Approved for public release; distribution is unlimited.

# Capacity Verification for Modifying Little Sunflower Flood Control Drainage Structure Stop Log 

Guillermo A. Riveros, DeAnna Dixon, and Elias Arredondo<br>Information Technology Laboratory<br>U.S. Army Engineer Research and Development Center<br>3909 Halls Ferry Road<br>Vicksburg, MS 39180-6199

Final report
Approved for public release; distribution is unlimited.

[^0]
## Abstract

The Steel Bayou and Little Sunflower Flood Control Drainage Structures are the two drainage structures of the Yazoo Backwater Project. They were completed in 1969 and 1975, respectively. The structures allow the storm water of the Mississippi Delta to pass through the open vertical lift gates into the Mississippi/Yazoo River when stages on the riverside of the levees are lower than the stages on the interior basin. When the stages of the Mississippi/Yazoo River are higher than the stages of the interior basin, the vertical lift gates are closed, keeping floodwaters from backing up into the South Delta. The Steel Bayou Drainage Structure is located 0.75 mile north of the Yazoo River mile 9.7 and has four vertical lift gates 23.5 ft high and 31 ft wide. The Little Sunflower Drainage Structure is located north of the Yazoo River at mile 32.6 and has two vertical lift gates 25 ft wide and 22.5 ft high.

This report presents analytical and numerical calculations for the modification of the Steel Bayou stop logs to be used permanently at the Little Sunflower project. The calculations were conducted using the approach used to design miter gate horizontal girders using the 2001 criteria of the American Institute of Steel Construction (AISC) and the box girder calculations from the American Association of State Highways and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) bridge manual.

The AISC criteria yielded a cross section capable of resisting 6323.8 psf ( 101.3 ft of head) while the AASHTO bridge manual determined the weakest section with a capacity of 5229.2 psf ( 83.8 ft . of head). The numerical investigation correlated well with the box girder calculations and shows that the welding needs to have a capacity of at least the yield strength of the material.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

## Contents

Abstract ..... ii
Figures and Tables ..... iv
Preface ..... vi
Unit Conversion Factors. ..... vii
Notation ..... viii
1 Introduction. ..... 1
Objective ..... 4
Approach. ..... 6
2 Flexure and Shear Capacity Calculations ..... 7
AISC LRFD method for plate girders ..... 7
Geometrical properties of slender cross section ( $b_{e}=11.7$ in.) ..... 7
Geometrical properties for a noncompact cross section ( $b_{\mathrm{e}}=11.1$ ). ..... 7
Geometrical properties of a compact cross section ( $b_{e}=4.72$ ) ..... 10
Calculations of design and shear capacities for compact cross section ( $b_{e}=4.72$ in.) ..... 13
AASHTO LRFD method for single box sections ..... 20
Geometrical properties of box girder cross section ..... 20
Calculations of the flexural and shear capacities. ..... 24
3 Weld Capacity ..... 31
4 Finite Element Analysis ..... 37
Model description ..... 37
Displacement and load boundary conditions ..... 37
Results comparison with analytical solutions ..... 38
5 Conclusions and Recommendations ..... 41
References ..... 42
Report Documentation Page

## Figures and Tables

## Figures

Figure 1. Aerial view of the Steel Bayou Drainage Structure. ..... 1
Figure 2. The Steel Bayou Flood Control Drainage Structure. ..... 2
Figure 3. Steel Bayou Drainage Structure: schematic drawing of the width of each vertical lift gate showing the stop logs set between. ..... 2
Figure 4. Aerial view of the Little Sunflower Drainage Structure. ..... 3
Figure 5. The Little Sunflower Flood Control Drainage Structure ..... 3
Figure 6. Schematic drawing of the Little Sunflower Drainage Structure showing the width of each vertical lift gate with the stop logs set between ..... 4
Figure 7. Stop log extensions used for the Little Sunflower Flood Control Drainage Structure. ..... 5
Figure 8. Stop logs used on the Steel Bayou Flood Control Drainage Structure. ..... 5
Figure 9. The original cross section used for the AASHTO (1998) LRFD bridge design specification ..... 8
Figure 10. The modified cross section used for the AISC (2001) LRFD method using slender, noncompact, and compact effective widths. ..... 8
Figure 11. The modified cross section used for the AISC (2001) LRFD method using effective width $b_{e}=11.7 \mathrm{in}$. (slender). ..... 9
Figure 12. Modified cross section used for the AISC LRFD (AISC 2001) method using effective width $b_{e}=11.1 \mathrm{in}$. (noncompact). ..... 9
Figure 13. The modified cross section used for the AISC LRFD (AISC 2001) method using effective width $b_{e}=4.72$ in. (compact) ..... 10
Figure 14. Distance of Lb as it relates to the stop log. ..... 15
Figure 15. Original cross section used for the AASHTO (1998) LRFD bridge design specification ..... 21
Figure 16. Indication of weld with effective area 16.18 in.2. ..... 31
Figure 17. Indication of weld with effective area 9.75 in. ${ }^{2}$ ..... 32
Figure 18. Indication of the weld effective area 6.75 in. ${ }^{2}$ ..... 33
Figure 19. Indication of the weld with effective area 6 in. ${ }^{2}$ ..... 34
Figure 20. Indication of the weld with effective area 1.5 in. ${ }^{2}$ ..... 35
Figure 21. Geometrical model. ..... 37
Figure 22. Finite element mesh. ..... 38
Figure 23. Displacement boundary conditions. ..... 38
Figure 24. Force boundary conditions ..... 38
Figure 25. Stresses along longitudinal direction. ..... 39
Figure 26. Maximum principal stresses. ..... 39
Figure 27. Minimum principal stresses ..... 40

## Tables

Table 1. Geometrical properties of the cross section in y-direction for $b_{e}=4.72$ in ..... 11
Table 2. Geometrical properties used to determine the moment of inertia in y-direction for $b_{e}=4.72 \mathrm{in}$. ..... 11
Table 3. Geometrical properties of the cross section in the $x$-direction for $b_{e}=4.72$ in. ..... 12
Table 4. Geometrical properties used to determine the moment of inertia in the $x$ - direction for $b_{e}=4.72 \mathrm{in}$. ..... 12
Table 5. Geometrical properties of the cross section in $y$-direction for box girders. ..... 21
Table 6. Geometrical properties used to determine the moment of inertia in $y$-direction of box girders. ..... 22
Table 7. Geometrical properties of the cross section in $x$-direction for box girders. ..... 22
Table 8. Geometrical properties used to determine the moment of inertia in $x$-direction of box girders. ..... 22
Table 9. The results of the flexural, shear, and maximum pressure. ..... 41
Table 10. The results of the capacity of the weld in tension, compression, and shear. ..... 41

## Preface

This research was conducted under the Navigation Systems Research Program, Work Unit 9K76D4, "Inspection and Condition Assessment of Steel Hydraulic Structures." Program Manager was J ames E. Clausner, Associate Technical Director, Coastal and Hydraulics Laboratory (CHL), U.S. Army Engineer Research and Development Center (ERDC), Vicksburg, MS.

This report was prepared by Dr. Guillermo A. Riveros, DeAnna Dixon, and Elias Arredondo, Information Technology Laboratory (ITL), ERDC. The report was prepared under the general supervision of Dr. Kevin Abraham, Acting Chief, Computational Analysis Branch, Computational Science and Engineering Division, ITL; Dr. Robert Wallace, Chief, Computational Science and Engineering Division, ITL; and Dr. Reed Mosher, Director, ITL.

At the time of the publication of this report, COL Kevin J. Wilson was Commander and Executive Director of ERDC. Dr. J effery P. Holland was Director.

## Unit Conversion Factors

| Multiply | By | To Obtain |
| :--- | :---: | :--- |
| cubic inches | $1.6387064 \mathrm{E}-05$ | cubic meters |
| feet | 0.3048 | meters |
| foot-kips | 1.3558 | kilonewton-meters |
| inch-kips | 0.11298 | kilonewton-meters |
| inches | 0.0254 | meters |
| kips (1,000 lbf) | $4,448.222$ | newtons |
| kips per square inch | 6.894757 | megapascals |
| miles (U.S. statute) | $1,609.347$ | meters |
| pounds (force) | 4.448222 | newtons |
| pounds (force) per inch | 47.88026 | pascals |
| pounds (force) per square foot | 6.894757 | kilopascals |
| pounds (force) per square inch | 16.0186 | kilograms per cubic meter |
| pounds (mass) per cubic foot | $6.4516 \mathrm{E}-04$ | square meters |
| square inches |  |  |

## Notation

a
$\mathrm{a}_{\mathrm{r}} \quad$ ratio of web area $\mathrm{A}_{w}$ to cross-sectional area $\mathrm{A}_{f}$ of compression flange, in. ${ }^{2}$

A
area, in. ${ }^{2}$
$\mathrm{A}_{\mathrm{c}}$
area of the compression flange, in. ${ }^{2}$
$A_{f_{c}}$ compression flange area, in. ${ }^{2}$
$A_{f_{t}} \quad$ tension flange area, in. ${ }^{2}$
$\mathrm{A}_{0} \quad$ enclosed area within the box section, in. ${ }^{2}$
$\mathrm{A}_{w} \quad$ web area, in. ${ }^{2}$
b width, in.
$\mathrm{b}_{\mathrm{e}} \quad$ effective width, in.
$\mathrm{b}_{\mathrm{f}}$ width of flange, in.
$b_{f_{c}} \quad$ width of compression flange, in.
$b_{f_{t}} \quad$ width of tension flange, in.
C ratio of the shear buckling stress to the shear yield strength
$\mathrm{C}_{\mathrm{b}} \quad$ factor to account for moment gradient in beam strength
$\mathrm{C}_{\mathrm{pg}} \quad$ slenderness ratio limit

| d | perpendicular distance between the centroidal $\mathrm{X}-\mathrm{X}$ axis and the parallel Y-Y axis of each section |
| :---: | :---: |
| $\mathrm{d}_{0}$ | stiffener spacing, in. |
| $\mathrm{D}_{\mathrm{c}}$ | depth of the web, in. |
| E | modulus of elasticity, psi |
| $\mathrm{f}_{\mathrm{c}}$ | stress in the compression flange caused by the factored loading under investigation, ksi |
| $\mathrm{fu}_{u}$ | maximum flange stress in the panel under consideration due to the factor loading, ksi |
| $\mathrm{f}_{\mathrm{v}}$ | maximum St. Venant torsional shear stress in the flange plate due to the factored loads, ksi |
| $\mathrm{F}_{\text {cr }}$ | critical compression flange stress, ksi |
| $\mathrm{F}_{\mathrm{n}}$ | nominal flexural resistance, ksi |
| $\mathrm{Fr}_{\mathrm{r}}$ | factored flexural resistance, ksi |
| $\mathrm{F}_{\mathrm{y}}$ | yield stress, ksi |
| $\mathrm{F}_{\mathrm{yf}}$ | specified minimum yield strength of the flange, ksi |
| $\mathrm{F}_{\mathrm{yw}}$ | yield strength of the web, ksi |
| $\mathrm{F}_{\mathrm{yt}}$ | yield stress of tension flange, ksi. |
| h | distance between flanges when welds are used, in.; maximum height of stop $\log$ (Equation 30); height, in. (Tables 2, 4, 6, and 8) |
| $\mathrm{h}_{\mathrm{c}}$ | twice the distance from the section centroid to the inside faces of the flanges when welds are used for built-up sections |
| $\mathrm{I}_{\mathrm{x}, \mathrm{c},} \mathrm{I} \mathrm{I}_{\mathrm{y}, \mathrm{c}}$ | moment of inertia about the centroidal x - and y -axis |


| $\mathrm{I}_{\mathrm{xx}} \mathrm{I}_{\mathrm{yy}}$ | moment of inertia about the new xx- and yy-axis |
| :---: | :---: |
| J | torsional constant |
| $\mathrm{k}_{\mathrm{c}}$ | coefficient in $\lambda_{r}$ for welded I-shape |
| $\mathrm{k}_{\mathrm{v}}$ | elastic buckling coefficient for shear strength |
| K | elastic buckling coefficient for shear strength |
| L | length of stop log, ft |
| $L_{b}$ | laterally unbraced length, in. |
| M | moment, ft-kips |
| $\mathrm{M}_{\mathrm{n}}$ | nominal flexural strength, ft-kips |
| $\mathrm{M}_{\mathrm{u}}$ | design flexural strength, ft-kips |
| $\mathrm{P}_{\mathrm{c}}$ | maximum pressure, lb/ $\mathrm{ft}^{2}$ |
| $\mathrm{r}_{\mathrm{t}}$ | radius of gyration of compression flange plus one-third of the compression portion of the web, in. |
| $\mathrm{r}_{\mathrm{x},} \mathrm{r}_{\mathrm{y}}$ | radius of gyration about the strong and weak axes, respectively |
| R | weld capacity, kips |
| $\mathrm{R}_{\mathrm{b}}$ | flange-stress reduction factor |
| $\mathrm{R}_{\text {e }}$ | 1.0000 for nonhybrid girders |
| $\mathrm{R}_{\mathrm{h}}$ | flange-stress reduction factor $=1.0000$ for homogeneous sections |
| $\mathrm{R}_{\mathrm{pg}}$ | web stress reduction factor |

$S_{x_{c}}, S_{x_{t}} \quad$ section modulus of compression and tension flange, in. ${ }^{3}$, respectively
t plate thickness, in.
$\mathrm{t}_{\mathrm{f}}$ thickness of flange, in.
$t_{f_{c}} \quad$ thickness of compression flange, in.
$\mathrm{t}_{\text {max }}$ maximum thickness within the cross section, in.
$\mathrm{t}_{\mathrm{w}} \quad$ web thickness, in.
T internal torque resulting from the factored loads, k -in.
V shear, kips
$\mathrm{V}_{\mathrm{n}}, \mathrm{V}_{\mathrm{u}} \quad$ nominal and design shear strength, respectively, kips
$\mathrm{V}_{\mathrm{p}} \quad$ plastic shear force, kips
$\mathrm{V}_{\mathrm{r}} \quad$ factored shear resistance, kips
w uniform load, lb/ft
$\mathrm{w}_{\mathrm{m}}, \mathrm{w}_{\mathrm{s}} \quad$ uniform load for moment and shear, $\mathrm{lb} / \mathrm{ft}$, respectively
$\bar{x} \quad \mathrm{x}$-coordinate of the centroid, in.
y length of compression flange, ft
$\bar{y} \quad \mathrm{y}$-coordinate of the centroid, in.
$\gamma$
$\lambda \quad$ slenderness ratio limit
$\lambda_{p}, \lambda_{r} \quad$ slenderness ratio limit
$\tau_{\max } \quad$ maximum shear, kips
$\varphi \quad$ resistance factor $=0.9000$
$\varphi_{f} \quad$ resistance factor for flexure $=1.0000$
$\varphi_{v} \quad$ resistance factor $=0.9000$

## 1 Introduction

The Steel Bayou and Little Sunflower Flood Control Drainage Structures are the two drainage structures of the Yazoo Backwater Project. They were completed in 1969 and 1975, respectively. The structures allow the storm water of the Mississippi Delta to pass through the open vertical lift gates into the Mississippi/Yazoo River when stages on the riverside of the levees are lower than the stages on the interior basin. When the stages of the Mississippi/ Yazoo River are higher than the stages of the interior basin, the vertical lift gates are closed, keeping floodwaters from backing up into the South Delta. The Steel Bayou Drainage Structure is located 0.75 mile ${ }^{1}$ north of the Yazoo River mile 9.7 (Figure 1). It has four structural vertical lift gates 23.5 ft high and 31 ft wide as shown in Figures 2 and 3. The Little Sunflower Drainage Structure is located north of the Yazoo River at mile 32.6 (Figure 4). It has two vertical lift gates 25 ft wide and 22.5 ft high as shown in Figures 5 and 6.


Figure 1. Aerial view of the Steel Bayou Drainage Structure. (Furnished by U.S. Army Engineer District, Vicksburg).

[^1]

Figure 2. The Steel Bayou Flood Control Drainage Structure (photograph reproduced with permission by Quinta Scott, "Steele Bayou Drainage Structure," http://quintascott.wordpress.com, posted on May 31, 2011,accessed 8 May 2012).


Figure 3. Steel Bayou Drainage Structure: schematic drawing of the width of each vertical lift gate showing the stop logs set between.


Figure 4. Aerial view of the Little Sunflower Drainage Structure.


Figure 5. The Little Sunflower Flood Control Drainage Structure (from Mississippi Levee Board 2012).


Figure 6. Schematic drawing of the Little Sunflower Drainage Structure showing the width of each vertical lift gate with the stop logs set between

The U.S. Army Engineer District (USAED), Vicksburg, has a set of stop logs that were modified some time ago to be shared between the two structures. They were originally built for the Steel Bayou drainage structures. The Vicksburg District has developed an extension of the stop $\log$ (Figure 7). The extension consists of the cross section of the original stop log; however, they are connected with a bolted connection (Figure 8) to obtain the appropriate width and strengths for the Little Sunflower drainage structure. The USAED, Vicksburg, District Operations Division wants to modify the stop logs to be used permanently at the Little Sunflower site. This task will require that a new extension be built and welded to the existing stop log.

## Objective

The proposed effort includes multiple directions. First, the capacity of the Little Sunflower stop log must be determined with the new geometrical changes and extension. This will require the verification of the maximum applied loads (demand) that will reach the capacity of the weakest cross section. The capacity of the stop log will be determined using the American Institute of Steel Construction (AISC) Load and Resistance Factor Design (LRFD) (2001) and the American Association of State Highways and Transportation Officials (AASHTO) LRFD Bridge Design Specifications manuals (AASHTO 1998).


Figure 7. Stop log extensions used for the Little Sunflower Flood Control Drainage Structure. (Furnished by USAED Vicksburg.)


Figure 8. Stop logs used on the Steel Bayou Flood Control Drainage Structure. (Furnished by USAED Vicksburg).

## Approach

The following two approaches will be used:

- The first approach will involve using a plate girder of a modified box girder section according to the AISC LRFD manual (AISC 2001). This approach is similar to that used to design the horizontal girders of a miter gate (Headquarters, U.S. Army Corps of Engineers, 1994) in which an effective width of the skin plate is calculated and the capacity of an I-section is determined.
- The second approach will involve using the box girder capacity calculation according to the AASHTO LRFD Bridge Design Specifications manual (AASHTO 1998). This approach will also determine the capacity of the welded connection assuming a full-penetration groove weld. A three-dimensional finite element analysis of the stop log will be performed to verify the analytical solutions and to determine any possible hot spots in the structural system that cannot be determined using hand calculation analytical solutions.


## 2 Flexure and Shear Capacity Calculations

Calculations of the flexural and shear capacities were performed for two different cross sections (Figure 9 and 10). The capacity of the modified cross section (Figure 10) was determined using AISC LRFD (AISC 2001). The cross section was modified into an I-shaped beam with skin plate effective widths for slender, noncompact, and compact sections (Figures 11, 12, and 13 , respectively). The flexural and shear strength of the original section (Figure 9) was calculated using the AASHTO LRFD bridge design specifications (AASHTO 1998) for box girder sections. The minimum values of moment and shear of the different methods were used to determine the maximum applied loads used to develop the yield strength.

## AISC LRFD method for plate girders

## Geometrical properties of slender cross section ( $\left.b_{e}=11.7 \mathrm{in}.\right)^{1}$

The cross section of the plate girder was modified by cutting the original cross section to find the design flexural and shear strength for plate girders according to Appendix G of AISC LRFD (AISC 2001). The section in Figure 11, the effective width of the flange was taken as half of the distance between the webs of the original cross section. This resulted in an effective width of 11.7 in ., making the section slender.

When the limit state for flange local buckling is calculated ( $\lambda \leq \lambda_{p}$ ), this makes the section compact. Therefore, the calculations for the slender section will not be determined.

## Geometrical properties for a noncompact cross section ( $b_{e}=11.1$ )

The cross section of the plate girder was modified (Figure 12) as if we were to cut the original cross section to find the design flexural and shear strength according to Appendix G of AISC LRFD (AISC 2001). The effective width $b_{e}=11.1 \mathrm{in}$. was calculated using Table B5.1 of the AISC LRFD manual (AISC 2001).

[^2]

Figure 9. The original cross section used for the AASHTO (1998) LRFD bridge design specification.


Figure 10. The modified cross section used for the AISC (2001) LRFD method using slender, noncompact, and compact effective widths.


Figure 11. The modified cross section used for the AISC (2001) LRFD method using effective width $b_{e}=11.7 \mathrm{in}$. (slender).


Figure 12. Modified cross section used for the AISC LRFD (AISC 2001) method using effective width $b_{e}=11.1 \mathrm{in}$. (noncompact).


Figure 13. The modified cross section used for the AISC LRFD (AISC 2001) method using effective width $b_{e}=4.72 \mathrm{in}$. (compact)

When the limit state for flange local buckling is calculated ( $\lambda \leq \lambda_{p}$ ), this makes the section compact. Therefore the calculations for the noncompact section will not be determined.

## Geometrical properties of a compact cross section ( $b_{e}=4.72$ )

The cross section of the plate girder was modified (Figure 13) as if the original cross section were to be cut to find the design flexural and shear strength according to Appendix G of AISC LRFD (AISC 2001). The effective width $\mathrm{b}_{\mathrm{e}}=4.72 \mathrm{in}$. was calculated using Table B5.1 of the AISC LRFD manual (AISC 2001).

The y-coordinate of the centroid is calculated as

$$
\begin{equation*}
\overline{\mathrm{y}}=\frac{\Sigma \mathrm{AY}}{\Sigma \mathrm{~A}}=\frac{274.5977 \mathrm{in}^{3}}{20.8776 \mathrm{in}^{2}}=13.1527 \mathrm{in} . \tag{1}
\end{equation*}
$$

where $Y$ is measured from the base of Figure 13 to the centroid of each section. Table 1 lists the geometrical properties of the cross section in the y -direction for $\mathrm{b}_{\mathrm{e}}=4.72 \mathrm{in}$. (compact).

Table 1. Geometrical properties of the cross section in y-direction for $b_{e}=$ 4.72 in. (compact).

| Section | $b$, in. | $h$, in. | $A$, in. $^{2}$ | $Y$, in. | $A Y$, in. $^{3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 8.0000 | 0.7500 | 6.0000 | 0.3750 | 2.2500 |
| 2 | 0.3750 | 26.0000 | 9.7500 | 13.7500 | 134.0625 |
| 3 | 6.8125 | 0.4375 | 2.9805 | 26.9688 | 80.3805 |
| 4 | 0.3750 | 0.4375 | 0.1641 | 26.9688 | 4.4256 |
| 5 | 4.5325 | 0.4375 | 1.9830 | 26.9688 | 53.4791 |
|  |  |  | $\Sigma=20.8776$ |  | $\Sigma=274.5977$ |

Note: $b=$ in.; $h=$ height, in.; $A=$ area, in.2;

The moment of inertia about the new xx-axis is calculated as

$$
\begin{equation*}
I_{x x}=I_{x, c}+\text { Ad }^{2}=2508.2380 \text { in. }^{4} \tag{2}
\end{equation*}
$$

where
$\mathrm{I}_{\mathrm{xx}}=$ moment of inertia about the new xx -axis
$\mathrm{I}_{\mathrm{x}, \mathrm{c},}=$ moment of inertia about the centroidal x -axis
$\mathrm{d}=$ perpendicular distance between the centroidal $\mathrm{X}-\mathrm{X}$ axis and the parallel Y-Y axis of each section

Table 2 lists the geometrical properties used to determine the moment of inertia in the $y$-direction for $\mathrm{b}_{\mathrm{e}}=4.72 \mathrm{in}$. (compact).

Table 2. Geometrical properties used to determine the moment of inertia in $y$-direction for $b_{e}=4.72 \mathrm{in}$. (compact)

| Section | $I_{x, c}=\frac{b h^{3}}{12}$ in. ${ }^{4}$ | $A, \mathrm{in} .^{2}$ | d, in. | $A d^{2}$, in. $^{3}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0.2813 | 6.0000 | 12.7777 | 979.6177 |
| 2 | 549.2500 | 9.7500 | 0.1527 | 0.2273 |
| 3 | 0.0475 | 2.9805 | -13.8161 | 568.9316 |
| 4 | 0.0026 | 0.1641 | -13.8161 | 31.3242 |
| 5 | 0.0316 | 1.9830 | -13.8161 | 378.5242 |
|  | $\Sigma=549.6130$ | $\Sigma=20.8776$ |  | $\Sigma=1958.6250$ |

The $x$-coordinate of the centroid is calculated as

$$
\begin{equation*}
\overline{\mathrm{x}}=\frac{\Sigma \mathrm{AX}}{\Sigma \mathrm{~A}}=\frac{22.0323 \mathrm{in} .^{3}}{20.8776 \mathrm{in}^{2}{ }^{2}}=1.0553 \mathrm{in} . \tag{3}
\end{equation*}
$$

where X is measured as the absolute distance from the origin of the X -axis to the center of the base of Figure 13. Table 3 lists the geometrical properties of the cross section in the x -direction for $\mathrm{b}_{\mathrm{e}}=4.72 \mathrm{in}$. (compact).

Table 3. Geometrical properties of the cross section in the $x$-direction for $b_{e}=4.72$ in. (compact).

| Section | $b$, in. | $h$, in. | $A$, in. $^{2}$ | $X$, in. | $A X$, in. $^{3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 8.0000 | 0.7500 | 6.0000 | 0.0000 | 0.0000 |
| 2 | 0.3750 | 26.0000 | 9.7500 | 0.0000 | 0.0000 |
| 3 | 6.8125 | 0.4375 | 2.9805 | 3.5000 | 10.4318 |
| 4 | 0.3750 | 0.4375 | 0.1641 | 0.0000 | 0.0000 |
| 5 | 4.5325 | 0.4375 | 1.9830 | 5.8500 | 11.6005 |
|  |  |  | $\Sigma=20.8776$ |  | $\Sigma=22.0323$ |

The moment of inertia about the new yy-axis is calculated as

$$
\begin{equation*}
\mathrm{I}_{\mathrm{yy}}=\mathrm{I}_{\mathrm{y}, \mathrm{c}}+\operatorname{Ad}^{2}=209.9820 \mathrm{in}^{4} \tag{4}
\end{equation*}
$$

where
$\mathrm{I}_{\mathrm{yy}}=$ moment of inertia about the new yy-axis
$\mathrm{I}_{\mathrm{y}, \mathrm{c}}=$ moment of inertia about the centroidal y -axis
Table 4 lists the geometrical properties used to determine the moment of inertia in the x -direction for $\mathrm{b}_{\mathrm{e}}=4.72 \mathrm{in}$. (compact)

Table 4. Geometrical properties used to determine the moment of inertia in the $x$-direction for $b_{e}=4.72 \mathrm{in}$. (compact).

| Section | $I_{y, \boldsymbol{c}}=\frac{b^{3} h}{12}$ in. $^{4}$ | $A$, in. ${ }^{4}$ | $d$, in. | Ad $^{2}$, in. $^{4}$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 32.0000 | 6.0000 | 1.6671 | 16.6753 |
| 2 | 0.1143 | 9.7500 | 1.6671 | 27.0974 |
| 3 | 11.5270 | 2.9805 | 5.2609 | 82.4915 |
| 4 | 0.0019 | 0.1641 | 1.6671 | 0.4561 |
| 5 | 3.3948 | 1.9830 | 4.2767 | 36.2237 |
|  | $\Sigma=47.0380$ | $\Sigma=20.8776$ |  | $\Sigma=162.9440$ |

Results for the radius of gyration about the strong and weak axes are shown in Equations 5 and 6, respectively. Equations 7 and 8 show the section modulus of tension and compression, respectively, for the strong axis.

$$
\begin{align*}
& r_{x}=\sqrt{\frac{I_{x x}}{A}}=\sqrt{\frac{2508.2380 \mathrm{in}^{.4}}{20.8776 \mathrm{in}^{2}}}=10.9608 \mathrm{in} .  \tag{5}\\
& r_{y}=\sqrt{\frac{I_{y y}}{A}}=\sqrt{\frac{209.9820 \mathrm{in}^{.4}}{20.8776 \mathrm{in}^{2}}}=3.1714 \mathrm{in} .  \tag{6}\\
& \mathrm{S}_{\mathrm{x}_{\mathrm{t}}}=\frac{\mathrm{I}_{\mathrm{xx}}}{\mathrm{y}_{\text {top }}}=\frac{2508.2380 \mathrm{in} .^{4}}{14.0348 \mathrm{in} .}=178.7156 \mathrm{in} .{ }^{3}  \tag{7}\\
& \mathrm{~S}_{\mathrm{x}_{\mathrm{c}}}=\frac{\mathrm{I}_{\mathrm{xx}}}{\mathrm{y}_{\mathrm{bottom}}}=\frac{2508.2380 \mathrm{in} .^{4}}{13.1527 \mathrm{in} .}=190.7014 \mathrm{in} .^{3} \tag{8}
\end{align*}
$$

where

$$
\begin{aligned}
\mathrm{r}_{\mathrm{x}} & =\text { radius of gyration about the strong axis, in. } \\
\mathrm{r}_{\mathrm{y}} & =\text { radius of gyration about the weak axis, in } \\
S_{x_{t}} & =\text { section modulus of tension flange, in. }{ }^{3} \\
S_{x_{c}} & =\text { section modulus of compression flange, in. }{ }^{3}
\end{aligned}
$$

## Calculations of design and shear capacities for compact cross section

 ( $b_{\mathrm{e}}=4.72 \mathrm{in}$.)
## Design flexural strength

The cross section is ASTM-A36 Steel with a modulus of elasticity of $\mathrm{E}=29 \times 10^{6} \mathrm{psi}$.

Tension-flange yield

$$
\begin{equation*}
M_{n}=S_{x t} \times R_{e} \times F_{y t} \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
M_{n} & =\text { nominal flexural strength, ft-kips } \\
R_{e} & =1.0000 \text { for nonhybrid girders }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{F}_{\mathrm{yt}}= & \text { yield stress of tension flange, } \mathrm{ksi} \\
\mathrm{M}_{\mathrm{n}}= & (178.7156 \mathrm{in} .3)(1.0000)(36.0000 \mathrm{ksi})=6,433.7616 \mathrm{in} .-\mathrm{kips}= \\
& 536.1468 \mathrm{ft}-\mathrm{kips}
\end{aligned}
$$

$$
\begin{equation*}
M_{u}=M_{n} \times \phi \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{M}_{\mathrm{u}} & =\text { design flexural strength, ft-kips } \\
\phi & =\text { resistance factor }=0.9000 \\
\mathrm{M}_{\mathrm{u}} & =(536.1468 \mathrm{ft}-\mathrm{kips})(0.9000)=482.5321 \mathrm{ft}-\mathrm{kips}
\end{aligned}
$$

Compression-flange buckling

$$
\begin{equation*}
\mathrm{M}_{\mathrm{n}}=\mathrm{S}_{\mathrm{xc}} \times \mathrm{R}_{\mathrm{pg}} \times \mathrm{R}_{\mathrm{e}} \times \mathrm{F}_{\mathrm{cr}} \tag{11}
\end{equation*}
$$

where $F_{c r}$ is the critical compression flange stress, ksi.

$$
\begin{gather*}
\mathrm{R}_{\mathrm{pg}}=1-\frac{\mathrm{a}_{\mathrm{r}}}{1200+300 \mathrm{a}_{\mathrm{r}}}\left(\frac{\mathrm{~h}_{\mathrm{c}}}{\mathrm{t}_{\mathrm{w}}}-5.70 \sqrt{\frac{\mathrm{E}}{\mathrm{~F}_{\mathrm{cr}}}}\right) \leq 1.0  \tag{12}\\
\mathrm{a}_{\mathrm{r}}=\frac{\mathrm{A}_{\mathrm{w}}}{\mathrm{~A}_{\mathrm{fc}}}=\frac{2 \mathrm{~h}_{\mathrm{c}} \mathrm{t}_{\mathrm{w}}}{\mathrm{~b}_{\mathrm{fc}} \mathrm{t}_{\mathrm{fc}}}=\frac{2(12.4027 \mathrm{in} .)(0.3750 \mathrm{in} .)}{(8.0000 \mathrm{in} .)(0.7500 \mathrm{in} .)}=1.5503 \tag{13}
\end{gather*}
$$

where
$\mathrm{R}_{\mathrm{pg}}=$ web stress reduction factor
$\mathrm{a}_{\mathrm{r}}=$ ratio of web area $\mathrm{A}_{\mathrm{w}}$ to cross sectional area $A_{f c}$ of compression flange, in. ${ }^{2}$
$h_{c}=$ twice the distance from the section centroid to the inside faces of the flanges when welds are used for built-up sections
$\mathrm{t}_{\mathrm{w}}=$ web thickness, in.
$\mathrm{E}=$ modulus of elasticity, psi
$\mathrm{A}_{\mathrm{w}}=$ web area, in. ${ }^{2}$
$\mathrm{A}_{\mathrm{fc}}=$ compression flange area, in. ${ }^{2}$
$\mathrm{b}_{\mathrm{fc}}=$ width of compression flange, in.
$\mathrm{t}_{\mathrm{fc}}=$ thickness of compression flange, in.

$$
\mathrm{R}_{\mathrm{pg}}=1-\frac{1.5503}{1200+300(1.5503)}\left(\frac{12.4027 \mathrm{in} .}{0.3750 \mathrm{in} .}-5.70 \sqrt{\frac{29,000 \mathrm{ksi}}{36.000 \mathrm{ksi}}}\right)=1.1198
$$

The critical stress $F_{c r}$ to be used is dependent upon the slenderness parameters $\lambda, \lambda_{r}, \lambda_{p}$ and $C_{p g}$ as follows:

1. Limit state of lateral-torsional buckling:

$$
\begin{equation*}
\lambda=\frac{\mathrm{L}_{\mathrm{b}}}{\mathrm{r}_{\mathrm{T}}}=\frac{92.5625 \mathrm{in} .}{0.2165 \mathrm{in} .+4.1342 \mathrm{in} .}=21.2753 \tag{14}
\end{equation*}
$$

where
$\mathrm{L}_{\mathrm{b}}=$ laterally unbraced length, in. (Figure 14)
$r_{T}=$ radius of gyration of compression flange plus $1 / 3$ of the compression portion of the web, in.


Figure 14. Distance of $L_{b}$ as it relates to the stop log. (Furnished by USAED, Vicksburg).

$$
\begin{align*}
& \lambda_{\mathrm{p}}=1.76 \sqrt{\frac{\mathrm{E}}{\mathrm{~F}_{\mathrm{yf}}}}=49.9529  \tag{15}\\
& \lambda_{\mathrm{r}}=4.44 \sqrt{\frac{\mathrm{E}}{\mathrm{~F}_{\mathrm{yf}}}}=126.0175 \tag{16}
\end{align*}
$$

For $\lambda \leq \lambda_{\mathrm{p}}$, then $\mathrm{F}_{\mathrm{cr}}=\mathrm{F}_{\mathrm{yf}}$
where $\mathrm{F}_{\mathrm{yf}}$ is the specified minimum yield strength of the flange, ksi .

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{n}}=\mathrm{S}_{\mathrm{xc}} \times \mathrm{R}_{\mathrm{pg}} \times \mathrm{R}_{\mathrm{e}} \times \mathrm{F}_{\mathrm{cr}} \\
&=\left(190.7014 \mathrm{in} .^{3}\right)(1.1198)(1.0000)(36.0000 \mathrm{ksi}) \\
&= 7,687.7074 \mathrm{in} .-\mathrm{kips}=640.6423 \mathrm{ft}-\mathrm{kips} \\
& \mathrm{M}_{\mathrm{u}}=\mathrm{M}_{\mathrm{n}} \times \phi=(640.6423 \mathrm{ft}-\mathrm{kips})(0.9000)=576.5780 \mathrm{ft}-\mathrm{kips}
\end{aligned}
$$

2. Limit state of flange local buckling:

$$
\begin{equation*}
\lambda=\frac{\mathrm{b}_{\mathrm{f}}}{\mathrm{t}_{\mathrm{f}}}=\frac{8.0000 \mathrm{in} .}{(0.7500 \mathrm{in} .)}=10.6667 \tag{17}
\end{equation*}
$$

where $b_{f}$ and $\mathrm{t}_{f}$ are the width and thickness of the flange, in., respectively.

$$
\begin{align*}
& \lambda_{\mathrm{p}}=0.38 \sqrt{\frac{\mathrm{E}}{\frac{\mathrm{~F}_{\mathrm{yf}}}{}}}=10.7853  \tag{18}\\
& \lambda_{\mathrm{r}}=1.35 \sqrt{\frac{\mathrm{E}}{\frac{\mathrm{~F}_{\mathrm{yf}}}{\mathrm{k}_{\mathrm{c}}}}}=26.5572 \tag{19}
\end{align*}
$$

where $\mathrm{k}_{\mathrm{c}}$, the coefficient in $\lambda_{r}$ for welded I-shape, is calculated as

$$
\begin{gather*}
\mathrm{k}_{\mathrm{c}}=\frac{4}{\sqrt{\frac{\mathrm{~h}}{\mathrm{t}_{\mathrm{w}}}}}=\frac{4}{\sqrt{\frac{26.0000}{0.3750}}}=0.4804  \tag{20}\\
\text { For } \lambda \leq \lambda_{\mathrm{p}} \text { then, } \\
\mathrm{F}_{\mathrm{cr}}=\mathrm{F}_{\mathrm{yf}}  \tag{21}\\
\mathrm{R}_{\mathrm{pg}}=1-\frac{1.5503}{1200+300(1.5503)}\left(\frac{12.4027 \mathrm{in} .}{0.3750 \mathrm{in} .}-5.70 \sqrt{\frac{29,000 \mathrm{ksi}}{36.0000 \mathrm{ksi}}}\right)=1.1198
\end{gather*}
$$

$$
\begin{aligned}
\mathrm{M}_{\mathrm{n}} & =\mathrm{S}_{\mathrm{xc}} \times \mathrm{R}_{\mathrm{pg}} \times \mathrm{R}_{\mathrm{e}} \times \mathrm{F}_{\mathrm{cr}} \\
& =(190.7014)(1.1198)(1.000)(36.000 \mathrm{ksi}) \\
& =7687.7074 \mathrm{in} .-\mathrm{kips}=640.6423 \mathrm{ft}-\mathrm{kips} \\
\mathrm{M}_{\mathrm{u}}=\mathrm{M}_{\mathrm{n}} \times \phi & =(640.6423 \mathrm{ft}-\text { kips })(0.9000)=576.5781 \mathrm{ft}-\text { kips }
\end{aligned}
$$

Design shear strength
According to Section G3.1 of AISC (2010), consideration for tension field action is not permitted for the following:

- For end panels in all members with transverse stiffeners;
- When $\frac{a}{h}$ exceeds 3.0 or $\left[\frac{260}{\left(\frac{h}{t_{w}}\right)}\right]^{2}$;
- When $\frac{2 A_{w}}{A_{f c}+A_{f t}}>2.5$; or
- When $\frac{h}{b_{f c}}$ or $\frac{h}{b_{f t}}>6.0$.

For this case,

$$
\frac{\mathrm{a}}{\mathrm{~h}}=\frac{92.5626}{26.000}=3.5601>3
$$

where

$$
\begin{aligned}
\mathrm{a} & =\text { clear distance between transverse stiffeners, in. } \\
\mathrm{A}_{\mathrm{w}} & =\text { web area, in. }{ }^{2} \\
A_{f_{c}} & =\text { compression flange area, in. }{ }^{2} \\
b_{f_{t}} & =\text { width of tension flange, in. }
\end{aligned}
$$

Therefore, tension field action is not considered.

$$
\begin{equation*}
\mathrm{V}_{\mathrm{u}}=\phi_{\mathrm{v}} \mathrm{~V}_{\mathrm{n}} \tag{22}
\end{equation*}
$$

where
$\mathrm{V}_{\mathrm{u}}=$ design shear strength, kips
$\phi_{\mathrm{v}}=$ resistance factor $=0.9000$

$$
\mathrm{V}_{\mathrm{n}}=\text { nominal shear strength, kips }
$$

For

$$
\text { If } \frac{\mathrm{h}}{\mathrm{t}_{\mathrm{w}}} \leq 1.10 \sqrt{\frac{\mathrm{k}_{\mathrm{v}} \mathrm{E}}{\mathrm{~F}_{\mathrm{yw}}}}
$$

Then,

$$
\begin{equation*}
\mathrm{V}_{\mathrm{n}}=0.6 \mathrm{~F}_{\mathrm{yw}} \mathrm{~A}_{\mathrm{w}} \tag{23}
\end{equation*}
$$

where

$$
\begin{gathered}
\begin{array}{c}
\mathrm{k}_{\mathrm{v}}=\text { the elastic buckling coefficient for shear strength } \\
\mathrm{F}_{\mathrm{yw}}=\text { yield strength of the web, ksi } \\
\mathrm{k}_{\mathrm{v}}=5.0000 \\
\text { when } \frac{\mathrm{a}}{\mathrm{~h}}>3 \\
\frac{\mathrm{a}}{\mathrm{~h}}=\frac{92.5625}{26.0000}=3.5601 \\
\text { therefore, } \mathrm{k}_{\mathrm{v}}=5 \\
\frac{\mathrm{~h}}{\mathrm{t}_{\mathrm{w}}}=\frac{26.0000}{0.3750}=69.333 \overline{3} \text { and } \\
1.10 \sqrt{\frac{\mathrm{k}_{\mathrm{v}} \mathrm{E}}{\mathrm{~F}_{\mathrm{yw}}}}=1.10 \sqrt{\frac{(5.0000)(29,000)}{36}}=69.8113 \\
69.333 \overline{3} \leq 69.8113
\end{array}
\end{gathered}
$$

Therefore

$$
\begin{aligned}
\mathrm{V}_{\mathrm{n}} & =0.6 \mathrm{~F}_{\mathrm{yw}} \mathrm{~A}_{\mathrm{w}}=(0.6000)(36.0000 \mathrm{ksi})(26.0000 \mathrm{in} . \times 0.3750 \mathrm{in} .) \\
& =210.6000 \mathrm{kips}
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{u}}=\phi_{\mathrm{v}} \mathrm{~V}_{\mathrm{n}}=(210.6000 \mathrm{kips})(0.9000)=189.5400 \mathrm{kips}
$$

The maximum uniform loads were determined using the minimum moment of 482.6932 ft -kips (tension flange) and a shear capacity of 189.5400 kips calculated using Equations 25 and 27.

$$
\begin{equation*}
\mathrm{M}=\frac{\mathrm{w}_{\mathrm{m}} \mathrm{~L}^{2}}{8} \tag{24}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{M} & =\text { moment (ft-kips) } \\
\mathrm{w}_{\mathrm{m}} & =\text { uniform load for moment, lb/ft } \\
\mathrm{L} & =\text { length of stop } \log (\mathrm{ft})
\end{aligned}
$$

Equation 24 was modified as follows:

$$
\begin{gather*}
\mathrm{w}_{\mathrm{m}}=\frac{\mathrm{M} \times 8}{\mathrm{~L}^{2}}  \tag{25}\\
\mathrm{w}_{\mathrm{m}}=\frac{482.5321 \mathrm{ft}-\mathrm{kips} \times 8.0000 \times 1000.0000 \mathrm{lb}}{25.0000^{2} \mathrm{ft}^{2}}=6176.4109 \mathrm{lb} / \mathrm{ft} \\
\mathrm{~V}=\frac{\mathrm{w}_{\mathrm{s}} \times \mathrm{L}}{2} \tag{26}
\end{gather*}
$$

where

$$
\begin{aligned}
\mathrm{V} & =\text { shear (kips) } \\
\mathrm{w}_{\mathrm{s}} & =\text { uniform load for shear, } \mathrm{lb} / \mathrm{ft}
\end{aligned}
$$

Equation 26 was modified as follows:

$$
\begin{gather*}
\mathrm{w}_{\mathrm{s}}=\frac{\mathrm{V} \times 2}{\mathrm{~L}}  \tag{27}\\
\mathrm{w}_{\mathrm{s}}=\frac{189.5400 \mathrm{kips} \times 2.0000 \times 1000.0000 \mathrm{lb}}{25.0000 \mathrm{ft}}=15,163.2000 \mathrm{lb} / \mathrm{ft}
\end{gather*}
$$

The maximum pressure was determined using the minimum uniform load value between the moment and shear.

$$
\begin{equation*}
P_{c}=\frac{w}{y} \tag{28}
\end{equation*}
$$

where
$\mathrm{P}_{\mathrm{c}}=$ maximum pressure, $\mathrm{lb} / \mathrm{ft}^{2}$
$\mathrm{w}=$ minimum uniform load, $\mathrm{lb} / \mathrm{ft}$
$\mathrm{y}=$ width of compression flange, ft

$$
\mathrm{P}_{\mathrm{c}}=\frac{6176.4109 \mathrm{lb} / \mathrm{ft}}{0.9767 \mathrm{ft}}=6,323.7544 \mathrm{lb} / \mathrm{ft}
$$

Then, the maximum height of water that the stop log can resist at the moment the yield strength is accomplished is as follows:

$$
\begin{equation*}
\mathrm{h}=\frac{\mathrm{P}_{\mathrm{c}}}{\mathrm{Y}} \tag{29}
\end{equation*}
$$

where
$\mathrm{h}=$ maximum height of stop log, ft
$\gamma=$ specific weight of water, $\mathrm{lb} / \mathrm{ft}^{3}$

$$
\mathrm{h}=\frac{6,323.7544 \mathrm{lb} / \mathrm{ft} \frac{\mathrm{lb}}{\mathrm{ft}^{2}}}{62.4000 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}}=101.3422 \mathrm{ft}
$$

## AASHTO LRFD method for single box sections

## Geometrical properties of box girder cross section

The following cross section was used to find the design flexural and shear strength according to AASHTO LRFD Bridge Specification Section 6.11.2 (AASHTO 1998) for box sections.

The geometrical properties were calculated by dividing the section (Figure 15) into eight parts. The results for the Y-Y neutral axis and the
moment of inertia on X-X are shown in Tables 5 and 6, while the results for the X - X neutral axis and the moment of inertia on Y - Y are shown in Tables 7 and 8.


Figure 15. Original cross section used for the AASHTO (1998) LRFD bridge design specification.

Table 5. Geometrical properties of the cross section in $y$-direction for box girders.

| Section | $b$, in. | $h$, in. | $A$, in. $^{2}$ | $Y$, in. | $A Y$, in. ${ }^{3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0.7500 | 9.0000 | 6.7500 | 34.6875 | 234.1406 |
| 2 | 26.0000 | 0.3750 | 9.7500 | 34.6875 | 338.2031 |
| 3 | 4.0000 | 0.3750 | 1.5000 | 37.1875 | 55.7813 |
| 4 | 0.4375 | 6.4375 | 2.8164 | 33.7813 | 95.1417 |
| 5 | 0.4375 | 23.7500 | 10.3906 | 18.6875 | 194.1743 |
| 6 | 26.0000 | 0.3750 | 9.7500 | 7.1875 | 70.0781 |


| 7 | 0.7500 | 8.0000 | 6.0000 | 7.1875 | 43.1250 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | 0.4375 | 6.8125 | 2.9805 | 3.4063 | 10.1525 |
|  |  |  | $\Sigma=49.9375$ |  | $\Sigma=1040.7966$ |

Table 6. Geometrical properties used to determine the moment of inertia in $y$-direction of box girders.

| Section | $I_{x, c}=$ bh $^{3} / 12$ in. $^{4}$ | $A$, in. $^{2}$ | $d$, in, | Ad $^{2}$, in. |
| :--- | :--- | :--- | :--- | :--- |

Table 7. Geometrical properties of the cross section in x-direction for box girders.

| Section | $b$, in. | $h$, in. | $A$, in. ${ }^{2}$ | $X$, in. | $A X$, in $^{3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0.7500 | 9.0000 | 6.7500 | 26.5938 | 179.5082 |
| 2 | 26.0000 | 0.3750 | 9.7500 | 13.2188 | 128.8833 |
| 3 | 4.0000 | 0.3750 | 1.5000 | 0.0000 | 0.0000 |
| 4 | 0.4375 | 6.4375 | 2.8164 | 0.0000 | 0.0000 |
| 5 | 0.4375 | 23.7500 | 10.3906 | 0.0000 | 0.0000 |
| 6 | 26.0000 | 0.3750 | 9.7500 | 13.2188 | 128.8833 |
| 7 | 0.7500 | 8.0000 | 6.0000 | 26.5938 | 159.5628 |
| 8 | 0.4375 | 6.8125 | 2.9805 | 0.0000 | 0.0000 |
|  |  |  | $\Sigma=49.9375$ |  | $\Sigma=596.8376$ |

Table 8. Geometrical properties used to determine the moment of inertia in $x$ direction of box girders.

| Section | $l_{y, c}=b^{3} h / 12$ in. $^{4}$ | $A$, in. $^{2}$ | $d$, in. | $A d^{2}$, in. ${ }^{4}$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 0.3164 | 6.7500 | 14.6421 | 1447.1399 |
| 2 | 549.2500 | 9.7500 | 1.2671 | 15.6540 |
| 3 | 2.0000 | 1.5000 | 11.9517 | 214.2647 |
| 4 | 0.0449 | 2.8164 | 11.9517 | 402.3034 |
| 5 | 0.1657 | 10.3906 | 11.9517 | 1484.2259 |


| 6 | 549.2500 | 9.7500 | 1.2671 | 15.6540 |
| :--- | :--- | :--- | :--- | :--- |
| 7 | 0.2813 | 6.0000 | 14.6421 | 1286.3466 |
| 8 | 0.0475 | 2.9805 | 11.9517 | 425.7440 |
|  | $\Sigma=1101.3558$ | $\Sigma=49.9375$ |  | $\Sigma=5291.3325$ |

The $y$-coordinate of the centroid is calculated as

$$
\begin{equation*}
\overline{\mathrm{y}}=\frac{\Sigma \mathrm{AY}}{\Sigma \mathrm{~A}}=\frac{1040.7966 \mathrm{in} .^{3}}{49.9375 \mathrm{in} .^{2}}=20.8420 \mathrm{in} . \tag{30}
\end{equation*}
$$

where $Y$ is measured from the base of Figure 15 to the centroid of each section.

The moment of inertia about the new xx-axis is calculated as

$$
\begin{equation*}
I_{x x}=I_{x, C}+\text { Ad }^{2}=6791.6880 \mathrm{in}^{4} \tag{31}
\end{equation*}
$$

where d is the perpendicular distance between the centroidal $\mathrm{Y}-\mathrm{Y}$ axis and the parallel X -X axis of each section.

The x -coordinate of the centroid is calculated as

$$
\begin{equation*}
\overline{\mathrm{x}}=\frac{\Sigma \mathrm{AX}}{\Sigma \mathrm{~A}}=\frac{596.8376 \mathrm{in}^{3}}{49.9375 \mathrm{in}^{2}}=11.9517 \mathrm{in} . \tag{32}
\end{equation*}
$$

where X is measured as the absolute distance from the origin of the X -axis to the center of the base of Figure 15.

The moment of inertia about the new yy-axis is calculated as

$$
\begin{equation*}
I_{y y}=I_{y, c}+\text { Ad }^{2}=6392.6883 \mathrm{in.} .^{4} \tag{3}
\end{equation*}
$$

where d is the perpendicular distance between the centroidal X - X axis and the parallel Y - Y axis of each section.

Results for the radius of gyration about the strong and weak axes are shown in Equations 34 and 35, respectively. Equations 36 and 37 show the section modulus of tension and compression, respectively, for the strong axis.

$$
\begin{align*}
& \mathrm{r}_{\mathrm{x}}=\sqrt{\frac{\mathrm{I}_{\mathrm{xx}}}{\mathrm{~A}}}=\sqrt{\frac{6791.6880 \mathrm{in} .^{4}}{49.9375 \mathrm{in} .^{2}}}=11.6621 \mathrm{in} .  \tag{34}\\
& \mathrm{r}_{\mathrm{y}}=\sqrt{\frac{\mathrm{I}_{\mathrm{yy}}}{\mathrm{~A}}}=\sqrt{\frac{6392.6883 \mathrm{in} .^{4}}{49.9375 \mathrm{in} .^{2}}}=11.313 \mathrm{in} .  \tag{35}\\
& \mathrm{S}_{\mathrm{x}_{\mathrm{t}}}=\frac{\mathrm{I}_{\mathrm{xx}}}{\mathrm{y}_{\mathrm{left}}}=\frac{6791.6880 \mathrm{in} . .^{4}}{11.9517 \mathrm{in} .}=568.2613 \mathrm{in} . .^{3}  \tag{36}\\
& \mathrm{~S}_{\mathrm{x}_{\mathrm{c}}}=\frac{\mathrm{I}_{\mathrm{xx}}}{\mathrm{y}_{\mathrm{right}}}=\frac{6791.6880 \mathrm{in} . .^{4}}{15.0171 \mathrm{in} .}=452.2636 \mathrm{in} .^{3} \tag{37}
\end{align*}
$$

## Calculations of the flexural and shear capacities

The cross section is ASTM-A36 Steel and has a modulus of elasticity of $\mathrm{E}=29 \times 10^{6} \mathrm{psi}$.

Nominal flexure resistance

$$
\begin{equation*}
\mathrm{F}_{\mathrm{r}}=\phi_{\mathrm{f}} \mathrm{~F}_{\mathrm{n}} \tag{38}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{F}_{\mathrm{r}} & =\text { factored flexural resistance, } \mathrm{ksi} \\
\phi_{\mathrm{f}} & =\text { resistance factor for flexure }=1.0000 \\
\mathrm{~F}_{\mathrm{n}} & =\text { nominal flexural resistance, } \mathrm{ksi}
\end{aligned}
$$

1. Positive Flexure
(a) Top flange (tension)

$$
\begin{equation*}
\mathrm{F}_{\mathrm{n}}=\mathrm{R}_{\mathrm{b}} \mathrm{R}_{\mathrm{h}} \mathrm{~F}_{\mathrm{yf}} \tag{39}
\end{equation*}
$$

where
$R_{b}=$ flange-stress reduction factor $=1.0000$ for tension flanges
$R_{h}=$ flange-stress reduction factor $=1.0000$ for homogeneous sections

$$
\begin{gather*}
\mathrm{F}_{\mathrm{n}}=\mathrm{R}_{\mathrm{b}} \mathrm{R}_{\mathrm{h}} \mathrm{~F}_{\mathrm{yf}}=(1.0000)(1.0000)(36.0000 \mathrm{ksi})=36.0000 \mathrm{ksi} \\
\mathrm{~F}_{\mathrm{r}}=\phi_{\mathrm{f}} \mathrm{~F}_{\mathrm{n}}=(1.0000)(36.0000 \mathrm{ksi})=36.0000 \mathrm{ksi} \\
\mathrm{M}=\mathrm{F}_{\mathrm{r}} \mathrm{~S}_{\mathrm{xt}} \tag{40}
\end{gather*}
$$

$$
\mathrm{M}=(36.0000 \mathrm{ksi})\left(568.2613 \mathrm{in} .^{3}\right)=20,457.4068 \mathrm{in} .-\mathrm{kips}=1,704.7839 \mathrm{ft}-\mathrm{kips}
$$

## 2. Bottom Flange (Compression)

$$
\begin{equation*}
\mathrm{F}_{\mathrm{n}}=\mathrm{R}_{\mathrm{b}} \mathrm{R}_{\mathrm{h}} \mathrm{~F}_{\mathrm{yf}} \sqrt{1-3\left(\frac{\mathrm{f}_{\mathrm{v}}}{\mathrm{~F}_{\mathrm{yf}}}\right)^{2}} \tag{41}
\end{equation*}
$$

where $f_{v}$ is the maximum St. Venant torsional shear stress in the flange plate due to the factored loads, ksi

$$
\begin{equation*}
\mathrm{R}_{\mathrm{b}}=1-\left(\frac{\mathrm{a}_{\mathrm{r}}}{1200+300 \mathrm{a}_{\mathrm{r}}}\right)\left(\frac{2 \mathrm{D}_{\mathrm{c}}}{\mathrm{t}_{\mathrm{w}}}-\lambda_{\mathrm{b}} \sqrt{\frac{\mathrm{E}}{\mathrm{f}_{\mathrm{c}}}}\right) \tag{42}
\end{equation*}
$$

For which,

$$
\begin{equation*}
\mathrm{a}_{\mathrm{r}}=\frac{2 \mathrm{D}_{\mathrm{c}} \mathrm{t}_{\mathrm{w}}}{\mathrm{~A}_{\mathrm{c}}} \tag{43}
\end{equation*}
$$

where
$D_{c}=$ depth of the web, in.
$\mathrm{A}_{\mathrm{c}}=$ area of the compression flange, in. ${ }^{2}$
$\lambda_{b}=4.64$ for members with compression flange area less than the tension flange area
$\mathrm{f}_{\mathrm{c}}=$ stress in the compression flange due to the factored loading under investigation, ksi

Assume that $\mathrm{f}_{\mathrm{c}}=\mathrm{F}_{\mathrm{yf}}$

$$
\mathrm{a}_{\mathrm{r}}=\frac{2.0000 \times 26.0000 \mathrm{in} . \times 0.3750 \mathrm{in} .}{(9.0000 \mathrm{in} . \times 0.7500 \mathrm{in} .)+(8.0000 \mathrm{in} . \times 0.7500 \mathrm{in} .)}=1.5294
$$

$$
\mathrm{R}_{\mathrm{b}}=1-\left(\frac{1.5294}{1200+300(1.5294)}\right)\left(\frac{2.0000 \times 26.0000 \mathrm{in} .}{0.3750 \mathrm{in} .}-4.64 \sqrt{\frac{29,000 \mathrm{ksi}}{36.0000 \mathrm{ksi}}}\right)=0.9936
$$

where $f_{v}$ is determined as:

$$
\begin{equation*}
\mathrm{f}_{\mathrm{v}}=\frac{\mathrm{T}}{2 \mathrm{~A}_{\mathrm{o}} \mathrm{t}} \tag{44}
\end{equation*}
$$

where
$\mathrm{T}=$ internal torque resulting from the factored loads, k -in.
$\mathrm{A}_{\mathrm{o}}=$ enclosed area within the box section, in. ${ }^{2}$
$\mathrm{t}=$ plate thickness
Equation 45 was used to find torque T

$$
\begin{equation*}
\tau_{\max }=\frac{\mathrm{Tt}_{\max }}{\mathrm{J}} \tag{45}
\end{equation*}
$$

Equation 45 was modified into the following

$$
\begin{equation*}
\mathrm{T}=\frac{\tau_{\max } \mathrm{J}}{\mathrm{t}_{\max }} \tag{46}
\end{equation*}
$$

where

$$
\begin{aligned}
\tau_{\max } & =\text { maximum shear calculated in the previous problems (kips) } \\
\mathrm{J} & =\text { torsional constant } \\
\mathrm{t}_{\max } & =\text { maximum thickness within the cross section (in.) }
\end{aligned}
$$

where

$$
\begin{equation*}
\mathrm{J} \approx \sum \frac{1}{3} \mathrm{bt}^{3} \tag{47}
\end{equation*}
$$

$$
\begin{gather*}
\approx \sum\left(\frac{1}{3} \times 9.0000 \times 0.7500^{3}\right)+\left(\frac{1}{3} \times 26.000 \times 0.3750^{3}\right) \\
+\left(\frac{1}{3} \times 37.0000 \times 0.4375^{3}\right)+\left(\frac{1}{3} \times 26.0000 \times 0.3750^{3}\right) \\
+\left(\frac{1}{3} \times 8.0000 \times 0.7500^{3}\right)+\left(\frac{1}{3} \times 4.0000 \times 0.3750^{3}\right)=4.4078 \\
\mathrm{~F}_{\mathrm{n}}=(0.9936)(1.0000)(36.0000 \mathrm{ksi}) \sqrt{2.0000 \times 23.7500 \mathrm{in} . \times 26.0000 \mathrm{in} . \times 0.3750 \mathrm{in} .}=2.4053 \mathrm{ksi} \\
0.7500 \mathrm{in} . \\
\mathrm{F}_{\mathrm{r}}=\phi_{\mathrm{f}} \mathrm{~F}_{\mathrm{n}}=(1.0000)(35.52931 \mathrm{ksi})=35.5293 \mathrm{ksi} \\
\mathrm{M}=\mathrm{F}_{\mathrm{r}} \mathrm{~S}_{\mathrm{xc}} \\
\mathrm{~F}=1,113.9392 \mathrm{~K}-\mathrm{in} .  \tag{48}\\
\mathrm{M}=(35.5293 \mathrm{ksi})\left(452.2636 \mathrm{in} .{ }^{3}\right)=16,068.6091 \mathrm{in} .- \\
=1,339.0508 \mathrm{ft}-\mathrm{kips}
\end{gather*}
$$

## 3. Negative flexure

Negative flexure was not considered because the stop logs are treated as simply supported beams.

Design shear strength

$$
\begin{equation*}
\mathrm{V}_{\mathrm{r}}=\phi_{\mathrm{v}} \mathrm{~V}_{\mathrm{n}} \tag{49}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{r}}=\text { factored shear resistance (kips) } \\
& \phi_{\mathrm{v}}=\text { resistance factor for shear }=1.0000
\end{aligned}
$$

$V_{n}$ was determined by assuming $f_{u}=0.75 \phi_{f} F_{y}$
where $\mathrm{F}_{\mathrm{y}}$ is the yield stress in ksi .

Therefore,

$$
\begin{equation*}
\mathrm{V}_{\mathrm{n}}=\mathrm{V}_{\mathrm{p}}\left[\mathrm{C}+\frac{0.87(1-\mathrm{C})}{\sqrt{1+\left(\frac{\mathrm{d}_{\mathrm{o}}}{\mathrm{D}}\right)^{2}}}\right] \tag{50}
\end{equation*}
$$

where

$$
\mathrm{V}_{\mathrm{p}}=\text { plastic shear force }(\mathrm{kips})=0.5800 F_{y w} D t_{w} \text { where } \mathrm{D} \text { is web }
$$ depth, in.

$\mathrm{C}=$ ratio of the shear buckling stress to the shear yield strength
$\mathrm{d}_{\mathrm{o}}=$ stiffener spacing (in.)
$\mathrm{F}_{\mathrm{yw}}=$ specified minimum yield strength of the web, ksi

$$
\mathrm{V}_{\mathrm{p}}=(0.5800)(36.0000 \mathrm{ksi})(26.0000 \mathrm{in} .)(0.3750 \mathrm{in} .)=203.5800 \mathrm{kips}
$$

The ratio C was determined

$$
\begin{equation*}
\text { If } \frac{D}{t_{w}}<1.10 \sqrt{\frac{E K}{F_{y w}}} \tag{51}
\end{equation*}
$$

where $K$, the elastic buckling coefficient for shear strength, is calculated as

$$
\begin{array}{r}
K=5+\frac{5}{\left(\frac{d_{0}}{D}\right)^{2}}  \tag{52}\\
K=5+\frac{5}{\left(\frac{92.5625 \mathrm{in} .}{26.0000 \mathrm{in} .}\right)^{2}}=5.3945
\end{array}
$$

$$
\frac{26.0000 \mathrm{in} .}{0.3750 \mathrm{in} .}<1.10 \sqrt{\frac{(29,000.0000 \mathrm{ksi})(5.3944)}{36.0000 \mathrm{ksi}}}
$$

$$
69.333 \overline{3}<72.5124
$$

therefore,

$$
\begin{gathered}
\mathrm{C}=1.0000 \\
\mathrm{~V}_{\mathrm{n}}=(203.5800 \mathrm{kips})\left[\begin{array}{c}
\sqrt{1.0000+\left(\frac{92.5625 \mathrm{in} .}{26.0000 \mathrm{in} .}\right)^{2}}
\end{array}\right]=203.5800 \mathrm{kips} \\
\mathrm{~V}_{\mathrm{r}}=\phi_{\mathrm{f}} \mathrm{~V}_{\mathrm{n}}=(1.0000)(203.5800)=203.5800 \mathrm{kips}
\end{gathered}
$$

The maximum uniform loads were determined using the minimum moment of 1,339.0493 ft-kips (compression flange) and shear of 203.5800 kips calculated using Equations 54 and 56.

$$
\begin{equation*}
\mathrm{M}=\frac{\mathrm{wL}^{2}}{8} \tag{53}
\end{equation*}
$$

Equation 53 was modified as follows:

$$
\begin{equation*}
\mathrm{w}_{\mathrm{m}}=\frac{\mathrm{M} \times 8}{\mathrm{~L}^{2}} \tag{54}
\end{equation*}
$$

$\mathrm{w}_{\mathrm{m}}=\frac{1,339.0508 \mathrm{ft}-\mathrm{kips} \times 8.0000 \times 1000.0000 \mathrm{lb}}{25.0000^{2} \mathrm{ft}^{2}}=17,139.8502 \mathrm{lb} / \mathrm{ft}$

$$
\begin{equation*}
\mathrm{V}=\frac{\mathrm{w}_{\mathrm{s}} \times \mathrm{L}}{2} \tag{55}
\end{equation*}
$$

Equation 55 was modified as follows:

$$
\begin{equation*}
\mathrm{w}_{\mathrm{s}}=\frac{\mathrm{V} \times 2}{\mathrm{~L}} \tag{56}
\end{equation*}
$$

$$
\mathrm{w}_{\mathrm{s}}=\frac{203.5800 \mathrm{kips} \times 2.0000 \times 1000.0000 \mathrm{lb}}{25.0000 \mathrm{ft}}=16,286.4000 \mathrm{lb} / \mathrm{ft}
$$

The maximum pressure was determined using the minimum uniform load value between the moment and shear

$$
\begin{equation*}
P_{c}=\frac{w_{m}}{y} \tag{57}
\end{equation*}
$$

where $w$ is the minimum uniform load, $\mathrm{lb} / \mathrm{ft}$.

$$
\mathrm{P}_{\mathrm{c}}=\frac{16,286.4000 \mathrm{lb} / \mathrm{ft}}{3.1145 \mathrm{ft}}=5,229.2181 \mathrm{lb} / \mathrm{ft}^{2}
$$

The maximum pressure height to reach a tension flange flexure failure is

$$
\begin{gather*}
\mathrm{h}=\frac{\mathrm{P}_{\mathrm{c}}}{\mathrm{Y}}  \tag{58}\\
\mathrm{~h}=\frac{5,229.2181 \frac{\mathrm{lb}}{\mathrm{ft}^{2}}}{62.4000 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}}=83.8016 \mathrm{ft}
\end{gather*}
$$

where h is the maximum height of stop log, ft .

## 3 Weld Capacity

The weld studied is a full-penetration groove weld. The capacity of the weld was determined for tension, compression, and shear, calculated according to TableJ 2.5 of AISC (2001).

The following calculations are for the weld capacity with the effective area for the skin plate shown in Figure 16 and use the following variables:

$$
\begin{aligned}
\mathrm{R} & =\text { weld capacity, kips } \\
\phi & =\text { resistance factor }=0.9000 \\
F_{y} & =\text { yield stress, } \mathrm{ksi} \\
\mathrm{~A} & =\text { area }\left(\text { in. }{ }^{2}\right)
\end{aligned}
$$



Figure 16. Indication of weld with effective area $16.18 \mathrm{in}^{2}{ }^{2}$. (furnished by USAED, Vicksburg).

- Tension

$$
\mathrm{R}=\phi \mathrm{F}_{\mathrm{y}} \mathrm{~A}=(0.90)(36 \mathrm{ksi})(37 \mathrm{in} . \times 0.4375 \mathrm{in} .)=542.4750 \mathrm{kips}
$$

- Compression

$$
\mathrm{R}=\phi \mathrm{F}_{\mathrm{y}} \mathrm{~A}=(0.9)(36 \mathrm{ksi})(37 \mathrm{in} . \times 0.4375 \mathrm{in} .)=542.4750 \mathrm{kips}
$$

- Shear

$$
\mathrm{R}=\phi \mathrm{F}_{\mathrm{y}} \mathrm{~A}=(0.9)(36 \mathrm{ksi})(0.6)(37 \mathrm{in} . \times 0.4375 \mathrm{in} .)=314.6850 \mathrm{kips}
$$

The following calculations are for the weld capacity with the effective area of the webs as shown in Figure 17.


Figure 17. Indication of weld with effective area 9.75 in. ${ }^{2}$ (furnished by USAED, Vicksburg).

- Tension

$$
\mathrm{R}=\phi \mathrm{F}_{\mathrm{y}} \mathrm{~A}=(0.90)(36 \mathrm{ksi})(26 \mathrm{in} . \times 0.375 \mathrm{in} .)=315.9000 \mathrm{kips}
$$

- Compression

$$
\mathrm{R}=\phi \mathrm{F}_{\mathrm{y}} \mathrm{~A}=(0.9)(36 \mathrm{ksi})(26 \mathrm{in} . \times 0.375 \mathrm{in} .)=315.9000 \mathrm{kips}
$$

- Shear

$$
\mathrm{R}=\phi \mathrm{F}_{\mathrm{y}} \mathrm{~A}=(0.9)(36 \mathrm{ksi})(0.6)(26 \mathrm{in} . \times 0.375 \mathrm{in} .)=189.5400 \mathrm{kips}
$$

The following calculations are for the weld capacity with the effective area of the top flange shown in Figure 18.


Figure 18. Indication of the weld effective area 6.75 in. ${ }^{2}$ (furnished by USAED, Vicksburg).

- Tension

$$
\mathrm{R}=\phi \mathrm{F}_{\mathrm{y}} \mathrm{~A}=(0.90)(36 \mathrm{ksi})(9 \mathrm{in} . \times 0.75 \mathrm{in} .)=218.7000 \mathrm{kips}
$$

- Compression

$$
\mathrm{R}=\phi \mathrm{F}_{\mathrm{y}} \mathrm{~A}=(0.9)(36 \mathrm{ksi})(9 \mathrm{in} . \times 0.75 \mathrm{in} .)=218.7000 \mathrm{kips}
$$

- Shear

$$
\mathrm{R}=\phi \mathrm{F}_{\mathrm{y}} \mathrm{~A}=(0.9)(36 \mathrm{ksi})(0.6)(9 \mathrm{in} . \times 0.75 \mathrm{in} .)=131.2200 \mathrm{kips}
$$

The following calculations are for the weld capacity with the effective area of the bottom flange shown in Figure 19.


Figure 19. Indication of the weld with effective area 6 in. ${ }^{2}$ (furnished by USAED, Vicksburg).

- Tension

$$
\mathrm{R}=\phi \mathrm{F}_{\mathrm{y}} \mathrm{~A}=(0.90)(36 \mathrm{ksi})(8 \mathrm{in} . \times 0.75 \mathrm{in} .)=194.4000 \mathrm{kips}
$$

- Compression

$$
\mathrm{R}=\phi \mathrm{F}_{\mathrm{y}} \mathrm{~A}=(0.9)(36 \mathrm{ksi})(8 \mathrm{in} . \times 0.75 \mathrm{in} .)=194.4000 \mathrm{kips}
$$

- Shear

$$
\mathrm{R}=\phi \mathrm{F}_{\mathrm{y}} \mathrm{~A}=(0.9)(36 \mathrm{ksi})(0.6)(8 \mathrm{in} . \times 0.75 \mathrm{in} .)=116.6400 \mathrm{kips}
$$

The following calculations are for the weld capacity with the effective area of the skin plate flange shown in Figure 20.


Figure 20. Indication of the weld with effective area $1.5 \mathrm{in} .^{2}$ (furnished by USAED, Vicksburg)

- Tension

$$
\mathrm{R}=\phi \mathrm{F}_{\mathrm{y}} \mathrm{~A}=(0.90)(36 \mathrm{ksi})(4 \mathrm{in} . \times 0.375 \mathrm{in} .)=48.6000 \mathrm{kips}
$$

- Compression

$$
\mathrm{R}=\phi \mathrm{F}_{\mathrm{y}} \mathrm{~A}=(0.9)(36 \mathrm{ksi})(4 \mathrm{in} . \times 0.375 \mathrm{in} .)=48.6000 \mathrm{kips}
$$

- Shear

$$
\mathrm{R}=\phi \mathrm{F}_{\mathrm{y}} \mathrm{~A}=(0.9)(36 \mathrm{ksi})(0.6)(4 \mathrm{in} . \times 0.375 \mathrm{in} .)=29.1600 \mathrm{kips}
$$

The weld capacity for the shear of the weld material will not be determined because the type of weld material is unknown.

## 4 Finite Element Analysis

## Model description

This chapter presents a comprehensive three-dimensional finite element analysis conducted to assess the behavior of the stop log when submitted to the maximum pressures calculated analytically in Chapter 2. This analysis will provide the tools to validate the analytical solutions and provide the state of stresses on the cross section that will be welded. The three-dimensional model of the bottom stop log was developed using plate bending elements for all significant areas of the gate (Figure 21) and beam elements for the rollers. Figure 22 shows the uniform mesh used for the analysis. The model has 9837 nodes and 9825 shell elements with six degrees freedom per node.

## Displacement and load boundary conditions

The displacement boundary conditions consisted of rollers on the bottom edge of the stop log restraining the movement in the $z-z$ direction (Figure 23) assuming that the system was seated on the sill. The upstreamdownstream direction ( $\mathrm{x}-\mathrm{x}$ ) was restrained with rollers at the edge of the skin plate. To make the system stable, a series of springs along the direction of the gate were placed at the centerline locations of the rollers.

Figure 24 shows the force boundary conditions that consisted of the dead load and a uniform hydrostatic pressure of 33.0 psi ( 76.2 ft of head) in the positive y-y direction. The maximum hydrostatic pressure that produces the yield strength in the numerical model was determined using the maximum head calculated in Chapter 2, which corresponded to the box girder when a tension flange flexure failure occurs.


Figure 21. Geometrical model.


Figure 22. Finite element mesh.


Figure 23. Displacement boundary conditions.


Figure 24. Force boundary conditions.

## Results comparison with analytical solutions

The numerical model shows that the yield strength is reached at a head of 76.2 ft ., while the analytical calculations showed 83.0 ft . of head, with just 8 percent of difference between the analytical and numerical solutions. The finite element analysis has a good correlation with the analytical solutions of the box girder. The $1-1(\mathrm{x}-\mathrm{x})$ direction is along the longitudinal axis of the gate, the 2-2 (y-y) direction is normal to the longitudinal
direction of the gate, and the 3-3 (z-z) direction goes along the elevation of the piers (Figure 24). Figure 25 shows the stresses in the 1-1 direction of the gate. The upstream side has a compression stress of 35.12 ksi , and the downstream side has a tension stress of 36.54 ksi . These results are also observed on the maximum and minimum principal stresses (Figures 26 and 27). They show that the gate is at the yield strength for a 76.2 ft of head.


Figure 25. Stresses along longitudinal direction.


Figure 26. Maximum principal stresses.


Figure 27. Minimum principal stresses.

## 5 Conclusions and Recommendations

Capacity calculations with the changes required to fit between the piers of the Little Sunflower Flood Control Drainage Structures' stop log were performed using the AISC (2001) and AASHTO (1998) criteria. The results show that the bridge criteria based on the box girder cross section provide the minimum capacity of 83.8 ft of head. The analytical results were compared with a finite element analysis, and they show an $8 \%$ difference between the analytical and numerical solution, therefore, it is a good correlation. The results for the different flexure and shear capacities for both methods (Table 9) show that the new stop log can resist 3.00 times the maximum elevation of the system. The welded connection capacities were also calculated, and the results are shown in Table 10 for tension, compression, and shear.

It is recommended that the welded connection be designed using a head of 83.0 ft . If failure occurs, it should occur in any location other than in the welded connection.

Table 9. The results of the flexural, shear, and maximum pressure.

| Method | $\boldsymbol{M}_{\boldsymbol{u}}$ | $\boldsymbol{V}_{\boldsymbol{u}}$ | Max Pressure |
| :--- | :--- | :--- | :---: |
| Modified Section <br> (w/effective width) <br> (AISC (2001) LRFD) | $b_{e}=4.72: 482.5321 \mathrm{ft}$-kips | 189.5400 <br> kips | $6,323.7544 \frac{l b}{f t^{2}}$ |
| Box Girder <br> (AASHTO (1998) <br> LRFD) | $1,339.0508$ ft-kips | 203.5800 <br> kips | $5,229.2181 \frac{l b}{f t^{2}}$ |

Table 10. The results of the capacity of the weld in tension, compression, and shear.

| Effective Area, in. ${ }^{2}$ | Tension, kips | Compression, kips | Shear, kips |
| :--- | :--- | :--- | :--- |
| 16.18 | 542.4750 | 542.4750 | 314.6850 |
| 9.75 | 315.9000 | 315.9000 | 189.5400 |
| 6.75 | 218.7000 | 218.7000 | 131.2200 |
| 6 | 194.4000 | 194.4000 | 116.6400 |
| 1.5 | 48.6000 | 48.6000 | 29.1600 |

## References

American Association of State Highways and Transportation Officials. 1998. "Load and Resistance Factor Design (LRFD) Bridge Design Specifications," $2^{\text {nd }}$ ed., Washington, DC.

American Institute of Steel Construction. 2001. "Manual of Steel Construction, Load and Resistance Factor Design (LRFD)," $3^{\text {rd }}$ ed. Chicago, IL.

American Institute of Steel Construction. 2010. "Specification for Structural Steel Buildings," ANSI/AISC 360-10. Chicago, IL.

Headquarters, U.S. Army Corps of Engineers. 1994. Structural Design of Closure Structures for Local Flood Protection Projects. EM 1110-2-2705. Washington, DC.

Mississippi Levee Board. "Yazoo Backwater Pump Project." Aocessed 8 May 2012 http://www.msleveeboard.com

Scott, Quinta. "Steele Bayou Drainage Structure." http://quintascott.wordpress.com, posted on May 31, 2011, Accessed 8 May 2012.



 display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

| 1. REPORT DATE (DD-MM-YYYY) <br> December 2012 | 2. REPORT TYPE <br> Final | 3. DATES COVERED (From - To) |
| :---: | :---: | :---: |
| 4. TITLE AND SUBTITLE <br> Capacity Verification for Modifying Little Sunflower Flood Control Drainage Structure Stop Log |  | 5a. CONTRACT NUMBER |
|  |  | 5b. GRANT NUMBER |
|  |  | 5c. PROGRAM ELEMENT NUMBER |
| 6. AUTHOR(S) <br> Guillermo A. Riveros, DeAnna Dixon, and Elias Arredondo |  | 5d. PROJECT NUMBER |
|  |  | 5e. TASK NUMBER |
|  |  | 5f. WORK UNIT NUMBER 9K76D4 |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) <br> U.S. Army Engineer Research and Development Center Information Technology Laboratory <br> 3909 Halls Ferry Road, Vicksburg, MS 39180-6199 |  | 8. PERFORMING ORGANIZATION REPORT NUMBER <br> ERDC/ITL TR-12-5 |
| 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) <br> U.S. Army Engineer District, Vicksburg <br> 4155 Clay Street <br> Vicksburg, MS 39183 |  | 10. SPONSOR/MONITOR'S ACRONYM(S) 11. SPONSOR/MONITOR'S REPORT NUMBER(S) |

## 12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

## 14. ABSTRACT

The Steel Bayou and Little Sunflower Flood Control Drainage Structures are the two drainage structures of the Yazoo Backwater Project. They were completed in 1969 and 1975, respectively. The structures allow the storm water of the Mississippi Delta to pass through the open vertical lift gates into the Mississippi/Yazoo River when stages on the riverside of the levees are lower than the stages on the interior basin. When the stages of the Mississippi/Yazoo River are higher than the stages of the interior basin, the vertical lift gates are closed, keeping floodwaters from backing up into the South Delta. The Steel Bayou Drainage Structure is located 0.75 mile north of the Yazoo River mile 9.7 and has four vertical lift gates 23.5 ft high and 31 ft wide. The Little Sunflower Drainage Structure is located north of the Yazoo River at mile 32.6 and has two vertical lift gates 25 ft wide and 22.5 ft high.
This report presents analytical and numerical calculations for the modification of the Steel Bayou stop logs to be used permanently at the Little Sunflower project. The calculations were conducted using the approach used to design miter gates horizontal girders using the 2001 criteria of the American Institute of Steel Construction (AISC) and the box girder calculations from the American Association of State Highways and Transportation Officials Load and Resistance Factor Design (LRFD) bridge manual.

| 15. SUBJECT TERMS <br> Little Sunflower Dr <br> Stop log | nage Structure | Stop log modificationVerification of Little Sunflower DrainageStructure |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 16. SECURITY CLAS | ICATION OF: |  | 17. LIMITATION OF ABSTRACT | 18. NUMBER OF PAGES | 19a. NAME OF RESPONSIBLE PERSON |
| a. REPORT <br> UNCLASSIFIED | b. ABSTRACT <br> UNCLASSIFIED | c. THIS PAGE UNCLASSIFIED |  | 55 | 19b. TELEPHONE NUMBER (include area code) |


[^0]:    Prepared for U.S. Army Engineer District, Vicksburg 4155 Clay Street, Vicksburg, MS 39183
    Under Work Unit 9K76D4

[^1]:    ${ }^{1} \mathrm{~A}$ table of factors for converting non-SI units of measure to SI (metric) units is found on page vii.

[^2]:    ${ }^{1}$ Symbols and abbreviations are listed and defined in the notation (page ix)

