 5.53 0.44
0.280( o P | 0.43
0.5400¢ 5.110 0.42
6.5500 4,90 0.41
0.5600 4.7 0.41
0.9700 4,53 0.40
0.58U( 4,36 Ue39
0.5900 4.2n N.38
D.6COD 4,08 3 1
0.6100 3.91 Jes/
0.626C 3 I8 0.36
0.6300 3.65 0.3
0.64U0 S+28 .32
0.650¢0 3.41 0.34
0.66060 303D N.34
0.6700 S 1% .33
N.68U00 .09 0e3S
0.6900 ST Dadz
0.7000 2.91 0.32

TYPICAL CODE OUTPUT, LINEAR HYSTERETIC MODEL

83




STRESS AND VELBCITY TiIME HISTORY.

7 = B50.00FT ~ TA = U0.8500 SEC
TIMEISEC) SIGZZIPST] VELOCITYI[FPS]
0.3500 174 82 0.80
6.36U0 16.C7 05727
0.376D 14.%6 0.73
0.380¢0C 13.98 0.70
0.390¢C 13 09 0.68
0.4000 12.29 0.65
0.410¢0 11..57 0.63
0.4200 10.92 0.61
0.43U0 10932 D.59
0.440¢( 9.78 0.57
C.45(0 9.28 0.55
0.4600Q 8.82 0.54
0.47G0 8.39 0.52
C.48U0 8.U0 0.51
0.490¢ 7.63 0.49
0.5ulQ 7.29 0,48
N.53160 6.97 0.47
0.52C0 6.67 0.46
0.53G0 639 0.45
0.5400n 5eld 0.44
0.550¢( 5.88 0.43
0.5600 5.65 N.42
0.570Cn 5.43 0.41
¢.5800 523 0.40
06.5960 Sl 0,39
0.6u00 4,85 (I 50
0.61060 4,67 0.38
C.620L0 4,51 0437
0.6300 4,35 0,36
0.6400 4,20 N.36
6.6500 4,06 0..35
0.660(C 3.93 0.34
0.6700 3.8n n,34
L.6800 3.6R Dado
0.6900 3.57 0,33
e 7000 3.46 0.32
0.7100 3.35 Ne32
0.7200 3.25 N ed1
0.73CDn 3.16 0.31
0.740¢(C S 0.30
0.7500 2.98 D30

TYPICAL CODE OUTPUT, LINEAR HYSTERETIC MODEL
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STRESS AND VELOCITY TIME HISTORY.

Z = 4r0G.00°FT. TA = C[.4000 SEC
TIME[SEC) SIGZZIPST) * VELOCITY[FPS]
0.40C0 15.15 0.70
0.4100 14.19 0.67
0.4200 13.33 0.65
0.4300 12.55 0.62
0.4400 11.84 0.60
0.45060 14,20 0.58
0.4600 1.0 .61 0.56
0.4700 10,07 0.5
0.4800 9.57 0.53
0.4900 9.11 0.52
0.5600 8.69 0.50
0.5100 8.29 0.49
0.52C0 7.92 0.48
0.5300 7.58 0.46
0.5400 7.26 0.45
6.5500N 6.96 0.44
C.5600 6.68 0.43
0.5700 6.41 0.42
0.5800 6.16 0.41
0.5600 5.92 0.40
C.6u0nN Bl 0.40
0.61C0 5.49 0.39
0.6200 5.30 0.38
0.6300 i 0.37
00,6400 4,93 0.37
0.6500 4.76 Ne36
C.6600 4.60 0.35
0.6700 4,45 0.3
0.6800 4,30 0.34
0.6900 4.17 .33
0.7000 4,04 D 39
0.71U0 3.91 0.32
0.720n SN 0.32
0.7300 3.68 0.31
0.7400 3.57 Diedd
0.75C0C 3.47 0.30
0.7600 337 050
0.7700 T 0.29
0.7800 518 0.29
0.7900 3.10 0.29
0.8u00 Ols 32 0,28

TYPICAL CODE OUTPUT, LINEAR HYSTERETIC MODEL




IV

Stress Wave Propagation Through a Laterally Confined
Column of Visco=Elastic Hysteretic Material

A. Introduction

Dynamic compression and wave propagation tests have indicated that
some soils, like clay, exhibit both strain-rate and hysteretic effects.
Increase in modulus with strain-rate and lag of maximum strain behind
maximum stress, an indication of viscous behavior, have been observed by
many investigators (17,24) during dynamic compression tests of some soils.
Smoothing of the stress pulse during one-dimensional wave propagation
teé%gﬂ;isé supports the viscous behavior of such materials. In order to
predict wave propagation phenomena in such soils a mathematical model
should be constructed to account for both the hysteretic energy loss
and the viscous behavior of soils. The viscous behavior of materials is
frequently represented in terms of rheological models consisting of linear
springs and dashpots. Three types of such models were discussed in
Chapter II and the stress-strain-time relationships for each model were
derived in terms of the spring constants and the viscosities of the dashpots
(equations II-60, II-64, II-68). It is a difficuif task tﬁ éééiae
which of these models would best describe the viscous behavior of soils.
In fact. no singlé'model can describe viscous phenomena in all
soils. The limited research performed in this area (19) has indicated
that the three element standard linear visco-elastic model (fig. II-7) may
be used to describe the viscaus'behavior_cf some clays and sands within cer-

tain ranges of boundary and loading conditions. Further experimental work

is required in this area if rational rheological models are to be constructed
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which will describe the viscous phenomena of soils more accurately and over
a broader range of boundary and loading conditions. For the present anal-
ysis however, the standard linear visco-elastic model will be used to de-
scribe strain-rate effects. The "correspondence principle," described

in Chapter II, will be utilized to obtain visco-elastic solutions from
equations III-70 and III-71 for stress and particle velocity in a linear
hysteretic halfspace subjected to a uniform time-dependent pressure wave

at 1ts surface. The solution for any other linear rheological model may

be obtained by the same procedure. The linear hysteretic model is used here
to account for the hysteretic energy loss of the soil.

B. Formulation and solution of the problem

The linear hysteretic model was analyzed in Chapter III. The fol-
lowing expressions were obtained for particle velocity and stress within
the medium (subjected to an exponentially decaying input shock) as

functions of time:

u(z,t) = Po(—l_ — _.J.-._) " f_?_ = (t - Z/Cl)/-r

oC,  PCy PCy
P e _ =
o z oP e-an(t - z/Cl)/T _e-o.’n(t +z/C) /7 TVl
QCl
| n=1 ¥
o n
olZ4t) = Poe-(t - Z/Cl)/'r + P e |:e—c:-: (t - z/cl)/’:
n=1
. e—an(t - Z/Cl)/’r} i
where

u(z,t) = particle velocity at depth 2z and time +t

o(z,t) = stress at depth 2z and time t

37




where

e = 2.7183...
Po = peak applied stress
Cl = unloading reloading wave velocity
CO = loading wave velocity
G =1
5 b LS

T = exponential decay constant of the input stress pulse

p = mass density of the mediﬁﬁ
The front of the wave propagates with the loading wave velocity Co and
reaches the point 2z at the time ¢t = Z/Co . The medium at 2z is undis-
turbed for times t < z /Co {;herafore, the one-sided Fourier transforms

(equation II-75) of equations IV-1 and IV-2 are non-zero when
z /CO St IV-3

The first step in the "correspondence principle" is to evaluate the one-
sided Fouriler transforms of equations IV-1l and IV=2 f-:ithin the limits

given byl equation IV=3

0.0
a(w) = ‘[- g i(z,t) dt V-4
z/C{__J
Q0
o(w) = f o % o(z,t) dt V=5
Z/Co

where u(®w) and o¢(®w) are the one-sided Fourier transforms of particle

velocity and stress respectively. Substituting for 1u(z,t) and o(z,t)

from equations IV-l and IV-2 and integrating one obtains
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P(t)

/7
/

M M,
A |

A
@ I_I—_' L I'_'ZI M
Q
o
& e Mg
— — ‘
0 B Strain Loading Unloading
Stress-strain relation visco-elastic models

at zero rate of strain
(i.e., static)

Fig. IV-1. Rate-dependent model for the linear-hysteretic medium.
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+ 10
22 g 2&5\0 S,
Faw zau by = <16 W V-6
n=1] — + 1W
- T pa—
and
= P o~
o(w) = P Z = M =P = A, V-7
n=0 — + i n=1 — + i®
where
P
S = =2
5 il
il i
S. = P [—— = —
1 O(DCD DC:L)
- iwz /C
}\O = e IV‘B

i
1

) e -
The second step is replace the elastic constants CO and Cl in equations
IV-6 and IV-7 by [DJO(:U-D)} _l/ & and {Ml(iw)] _l/ = respectively, where
JO(iGJ) and Jl(itb) are the visco-elastic complex compliances of the segments
OA and AB of the hysteretic stress-strain curve shown in fig. IV-l1. An

assumption will be made here to reduce the number of parameters and simplify

the analysis, that is
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J_ (i) N )
J. (iw) ~\C g,
il o)
The complex compliance of the standard linear model was given in Chapter II
by
1 ! i v
J (iw) = = + : -1 - IV-12
Mo M‘i 3 m2n2 w T M:|2_ . cnng
If one introduces the notation
g =
o
N = Tl/}'{e IV"'"l?)
P Co/cl
then
o o iy
P, (1) = YoM |1 + 55 " 5D IV-1h
@2 Tw ol 92 W

Equation IV-14 can be written in terms of its real and imaginary parts as

follows

Yoa (1) = K (@) - ik, (@) IV-15

where kl(w) and kg(w) are the real and imaginary parts of VpJo(iw) .
From equations IV-ll and IV-15, the elastic constants Co and Cl should

then be replaced by

[p3, (10)] -1/2 ) : =) IV-16

ol




and

Y R L
o (323] 7% - B ®) - 1k,®) e

respectively. Therefore the parameters Lo ’ 11 5 l3 ’ S0 and Sl in

equation IV-8 become

-1 [z, (@) -1z, (@)

O
[wzkg(w)ﬂcl(w)anz(l-ﬁ)] [zk_l_(w)+k2(w)dnz(1-ﬁ)]
A =
1
[wzk (0))-}-]{1(0.))(1112 (1+[3] [—-zkl u))+k2(a)) (l+[3)]
A, = e Iv-18
P
S, = 5= B [k, (@) - ik, (@)
PO
5, =5 (1 -8) [k (@) - ik, (@)]

The third and the final step in obtaining the visco-elastic solution is to

take the inverse transforms of equations IV-6 and IV-7 (see equation II-76)

1 5 Ay s N 5 and A, given by equation IV-18 and

then choose the real parts of the transforms, that is

with parameters So s O

m .
R f ™t f(w) av IV-19

=W |

u(z,t)

pm— —

R f % o(w) a IV-20

=W =

U'(Z:t') =

where R denotes the real part of the expression in brackets. From the
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- e =

theory of integration of a complex-valued function (15) equations IV-19

and IV-20 can be written in the following forms.

o0

i(z,t) = %f Rl:ei“’t ﬁ(m)] & IV-21
O
m -

U(Z,t) - -J;f R[elw.t U((D)] &L IV=22
O

The functions R[ei ﬁ(ﬂb)] and R[eimt a(ﬂ:)] are determined from equa-
tions IV-6, IV-7, and IV-18 by using Euler's formula,, eie =- cos B

+ i sin 6 , and selecting the real part of each expression. The process
is lengthy but straight forward; as an example, the real part of the first

term in equation IV-6 will be calculated here

LI | e 1 igt (o2
Rl = Rl|e So = }\l = R on : So)‘le L:_ -W IV=-23
¢ T | e
—— T pa—
Substituting for SD and ll from equation IV-18 and simplifying, one
obtains
b n .
. o . -A iwB
=2 Bk, (@) - 1}:2@)]_[;- : :w] ™ o
R, = R< - > Tv-2k
i a?n >
PR
< * J
where
&'z
A = wzk,(®) + k(@) = (1 - B) IV-25
nz
B=t - zk (@) + k(@) L= (1 - B) V-26

Substituting Euler's formula
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elmB = COS WB + i sin WB Iv-27

1nto equa.tlon TV-2L4 and smpllfylng, ob'ba:r.ns

o Ny e A ——— —

kl(w) - (.Dke(ﬂj COS (DB + Ikz(UJ) —_ + Wk ({n):l sin WB ?
R, = R

i i
Q@ _ o
\ 12 ;
P B
. i —%— e'AL[- kg(inj%f- fkl.(lm)] erczos WB + [kl(m) -‘:—n - mkg(wj sin @B g
e e
2 /
or
5 n n
EP- 53-A{l;;l(a)) %— - {.ng(m) cos WB + [kz(ﬂ.}) c:— - ml-(l(m)] sin ﬂJB}
s 2n ] i DT LV=53
5 b

Following the same procedure and substituting the values of R |: s u(w)]
and R [elwt c(w)] in equations IV-21l and IV-22, one obtains the follow-
ing general expressions for the particle velocity and stress in the visco-

elastic hysteretic medium shown in fig. IV-1.

—




Al - n
Btz t) Poﬁ Z € {[kl(“-") %— - mkE(m)]_EOS WB + [kz(m) C_?— + mkl(cn)] sin wBl i

Il

n=o0 0O -—2— + (1}2
T
@@ 00 -A r_zn Ozn ] -
; Poﬁ' Z e l{[kl(m) S a)};g(m)] cos UJBl + [}52(&)) = mkl(w_)_ sin GJBll o
pT 2n 5
n=l © GT + @

T

oo -wzke (W)

o
(@) n e
- _p:t Z 20, f -

n=.1 O

{ke(w) cos W [t g zkl(w)] - k;(®) sin © [-r, E zkl(w)]} &

e e
.. = f = = {1{2(&) cosw[t - zkl(m):] - k__L(UJ) sin [t - zkl(m)]} aw IV-30

O
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and

n
B ko 2 Tt (%—- cos wWB + w sin UJB)
o(zst) = =2 i f — o0
n=0 O &T e UJ2
T
P i o e-Al (T— cos aJBl + W sin UJBl)
.- Z anf dw IV-31
Tt 0:211 5
n=1 o) o T
T
where
(InZ
Al = mzkz(m) + k(w) — (L + B) V=32
CY.nZ
B, =1 ~ zk, (@) + k(G ===t L+ B) T IV-33

and A and B are given by equations IV-25 and IV-26 respectively.

C. Evaluation of kl(tlh) and k2(cn)

To evaluate equations IV-30 and IV-31l, one must know kl(w) and kz(w):

the real and imaginary parts of VpJo(i:u) (equation IV-1lhk). This can be
accomplished if equation IV-1l4 is written in the polar form of a complex

number. The polar form of a complex number, z = X + iy , 1s given as

z =1 (cos € + i sin ©) where r = -ng 5 y2 and 6 = et }%— . Therefore,
iy = P g 1wy
PRI (30) = (l i P+ PE oo 2)
0 o+ 0wy 0+ wy,
o !
= Y (eos € - 1 gin g)° IV-3L i'
3 |

where

3 2 1148
= | L o ¢22 - gmgge IV=35
92’““”'& g+ Wy
b



6 = tan™t [ — YU IV-36
o+ P Z g
or
'VDJ (iw) =\ M Vr (cos 6 - i si 9)1/2
s = \’ 2 - i sin IV-37
Since (cos 6 - i sin 9)1/2 = e_j's/2 = cos g - 1 sin -g , equation IV-37

becomes

Vp/Mo Vr (cos -g— - i sin -g) Iv-38

The real and imaginary parts of VpJO(i ) are therefore

k, (@) = \E/MO Vr cosg Iv-39

(=X

and

ke(tb) = \’p/MO Vr sin g IV-40

respectively.

D. Determination of visco-elastic parameters for application to

soil problems.

There are five material constants for the linear hysteretic visco-

elastic model under consideration which have to be determined experi-

mentally, they are

S8
I
o=

g

IV-41

jos
]
Ffo°

Cl/c0 -1
Cl/co + 1

\fMO /p

I

wave velocity
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The visco-elastic parameters ¢ and p can be determined from a dynamic
uniaxial strain test in which a step loading is applied and the resultant
strain-time history is measured (fig. IV-2). The strain response of the

three-element visco=-elastic material to a step pulse &Ué , from equation

II-68, is given as

P MiMb & ﬂMo de
S Mi + Mb Ml +,Mo dt

The solution of this differential equation yields the following expression

IV-L2

Ao

for strain-time history. - ' "

Ne(t) = IV-43

o~| &
n
]_i
..|_
o
R
I
®
I
;jhjg
S o

Substituting for MO/Ml and Ml/T] from equation IV-41 and simplifying

one obtains

_ g
AE(t 1 ( )
&US MO l+a IV)-I-
At the time t = O , %ggo).Mo =1 , or
S
éﬂs
M = Wigke
t=0

Therefore MO is the secant modulus at the stress level ‘ﬁus at t =0

(fig. IV-2). The slope of equation IV-U4L4 at t = O is given as

d_(f—“L(th) _ % IV-L6E
Aﬂs 0 o

dt

t=0

For large values of time, equation IV-4kh reduces to
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Ae(t) = i 2
ﬁﬂé ME = 1 + ar IV=L7

Therefore, the visco-elastic constants M_, u , and @ can be obtained

from the measured strain-time history using equations IV-45, IV-U46, and
IV-47 (see fig. IV-2). However, due to the fact that an instantaneous
step load cannot be applied in a uniaxial strain device, approximations

(20) to laboratory data (measured strain-time history) are needed for the

measurement of the visco-elastic constants.

The parameter B in equation IV-41 can be expressed in terms of «

as

e el IV-48

The compacting dissipative parameter ¢ , is given by the ratio of the

slopes at zero strain-rate, that is, by the ratio of the moduli Mb and

M, (fig. IV-1).

; 1 -"VM%/Mé
@5 IV-49
il +‘VN%/M2

If there were no viscous effects, the moduli Mb and Mé would be pro-

portional to the loading and unloading slopes of the static stress-strain
curve. The rate-dependent character of the material however, will modify
the proportionality to some extent and will alter the definition of ¢«
(see equation III-25). Seaman (17) has developed an iterative procedure
for the approximate measurement of «o from the dynamic uniaxial test

data. Typical values of ¢ obtained by Seaman (17) are 0.12 for dry
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sand (110 pef dry density) and 0.02 for kaolinite (102 pef dry density

and 33 percent water content) under 100 psi dynamic stress.
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v

Stress Wave Attenuation Through a One-Dimensional
Column of Nonlinear Locking Material

A. Description of locking media

The dynamic behavior of certain soils and rocks under uniaxial strain

conditions may be approximated by the stress-strain curve of fig. V-1l.
This type of material response is referred to as locking behavior. The
loading branch of the stress-strain curve is defined by the relation

2

d—g > 0 V-1
dE |

During unloading the stress=-strain curve is defined by

If the material is reloaded, it will follow the vertical branch of
equation V-2 to the previous peak stress level, Qe (corresponding to
€ ), and from there on the curve of equation V-1.

Experimentally obtained loading stress-strain curves are often rea-

sonably fitted by a parabolic relation (21) of the form

c = (ﬁ) V-3
in which k and n are constant characteristics of the medium. Because
2
of the condition g—-2@‘;:-0 , 1t is required that k>0 and n >1 . The
de

following treats only the relation given by equation V-3; other analytical
fits may be dealt with in a similar manner.

B. Boundary load

The dynamic boundary load considered is the pulse characterized by a
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peak stress at a shock front and an exponentially decaying behavior there-

after (fig. III-2) given by

P(t) = P‘Ge_t'/T V-4

where
Pb = the peak applied pressure

the independent variable time

T = the exponential time constant, time at which pressure has

decayed to 0.368 P

C. Formulation of the Eroblem

Consider a semi-infinite locking medium (fig. V-2) that is subjected
to a suddenly applied pressure pulse given by equation V-4 on its entire
free boundary. As a result of the pulse, a shock is propagated into the
medium, compacting it to a density, p (note that p will vary with depth).
Due to the nature of the stress-strain relation (fig. V-l), the density
change will be permanent. When the shock front has progressed to a depth,
z , at a time, t , the mass mobilized (involved) in the momentum transfer

(assuming unit area) is
m= .2 V=2

where Ps is the initial mass density of the medium. Because of the
monotonically decaying character of the input pulse, the material behind
the shock front is continually unloaded along the vertical branch

g = gmax of the stress-strain curve (no strain recovery). Conseguently,

the mobilized mass, PsZ 5 acts as a rigid body causing all the material
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behind the shock front to move with an identical velocity u(t) , while the

free boundary is displaced by the amount wu(t) . In accordance with the

Newton's law, the integrated impulse, I

applied in the same period of time equates to the sum of the product of

elements of the mobilized mass and their individual particle velocities,

that is

The stress, o , at the shock front is given by (see equation II-86)

= piqu V-8

where C_ is the shock-front velocity given by (see equation II-88)

-8 (%)

s - at - |p.e g
i
and, € , is the strain corresponding to o¢ at the shock front which
is related to the particle velocity, G , by (see equation II-1k4)
‘u
&= C V=10
S

Substituting equation V-10 into equation V-7, using equation V-9 and re-

arranging, yields

, 8z - 1 .j“ B & LT 2 V-11
t o




or
P
dz _ i -t /T
: E=—2 - y-12

Substituting equation V-9 and its first integral into equation V=12

results in the following nonlinear differential equation
t

1/2

i -

(oe) /2 f (%) dt = Po'r(l - e t/T) V-13
0

Differentiating both sides of equation V-13 with respect to time yields

1/2 I:(t:re:)"l/é (c g—E + e g—:)] f (%)1/2 dt + 0 = P{)e't/'r V=14

d
de _ de do _ do/dt s

Equation V=14 becomes

o/de

121 do o/e : o\ 1/2 -t/
1/2(o¢) T l+d f(;) du + o= Lo v V-16
O

Using the results of equation V-13, equation V-16 becomes

P
o do o/e -t /1 i -t /7
1/2 — [1 + d—é-c de:' (1 -e Ji4 o= P e V-17

The variable coefficient in the brackets depends on the stress-strain

curve. The ratio
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G —

e M V-18
is the secant modulus and

do _

de - M V=d2
is the tangent modulus. The case

M, =M V=20

t S

corresponds to a linear locking material (fig. V-3).

From equation V-3, the stress-strain relation, one obtains

g/e | _ i =
|il+E§cE}_l+n V-21

Substituting equation V-21 into equation V-17, it reduces to Bernoulli

equation (22).

P
o do H -t /7 o =t/
1/2 oot (l+n>(l-e )+c:-PDe V=22

With the initial condition

0‘(0) = P(O) = PO V-23
the solution to equation V=22 is
2n
n+l
TPO[l - e-t/T]
b V-2l

g = =

: oy

2n -t/T

mffl'e I sat
O
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Equation V-24 relates the stress, o ; at the shock front with the corres-
ponding arrival time. The shock-front velocity, from equations V-3 and

V=9, is

P35

The shock-front location, z , from 'equation V-12, is given by

TP
I B S V26
Py € Cs

Utilizing equations V-3, V-24, and V-25, the shock-front location time

relation becomes

n+1l
121—;’1-1— e e
( on ) (1P )211 t n+l
g o=kt O (1_e't/'r) dt V=27
172
(pik) L

Equations V-24 and V-27 relate the peak stress, o , at the shock front,

to the shock-front location, z , from which one obtains the attenuation of
peak stress with depth. The corresponding peak particle velocity-depth

relation, from equations V-8 and V-25, is given by

n+l
——kl/e

i= o (——)
Py

A numerical procedure, based on the conservation laws of mass and

V-28

D. Numerical calculation

momentum and described by Zaccor (23), has been adopted for the calculation

of peak stress and particle velocity attenuation in the nonlinear locking

110




medium. This procedure treats soil models composed of all nonlinear load-
ing branch forms for which stress-strain behavior is described by the re-

lation
2

de
and a vertical unloading branch given by equation V-2. Hence, the mate-
rial defined by equation V-3 is included as a special case. The applied
boundary load can be any pulse characterized by a peak stress at a shock
front and a constant or steadily decaying behavior thereafter.

The procedure has been validated (23) by comparison with the closed-
form solutions presented in section C of this chapter for a parabolic load-

ing stress-strain curve and an exponentially decaying input pulse.

E. Computational procedure

The computational procedure described by Zaccor involves the impulse-
momentum law given by equation V-7 and the concept of the mobilized mass
acting as a rigid body behind the shock front. Material properties
(loading branch of the stress-strain curve and the initial mass density)
and boundary conditions determine the velocity, CS , of the shock front
and, hence, its location, z , at any time. The shock-front location at
any time identifies the mass, m , mobilized in the momentum transfer up
to that time. The integrated impulse, I , applied in the same period
equates to the total momentum transferred, from which one obtains the peak

particle velocity and stress at the shock front, that is

ma = I
S V=30
m
g = piCSu



The step-by-step procedure used in the program is given below to h

illustrate some of the concepts involved in the theory. '
1. Compute the shock-front velocity, Cs , at a discrete number of
stress levels (the program will accept 50 values of Cs)"’ from the loading

branch of the stress-strain curve (for 0 <o < Pﬂ) using the relation

. ()

S . €
pl

and store the information in tabular form.

2. Take a small time increment At .

3. Compute the impulse, I(1) , at the time, t = At , as the product |
of the time increment At , and the average value of the overpressure

pulse in that time increment
T{Y) = ﬁt[PO + P(at)] 2 V=32

where P(At) is the value of overpressure pulse at t = At .
k. From the shock-front velocity versus stress table of step 1 deter-
mine the average shock-front velocity

CS(PO) + Cs(éfc)

CS = o) =N v-33

in the interval At as if the stress in the medium at the time t = At
were the same as the surface overpressure at the time t = At . CS(PO)
is the shock-front velocity corresponding to o = PO and CS (&t) is the
shock-front velocity corresponding to o = P(At) .

5. Compute the shock-front location Zq 3 at the end of the time

increment At
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zy = CS A\ V=34

6. From I(l) obtained in step 3 compute a value for the particle

velocity uy at the end of the time increment At (see equation V-30)

o 2 ) V=35

1 PsZq
where Pi2q is the mobilized mass at the time t = At .
7. From ﬁl obtained in step 6 and CS(£¢) from step 4, compute
the stress ci at the shock front at the time t = At and depth Zq

(see equation V-30)

o; = p,C (Ab)uy V-36

This value of stress is now a more accurate representation of the true

stress in the medium at Zq than the assumption made in step 4, that is,

gy = P(At)

8. Compute a new value of C, wusing

= _ CS(PO) + Cs(crl) P
S 2

where Cs(cl) is the shock-front velocity corresponding to the current

stress O©
%

in the table computed for step 1.

found in step 7. Cs(cl) may be determined by interpolation

Q. Start again at step 5 and continue to repeat this iterative
procedure until all values agree (within a specified convergence criterion)

with those on the previous iteration and store the values obtained on the
final iteration, that 1is, Zq s ﬁl > Op = Note that ﬁl and Ul_ are the

peak particle velocity and stress at depth Zq -
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10. Take the next time increment. The total elapsed time is now

t = 246 .

11. Compute the impulse for the second time increment as
I(2) = at[P(at) + P(2at)] 2 V-38

where P(2At) is the value of overpressure pulse at t = 24t .

12. Compute the total impulse I(2At) , to the time t = 2At as
I(2at) = 1(1) + 1(2) V-39

13. Assume an average shock-front velocity

e = ¢ () v-40

where Cs(ci) 1s the shock-front velocity corresponding to the final wvalue

of o, as found in step 9, and compute the shock-front location Z,, at

the end of the total elapsed time t = 24t
0= g, o Gl V=41

14k. From I(2A4t) obtained in step 12 and z, Obtained in step 13,

compute a value for the particle velocity ﬁ2 at the time t = 2At and

location 22

az z Ip2§¢ oA
1“9

15. Repeat the outlined analogous procedures starting at step 7

until values of 22 : u2 . Gé are obtained which satisfy the convergence

criterion in step 9, and then index to the next time increment starting in

step 10.
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Fe C ter ogram

The above procedure is programmed in FORTRAN IT language for a GE 225

computer with 8K memory.

The input variables for the computer code (program) consist of

the following:

Variable Description __ Comments
ROE Initial mass density Singular parameter
(slugs/cu ft) - P
DT Time increment (sec) Singular parameter
- At
SIG(T) Stress (psi) - o Discrete stress values
from stress-strain curve
EPS(I) Strain (in./in.) - e Discrete strain values
from stress-strain
curve
T Time (sec) = t Discrete values; t = O
gt = P
o
P Overpressure (psi) Discrete values; P = P_
- P(t) at t =0

The input sequency and formats are as follows:

Input Card S0 Ot Format
(a) (ROE, DT) (PT.2, &X, FT.5)
(B) [s16(I), EPS(I), I =1, 50] (F7.2, 5X, F8.6)
(c) (T,P) (8.6, 5X; FT.2)

Card form (B) is repeated 50 times (for the 50 discrete points on the
stress-strain curve). Card form (C) is repeated (pulse duration/DT + 1)
times, i.e., discrete values of the input pressure pulse are read in and

stored in tabular form. The code conveniently accepts these values at
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times which are continuous multiples of the time increment DT . Note that
SIG(1) = EPS(1) = 0.0 (see fig. V-1); SIG(50) = P_ , the peak overpres- 2
sure; and T = 0.0 when P = PD .

The output variables are given in two groups as follows:

- §5223_2“—Shock-front velocity calculation

STRESS STRATN SHK-VEL
(psi) (in. /in.) (fps)

Format (F7.2) Format (F8.6) Format (F7.2)

Group 2 Attenuation of peak particle velocity and stress with depth
Z(£%) V(fps) STRESS (psi)
Format (F6.2) Format (F8.3) Format (F9.3)

G. Additional program information

The program contains a function subprogram, VEILOC, that inter-~
polates linearly in the shock-front velocity versus stress table calcu-
lated in step 1. The following error indications are given by sub=-
program VELOC:

a. STRESS TABLE OVERFLOW
This message is printed out if the maximum value of the overpressure
pulse exceeds the peak stress input, i.e., P_ > SIG(50) .

b. STRESS DATA OUT OF ORDER
This message is printed out if the stress-strain input are not in an
ascending order, i.e., SIG(I)-SIG(I-1) <O .

H. Run time information

Computer time for a typical problem is about 15 minutes. A complete
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FORTRAN II listing of the program and typical input and the resulting

output for an example problem is presented in Appendix V.
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rRUVERAM 1 11LE e

L
C

1
| g SEEIEIMENSIONAL STRESS WAVE PROPAGATION IN LOCKING AND DISSIPATIVE g
C PROGRAM NO. 41-25-111

BT PROGRAMMER ROHANI,B ILS PATE_ AUBUST 1967 ;
¢ 6
— ¢
C ASSUMED * ! 8
__C_ STRESS- w = 9
B C STRAIN @ : 10
C RELATION S = ' UNTAXTAL 11

C -y I STRAIN 12

B R : . DATA 13
G E_« . 14
I'CJ S = . < 15

§ w .

C : : : 3

C i . 18

C # . . 19

g C * 3 s 20
C * . . 21

C AR RS AL SRS ARl 22 2T 22

C STRAIN 23

C o P 24

C GLOSSARY 25

C ROE=MASS DENSITY OF SOIL[SLUGS/CU.FT] 26

G SIGITT=STRESS AT POINT I ON STRESS-STRAIN CURVEIPST] 28
» EPSII)=STRAIN AT POINT I ON STRESS-STRAIN CURVEI[IN/IN] 29

C UIT1=SHOCK FRONT VELOCITY AT STRESS LEVEL SIGIIJ(FPS] 30
C DT=TIME INCREMENT [SECH 34
C P=OVERPRESSUREIPS]] 32
E C T=TIME A VARIABLEI[SEC] 33
C PULS=IMPULSISEC=-PSI) 34
C Z=DEPTH A VARIABLEIFT.) 35
C UBAR=AVE. SHOCK=-FRONT VELOCITYI(FPS] 36
C VEPARTICLE VELOCITYIFPS] [MAX]) 37
L STRESS=STRESS[MAX]) [PST1] 38
C VELOC=DUMMY 39
C 40
BC INPUT - - B 41
C ROE,DT,SI1GII),EPSIII,T,P 42
G QUTPUT - i 43
C MAX., STRESS,VELOCITY AS A FUNCTION OF DEPTH [ATTENUATION] 44
C 45
e 4 &
L.C o 47
C - 48
COMMON SIGI501,EPSIS0]),U150] 20

C o1
C 52

E C 53
C 54
B | 55
1 READ 11:0,ROE-DT o6

100 FORMATIF7.2,4X,F7.5] 27
PRINT 99,ROE-DT 571

9G0F ORMAT[1H1,12X, 33HSHOCK-FRONT VELOCITY CALCULATION,,/,15Xs,6HROE = 572
2F7.2,16H SLGS PER CU.FT.,1X,5HDT = F7.5,6H SEC. »/,15X,6HSTRESS,6X 573
3»6HSTRAIN, 4X, 7HSHK VEL,/,16X,5H(PSI1,6X,7HIIN/IN],3X,5H[FPS]1s//1 574

DD il I=1j:-'r BER




READ 101,51G(1],EPSIT)

ULI)=SQORTFI(SIGI])*144,.])/[IEPSII)+.000001]1+«ROE])]

10 PRINT 172,SIGII1,EPSII)»UILT)
101 FORMATIF7.2,5X,F8.6)

5

102 FORMATI1H ,14X,F7.2,5XsFB.652XsF7.2]

PRINT 88

—b2

"BBOFORMATI[1H1,12X,54HATTENUATION OF PEAK PARTICLE VELOCITY AND P
2TRESS.»/s16Xs5HZIFT)»7Xs6HVIFPS])»10X,11HSTRESSIPSI)»)

641 |
EAK § 647 |
643 |

—

Z=0.

63

——— |

644

STRESS=SIG[50] 645 |
V=[ [STRESSI»144,)/([ROEI«U[50]] 646
PRINT 104,Z,V,STRESS 647
104 FORMATI15X,F6.2,6XsF8.3,9X,F9.3) 648
READ 1c3,T,P 65
103 FORMAT(FB.6,5X,F7.2] 66
PULS=O0, 67
ZL=I']. 65—
PL=P 70
READ 113,T,P 7
PLL=P i
UU=VELOCIPLL] 761
30 PULS=DT*I[PL+P]1*,5+PULS i
UBAR=[VELOCIPL)+VELOCI[P])1*,5 74
. SS=C., N 741
35 Z=UBAR=DT+7ZL 75
V=[144 ,*x[PULS/[ROE*Z])]] 76
STRESS=ROE*V*UU*[1./144.) 77
. IFIABSFISTRESS~-SS1~-.001] 50,50,40 78
470 SS=STRESS 781
UBAR=VELOC[SS] N 79
UU=VELOCISS] 790
. _ 791
GO TO 35 80
50 PRINT 114,2,V,STRESS » 84
UBAR=VELOC[STRESS] 811
L=z et W 821
READ 173,T,P B3
PULS=IDT*[PLL+P)1/2.+PULS 84
PLL=P 841
GO TO 35 L
END 87
FUNCTION VELOC[SIGMA] o _ 86
PARAMETER DECK LOADED BY SUBROUTINE 85
COMMON SIGI5U],EPSIS0]1,U150) 87
88
S=SIGMA g AT 89
DO 2 I=2150 90
IFISIG(I)=S) 2,3,4 01
2 CONTINUE 92
93 _
PRINT 1.6 "
CALL EXIT =, I ny .
08 FORMAT I 23H STRESS TABLE OVERFLOW.] 96
4 Ti= SIGII)=SIG[]-1] . 99
IF[T1) 55,55, 70 100
55 PRINT 105 101
05 FORMAT [ 26H STRESS DATA OUT OF ORDER.] 102
103
e -l 104

7¢ T2 = UIT) = Ull=1)

T 1

-

—

1




—

W AT2Y 2. ©5,
72 VELOC = U[I=-1] «

72
(S - SIGII=11)

* T2/T1

e

RETURN

106

107

v 3 VELOC=ul!l) 108
RETURN 109

END 110
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TYPICAL INPUT
CARD A

DS G.01 1\1
i § |
ROE DT
oooo000O00COQOQoOOCOODOOOODOOGOO000000000O00CO0OO000000000000000000000000000000000000
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3008905555355 555505595095555555535555559555555555555555555555555555555555555555555585

0
112
11

bEE666666666666666666ER666666666666666666666066C6660666666666666666666666666666666
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ssofoscsasaenfjasnaseanssansnsasanossn BR800 8R808808808080R8880BBRBR8BE2S

Y]

l1IlmﬂuBHEIH1dﬂ?ﬂﬂﬂHHHHHHHHﬂ#ﬂﬁﬂ'ﬂﬂﬂﬂuﬂHﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ“ﬂ“ﬂﬂﬂﬁﬂHHNFHFHHHJ/

122




TYPICAL INPUT
CARD B

/o .

5

.
f

SIG (1) EPS (1)

oojojgooooocofo ‘

B e T e e
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VI

Stress Wave Propagation Through a Laterally Constrained
Column of Nonlinear Hysteretic Material

A . Descrigtion of model

The nonlinear hysteretic model was recommended by Hendron (25) on

the basis of his study of the behavior of sand under uniaxial strain
conditions. The model is rate-independent and energy dissipation is only

due to the compaction (hysteretic) characteristics of the model.

A stress-straln curve for the nonlinear hysteretic model is shown

in fig. VI-1l. The initial loading curve is given by the relation
o = Ae" VI-1
The unloading curve 1s given by the relation
c = B(e - er) VI-2

where A, B, and n are constants characteristic of the medium and er
is the residual strain. If the material is reloaded, it will follow the
curve of equation VI-2 to its previous maximum stress level, Opny » COT=
responding to S 2 and from then on the curve of equation VI-1l. The

nonlinear hysteretic model is identical with the linear hysteretic model

(Chapter III) when n = 1.0.

The initial loading tangent modulus Mb for the nonlinear hysteretic

model, from equation VI-1l, is given as

M =—= Anen_l (Tangent modulus) VI=3
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The unloading/reloading tangent modulus M, , from equation VI-2, is

given by

M = Bn(e - er)n-l VI-L

For the conditions of shock wave propagation the initial loading wave
velocity is determined by using the secant modulus of the material (see

equation II-89). The initial loading secant modulus is given as

M, = -E- = Aen-l (Secant modulus) VI-5

B. Boundary load

The dynamic boundary load used for this model is a pulse characterized
by a peak stress at the shock front and an exponentially decaying behavior

thereafter (see fig. II-2) given by

P(t) = IJ':}E%/Lr VI-6

where
Pb = the peak applied pressure
t = time, the independent variable
T = the exponential time constant (time at which the overpressure
has decayed to 0.368 Po)

C. Solution of the problem

A mmerical method developed by Heierli (26) will be used for the
solution of the nonlinear hysteretic model. This procedure, often referred
to as the method of impulses, assumes that (a) the applied pressure pulse

is divided into a finite number of steps containing a certain amount of
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impulse, (b) the dynamic stress-strain properties of the material are
known for all conditions of loading, i.e.; initial loading, unloading,

and subsequent reloading and unloading, (c) each increment of stress
change propagates at a velocity consistent with the secant modulus for

the stress increment, (d) the impulse is conserved on an incremental

basis and continuity is maintained. Using the conservation laws of mass
and momentum, an expression for the change in particle velocity and stress
can be obtained which, in conjunction with the propagation velocity-stress
relation (obtained from the stress-strain properties of the material), can
be used to determine the stress in refracted and reflected waves which
propagate away from the intersection between two waves. It then becomes a
bookkeeping process to compute the position of all the waves on a space-
timé diagram (such as the one shown in fig. III-4) as well as the state

(i.e. stress and particle velocity) existing in each zone of the diagram.

D. Particle velocity-stress relation

The particle velocity=-stress relation is determined from the con-
sideration of the conservation laws of mass and momentum for a region of
material subjected to a step change /Ao 1in stress. This step change
in stress, which moves from position z to 2z + Az in a time At ,
causes an abrupt change in particle velocity from @ to u+ Au as
shown in fig. VI-2. The strain also changes from € to e + Ae . Assum-
ing that the position 2z is attached to the moving particle (Eulerian
coordinate system), the conservation of mass for the element of fig. VI-2

yields

p Lz = (p + Ap)[Lz - Mu At] VI-7
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where Ap 1is the change in density due to the step change Acg in stress.

Equation VI-7 can be simplified to the following equation

- Sy VI-8

From conservation of momentum
p Lz M1 = Ao Ot VI-9

where pAz 1is the mass 1nvolved during the momentum transfer process and
N0 At is the applied impulse during the time t = At . The absolute

(Lagrangian) wave velocity C at which the step Ac travels is given by

& ™
C = AL il | VI-10

Using equation VI-10 in equation VI-9 gives
L5 = p&a (C - u) VI-11

Combining equations VI-8, VI-10, and VI-1l to eliminate /Mu and solving

for Lo gives

&c=;%‘ﬁg—p(c S VI-12

The step change Ac 1is assumed to be related to the strain change

HNe by

Ao = Mé PAY> VI-13

where Mé is the constrained secant modulus for the stress increment

Ao as shown in fig. VI-2. Since one-dimensional Eulerian strain

is used
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p
P

e=1- == vI-1k

in which pi is the initial mass density of the material before propaga-

tion of any waves. Using equation VI-14, it is deduced that

P P
Le = |1 - —= -l1-=
( p+ﬂp) ( P)
VI-15
5 P, AP
p(p + Ap)
Combining equations VI-13 and VI-15 gives
A i ‘
=M : VI“l
°~ %s | p(p + Bp)
Combining equations VI-12 and VI-16 gives
p(C = u) = + M_p, VI-17

=L

where + signs designate waves traveling in the positive and negative

directions, respectively. Using equation VI-17 in equation VI-1ll gives

Bl — VI-18
MS

Py

Equation VI-18 relates the change in particle velocity due to a step

change in stress. The integral form of equation VI-18 is given as

otAo

do VI-19

< [ =
o} Ms pi

For the boundary load considered in this problem (equation VI-6)

and the loading stress-strain relation given by equation VI-1, the initial
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loading stress pulse will propagate into the medium as a shock. The
velocity of propagation of the initial loading stress wave is then de-
termined from the secant modulus given by equation VI-5. In terms of

stress, equation VI-5 can be written as (using equation VI-1)

}; n-1
=20
e Ap. . n VI-2

Substitution of equation VI-20 into equation VI-18 results in the follow-

ing expression for the particle velocity=-stress relation for the initial

loading
n+1
2n
o Sl :
e (initial loading) VI-21
2n

VoA

where o corresponds to the peak stress at the wave front (o = P, at the

surface). During unloading from a stress level ¢ to the incre-

Uj-l 5
mental change 1n particle velocity can be obtained from equation VI-19
where Mg is determined from eqﬁation VI-4. In terms of stress, equa-

tion VI=4 becomes
M. =M =nB o VIi=-22

Substituting from equation VI-22 into equatibn VI-19 and integrating from

Uj-l to 05 , results in the following expression for the change in

particle velocity due to a step change (05 = 8

; l) in stress during un-

loading or reloading

o J (unloading/reloading) VI-23
J:J'l - _.:.L.._ .
n B-211 (:Efii)
i 2n




E. Wave velocity-stress relation

The wave-velocity, C, » for the initial stress wave (a shock) is
determined from the secant modulus given by equation VI-5, that is,

g 1/2
C, = |5 VI-2L

Py

In terms of stress, equation VI-24 becomes

S 1/2
l—_ Il
A" o
C. = = (initial loading) VI-25
s &

where, as in equation VI-21l, o corresponds to the peak stress.
The wave velocity for the unloading or reloading stress wave (from
g. To Uj_l) is determined from equation VI-2 (the unloading/feloading

J
stress-strain relation), that is

(gs 0 = 032)

-1

A — - : VI-26
JJJ-l (E,j-l = E.j-) pi

Note that the initial mass density is used in equation VI-26; this is

satisfactory when the strains are small. From equation VI-2

i VI-=27
n
& s
. g
ST +( B )
Substituting from equation VI-27 into equation VI-26 and simplifying
results in the following relation
1
—_— 2
B2n 0.4 ~ 0. l/
—  — VI-28




The radical in equation VI-28 may be expanded (18) in terms of o o1 T+ 9
and o. - g. to give
J=1 J =

n=-1

_1/2 en
Uj_l - G.j (Uj + U'—l)

s AT
o 2 -
s padiB] 2}
J=il J
e 0] - 0 -
1 1(o_ L)L __J G
T l-n(2 n)(cj_l+cj> e Vi==d

Oz o = 0
ik E*]iﬁ < 1/4 the first term of equation VI-29 is sufficient to give
=1 = J

an accuracy of one percent. Then the wave velocity, equation VI-28, for

the above conditions becomes

1 n-1
mem 2n
B2n g. + U'—l

C n J 2 —L—

3y d=leT Ve,

F. Intersection relations

(unloading/reloading) VI-30

Consider the space-time diagram shown in fig. VI-3. The input pres-

sure time is approximated by a series of step changes at the appropriate

times © t

1 2 b o t3 5y ewse Ihe first step is given as Po at time to

followed by a decrease in pressure equal to AP = Po - Pl at time tl -
The stress in the first zone of the space-time diagram is equal to Po

(the applied pressure during the first time interval).

Gl = Po VI-31

The particle velocity in the same zone is obtained from equation VI-21
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which expresses the relation between stress and velocity across a shock-front

n+l

P 2n

) ==t Yo e

a decrease in pressure occurs at the surface and causes an un-

At time tl

loading wave to travel into the medium. The stress behind this unloading 1

front (in zone 2) is

(9] = Pl VI"'33

The particle velocity, ﬁ2 , in zone 2 is determined by computing the change

in velocity Au due to the step change B =B in stress, that is |

{iz =4, + AL, VI-3k4

where Aﬁlg is determined from equation VI-23 by substituting equa-

tions VI-31 and VI-33 for Uj and Uj_l respectively

1+n 1+n
- PlEn y Po2n
;ﬁulg = Y ———— VI-35
2n 4. = n
pin B 2n

The unloading stress wave, Pb - P governed by the unloading stress-
strain curve (equation VI-2), travels with a velocity determined from equa-
tion VI-30 which is higher than the initial loading wave velocity given by
equation VI-25. The unloading wave therefore overtakes the loading wave and
the intersection of these waves produces a reloading (reflected) wave which
propagates back toward the surface and another (refracted) wave which con-

tinues on to greater depths. The region between these two wave-fronts
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has a single stress and a single particle velocity.

The intersection equations can be derived by considering the
uniqueness of particle velocity at the point of intersection. If
regions above and below the interaction of the two waves are denoted by
a and b , respectively, and the common region by ¢ as shown in
fig. VI-L, the particle velocities above and below the common region

¢ are given by

n, =u - &u (above) VI-36

and

u, = u, o+ aﬁbc (below) VI-37

where Aﬁac is the change in particle velocity caused by changing the
stress from a, to c, and éﬁbc is similarly defined. These particle
velocity increments are determined from equation VI-21 for initial loading
or equation VI-23 for reloading or unloading. The stress O, is determined
from the simultaneous solution of equations VI-36 and VI-37.

The stress ‘and the particle velocity ﬁ3 of the third zone

°3
in the space-time diagram in fig. VI-3 will be determined utilizing the
intersection equations VI-36 and VI-37; o, and ﬁ2 , given by equations
VI-33 and VI-34, respectively, correspond with o, and ﬁa in fig. VI-U;
03 and u3 correspond with a, and R and % and U =~ are zero be-

cause the intersection occurs at the leading edge of the shock-front. The
particle velocity change ﬁﬁac is given by equation VI-23 and Aubc is

given by equation VI-21l. From equation VI-21
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(unloading wave)

(reflected wave)

(retlocted vave) (unloading wave)

Fig. VI-4. Intersection of unloading wave with loading
wave in space time
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i VI-38

7
|l—'

From equation VI-23
( 1+n l+n>
2n 2n
: -
A‘u = l - = VI e 39
2n (1L + n
wpin B ( 2n )

ac
Substituting from equations VI-38 and VI-39 into equations VI-37 and

VI-36, respectively, and eliminating ﬁ3 = flc gives

n+1 1+n 1+n
5 2n . 2n 3 2n
3 WLl 3 2 2
= U T VI-4O

1 + n)

2n 2n
vE;'A upin 3 ( 2n
Equation VI-4O can be solved for o3 - The particle velocity ﬁ3 can

then be determined from equation VI-38

n+l
2n
°3
VI-L41

ﬁ: S —

3 i
VEE Agn

The process just demonstrated can be continued indefinitely; succes-

sively finding the stress at the surface from the boundary conditions,

computing the new velocity, taking into account the change of stress, and

then analyzing the interactions from unloading waves overtaking the initial

To obtain more accuracy the time between to ; tl s t2 3

The

loading wave.

should be divided into finer divisions as shown in fig. VI-5.

141



g
7]
0
@
A
0
">
O

P
o)
~ [
e 15
. Ps |
NI RE o | A, -
® ! ] J ;.:' ~
f"f
3 al
\ .
' (reflected wave)
7
) Pt.C
General intersection point :
not occuring along the  (unloading wave)
ﬁ leading shock-front see
o fig. VI-k
A 7
4
(initial loading)
wave
\/

Fig. VI-5. Space-time diagram for a fine mesh

142



intersections in this case are not restricted to the simple pattern of
fig. VI-3. The intersection equations for an intersection which is not
along the leading shock-front are also based on equations VI-36 and VI-37.

The stress o, and the particle velocity ﬁb are no longer zero and

A

- and éﬁbc are both determined from equation VI-23.

G. Computer program

A computer code, based on the foregoing analysis as related to the
problem depicted in fig. VI-5, is available to compute the stress and
particle velocity histories at selected depths in a homogeneous non-linear
hysteretic medium. The code was originally written at Stanford Research
Institute in ALGOL language (26) and has been translated to FORTRAN II
language for a GE-225 computer with 8K memory. The mecﬁanics of the

code are described in references 18 and 26.

Output parameters are given in terms of the following nondimensional

quantities
(0]
8 VI-k2
PO
T = % VI-U3
T VI-Lk4
)
7 % VI-U45
O
1l
Of
s
o = . VI-L46
. (&)211
T \E



where S , T , V , and Z are the nondimensional stress, time, particle
velocity, and depth respectively; ﬁl ishparticle velocity corresponding
to the peak overpressure given by equation VI-32 and C0 is the wave
velocity of a shock wave with a stress o = Pb determined from equa-
tion VI-25. Equation VI-46 is identical with the definition of a in
equation III-25 if the tangent moduli and wave velocities are taken at
one stress level. It is used here as a measure of the hysteretic energy
loss.

The input variables consist of the following:

Variable ____Description
NX Number of depths of interest
ZA(N) Specific depths of interest (ft)
\
& % ;.: , @ is given by the equation

VI-46 (this B should not
be confused with the B used
in the body of the paper)

B | Stress-strain curvature param-
eter n (see fig. VI-1l) |

Q Dunmy number = 1
EPS Acceptable error level =~ 0.0005
DT Time increment (sec), a
constant
Sl Initiation time for the first
unloading wave (sec), t, in
fig. VI-5
TEND Terminating time (sec)

The input sequence and formats are as follows:
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- Input Card Format
(4)  [mx, (zA(W) ,N=1,NX) ] [120,7F10.3, (8F10.3) |
(B) [B,P,Q,EPS,DT,Te;,Tm] (8r10.3)

The output variables are given in three groups as follows:

Group 1. Input data from card form (B) of the input variables fol-
lowed by some intermediate calculations for debugging

purposes.

Group 2. Input data from card form (A) of the input variables.

Group 3. Nondimensional stress (S), time (T), particle velocity (V),
and depth (Z), given by equations VI-42, VI-U43, VI-Lk,
and VI-45, respectively.

A complete FORTRAN II listing of the program and an example of typical

input and the resulting output is presented in Appendix VI.
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wF 12,

LA
e

LA
LA
* e

*w
e

LA
LA

e
-
LA
LA

oOoaooaoooo0o0000000000000000000000 0

OO0

1
2

3

4
1000
1001

C
C

Ceewn

C
100
C

C =»

C
C

Cane

OCT 9 /0CT 9 , CARD wAAUe« FLOATING POINT

PRNGRAM 41-S8«70-010

29 MARCH 1968

NONLINFAR WAVE PROPAGATINN [HYSTERETIC MADEL)
CONVERTED TO FORTRAN FROM aALGOL

vwwws INPUT PARAMFETERS #*wwwe

NX NUMBER OF DEPTHS OF INTEREST
ZA LIST OF DEPTHS OF INTEREST (NX VALUES)

B NEWMARKS BETA PARAMETER

N STRESS~STRAIN CURVATURE PARAMETER

M M = N FOR NONSHOCK INPUT PRESSURE
M = 1.0 FOR SHOCK INPUT PRESSURE

EPS ACCEPTABLE ERROR LEVFL

DY TIME INTFRVAL BETWFEN START OF UNLDADING WAVES
DURING INITIATION

T21 INITIATION TIME FOR FIRST UNLOADING WAVE

TEND TERMINATION TIME. WWEN AN INITIATION TIME FOR AN
UNLOADING WAVE EXCFEDS TEND, THE PROGRAM ENDS

savns OQUTPUT PARAMETERS wewae

S NONDIMENSIONAL STRESS

T NONDIMENSIONAL TIME

Vv NONDIMENSIONAL PARTICLE VELOCITY
Z NONDIMENSIONAL DEPTH

COMMON S[11,11),TI111,311),VI111,311),2111,11)
COMMON SAI4r),TAIL40),VAL40),ZA(40)
COMMON NJsNXs JMAX

FORMATI110,7F10.3,18F10,31]

FORMATI8F10.3] '
FORMAT[1H1,30X,22H*eess TNPUT DATA wewee,//,9%X,1HB,11X,1H4P,11X,

11H0,10%X, IHEPS 90X 2HDT,10X»IHT21,9X, 4H4TEND ]
FORMATI1KD,10F12,5]

FORMAT1HO0,1PBF14.6)
FORMATI1HO0,10X,18HDEPTHS OF INTEREST)
BEGIN

CONTINUE

READ DFPTHS OF INTEREST

READ 1,NXs[ZAIN).N=21,NY])

AGAIN
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000410
00020
00nN30
00040
onoso
00040
00070
0p0a0
onoed
00100
00110
00120
0nNiso
00140
001%0
00160
00170
001A0
00190
00200
0n210
00220
00230
00240
002%0
00240
00270
00280
0029

0030

00314

n033
No34
nn3s
0037y
no3e
nn4n
no4s
no4?
nN4s
No44

ND4&S
Np4é
nnay
NNA4A
nn4s
N050
0051
0052

0054
noss



-, -

C
101 00 103 J=1,11
Do 102 K=1,11
SlJsK] = 0.0
TIJlKl = ﬁ-n
- VlJ.Kl = 0,0
102 ZIJIKI E uln
——103 CONTINUE - S

c
C ==« READ AND PRINT INPUYT PARAMETERS
c

READ 2,B.P,0.EPS,DT.T[(2,11,TEND
PRINT 3
PRINT 4,B:P,.0,FPS,DT.T12,1)1,TEND

ww COMPUTE CONSTANTS

VN =2 0.5 ¢ 1,/12.*P]
CN =2 0,5 = 1.712.*P)
P SN 8 _SARTFIP)._ ...
SM = SARTFIQ)
BSN = B/SN  _
BSR = RSN/VN
RM = 2 . *SM/[0+1,)
ALP = [1=BeSM/SN)/[1+B*SM/SN]
. _PRINT 1000,VN,CN,SN,SM,BSN,BSR-RM,ALP
5l1l11 k3 1-0
g =8
TtJ,2] =2 TlJel) ¢ 2,.«DT7
104 IF[ABSFITIJ,2)~-TlJ,s11]1-DT]1110,110.99
c
C == COMPUTE INTERSECTIONS ALNNG AN UNLOADING WAVE
C

anoo

99 DO 109 K=1,J

e

IFIK=11105,105,106
105 TlJsK) 3 TI[2,1) « [J=2]NT

o Sl1:J) = EXPF(=ALP*T[J,1V/11.+ALP])
SiJs1] = EXPF[=TIJ,1))
ViJeK) = [RM=BSR)*S[1,J1«*yN + BSR#S[J,1)*2VN
Z[Jli] = ﬂ.
GO TO 109

C

~.106 IF(K=J1108,107,107
107 StJsK] = [VIJsK=1]+BSR«SI1J,K=1)**VN]/[BSR*RM]

VIJ,K] = S[J»K]=RM

StJsK] = EXPFILOGFISIJ,KV]/VN]

CU = [1./BSNI*[[S[JsK=1)+S[JsK]])/2,]ewCN
CL = SM*[[S[J=1,K=1]+S[J.K)]/2.)*eCN

e THUsK) B(Z(J=1,K=1)=Z[JsX=1]+T[J,K=1)*CU=T([J=1,K=1)+CL])/([CU=CL)

IlJsK] = Z[J=1,K=1)+(T(J.K1=T(JU=1,K=1])#CL
GO TO 109
C

108 StJsK) = 0,.5%([SIJ,K=1)e*VUNe S[J=1,K)#*YN1+ [0,5/BSR]e[VI[J,K=1)=

ivi=1,x])
e oYL JsE] = V] JsK=1] = BSR«IS[JsK]=S|JsK=1)wwVN]
St J.K) = EXPFILOGFISIJ,K1)/VN]
Cu = [sSN/B)=lI[S[JsK=1) + S[J,K])/2,)w=CN
CL = [SN/B)I=l[S[J=1,K) ¢ S[J,K])/72.)==CN
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TLJsK] = [Z(J=1,K)1=Z1J,K=1)1+T[J,K=1]«CU+T[Jm1,K]I*CL])/Z(CU+CL]

ones

No9é
nno?

0098

0104

n10s
0106
0107
0108

0114




Z1JsK] = [TIJsK)=TIJ,K=11]eCU + ZlJyK=1]) (- 7 -_ﬂ‘lis
= 109 PRINT 1000,JsK,SIJ,K)sTl.isk)sVIJoK)sZIJaK],CUsCL e R Fuo
) 0117
et g L) D niim
T1J,2] = T(Jy=1,2]) j ©n11e
e o Tlde1) = T(Y=1,1) i 0120
2 GO TO 104 0121
110 JMAX = Jei T ) e o 0123
SO i et L 1 TN T T S RO | &1
C 1 n12%
_g_zzu_LnEAIEHSUEEAQE“lNTERSEDTrDN . .D126
0127
DO 1131 Ke=i, MAX ar nd o T T LI qiz&,
Si1.K) = S1J,K]) 0129
e T11.,K)l = TiJsK]) 0130
VIi.,K]) = VIJ,K] 0131
111 711.,K]1 = Z1.J,K) 0132
J o a 0133
L -y, N . A= o, 5 e e i 0134
Cewew START 013%
o LA 0134
112 IFITIJ=1,1)-TEND1114,113,113 0137
Ah b E ey 0138
GO YO 125 0139
L e e L 1 e R it — Y SR
C =« COMPUTE INTERSECTIONS ALNNG AN UNLOADING WAVE n144
| - A T A 0142
114 DO 121 K=1,J MAYX 0143
B ) , N144
IFIK=11115,115,118
115 SY = 2 . *T(J=1,K¢1]~-TlJ-1,1) e N R o Y
TtJysK] = ST ¢ 2«EPS D147
. _IFIABSFITIJ,K])=ST]=EPS1117,116,116
116 TlJ.K] = ST Ni149
- SlUsK] = EXPFI[=-TIJ.K])
C = [SN/B¥*[I[S[JU=1,K+1] ¢« 8[J,1)]1/72.)1*=CN
- SY =[T1J,K)+T[J=-1,K+1]1+Z1J=1,K+1]1/C])/2, : T S, 1 ¢
117 VIJsK] &8 VIJ=1,K+1]1+BSR*IS[JsK]w*YN=S[J=q1,K+1)wwrVN]
ZilJ.K) = 0, _ N154
GO TO 121 nN15%
. = | 0156
118 IF[K=JUMAX%120,119,119 0157
119 St J,K] = [V[J,K=1]+BSRe*S1J,K=1]**VN]/[BSR*+RM] e A
VIJsK) = S[J:K]=RM
__.StJsK] = EXPFILOGFISIJsK1]ZVN]
CU = [1./BSNI*[[SIJsK=114S1JsK)1/2,)1w=CN
CL = SM*[[S[J=1,K]+S[J,K1])/2.]1==«CN
TlJsK) B [=Z1J,K=1]1+Z2[J=1,K)+CU*T[J,K=1]e«CL*TIJU=1,K]1/(CU=CL] N16%
e ZtusK) = 2l )=, K] +CL* [Tl 0sK])=T(J=1,K)]) : L _ n164
GO TO 121 016%
T . ; D164
120 StJsK)] = 0,5¢[S[JsK=1]1#2UNeSlJ=1,K+1)*eVN]+[0.5/BSRI*(V[JsK=1]=
1VIJ=1,K+17%) N16AR
VIiJsK] = V[JsK=1]=BSR*#[SI1J,K]=S[J,K=1]#*wVYN])
S{J,K) = EXPFILOGFISIJ,K1]/VN] : o ot el el W
CU = [SN/B)*[[S[JsK=11+S1J,K]1/2.)«=CN
__ CL_.= [sN/B)*|IS[J=1,K+1)+S1J»K])1/72.])e=xCN
Tl.)sK] & [Z21J=1,K¢1)=Z[J.K=l])+CU*T[J,K=11+CL*T[J=1,K+11)/7([CU*CL) N173

ZldsK) ® Z[JeK=1]+ITIJ,K)=TI[JsK=1]]%CU
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c n174
121 PRINT 1000,J,K,S1J-K1,Tl.loKk)sVIJsK)sZ1JsK),CU,CL

IF1J=11)122,123,123
122 J = J+1 nize
GO TO 112 ni17e9
123 NJ = J 0180
c : 0184
Ceew PROCEDIJRE INTERPOLATE AND PRINT 0182
c ; : nNi183
PRINT 1001
PRINT 1000, [ZAIN)sN=1,NX! ;
CALL INTERP n184
c : n18s
C «« RESET INDEX TO ZERO N186
C , nN187
DO 124 K=1,J MAX 0188
Sl11,K) = S(JsK]) 0189
TiI1.K]) = T[J:K) D190
VI1.,K) = V[J:K) n191 |
124 Z11,K) = Z21JsK]) 0192
J = 2 ni193
c 0194 |
Cews GO TO START N19%
C N196
Go YO 112 ni19?y
125 NJ = J ] 0198
PRINT 1000,NXsNJs JMAX
CALL INTERP 0199
c n200
Cesw GO TO AGAIN [NEXT CASE] 0201
C nz20?
GO TO 101 0203
CALL ExIY n204
C 0205
Cewwx MHALT 0204
c ' 0207
END na20n

04172, 15352

»KP POOONOD0

S

T
Vv

£

SA
TA
VA
ZA
NJ
NX

0017404
0017022
N016440
0016056
rpi5736
0015616
np15476
np1%356
0015355
0015354

no4oond
0040006
0040011
0040014
no20050
no20050
n020050
6020020

JMAYX

/00001
/00002
/00003
/onpo4

1000
/11001
/00100
N 000
*00001

0n15353
0Np0D40
0N00050
oNoGo53
nno011°>
nnpo0i122
ono0127
0000142
oni?

0700021
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SUBSROUTINE INTERP s I RS [ i e v sy (3 s i

00040
|+ 1 . 00020
C PROCEDURE INTERPOLATE 00030
C L) B . __00D4D
cC 000%s0
COMMON S(21,11),T(11,41),Vi11,11),2111,14)
COMMON SAI40|.TAI401.vA|4us.znr4ul 00070
_é____nnnmu_umxm_anx_ % 00080
, 00090
1 FORMATIAHND,//221X:40Kwwnen INTERPOLATION ALONG THE WAVE wwaww, - 00100
1/7,11HWAVE NUMBER,17X,1HS, 14X, 1HT, 14X, 1HV,14X,1HZ, /) 00110
— 2 FORMATIIN0,//,21X, I9Mewner INTERPQLATION BETIWEEN WAVES wewew, 00120
1/7,11HWAVE NUMBER, 17X, 1HS,» 14X, 1HT 14X, 1HV,14X,1HZ,7] 00130
3 FORMATI4H ,16,14X,1P4E15.5,/,121X,1P4E15,5)] 00140
C 00180
£ oy ) 00140
PRINT 1
Do 208 J=gt,NJ o | ) N
DO 205 N=1,NX
_IFIN=11201,200,201 _ -
200 IF(ZAIN)=2[JsJMAX]1202,202,208
__201 IF[ZAIN])=Z1J,J MAX))202,202,206
202 DO 203 M=1, MAYX
KT = M 5 ol
IFIZIJ,M1=ZAIN]1203,203,204
_ 203 CONTINUE - o T s
204 M = KT
SN, Al 54 i V. 00240
ST = [?IINI-ZIJ K11/ 1Z0JdeM)=Z1dsK))
SAIN) = S1J,K]+ST*(SIJ,MI=S[J,KL1) _ _ _ S Eata et
TAIN) = TIJsK)+ST=[TIJ,MI=T{JsK]]
- VAIN] = VIJ,KleSTe[VIiJsMI=VIJrK]])
205 CONTINUE
S B 2 0032
M 3 N
GA TO 207 AN
206 M = Ney
207 PRINT 3,J,ISAIN],TAIN],VAIN]I,ZAIN],N=1,M) 5
208 CONTINUE
c “eeia gl e L 0039
PRINT 2
N1 = NJe=q sl .
DO 224 J=i,NJ1
e . Dn 221 Nm3 NX
IFIN=1121%,209,211

209 IFIZAIN)=Z1.J,.JMAX]1213,213,210
210 IF(ZAIN)=Z[J*1,JMAX]1213,213,224

211 IF(ZAIN)=Z(J,JMAX]) 213,213,212 . et
212 IFI(ZAIN)=Z[J*1,JMAX]1213,213,222
213 DO 214 K=1, MAX
KY = K
IFIZ[J,K)=7AIN)]214,214,215% A=
214 CONTINUE
215 XK = KY

IF(K=JMAX?217,216,217

_ 216 IFIZAIN}=21J,K)11217,217,220
217 IF(Z1J+1,K=1]1-ZAIN1)218,218,219
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218 KY = Jel
M = Koy g T, A . B g W
ST = l?ll”l"ZIFT!HlI’[Z!.il"l‘Z[KTjﬂli
SAIN]) = SIKT,M)+ST*[S[J,K]=SIKT,M]]
TAIN] =2 TIKT,M)+STHITIJU,K])=TIKT,M]])
e VAIN) = VIKT M) ST [VIJsK)=VIKT,M])
GO TO 221
219 K = K=q L. s " _ SALE Adggnes
22N M = K
ST = [ZAINY=Z1UKIJZ1Z21Je1,M)=21JsK]))
SAIN) = S[J,K]+ST*[S[J+1.M)=S(J,K])
. TAINL = TULU)K]1+STH[TILU+1 . M1=T([J,K]))
VAIN)] = VIJ,K]eSTelVIJe1. M1=VI[J,K])

el CONTINGE . . : % -

C nNoé?
by, () S
GO TO 223
222 M 3 N=¢
223 PRINTY 3,Js[SAIN)STAIN),VAIN)SZAIN] N=1,M}
224 CONTINNE N Y g, N
c | nn74
e _RETURN_ _ nn7s
END no7s
_ 01475, 15352 _

INTERP 0000012 _
S 0017404 po4pon3
T.__0017022 0p40014
V 0016440 0040017
Z 0016056 0040022
SA 0015736 0020050
TA nn1%61©¢ nn20n05n0 .
VA np1%476 np20050

ZA_ 0p1%5356 gp20050 @

NJ 0015355

NX__ 0015354 =3
JMAX  0n153%53

/00001 nooon4> A e Oy R S L y 3 oy 2 -
/00002 09700112

/00003 gn001%6 s

J 0000025

+00001 0000026

N 0000n27

Z00201 annon23n : it s W RS S S SRR, S e W S
/00200 pnNoO0210

/00202 ponn2%0

/002n8 gnp0572

/np206 gno0535

M ppoopnd2

KI_ 0000033 ) e N S o
/00203 pnp0275

/00204 go003n4

K 000093;

/0020° 0000523

/00207 pnnn>4p . e o T i e e, el - a el
?Jl 0000350

66

/00209 gnood21
/002143 gno0723
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/00101 nno0145
J 000po22
=00012 nro0D23
K po0pn24

0«0 0000N26

/00102 popo224
/00103 pnoo243

000DO3D
0000n32
e 000pn34
EPS pnoppr62
DT opopop264
*c0002 poo0266
TEND  gnpp27g
VN  ppo0p272
0+> ppop274
i po0p276
2« 0000300
CN po0p304
SN poon310
SGRTF 0140410
SM 0000412

BSN 0000414
BSR 000D416
RM 0000420
ALP ppop422
1.0 0000430
/00104 poo0576
ABSF nN140432
+00110 poD2216
/00099 nro0623
/00105 nnpo6EII
/00106 pnolpd5
EXPF N140434

»IR £140710 EXT

0. 0000712
/00109 on02061

/00108 ppp1414

/00107 nnp1053
LOGF 140714

CU (000716

cL 0000720
/00111 onp2271
/00112 pnp2321
/00114 pnp2343
/00113 pnp2337
/00125 gno4122
/00115 gnp2353
/00118 pnp2655
ST 0001516
/00117 onn2545
/00116 p1p2435
C 00041520
/00121 pno3666
/00120 on032%0
/00119 onp2663
+00011 pno3164
/00122 pnp37%6
/00123 pnp3762
INTERP 0103166

153

EXT PROG

ExT PROG

EXT PROG
PROG

EXT PROG

EXT PROG



700124 0n04071
EXIT 0104140 EXT PROG




31 2.9 0.0 9. 04 0. 06 9.08 2.1 0.2

M za (1) ZA (2) ZA (3) ZA (L) za (5) za (6) zA (7)
00000000000000 0 0000000 0 0000000 O 00DOEE0 O 9000000 0 0080000 000000000 00000
illlilllll"Huuﬂl"lﬂ!nnnﬂﬂlﬂlllnnﬂillﬂIllnEUHIIHIIIGHHHEIHII.H!EHIIHI.HHHHHHHHHHI
RRRRREER R R R R R R AR R R AR R R R R R R AR R R RN R R RENE R IBRERBRRRRERE

222222222220222222222222222 222222222222222222222222222222222222222222222222 122
33333333 333333 333333333 333333333 333333333 333333333 333333333 333333333 33313
GHEETAEAA A0 0000 0000000000000 0000000000000 i e i
S SE5555555555555855555555555555555555555555555555555555555555555555
GEEEEEEEoG6666666666566666666666666ECCE66666666 GCEECEE6EGEGE6666666E66666666666
R R R R R R AR R R AR R R R AR R R R RN R AR R AR AR R AR AR R AR ARRRARE]
BOCCECOODO00C0D 800B0BBBE BEESEEBOC BERBOB00E BOGOBLBE0 & SOBE88E BOCBOBBEE B8BBS
9939999999999999999999999999999999999999999998999999999999999999999999999953998393

IlllilFIIt:“HHHHHHHHHHHHHHHHHIHﬂﬁﬂnlﬂﬂﬂﬂdﬂﬂﬂlﬂﬂﬂ.#ﬂHHHHHHHIIHEHHEHE.IHﬂHHHBHHHHH

0.4 2.5 2.5 1.9 2.0 4.9 6.0 8.0
zA (8) ZA (9) zA (10) za (1) 2za (12) zA (13) 2zA (Ak) zaA (15)
0000 000000000 000000000 0ODOOOEO0O00 0OOOOOO000 000000000 OODORODO0 000000000 QOO
T2 34587 0MUNDUBEITUENANEONESET AR DDMNENY ARG OOUESTARNNRDMESYERATERHEBESEBRNINNBRIANE
R R R R R R AR AR R R R RN R AR R R R R R R R R AR R RN RN R R R R R R R RN RN R RRRERERRE!

22222222222222222222222222222222222222222222 22222222222222222222222222222202222
33333 333333333 333333333 333333333 333333333 333333333 333333333 33333331313 33133
A 0400000004000 4000040400000 0000000000000 000000 0000040000 0000010000000 1A
S5 5555555055559 5585855559555 555555 55555555555 5555555555555555555555555555
GG6C6E6E66660666 GOEEGECE5CE0EGEEC6666660660606606C6E066666C066C666606 CEOBGEBBE6E6REEE
TTTIT R0 ITI IR e I I IIn eI nInennnnnenenrIannerInannenInenaeaIueeaanIaueaIunanaInenii
G666 BBEBBBOBE BE0G66GEEE BEGEOB80 BOCEUBONC NBGONGOEGE toOOGEGEE BEBBEGEEE REBY
§999999999999999599999999999999999999999999999999999999995999599995999959959954994%39

P23 A ST R IMNUENUBHRITINENZDNSETIABNINNNEERT R MIQLUCRTaaNRLMNESDSSIENEDMNEBETEDNINIRINNEENIIN-
i ]

Typical input nonlinear hysteretic model (sheet 1 of 2)
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19.9 12.9 14.9 1€.0 ie.n 2%.0 ec.0 24.9

ZA (16) 2zaA (17) 2a (18) ZA (19) zA (20) za (21) ZA (22) zaA (23)

0000 0 000000000 000000000 0DODOO0OOD0 000000000 000000 0 GOOCCO0BO 200000000 000
P2ZIASETRINNRUMISKT NN ZONSED AN 23023556 00 30 204041 42434066 0 84505 8205455 5557 5059 0061 G200 B4 G G5 O3 TOTY T2 TATU TS TR TT TR PO NG
R R R R R R R R AR R R R RN AR R R R R R R AR R R R AR RN RERERER RN R

22222222222222 22222222222222222222222222222222222222 222222222 22222222 222122
33333 333333333 333333333 333333333 333333333 333333333 333333333 333333333 3333
AR A0 0004004848400 000 0000004000400 00400000080840008 20048
S535505505555555555555555555555555555555555555555555555555555555555555555555555555
BOBOBCEGOOBBOEEE6E666666666666666606 G66666666666666666666666666666666666666666660
ITITI I r eI I e r I n I nn i e a11111111111111
88688 885660886 8066808882 B6BBOBBG8 58888888 868888886 88888608 885888688 8888
999093999959998999959995999999999995999999999999999999999599999999599999999999999

P23 A4S 67 B aMIRNIISETREINNADUSRTABNNRVUSRI BB EICOUSETEN9S PUUSS Y SURNORMSEOBANN N UTSIET NNL
o OHD

20. 40, S, : 0. 70. 3% 20. 100.

ZA (24) zA (25) za (26) za (27) zZA (28) za (29) zA (30) za (31)

0000 o0O0OOODOOD0 OOOOOOOODD OOOOOOQODOD ODOODODOOOOD OOOOODODO OODOODOOCODO ODOOOOOOOD oOOOOO
L2456 T P INUREZEIMISET NN ZDNSBYAANI RRUBR Y BN LNQUUEETNOUI RUHSSINOROROMEHGEAONN RN NNE
|0 600 0 T O AL O O DA N

2222222222222222222222222222222222202222220222220220220222202222222020222222220
333 3 333333333 333333333 333333333 333333333 333333333 333333333 333333333 11313
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Typical input nonlinear hysteretic model (sheet 2 of 2)
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V11

Comparative Studies of Various
Stress-Strain Models

A. ose

A one-dimensional wave propagation problem in a typical soil is
solved herein utilizing the computer programs presented in Chapter III,
V and VI for the linear hysteretic model, the nonlinear locking model and
the nonlinear hysteretic model respectively, in order to compare the re-
sulting solutions with a finite difference solution (28) of the same
problem in which the "actual" stress-strain curve for the soil is used.

The stress-strain relation for the soil under consideration is shown
in fig. VII-1l. During the early stages of loading the stress-strain
curve is concave downward indicating a "plastic” behavior of the material.
However, as the stress increases further, the curve becomes concave up-
ward indicating a "strain-hardening" behavior of the material. At stress
levels higher than those indicated in fig. VII-1, the tangent modulus will
generally continue to increase. During unloading the soil exhibits an
extremely stiff behavior at all stress levels except near zero where a
sharp breaking tail is evident. The result of a complete load cycle is a

considerably large permanent strain.

The overpressure-time relation used for the comparative studies is
shown in fig. VII-2 and is described by
P(t) = 700 g~ b/38 VII-1
where P(t) is expressed in psi and t is expressed in msec. The initial

mass density of the soil is P = 3.66 slugs/ft3 :
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Fig. VII-1. Uniaxial strain relation of real soil used
for model comparison study.
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Fig. VII-2. Overpressure-time relation for model
comparison study.
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B. Approximations to the soil
stress-strain curve with the various models

The approximations to the stress-strain curve of fig. VII-1l for the
various models are shown in figs. VII-3 through VII-6. Fig. VII-3 depicts
the piecewise-linear fit which was used to obtain the finite difference
solution of the problem. Six straight line segments were used to represent
the loading stress-strain characteristics and four straight line segments
were used to represent the unloading/reloading characteristics. The com-
parison (shown in fig. VII-3) of the piecewise-linear fit with the actual
soil relation indicates that the piecewise-linear model does indeed accu-
rately represent the "actual" soil stress-strain relation.

Fig. VII-4 shows the nonlinear locking model approximation to the
soil stress-strain curve (this model was discussed in Chapter V) and figs.
VII-5 and VII-6 show the linear hysteretic model and the nonlinear hyster-
etic model approximations, respectively (these models were discussed in
Chapters III and VI). For ease of comparison, the actual soil stress-
strain relation is also shown (as a dashed line) on each of these figs.
Note that all of the approximations to the loading stress-strain relation
pass in common through two points on the actual curve, the zero stress
level point and the 700-psi stress level point.

C. Results of the computer runs

The results of the computer runs for the various models are presented
as plots of the attenuation of peak vertical stress and particle velocity
with depth in figs. VII-7 and VII-8. In addition, stress-time histories
at various depths are shown in fig. VII-9 for the linear hysterétic moﬁel

and in figs. VII-10 and VII-1ll for the piecewise-linear model. Particle
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Fig. VII-5. ILinear hysteretic model fit.
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velocity-time histories at various depths are shown in figs. VII-12 and
VII-1l3 for the piecewise-linear model.

D. Discussion of results

The attenuations of peak vertical stress and particle velocity
with depth (figs. VII-7 and VII-8, respectively) for the various models
clearly indicate that the attenuation rates are related to the hysteretic
energy loss potential (area under the stress-strain curve) as well as the
details of the stress-strain curve associated with each model. The
piecewise-linear model (fig. VII-3) provides the highest attenuation rate
of peak vertical stress and particle velocity with depth. This is partly
due to the fact that the plastic behavior included in this model at the
lower stress levels causes a spreading and a slowing of the wave front
(i.e., an increase in rise-time and a decrease in wave velocity) as the
wave propagates down the soil columm (see figs. VII-10 through VII-13);
and partly because the piecewise-linear model incorporates a high hys-
teretic energy loss potential. The spreading and slowing of the front is
unique to this model; in effect, these phenomena allow unloading waves to
have more influence, i.e. cause more attenuation, at a given depth.
The other models all produce shocks. A shock will develop if the entire

loading stress-strain relation is of the form

d62

(which is the case for the nonlinear locking and the linear and nonlinear

hysteretic models).

The nonlinear hysteretic model (fig. VII-6), having the least amount
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of hysteretic energy loss potential, results in the lowest attenuation
rates. The linear hysteretic (fig. VII-5) and the nonlinear locking

(fig. VII-4) models, having practically the same hysteretic energy loss
potentials, result in similar attenuation rates of the peak stress and

particle velocity.

E. Other ground motion parameters

An interesting parameter associated with wave propagation (not ex-

plicitly studied herein), as far as the details of the stress-strain curve

are concerned, is particle acceleration. For a shock-fronted overpressure l
pulse (fig. VII-2) the stress and particle velocity wave forms will retain
a shock front if the loading stress-strain properties of the material are
of the form decr/ de® 2 o , as was discussed in Chapter II. This "jump"
discontinuity at the wave front results in an infinite value of particle
acceleration. Therefore, for the nonlinear locking, nonlinear hysteretic
and linear hysteretic models, the peak acceleration will be infinite at
all depths. However, the pilecewise-linear model cannot sustain a purely
shock~fronted particle velocity or stress wave form due to the inclusion

of the plastic behavior of the loading stress-strain curve at the lower
stress levels (see Chapter II). This is clearly demonstrated in figs. VII-
10 through VII-13 where the rise times of the stress and particle velocity
wave forms can be seen to continuously increase with depth. This results
in finite acceleration values and a large attenuation rate for peak accel-
eration. Unfortunately, accelerations obtained from finite difference
solutions have only qualitative value (28); hence no computed accelerations

are presented here.
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of hysteretic energy loss potential, results in the lowest attenuation
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(fig. VII-4) models, having practically the same hysteretic energy loss
potentials, result in similar attenuation rates of the peak stress and
particle velocity.
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acceleration. Therefore, for the nonlinear locking, nonlinear hysteretic
and linear hysteretic models, the peak acceleration will be infinite at
all depths. However., the piecewise-linear model cannot sustain a purely
shock-fronted particle velocity or stress wave form due to the inclusion
of the plastic behavior of the loading stress-strain curve at the lower
stress levels (see Chapter II). This is clearly demonstrated in figs. VII-
10 through VII-13 where the rise times of the stress and particle velocity
wave forms can be seen to continuously increase with depth. This results
in finite acceleration values and a large attenuation rate for peak accel-
eration. Unfortunately, accelerations obtained from finite difference
solutions have only qualitative value (28); hence no computed accelerations

are presented here.
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Particle displacements are not discussed herein either because the
computer codes presented in Chapters III, V and VI do not calculate dis-
placements.

F. Conclusions

Figs. VII-7 and VII-8 clearly indicate that computed wave propagation
results are sensitive to the stress-strain model chosen to represent
actual laboratory data. However, the variations in results exhibited by
the models considered for this study are not highly significant; in fact,
the "scatter" of these attenuation curves is of the same order of magnitude
one would expect to see in data retrieved from actual laboratory one-

dimensional wave propagation tests (29).
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