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1 Introduction 

1.1  Background 
Multi-anchored or tieback wall systems are often used for temporary support 

of excavations that have space restrictions due to adjacent structures, highways, 
railroads, etc. In some cases, multi-anchored systems may remain as permanent 
structures after construction. In U.S. Army Corps of Engineers projects, perma-
nent tieback wall systems are used as guide walls and approach walls on naviga-
tion projects, and as retaining walls on highway and railroad protection and 
relocation projects.  

The behavior of multi-anchored systems may be strongly influenced by 
factors such as the sequence of excavation and installation of anchors, fluctu-
ations in the water table, and the nonlinear stress-strain behavior of soils. 
Therefore, to obtain accurate predictions of the magnitudes of stresses and 
deformations in the structure and the surrounding soil, it is necessary to perform 
soil-structure interaction (SSI) analyses that model the construction and operation 
stages of the system. For such analyses, adequate modeling of the excavation 
process is required. 

A substantial amount of research has been performed in recent years on 
another type of earth-retaining structure: lock walls for navigation. These studies 
have included SSI analyses of the Red River Lock and Dam No.1 (Ebeling et al. 
1993; Ebeling and Mosher 1996; Ebeling, Peters, and Mosher 1997), the North 
Lock Wall at McAlpine Locks (Ebeling and Wahl 1997), and Locks 27 (Ebeling, 
Pace, and Morrison 1997). These are good examples of state-of-the-art tech-
niques available for SSI analyses.  

 
1.1.1  Common types of multi-anchored systems 

Multi-anchored systems can be constructed using different materials and 
configurations. The following are the most common types found in practice: 

• Vertical sheet-pile systems with wales and post-tensioned tieback 
anchors. 

• Soldier beam systems with wood or reinforced concrete lagging and 
post-tensioned tieback anchors. 
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• Secant cylinder pile systems with post-tensioned tieback anchors. 

• Continuous reinforced concrete slurry wall systems with post-tensioned 
tieback anchors. 

• Discrete concrete slurry wall systems (soldier beams with concrete 
lagging) with post-tensioned tieback anchors. 

Figure 1.1 illustrates the use of a multi-anchored system for a typical navi-
gation project. Because of the space restrictions imposed by an adjacent railroad, 
excavation for the expansion of the waterway requires use of a multi-anchored 
system. For simplicity, it is assumed that the multi-anchored system depicted in 
the figure corresponds to a continuous, reinforced concrete slurry wall with 
tieback anchors. Tiebacks consist of post-tensioned tendons with a grouted 
anchor region. A berm of granular material or riprap is placed at the toe of the 
wall to minimize erosion and improve stability. 

Figure 1.1.  Typical multi-anchored tieback wall system for Corps navigation projects (from Gómez, Filz, 
and Ebeling 2000b) 

Figure 1.2 illustrates the typical construction sequence of a reinforced con-
crete slurry wall. Initially, a trench is excavated using a clamshell-type tool. The 
excavation is stabilized by the use of mud slurry. The finished trench acts as 
formwork for the reinforced concrete panel. Placement of the concrete using a 
tremie pipe displaces the mud slurry and leaves a structural concrete wall that can 
be excavated and tied back in much the same manner as the other tieback wall 
systems. The walls are reinforced using preassembled cages, which are dropped 
into the slurry trench just before concrete placement. Slurry wall systems are 
usually 0.6 to 0.9 m (2 to 3 ft) thick and can be placed to depths of 30 m (100 ft) 
or more. The construction process can be summarized as follows:   

Original Slope

Excavated Material

Waterway

Riprap for Erosion Control
Reinforced Concrete Slurry wall

Grouted Anchors

Existing Railroad
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Figure 1.2.  Typical construction sequence of a reinforced concrete slurry wall (from Strom and Ebeling 
2001) 

a. Guide walls are constructed to facilitate positioning and alignment of the 
clamshell during the excavation process. To stabilize the excavation, 
mud slurry is kept inside the excavation to a level above the water table. 
As illustrated in Figure 1.2a, the excavation for each panel follows a 
staggered sequence. Two end excavations are performed first, leaving a 
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central core intact. After the end excavations are completed, the central 
core is removed. 

b. A stop end tube is placed at one end of the panel excavation. This tube is 
extracted after concrete placement, leaving a semicircular indentation. 
This indentation serves as a guide for the excavation of the adjacent 
panel and allows the creation of a shear key between the panels. 

c. Once the panel has been excavated to the desired depth and the slurry 
cleaned of fine excavation material (desanded), the reinforcement cage is 
lowered into the excavation. 

d. One or more tremie pipes are used to place the concrete without 
contamination from the slurry. 

e. Once the wall is finished and the concrete reaches its desired strength, 
the excavation and tieback installation process can begin.  

Construction of the second navigation lock at Bonneville Lock and Dam 
required the use of concrete slurry walls to retain the foundation of an adjacent 
railroad line. Detailed descriptions of construction procedures for the continuous 
reinforced concrete slurry wall and for the discrete slurry wall systems used at 
Bonneville Lock are presented by Munger, Jones, and Johnson (1990) and 
Maurseth and Sedey (1992), respectively.  

 
1.1.2  Response of multi-anchored systems to excavation 

A waterway expansion project, such as that presented in Figure 1.1, requires 
SSI analyses to determine the magnitude of the deformations of the soil above 
the excavation, and the bending moments and stresses in the retaining wall. Such 
analyses require close modeling of the construction stages of the multi-anchored 
system. The finite element analyses performed by Mosher and Knowles (1990) 
for the tieback walls at Bonneville Lock and Dam are a good example of the 
available techniques that can be used in SSI analyses of multi-anchored systems.  

Figure 1.3 illustrates some of the construction and operation stages of the 
hypothetical navigation project shown in Figure 1.1. For simplicity, it is assumed 
that construction is performed in the dry. After completion of the continuous 
reinforced concrete slurry wall (Figure 1.3b), the soil in front of the wall is exca-
vated to an elevation slightly below the position of the first row of anchors. The 
anchors are then installed and tensioned according to the project specifications 
(Figure 1.3c). Once these anchors are tensioned and tested, excavation continues 
until reaching the position of the second row of anchors. The process is repeated 
until reaching the bottom of the excavation (Figures 1.3d and 1.3e). Once the 
excavation is completed, the granular toe berm is placed against the toe of the 
wall (Figure 1.3f). During operation of the navigation facility, the water level 
outside the wall reaches its normal elevation, which may fluctuate periodically 
during the life of the structure (Figure 1.3g). 
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Figure 1.3.  Typical construction and operation stages (from Gómez, Filz, and Ebeling 2000b) 
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1.1.3  Need for nonlinear finite element SSI analyses 

Excavation in soils is probably one of the few geotechnical problems that 
cannot be solved analytically, except in tunneling where the excavated region can 
be approximated by a circle. There are also analytical methods to determine the 
stability of natural slopes and estimate the magnitude of lateral earth pressures on 
structures. However, there are no simple and closed-form analytical solutions that 
can be used to estimate or predict the magnitudes of deformations expected from 
an excavation in soil, even if the soil is assumed to behave as a linear elastic 
material. The situation becomes more complicated when soil nonlinearity, the 
presence of water, interaction of the soils with structures, and construction effects 
are taken into consideration. In many cases, a reliable analysis of the response of 
soils and structures due to construction and operational loads can be obtained 
only by performing nonlinear finite element (NLFEM) soil-structure interaction 
analyses. 

Two methods that have been used in Corps of Engineers projects are the 
beam on rigid supports (Strom and Ebeling 2001) and the WINKLER method. 
The beam on rigid support method, referred to as the RIGID analysis in this 
report, does not take soil deformations into account and, although widely used, 
has limited application for those circumstances in which actual load-
displacement characteristics of the system are desired. The WINKLER method 
relates soil pressures to wall deformations and, for that reason, can be considered 
an improved method of analysis, especially when used in a staged construction 
analysis. However, it has not been a reliable tool for evaluating soil displace-
ments that occur either in the soil mass or at the ground surface of the soil 
retained by the tieback wall. Wall displacement information provided by the 
WINKLER analysis is unreliable because the value of the coefficient of hori-
zontal subgrade reaction is dependent on the extent of the zone of influence, a 
quantity that is difficult to properly establish. In addition, arching that takes place 
in the retained soil influences the soil displacement-pressure response, but this is 
not included in the WINKLER analysis.  

The NLFEM can overcome the shortcomings of other analysis procedures, 
such as the RIGID and the WRINKLER methods, since it permits a complete and 
precise solution based on the stress-strain laws for the soils involved, the bound-
ary conditions of the problem, and the basic equations of mechanics. Although 
the finite element method is the most suitable one, the complexities of the 
method are such that it is not routinely used in the design or evaluation of tieback 
wall systems.  

In several cases, the NLFEM has been used with success to evaluate the per-
formance of tieback wall systems. In particular, application with respect to the 
performance evaluation of a temporary tieback wall used to facilitate construc-
tion of the Bonneville navigation lock (Mosher and Knowles 1990) is described 
below. The NLFEM provided a detailed and accurate representation of the tie-
back wall-soil system response to various loadings that occurred prior to, during, 
and after wall construction. The objectives of the NLFEM were to confirm by 
incremental analysis that ground movements behind the wall during and after 
construction would meet stringent displacement requirements. The results of the 
analysis were confirmed by instrumentation. The Bonneville navigation lock 
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NLFEM analysis is described in detail to demonstrate the differences between 
actual behavior and that usually assumed in the design of tieback wall systems. 
These differences are especially noticeable with respect to stiff wall systems with 
high anchor prestress loads. 

 
1.2  Review of Previous Work on SSI Analysis  

The first systematic SSI analyses of retaining wall behavior were presented 
by Clough and Duncan (1969, 1971) and Duncan and Clough (1971). These 
investigators used the hyperbolic constitutive relationship developed by Duncan 
and Chang (1970) to model the behavior of the backfill, and extended it to model 
the behavior of the wall-to-soil interfaces. Relative movement at the interfaces 
was achieved using the joint element developed by Goodman, Taylor, and 
Brekke (1968). 

In their analyses of Port Allen and Old River U-frame locks, Clough and 
Duncan (1969) and Duncan and Clough (1971) demonstrated the importance of 
close modeling of the construction stages of the lock and backfill placement. 
They demonstrated that a simple linear elastic model for the soil and use of 
gravity turn-on analyses are not adequate to model the behavior of the soil-lock 
system. They also proved that the downdrag or vertical shear force exerted by the 
backfill on the wall has an important influence on the behavior of U-frame locks. 
Their work provided fundamental understanding of previously unknown aspects 
of lock wall behavior. 

Clough and Duncan (1971) presented a systematic approach to SSI analyses 
of retaining wall behavior. They observed the importance of modeling the 
different stages of construction of the wall and placement of the backfill in the 
SSI analysis. They found that when the stages of placement of the backfill were 
closely modeled, the resulting horizontal and vertical loads acting on the wall 
were substantially larger than those obtained using classical earth pressure 
theories. The results of these analyses were consistent with some previous 
experimental work and field observations. 

Ebeling, Duncan, and Clough (1990) performed a comparison between 
results from conventional equilibrium and finite element analyses of several 
hypothetical gravity walls founded on rock. Their analyses were performed with 
the backfill placement analysis option incorporated in SOILSTRUCT (Clough 
and Duncan 1969). A range of possible values of shear stiffness was assumed at 
the interfaces between the wall and the backfill, and between the backfill and the 
rock. Ebeling, Duncan, and Clough (1990) concluded that the magnitude of the 
downdrag force is significantly affected by the concrete-to-backfill and rock-to-
backfill shear stiffness values. They also concluded that the conventional 
equilibrium analyses neglect the true process of soil-structure interaction and 
tend to yield very conservative results. 

Ebeling et al. (1992) performed analysis of several hypothetical gravity walls 
founded on rock. The hypothetical walls were based on several representative 
examples of lock walls. Ebeling et al. (1992) found that conventional equilibrium 
analyses are very conservative because they do not account for the stabilizing 
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effect of the downdrag forces generated by the settlement of the backfill. At the 
time of their work, it was not known whether these vertical shear forces persisted 
under field conditions nor whether they could be relied upon for the stability of 
the structure. These researchers also indicated that the behavior of retaining 
structures founded on soil might differ substantially from that of structures 
founded on rock. In soil-founded structures, the concrete-to-foundation interface 
is not bonded as in the case of concrete-to-rock interfaces, and relative interface 
displacements may occur, including more redistribution of the earth pressures. 

Experimental data from the Instrumented Retaining Wall Facility at Virginia 
Tech (Filz 1992) showed that downdrag forces on the nonmoving test wall were 
significant and tended to either remain constant or increase with time after 
backfill placement. 

Ebeling et al. (1993), Ebeling and Mosher (1996), and Ebeling, Peters, and 
Mosher (1997) presented the results of extensive SSI analysis for the soil-
founded Red River Lock and Dam No. 1. A reinforced soil berm was recom-
mended, among other alternatives, as a solution to problems induced by siltation 
of the lock. The SSI analysis procedures were validated against instrumentation 
measurements from the lock taken at the end of construction and several opera-
tional stages. Their analysis revealed that important changes in normal stresses 
may occur at the soil-to-structure interface during backfill placement and 
operation of the lock, and underscored the importance of selecting appropriate 
interface stiffness values for these loading conditions. They also noted that 
conventional equilibrium analyses are inadequate for the design of this type of 
structure. 

Ebeling and Wahl (1997) presented the results of SSI analysis of the pro-
posed North Lock Wall at McAlpine Locks. They determined that the downdrag 
force was significant, and that it could be substantially affected by the response 
of the interface to unload-reload cycles.  

Filz and Duncan (1997) presented a theory to quantify the downdrag force on 
the back of nonmoving retaining walls. Filz, Duncan, and Ebeling (1997) pre-
sented a simplified method for incorporating downdrag forces in conventional 
analyses of nonmoving retaining walls. They also observed that postconstruction 
settlement causes an increase in the downdrag on the back of the wall. They cited 
measurements at Eibach Lock in Germany, where large vertical shear forces were 
persistent for 10 years under repeated filling and emptying cycles and tempera-
ture fluctuations. The measured Kv remained at an approximately constant 
average value of 0.30. These vertical shear forces cause an important reduction in 
the lateral earth pressures acting on the wall. 

The simplified method in Filz, Duncan, and Ebeling (1997) is also described 
in Ebeling, Pace, and Morrison (1997). This method is shown to provide an 
improvement in accuracy over conventional analyses of nonmoving walls by 
producing downdrag values that are closer to the values from the other available 
sources of information: (a) theory, (b) finite element analyses, (c) data from pilot-
scale instrumented retaining wall tests, and (d) the field data from Eibach Lock. 
While more accurate than conventional analyses, the simplified method remains 
conservative for wall stability because the downdrag values from the simplified 
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method are smaller than the values from the other available information. 
Furthermore, the evidence from the instrumented retaining wall tests and Eibach 
Lock shows that downdrag forces either remain constant or increase over time 
after backfilling. The simplified method is restricted to backfill materials that do 
not exhibit creep.  

 
1.3  Bonneville Temporary Tieback Wall Analysis  
1.3.1  Wall description 

Strom and Ebeling (2001) used the Bonneville temporary tieback wall to 
illustrate the importance of the NLFEM in the analysis and design of projects. 
Portions of their summary are contained in the following paragraphs. The 
temporary tieback retaining wall is approximately 134 m (440 ft) long. The wall 
is constructed by slurry trench methods in 6-m (20-ft)-long sections similar to 
those shown in the section view (horizontal) of Figure 1.4. 

Figure 1.4.  Bonneville navigation lock, temporary tieback wall–horizontal section (from Strom and 
Ebeling 2001) 

The heights of the panels ranged from 6 to 34 m (20 to 110 ft). Excavation 
sequencing was similar to that shown in Figure 1.3. Anchors were installed in a 
grid pattern of approximately 3 m (10 ft) horizontal by 3.4 m (11 ft) vertical. 
Each tieback anchor was composed of nineteen 15-mm (0.6-in.)-diam strands 
with a guaranteed ultimate strength (GUTS) of 1,862 MPa (270 ksi). Each anchor 
was prestressed to 150 percent of its design load. The design loads are approxi-
mately 50 percent of the anchor ultimate load capacity. Panel 6 was the focus of 

P-T Tieback Anchors

First Stage Panel
(Rebar not shown)First Stage Panel

(Rebar not shown)

Rebar Cage

20-ft-long Panel

±10 ft
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the NLFEM analysis. A section view (vertical) of Panel 6 is shown as Figure 1.5. 
The tieback anchor loads are summarized in Table 1.1. 

Figure 1.5.  Bonneville navigation lock, temporary tieback wall–vertical section (from Strom and Ebeling 
2001) 

Table 1.1 
Panel 6 Anchor Loads 

Anchor Elevation Anchor Length Design Load 

Prestress Load 
at 150 percent 
Design Load Lock-Off Load 

m ft m ft kN kips KN kips kN kips 
25.6 84 27.1 89 1,249.9 281 1,874.9 421.5 1,209.9 272 
22.3 73 24.1 79 1,249.9 281 1,874.9 421.5 1,298.8 292 
18.9 62 20.7 68 1,249.9 281 1,874.9 421.5 1,289.9 290 
15.5 51 15.8 52 1,592.5 358 2,388.7 537.0 1,583.6 356 
Source:  Strom and Ebeling (2001). 

 
 
1.3.2  Overall design and evaluation process 

The overall design and evaluation process for the Bonneville navigation lock 
temporary tieback wall involved a RIGID analysis and a WINKLER analysis, in 
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addition to the NLFEM described in this chapter. The purposes and results of the 
RIGID and WINKLER analyses are described in general terms and illustrated 
using Figure 1.6. 

Figure 1.6.  Overall design and evaluation process (from Strom and Ebeling 2001) 

1.3.3  RIGID analysis 

A simple preliminary analysis using the RIGID analysis procedure was 
employed to estimate the size and spacing of anchors. The RIGID analysis for 
Bonneville was based on a composite apparent pressure diagram, as shown in 
Figure 1.6a. The upper rectangular-shaped region is based on at-rest pressures, in 
accordance with Figure 29, Chapter 3, of Design Manual 7.2 (NAVFAC 1982). 
The lower triangular-shaped region is also based on at-rest pressures (Coulomb’s 
equation with a factor of safety of 1.5 applied to the shear strength of the soil). 
This composite diagram assumed that wall displacements would be small, 
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thereby keeping earth pressure near an at-rest state. The triangular lower portion 
of the diagram was considered to be appropriate since the upper anchors could 
possibly lose some tension during the life of the wall, thereby leading to higher 
loads at the base of the wall. Anchors sizes were estimated based on a continuous 
beam analysis using the pressure diagram loading of Figure 1.6a. There was very 
little difference between the anchor loads obtained from the continuous beam 
analysis and those determined using the tributary area method (Munger, Jones, 
and Johnson 1990). 

The wall bending moment diagram resulting from a RIGID analysis is illu-
strated in Figure 1.6b. Because this type of analysis does not consider the wall 
displacement that occurs during prestressing and excavation, it will underesti-
mate actual bending moment demands on the wall. Therefore, a WINKLER 
analysis was performed to estimate wall bending moments and to confirm anchor 
loads. 

 
1.3.4  WINKLER analysis 

The WINKLER analysis used to evaluate the Bonneville navigation lock 
temporary tieback wall is described in Munger, Jones, and Johnson (1990). The 
moment diagram for the wall was determined using a one-step analysis that 
modeled the final excavation condition only. The moment diagram for the 
WINKLER analysis is illustrated in Figure 1.6c. This analysis, because it 
accounts for wall displacements during anchor prestressing and excavation, does 
a reasonably good job of estimating moment demands on the wall. A RIGID 
analysis that considers construction staging and considers support displacements 
that accumulate during each stage of construction (yielding supports analysis) 
could also provide good results. 

As illustrated in Figure 1.6c, the shape of the moment diagram obtained by 
the WINKLER analysis is quite different from that obtained by the standard 
RIGID analysis. Since the WINKLER analysis cannot give reliable information 
with respect to wall displacements, and since wall displacements and displace-
ments of the ground retained by the wall were critical to performance, it was 
decided to perform a NLFEM analysis. The NLFEM analysis investigated wall 
displacements and bending moment demands for each stage of construction. 

 
1.4  NLFEM Analysis 
1.4.1  Objectives 

The purpose of the NLFEM analysis was threefold: (1) to provide a means 
for additional confirmation of the procedure used in designing the wall, (2) to 
predict potential wall performance during excavation and tieback installation, and 
(3) to assist in the interpretation of instrumentation results. The results from the 
study depict wall behavior in terms of lateral deflection, bending moments, and 
earth pressures for each stage of construction. 
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1.4.2  Description 

The computer program SOILSTRUCT (Ebeling, Peters, and Clough 1992) 
was used for the analysis. A description of the finite element analyses can be 
found in Mosher and Knowles (1990). SOILSTRUCT is designed so that the 
actual construction process can be simulated. Simulation of the actual sequence 
of construction is important because the soil stress response is nonlinear and 
stress path dependent. SOILSTRUCT provides for simulation of initial stresses, 
fill placement, material excavation, dewatering, and placement of structural 
materials in a series of incremental load steps. Incremental stresses and displace-
ments are computed after each load step. Table 1.2 lists the loading steps used to 
model the sequence for the wall construction and lock channel excavation. 

Table 1.2 
Loading Steps in SOILSTRUCT Analysis 
  Step Description 
    1 Construct surcharge to pre-excavation grade (four increments) 
    2 Excavate for railroad relocation 
    3 Construct slurry trench temporary tieback wall 
    4 Excavate in front of wall to el 78.5 ft (23.9 m) 
    5 Install upper tieback anchor at el 84 ft (25.6 m) and prestress to 150 percent of the 

design load 
    6 Excavate in front of wall to el 67.5 ft (20.6 m) and lock off upper anchor at design load 
    7 Install second tieback anchor at el 73 ft (22.3 m) and prestress to 150 percent of the 

design load 
    8 Excavate in front of wall to el 56.5 ft (17.2 m) and lock off second anchor at design load 
    9 Install third tieback anchor at el 62 ft (18.9 m) and prestress to 150 percent of the design 

load 
  10 Excavate in front of wall to el 45 ft (13.7 m) and lock off third anchor at design load 
  11 Install fourth tieback anchor at el 51 ft (15.5 m) and prestress to 150 percent of design 

load 
  12 Excavate to bottom of wall at el 39 ft (11.9 m) and lock off fourth anchor at design load 
Source:  Strom and Ebeling (2001). 

 
 
1.4.3  Results 

The results for each stage of construction were studied, from the in situ state 
and wall construction through the excavation and tie installation procedure. The 
results for each stage of construction are illustrated in Figures 1.7a-1.7i and 
described below in terms of earth pressures, wall bending moments, and 
displacements. 

1.4.3.1  Earth pressures. Lateral earth pressures on the wall for each stage 
of construction are illustrated in Figures 1.7a-1.7i. The initial pressure on the 
wall is approximately 50 percent greater than at-rest pressure. This increase can 
be attributed to overconsolidation and replacement of the soil by a concrete wall. 
The dotted line represents at-rest pressure increased by 50 percent. The earth 
pressure distribution changes throughout construction as a result of excavation 
and anchor prestressing. After the first excavation to elevation (el) 78.5 ft 
(23.9 m), the soil behind and near the top of the wall is in an active state as a 
result of the wall moving toward the excavation. Farther down the wall, the  
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Figure 1.7.  Deflections, moments, and earth pressures for Bonneville navigation lock, temporary tieback 
wall–Panel 6 (from Strom and Ebeling 2001) (Sheet 1 of 3) 
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Figure 1.7.  (Sheet 2 of 3) 
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Figure 1.7.  (Sheet 3 of 3) 
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lateral earth pressure is greater than active, but less than the initial pressure on 
the wall. The analysis shows that, with prestressing of the first anchor, earth 
pressures increase to greater than initial pressures behind the upper one third of 
the wall. Subsequent excavations and anchor prestressings show decreases and 
increases, respectively, of the earth pressures along the wall. Bulging of pressures 
around the anchors appears in the lower one half of the wall. Although the shape 
of the pressure diagram is approximately trapezoidal during the initial stages of 
construction, it is closer to triangular for the later stages of construction. 

1.4.3.2  Wall bending moments. Wall bending moments for each stage of 
construction are illustrated in Figures 1.7a-1.7i. Except for the first excavation, 
the moment diagram for the wall retains the same general form throughout con-
struction. The region immediately behind the upper anchor experiences negative 
bending moment, and the lower region below the upper anchor experiences posi-
tive bending moment. The maximum moment is always positive and varies 
during construction with a maximum value of about 180 kN.m (133 ft-kips). The 
maximum moment develops during the intermediate stages of excavation after 
the second anchor is prestressed.  

1.4.3.3  Wall displacements. Wall displacements for each stage of construc-
tion are illustrated in Figures 1.7a-1.7i. With the first excavation to el 78.5 ft 
(23.9 m), the wall moves 0.5 in. (13 mm) toward the excavation. With prestres-
sing of the upper tieback anchor, the wall is pulled back into the retained soil, 
resulting in a displacement of 0.78 in. (20 mm) past vertical in a direction away 
from the excavation. In subsequent construction steps, there is little change in the 
deflected position of the wall. In general, the wall moves into the soil when each 
anchor is prestressed and back toward vertical with each excavation. 

 
1.4.4  Comparison of the results of NLFEM, WINKLER, and 
RIGID analyses 

The analysis of the Bonneville navigation lock temporary tieback wall 
(presented above) demonstrates the significant differences in the results of the 
NLFEM, WINKLER, and RIGID approaches. This can be seen for instance in 
the assumed apparent earth pressure distribution behind the wall, and the moment 
diagrams calculated using the WINKLER and RIGID procedures (Figure 1.6). 
These diagrams are much different from those obtained from the NLFEM analy-
sis (Figure 1.7), which shows a more complicated pattern of development of 
earth pressures and wall bending moments with construction stage. Prominent 
differences are in nonuniform development of earth pressure with depth and the 
continuing changes in the magnitudes of the earth pressure in every construction 
stage. In contrast, the WINKLER and RIGID procedures assume a uniform (until 
about half the excavation depth) then linearly varying earth pressure distribution 
with depth. There is no soil and wall interaction effect on the earth pressure 
distribution. The moment distributions are also very different with the NLFEM 
analysis, showing reduction in bending moment after installation of the pre-
stressed anchors. As can be seen, both the WINKLER and RIGID procedures 
grossly simplify the loads acting on the tieback wall. There are several reasons 
for the differences shown in Figures 1.6 and 1.7; a few are cited below. 
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• The wall is assumed to be stiff in the RIGID analysis rather than flexible. 

• Prestressing to achieve stringent displacement control objectives results 
in total pressures in excess of at-rest conditions. 

• Construction sequencing has a major impact on wall performance. 

• Pressure distributions are approximately triangular, especially during the 
final stages of construction. 

 
1.5 Overview of SOILSTRUCT-ALPHA Finite 

Element Program 
Engineering application of soil-structure interaction modeling requires a 

balance between modeling realism and simplicity. There is now over 25 years of 
experience in modeling construction procedures by the finite element method, 
and the key ingredients in engineering applications are well known. One of the 
earliest successful applications of SSI analysis was performed by Clough and 
Duncan (1969, 1971) in their analysis of the two reinforced concrete U-frame 
locks at Port Allen and Old River. These two locks had been extensively instru-
mented. Prior to Clough and Duncan’s analyses, the instrumentation data had 
been thought to be unreliable and contrary to the perceived understanding of the 
behavior of locks encountered during lock operation. Clough and Duncan’s study 
showed that the best agreement between results computed using the finite ele-
ment method and those obtained through instrumentation measurements is 
obtained when the actual construction process is simulated as closely as possible 
in the analysis. 

During their study, Clough and Duncan developed what is referred to as the 
backfill placement analysis in which the loads exerted by the backfill on the lock 
wall are generated automatically during simulated placement of backfill behind 
the wall (i.e., predetermined earth pressure force distributions between the soil 
and the lock are not specified). This requires that the soil backfill and foundation 
soil strata be included in the finite element mesh. This procedure involves the use 
of incremental finite element analysis with nonlinear, stress-dependent, stress-
strain behavior for the soil. An additional requirement is that interface elements 
be incorporated within the finite element mesh to allow for relative movement 
between the soil and structure. 

Clough and Duncan developed the first version of the finite element program 
SOILSTRUCT, which implements this engineering modeling/analysis philoso-
phy. SOILSTRUCT has been used successfully in the past decade on several 
engineering projects supported by field observations. Since 1969, several ver-
sions of SOILSTRUCT have been developed to analyze various types of earth-
retaining structures or to analyze specific problems that were not envisioned at 
the time of Clough and Duncan’s original development. One of these updated 
versions, referred to as SOILSTRUCT-ALPHA, is the subject of this report. 



Chapter 1     Introduction 19 

SOILSTRUCT-ALPHA (Ebeling, Duncan, and Clough 1990) is a special-
purpose, finite element program for two-dimensional (2-D), plane strain analysis 
of SSI problems. SOILSTRUCT calculates displacements and stresses resulting 
from incremental construction, backfilling, excavation, dewatering, rising water 
table, and/or load application. Nonlinear, stress-path dependent, stress-strain 
behavior of the backfill was approximated in the finite element analysis using the 
tangent modulus method. In the tangent modulus method, new values of tangent 
moduli are assigned to each soil element at each increment of loading (i.e., 
dewatering, lock construction, and backfilling) or unloading (i.e., excavation, 
rising water table). The modulus values assigned to each element are adjusted in 
accordance with their stresses to simulate nonlinear behavior. 

Three types of finite elements are used to represent the behavior of different 
materials: 

1. Two-dimensional continua elements 
A 2-D, subparametric, quadrilateral element (QM5) is used to represent the 
soil and most structural materials. Structural supports, such as the struts or 
tieback components of an excavation support system, are typically modeled 
as a spring support using bar elements. However, 2-D elements have been 
used to model these supports in some cases.  

 
2. Interface elements 
SOILSTRUCT-ALPHA has the ability to model the interface region between 
the soil backfill and the structure using interface elements. This important 
feature allows for the movement of the softer continua elements used in 
modeling the backfill relative to (the movement of) the stiffer continua 
elements used in modeling the structure. This element is defined by four 
nodes, with each of the two pairs of nodes having the same coordinates; thus 
this element has no thickness. 
 
3. One-dimensional bar elements 
To model the behavior of a variety of structural systems, 1-D, two-node, bar 
or spring elements are used. This includes the modeling of structural supports 
such as braces or tiebacks or the modeling of reinforcement placed within a 
soil backfill. 

 
SOILSTRUCT was expanded during the U.S. Corps of Engineers’ Repair, 

Evaluation, Maintenance, and Rehabilitation Research Program to model the loss 
of contact between the base of a wall (a lock, in this case) and its rock foundation 
using a procedure called the ALPHA method (Ebeling, Duncan, and Clough 
1990; Ebeling et al. 1992). Further details on the ALPHA method are given in 
Ebeling et al. (1992, pages 64-70). The ALPHA method was extended to soil 
elements by Regaldo, Duncan, and Clough (1992) to reduce numerical 
inaccuracies in soil elements that are at or near failure. 

The continua elements used to model the soil and the soil-to-structure inter-
face elements that may have failed in shear at one stage of loading have the 
ability to recover their shear stiffness and shearing resistance as a result of an 
increase in confining pressures at some later stage of loading in this version of 
SOILSTRUCT-ALPHA. Several other improvements have been made to the 
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material models, including the new Gómez, Filz, and Ebeling (2000a, 2000b) 
extended load/unload/reload hyperbolic model for interfaces, and to the numeri-
cal procedures implemented within SOILSTRUCT-ALPHA based on experience 
gained at the U.S. Army Engineer Research and Development Center in conduct-
ing SSI analyses of different types of structures. 

 
1.6 Need for Further Improvements in 

SOILSTRUCT-ALPHA 
1.6.1  Improvements in excavation procedure 

The Corps uses SOILSTRUCT-ALPHA to perform SSI analyses of multi-
anchored or tieback retaining walls. Permanent multi-anchored walls have been 
used as guide walls and approach walls on navigation projects, and as retaining 
walls on highway and railroad protection and relocation projects (Mosher and 
Knowles 1990). Multi-anchored walls are constructed by first installing soldier 
elements for entire wall panels, and then beginning excavation. Anchors or 
tiebacks are installed as excavation proceeds. A critical aspect of SSI analysis of 
such structures is modeling the excavation process. 

The excavation algorithm in SOILSTRUCT was developed in the late 1960s 
by Clough and Duncan (1969), and it has not been updated since that time, even 
though improved methods have been developed by Ghaboussi and Pecknold 
(1984), Borja, Lee, and Seed (1989), and others. The Clough and Duncan algo-
rithm is based on extrapolation of stresses from nearby elements to the excava-
tion boundary and integration of the extrapolated stresses to produce excavation 
unloading forces at element nodes. One of the weaknesses of the Clough and 
Duncan excavation algorithm is that the forces applied along the excavation 
boundary are not always consistent with the stresses in the excavated elements. 
Force equilibrium is not necessarily satisfied, and the resulting deformations can 
be either larger or smaller than they should be. The lack of force equilibrium can 
result in a distribution of excavation unloading force in which either too much or 
too little force is applied to the underlying soil and, correspondingly, either too 
little or too much force is applied to the structure. Moreover, it has been shown 
that the Clough and Duncan procedure may yield results that are dependent on 
the number of excavation stages used in simulations for linear elastic materials. 
For such materials, it has been shown that the results of the excavation should be 
independent of the number of steps and the sequence used to simulate the 
excavation. 

 
1.6.2  Accounting for soil-structure interface behavior in the 
excavation procedure 

A substantial amount of research has been performed in recent years on the 
interaction of soils and structures along their interface (Ebeling et al. 1993; 
Ebeling and Mosher 1996; Ebeling and Wahl 1997; Ebeling, Pace, and Morrison 
1997; Ebeling, Peters, and Mosher 1997). These studies showed that the behavior 
of the soil-structure interface has a significant influence on the magnitudes of the 
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loads acting against earth-retaining structures such as lock walls and soil rein-
forcements such as slurry walls. They also illustrated that the pre- and post-
construction stress paths followed by interface elements are complex, often 
involving simultaneous changes in normal and shear stresses, as well as 
unloading-reloading due to postconstruction rise of the groundwater level. 

Gómez, Filz, and Ebeling (2000a) developed an extended hyperbolic model 
for interfaces and implemented it into the finite element program SOILSTRUCT-
ALPHA. The model is based on the Clough and Duncan (1971) hyperbolic 
formulation, which was extended to model a variety of stress paths. Gómez, Filz, 
and Ebeling (2000a) performed a series of interface tests between uniform fine 
sands and concrete. Some of these tests followed complex stress paths that 
included unloading-reloading and simultaneous changes in normal and shear 
stresses. 

Gómez, Filz, and Ebeling (2000a) also carried out a pilot-scale lock wall 
simulation that modeled placement and compaction of the backfill, surcharge 
application, and changes in the elevation of the water table behind the wall. By 
comparing model predictions to interface test results, and the results of 
SOILSTRUCT-ALPHA analyses to measurements from the lock wall simulation, 
these investigators concluded that the extended load/unload/reload hyperbolic 
model could provide accurate estimates of the response of backfill-to-lock wall 
interfaces. 

Important similarities exist between the types of loading that occur at struc-
ture-to-soil interfaces in both multi-anchored systems and lock walls. Therefore, 
it is possible that the Gómez-Filz-Ebeling model for interfaces could also be used 
for SSI analyses of multi-anchored systems. However, because the model was 
developed based on the results of interface tests performed using uniform fine 
sands, additional testing was required to validate model performance for coarser 
soils. 

Gómez, Filz, and Ebeling (2000b) performed a series of virgin shear tests 
under constant stress at the interface between a coarse sand and concrete. The 
results of these tests were used to determine the hyperbolic parameter values of 
the interface following the recommendations given by Gómez, Filz, and Ebeling 
(2000a). An interface test was performed following a complex stress path that 
included unloading-reloading as well as simultaneous changes in shear and nor-
mal stresses. The interface response measured during this test was compared with 
the response calculated using the extended hyperbolic model. It was found that 
the Gómez-Filz-Ebeling interface model provided accurate estimates of the 
response of this type of interface. Therefore, it can be concluded that the 
extended hyperbolic model can be used for prediction of the response of inter-
faces between concrete and a variety of granular soils. The hyperbolic parameter 
values of the interface tested also add to the database of interface properties 
available in the literature. The extended hyperbolic model, together with the 
interface data that have been generated, provides a useful tool for analyzing 
multi-anchored retaining systems and other Corps of Engineers structures. 

The excavation algorithm in SOILSTRUCT-ALPHA was not developed with 
consideration of interface elements between the excavated soil and the retaining 
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structure. Such interface elements are necessary for realistic modeling of earth-
retaining structures because the soil has a tendency to slip at its contact with the 
retaining structure, and interface elements allow slip to occur in finite element 
analyses. Consequently, it is important to upgrade SOILSTRUCT-ALPHA with 
an excavation procedure that correctly accounts for the presences of interface 
elements. 

 
1.7  Study Objectives 

The purpose of this report is to provide specific recommendations for 
improving the excavation algorithm in SOILSTRUCT, and to provide the infor-
mation necessary for implementing these recommendations. The results will 
permit reliable and efficient improvement of the excavation algorithm in 
SOILSTRUCT-ALPHA. The objectives of the study described in this report 
are to 

a. Complete a comprehensive literature review of numerical modeling of 
excavation. 

b. Determine the suitability of existing excavation algorithms for their use 
in SOILSTRUCT. 

c. Provide the information necessary to implement an improved excavation 
algorithm in SOILSTRUCT. 

 
1.8  Report Organization 

The report is organized in five chapters and one appendix. Chapter 1 
provides a general background on the geotechnical issues addressed in the study 
and the motivation for the work carried out in the study.  

Chapter 2 presents a detailed discussion of the general numerical procedure 
to simulate excavation. The chapter focuses on the Clough and Duncan pro-
cedure, and the use of the procedure is illustrated via an example problem. 

Chapter 3 gives a review of the other available numerical procedures for 
simulating excavation. Four major types of numerical procedures are identified, 
and their main features are discussed. A detailed presentation of the method of 
force residuals is given by analyzing the example problem used in Chapter 2. 

A comprehensive assessment and comparison of the available numerical 
models for excavation is given in Chapter 4. The models are compared in terms 
of practical and theoretical advantages and disadvantages. The Clough and 
Duncan procedure and the procedure based on force residuals are assessed with 
regard to how and whether they satisfy the requirements of force equilibrium, 
uniqueness of solution, and accuracy and convergence of solution. Chapter 4 also 
gives a detailed discussion of the issues related to the implementation of the 
method of force residuals in SOILSTRUCT-ALPHA. 
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Chapter 5 summarizes the conclusions from the study and gives recommen-
dations for updating and modifying the excavation algorithm used in 
SOILSTRUCT-ALPHA. 

Finally, Appendix A gives a brief discussion on the determination of external 
surface tractions and internal element forces using isoparametric finite elements.  
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2 Numerical Simulation of 
Excavation  

Typical examples of excavation in soils were shown in Chapter 1. In finite 
element analysis, these excavations are simulated following the basic steps 
shown in Figure 2.1. The particular example used in the illustration is the excava-
tion stage during construction of a slurry wall along a river embankment (see 
Figures 1.3b-c). The portion of the soil to be excavated is shown as a shaded 
area. Prior to excavation, the soil to be excavated exerts stresses along the 
boundary between the soil to be excavated and the remaining soil (Figure 2.1a). 
As far as the remaining soil is concerned, the situation is the same as in Fig-
ure 2.1b where the excavated soil is simply replaced by the stresses (or tractions) 
across the face of the excavated surface. The soil that will remain after the exca-
vation would undergo no displacement or change in stress if the soil to be exca-
vated were replaced by the boundary stresses. Since the systems shown in 
Figures 2.1a-b are equivalent, excavation simply involves removal of the bound-
ary stresses from the remaining soil (Figure 2.1c). A stress-free surface would 
then result, and the displacements and stresses due to excavation would be pro-
duced by the removal of this load. In summary, simulation of excavation involves 
the following steps: 

a. Find the tractions or boundary stresses transmitted to the remaining soil 
by the soil that will be excavated. 

b. Remove the stiffness of the excavated region from the stiffness of the 
whole region. 

c. Apply to the remaining soil the tractions or boundary stresses with 
magnitudes equal to those determined in Step 1 and opposite in sign. 

d. Add the incremental displacements, strains, and stresses of Step 3 to the 
condition before excavation. 

 
In finite element simulation, stresses induced by external loads and self-weight 
are converted to nodal forces. 
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Figure 2.1.  Steps in simulation of excavation  
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2.1  Clough and Duncan Procedure 
One of first finite elements procedures for simulating excavation in soils 

was developed by Clough and Duncan (1969). This is the simulation procedure 
used in the finite element code SOILSTRUCT and the latest version of 
SOILSTRUCT-ALPHA. Subsequent applications showed that the Clough and 
Duncan (1969) procedure suffers from certain limitations, which could have 
significant influence on the simulated results. Following the work of Clough and 
Duncan (1969), several other numerical procedures for modeling excavation have 
been developed that improved upon and removed the deficiencies in the Clough 
and Duncan procedure. This section gives a detailed review of the Clough and 
Duncan procedure. The review is presented to provide a starting point for asses-
sing alternative methods for modeling excavation and determining how such 
alternative methods can be implemented in a modified and updated version of 
SOILSTRUCT-ALPHA.  

Similar to many excavation procedures, the technique of Clough and Duncan 
is based on Figure 2.1 and consists of determining the stresses at the excavation 
boundary, calculating the equivalent nodal forces from the boundary stresses, and 
applying equal but opposite nodal loads to the finite element mesh. At the same 
time, the contributions of the excavated elements are taken out of the global 
stiffness matrix. This can be done by assigning minimal stiffness values to the 
excavated elements. The application of equal but opposite loads at the nodes 
along the excavation boundary ensures that the excavation boundary becomes 
stress free following the removal of the excavated elements.  

To calculate the nodal loads on the excavation boundaries, the Clough and 
Duncan procedure uses the normal and shear stresses along the surface to be 
exposed by the excavation. Consider the case of a four-noded finite element with 
a linear distribution of normal and shear stresses along the excavation edges of 
the element, as illustrated in Figure 2.2. The normal stresses will produce nodal 
forces perpendicular to the excavation edge, while the shear stresses will produce 
nodal forces parallel to the excavation edge. Addition of all forces in the same x 
and y directions gives the total excavation forces Fx and Fy at each node.  

The nodal forces for the case of uniform stress distribution along the excava-
tion edge will be equal to one half the stress multiplied by the length of the exca-
vated edge for both nodes (Figure 2.3). For quadrilateral elements with linear 
variation of stress along the edges, the nodal forces are calculated as shown in 
Figure 2.3. The nodal loads are obtained from simple static equilibrium and by 
integrating the area of the load over the length of side of the element. Appen-
dix A presents a derivation of the equivalent nodal loads given in Figure 2.3.  

In the finite element method, the stresses are generally determined only 
within the element (at the center of the elements or at the Gaussian quadrature 
points) and not along element edges. Since excavation boundaries pass between 
elements, several procedures were developed to determine the stresses on the 
excavation boundaries from the internal stresses of the elements adjacent to the 
excavation boundary. Dunlop, Duncan, and Seed (1968) determined the stresses 
on the boundaries by averaging the stresses in pairs of elements adjacent to the 



Chapter 2     Numerical Simulation of Excavation 27 

Figure 2.2.  Normal and shear stresses and equivalent nodal forces along the excavated sides of an 
element 



28 Chapter 2     Numerical Simulation of Excavation 

Figure 2.3.  Equivalent nodal forces from surface stresses 

excavation boundary. Equivalent nodal forces were then calculated assuming that 
the average stresses are constant along the excavation boundary. In the case 
shown in Figure 2.4, the stresses along the excavation boundary K-L are obtained 
from the average of the stresses in Elements 1 and 2, and for the boundary J-K 
the stresses are calculated from Elements 1 and 4. This method was shown to be 
accurate only when the elements are of equal size. Chang (1969) improved on 
this method by using only the stresses above the boundary and correcting the 
nodal load according to an assumed gravity stress gradient within the elements. 

Clough and Duncan generalized the techniques of Dunlop, Duncan, and Seed 
(1968) and Chang (1969) by interpolating the stresses along the excavation 
boundary from the stresses in the element to be excavated and the stresses in the 
three adjacent elements. This is the procedure that is currently used in 
SOILSTRUCT-ALPHA. Figure 2.4 illustrates the Clough and Duncan procedure.  
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Figure 2.4.  Interpolation procedures used to determine the stresses along the 
excavation boundaries. For the Dunlop, Duncan, and Seed (1968) 
procedure, stresses along K-L are calculated from the stresses of 
Elements 1 and 2, and stresses along J-K are calculated from the 
stresses of Elements 1 and 4. For the Clough and Duncan (1969) 
procedure, stresses at the nodal points J, K, and L are interpolated 
from the stresses in the centers of the Elements 1, 2, 3, and 4. 
Elements 2, 3, and 4 adjacent to the excavated Element 1 are called 
interpolation elements 

To interpolate the stresses along the excavation boundary, it is assumed that the 
stresses vary bilinearly in the region near the excavation boundary. An inter-
polation function of the following form is used to express the variation in stress: 

1 2 3 4a a x a y a xyσ = + + +  (2.1) 

where x and y are the coordinates of a nodal point and σ is any of the stress 
components xσ , yσ , and xyσ . The interpolation coefficients 1a , 2a , 3a , and 4a  
are determined from four known values of the stress σ at four locations given by 
the coordinates x and y. As mentioned above, these four locations are the centers 
of the excavated element and the three adjacent elements (the three adjacent 
elements are called the interpolation elements). Numbering the elements 1 to 4, 
the stresses σ(1), σ(2), σ(3), and σ(4) in each element can be expressed in terms 
of the coordinates of the center of the elements (x1, y1) … (x4, y4) and the 
interpolation coefficients 1a , 2a , 3a , and 4a  as 

1 2 1 3 1 4 1 1

1 2 2 3 2 4 2 2

1 2 3 3 3 4 3 3

1 2 4 3 4 4 4 4

(1)
(2)
(3)
(4)

a a x a y a x y
a a x a y a x y
a a x a y a x y
a a x a y a x y

σ = + + +
σ = + + +
σ = + + +
σ = + + +

 (2.2) 
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These equations can be written in matrix form as 

{ } [ ]{ }e
m aσ =  (2.3) 

where { } { }(1) (2) (3) (4) T

e
σ = σ σ σ σ , { } { }1 2 3 4

Ta a a a a= , and  

[ ]
1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

1
1
1
1

x y x y
x y x y

m
x y x y
x y x y

 
 
 =
 
 
  

 (2.4) 

The unknown interpolation coefficients { } { }1 2 3 4
Ta a a a a=  can be 

obtained from Equation 2.2 as 

{ } [ ] { }1

e
a m −= σ  (2.5) 

The values of the interpolation coefficients can now be used to extrapolate 
the stresses at each of the nodes of the element to be excavated. Denoting the 
four nodes of the element to be excavated as I, J, K, and L, the stresses at the 
nodes { } { }T

I J K Ln
σ = σ σ σ σ can be determined as 

{ } [ ]{ }n
n aσ =  (2.6) 

where [n] is the coordinate matrix for the nodes I, J, K, and L: 

[ ]

1
1
1
1

I I I I

J J J J

K K K K

L L L L

x y x y
x y x y

n
x y x y
x y x y

 
 
 =
 
 
  

 (2.7) 

Finally, the nodal forces at the excavation boundary nodes can be calculated 
from the nodal stresses assuming the stresses vary linearly along the sides of the 
element. The calculations of the nodal forces from the surface tractions are the 
same as those shown in Figure 2.3.  

A three-dimensional presentation of the Clough and Duncan interpolation 
procedure is shown in Figure 2.5. Essentially, the procedure fits a bilinear distri-
bution of stresses from the interpolation elements and uses the interpolation 
parameters in finding the stresses at the nodes of the excavated element. This 
means that the interpolated surface is extended from the interpolation elements to 
the region occupied by the excavated elements. 
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Figure 2.5.  Three-dimensional representation of the Clough and Duncan 
interpolation procedure 

The Clough and Duncan procedure is illustrated in the flowchart shown in 
Figure 2.6.  

 
2.2  Example Calculation 

To illustrate the Clough and Duncan procedure, the simple problem shown in 
Figure 2.7, which consists of an excavation in level ground, will be used. For 
convenience, constant stress rectangular elements will be used. The same prob-
lem will also be used in Section 3.3 to illustrate methods based on the calculation 
of excavation forces using internal element stresses. 

 
2.2.1  Existing ground condition (pre-excavation) 

The ground consists of a 2-m horizontal layer of homogenous, normally 
consolidated loose sand underlain by stiff rock. For convenience, the unit weight 
of the soil is assumed to be γ = 20 kN/m3. The initial in situ vertical and hori-
zontal stresses are due to the self-weight of the soil. The in situ vertical stress yσ  
varies linearly with depth y: 

y yσ = γ    (2.8) 
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Figure 2.6.  Flowchart for excavation modeling using the Clough and Duncan 
procedure 

Assuming an infinite horizontal extent, uniaxial oedometric conditions apply. 
Consequently, the horizontal xσ  is related to the vertical stress according to 

x o yKσ = σ  (2.9) 

where oK  is the at-rest ratio of horizontal to vertical stress. This ratio is estimated 
from Jaky’s equation for normally consolidated deposits as 
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Figure 2.7.  Initial in situ stresses beneath a level ground surface 

1 sinoK = − φ  (2.10) 

Assuming the friction angle φ is equal to 30 deg gives oK  = 0.5. Using γ = 
20 kN/m3 and oK  = 0.5 gives the in situ vertical and horizontal stress 
distributions shown in Figure 2.7. 

 
2.2.2  Finite element analysis 

Step 1: Gravity turn-on analysis. The first step is the simulation of the 
ground conditions of the site before the start of the construction operations. In 
finite element programs such as SOILSRUCT and SOILSTRUCT-ALPHA, the 
standard procedure involves representing the initial conditions by an initial state 
of stress in each element in which the vertical stress is equal to the overburden 
stress, and the horizontal stress is a fraction of the vertical stress given by Equa-
tion 2.9. Assuming level ground, the initial shear stresses on the horizontal and 
vertical planes are assumed to be zero. Also, the displacements and strains from 
the initial stresses are set to zero once the gravity turn-on analysis is completed. 
However, the stresses calculated in subsequent incremental loadings are cumula-
tively superimposed on the initial stresses. It is important to account for the initial 
stresses, particularly in cases where stress-dependent deformation moduli are 
used. This gravity turn-on procedure does not explicitly model the influence of 
stress history on material behavior.  

A simplified finite element model of the level ground shown in Figure 2.7 is 
given in Figure 2.8. The finite element model consists of two layers of constant 
stress elements and a total of six elements. The calculation involves the determin-
ation of the nodal loads at the excavation boundaries due to the removal of Ele-
ment 2. To simulate an infinite horizontal extent, no lateral displacements are 
allowed along the two sides. Also since the layer is underlain by rock, the vertical 
displacement of the base of the model is assumed to be zero. The size of all  
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Figure 2.8.  Excavation of a single element 

elements is 1 by 1 m2, and a unit thickness is assumed. Elastic properties are 
assumed (see below). 

Because loading in finite element analysis can only be represented by the 
application of nodal forces, the self-weights of the elements have to be converted 
to vertical nodal forces. Again, assuming a unit thickness of the model, the self-
weight of each element W shown in Figure 2.8 is equal to 

( )2 320 kN/m (1 m)(1m)(1m) = 20 kNW L= γ =  (2.11) 

For a rectangular mesh, the equivalent nodal loads from the element self-weights 
are obtained by adding one quarter of the weight of each element and summing 
the weights of all elements connected to a node (Cook, Malkus, and Plesha 
2002). For the problem shown in Figures 2.7 and 2.8, the self-weight induces the 
vertical nodal load vectors given below (Figure 2.9). For example, the vertical 
load of 10 kN for node 2 comes from one quarter the weight of Element 1 (equal 
to 5 kN) and one quarter the weight of Element 2 (equal to 5 kN). The summa-
tion of element weights is carried out for all the nodes. 

Step 2: Results of gravity turn-on analysis. Having prescribed the vertical 
loads due to the element self-weights, a finite element analysis can now be 
carried out to calculate the initial stresses in the elements. Normally, this will 
also require that the material parameters be prescribed. For an elastic material, a 
Young’s modulus E and a Poisson’s ratio ν are required. For the situation shown 
in Figure 2.9, the analysis of the element vertical stresses is trivial and can be 
done solely based on vertical equilibrium. The Young’s modulus is assumed to 
be 10 MPa. 
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Figure 2.9.  Nodal loads from self-weight (forces shown are in kilonewtons) 

The horizontal stresses can be obtained from an elastic stress-strain relation 
assuming the horizontal strain xε  is equal to zero. The horizontal stresses from 
this elastic stress-strain solution follow Equation 2.9, where oK  is related to the 
Poisson’s ratio ν of the material by the following relation: 

1oK ν=
− ν

 (2.12) 

Thus, to achieve a oK  value consistent with the value obtained from 
Equation 2.10, the Poisson’s ratio ν can be solved from Equation 2.9 as 

1
o

o

K
K

ν =
+

 (2.13) 

This gives ν = 0.33 for oK  = 0.5. Based on vertical equilibrium and the solution 
of the horizontal elastic stress-strain relation, the vertical and horizontal stresses 
at the centers of the elements (due to the self-weight vertical loads shown in 
Figure 2.9) are given in Table 2.1 below.  

Table 2.1 
Calculated Element Stresses Due to Nodal Loads Shown in 
Figure 2.9 

Elements Depth, y (m) 

Vertical Stress, 

yσ (kPa) 
Horizontal Stress, 

xσ (kPa) 

1, 2, 3 0.5 10   5 
4, 5, 6 1.5 30 15 
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These element stresses correspond to the stresses shown in the stress profiles in 
Figure 2.7. Note that, due to the nature of the loading, shear stresses xyσ are zero.  

Step 3: Determination of excavation forces using Clough and Duncan 
procedure. To determine the stresses along the excavation boundaries, the 
stresses at the nodal points 2, 3, 6, and 7 are first determined following the 
interpolation procedure discussed above. The interpolation is carried out using 
Elements 2, 3, 5, and 6 as the interpolation elements and the stresses in the 
centers of these elements. The interpolation is, therefore, carried out using the 
region connected by the dashed lines in Figure 2.9. For illustration, the calcula-
tions are first carried out for the horizontal stresses along the excavation bound-
ary between Elements 2 and 3 (line connecting nodes 3 and 7). Substituting the 
horizontal stresses and the coordinates of the centers of Elements 2, 3, 6, and 5 in 
Equation 2.2 gives the following interpolation equation: 

1

2

3

4

5 1 1.5 1.5 2.25
5 1 2.5 1.5 3.75

15 1 2.5 0.5 1.25
15 1 1.5 0.5 0.75

a
a
a
a

    
    

    =                 

 (2.14) 

Solving for { } { }1 2 3 4
Ta a a a a= in Equation 2.14 gives {a} = {20, 0, -10, 

0}. Substituting these values in Equation 2.6, together with the coordinates of 
nodes 2, 3, 6, and 7, gives the following stresses at these nodal points: 

( )
( )
( )
( )

2 1 1 2 2 20
3 1 2 2 4 0
6 1 2 1 2 10
7 1 1 1 1 0

x

x

x

x

σ     
     σ    =    σ −       σ      

 (2.15) 

Solving Equation 2.15 gives 

( )
( )
( )
( )

2 0
3 0

(kPa)
6 10
7 10

x

x

x

x

σ   
   σ   =   σ   
   σ   

 (2.16) 

Following the same procedures, the vertical stresses yσ  at nodes 2, 3, 6, and 7 
can be obtained as 
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( )
( )
( )
( )

2 0
3 0

(kPa)
6 20
7 20

y

y

y

y

 σ  
   σ   =   σ   
   σ   

 (2.17) 

Assuming linear distribution of stresses along the sides of the elements 
between the nodes, the stresses along the excavation boundaries corresponding to 
the interpolated nodal stresses are plotted in Figure 2.10. The boundary stresses 
are then converted to nodal forces following the procedures shown in Figure 2.3.  

The reversed equivalents of these nodal forces are also shown in Figure 2.10. 
These are the forces that will be applied to simulate the excavation of Element 2 
following the Clough and Duncan procedure. Further discussions of the results of 
the Clough and Duncan procedure are given in Section 4.2. 

Figure 2.10.  Stress distribution (a) along the excavation boundary from the interpolated nodal stresses; 
(b) reversed equivalent nodal forces (stresses are in kilopascals; forces are in kilonewtons) 
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3 Review of Other Excavation 
Models  

As noted in Chapter 2, several procedures for modeling excavation processes 
have been developed since Clough and Duncan presented their excavation 
algorithm in 1969. In this chapter, the main features of the different numerical 
models for simulating excavation processes are described and reviewed. 
 
3.1  Summary of Models 

The method of using stresses or surface traction along the excavation bound-
aries appears to have been proposed first by Brown and King (1966). The Clough 
and Duncan model itself was an improvement of the models proposed by 
Dunlop, Duncan, and Seed (1968) and Chang (1969). The difficulties associated 
with the Clough and Duncan procedure had not been rigorously analyzed until 
Christian and Wong performed a detailed analysis of the different excavation 
procedures available in 1973. At that time, Clough and Duncan (1969) and 
Ishihara (1970) had already demonstrated that, for linear elastic materials, the 
results of the excavation must be independent of the number of steps used in the 
excavation. 

Clough and Duncan (1969) performed a numerical analysis of the effects of 
number of layers in simulation of one-dimensional (1-D) excavation and fill 
placement. Curves of error (in percent) in vertical displacement were developed 
where the error was defined as the ratio of the vertical displacement for a given 
number of increments to the vertical displacement obtained for the solution using 
layers of infinitesimal thickness. The analysis was carried out for both linear and 
nonlinear material behavior. For nonlinear material response, the Young’s modu-
lus E was modeled as a power function of the confining stress 3σ . Clough and 
Duncan’s results are shown Figure 3.1 in terms of the values of errors in simula-
tion of small layers of excavation for different values of the exponent n used to 
model the dependency of E to 3σ . As can be seen, there are no simulation errors 
for linear elastic material with n = 0, which shows that 1-D excavation is inde-
pendent of the number of layers used in the simulation. 
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Figure 3.1.  Values of errors in simulation of small layer one-dimensional 
excavation for different values of n (Clough and Duncan 1969) 

Ishihara (1970) presented a more formal and mathematical proof that, for 
elastic materials, the result must be independent of the number of stages used in 
general 2- and 3-D excavation problems. This follows from the principle that the 
response of elastic materials is independent of the load or displacement path 
taken by the material. Uniqueness of the solution for excavation in elastic 
materials should, therefore, be one of the main criteria in determining the validity 
of a numerical procedure for simulating excavation. 

Christian and Wong (1973) studied the performance of three numerical 
procedures: (a) the Clough and Duncan procedure of interpolating stresses from 
four elements near the excavation boundary; (b) the Dunlop, Duncan, and Seed 
(1968) procedure of averaging the stresses of the two elements adjacent to the 
excavation boundary; and (c) using the stresses of the excavated element as the 
boundary stresses. It was found that the results of these three finite element 
procedures could be in serious error. In particular, the different procedures 
yielded displacements at the top of a vertical cut which were dependent on the 
number of steps of excavation in an elastic soil. For the problem Christian and 
Wong (1973) analyzed, the calculated vertical displacements at the top of the 
excavation varied from -0.6 to 0.8 ft (-0.2 to 0.2 m) when the number of 



40 Chapter 3     Review of Other Excavation Models 

excavation lifts was changed from 1 to 8. Clearly, this discrepancy shows the 
difficulty of using the three procedures in predicting displacements from excava-
tions, as the results are heavily influenced by the number of steps used in the 
simulation.  

Christian and Wong (1973) argued that the errors are largely due to the 
inability of the finite elements to model adequately the stress gradients at the toe 
of the excavation. They proposed a modified model and recommended that 
simulations of excavations should be done in as few steps as possible. In their 
modified procedure, the stresses at the excavation boundary are extrapolated 
using a fifth- or sixth-order polynomial fitted through the stresses at the element 
centers in the same horizontal row of elements. Although better results were 
obtained with this modified procedure, there were still differences in the calcu-
lated displacements for different numbers of excavation steps used. 

Following the work of Christian and Wong (1973), Chandrasekaran and King 
(1974) developed a procedure that does not rely on interpolation of the stresses 
along the excavation boundary. The procedure is based on the individual calcula-
tions of the excavation loads for each stage of excavation based on earth pressure 
assumptions and the displacement functions used for the elements. The indi-
vidual sets of loads are calculated before the different stages of excavation are 
carried out. Each set of loads is modified to account for the changes in load from 
the previous excavation stage. These changes are equal to the product of the stiff-
ness matrix of the unexcavated elements and the displacements from the previous 
stage. The procedure is shown to yield numerically identical results for different 
numbers of excavation stages. Another attempt at solving the nonuniqueness 
problem shown by Christian and Wong (1973) is the procedure developed by 
Desai and Sargand (1984). A hybrid finite element procedure, in which the finite 
element degrees-of-freedom include both displacements and stresses, was 
proposed.   

Over the years, a numerical solution that has found wide acceptance among 
modelers is the procedure based on calculating excavation forces from element 
stresses at the Gaussian points (or at the element center for constant stress ele-
ments). Clough and Mana (1976) appeared to be first to propose this procedure. 
However, the most rigorous proof of the uniqueness of the solution based on the 
use of internal element stresses for elastic materials was given by Ghaboussi and 
Pecknold (1984). A generalized formulation was presented in which the excava-
tion forces are treated in the context of the Newton-Raphson family of solution 
techniques widely used in nonlinear analysis. In the solution technique, unbal-
anced forces from excavation are simply treated as part of the force residuals that 
need to be balanced for a given load or excavation stage. In addition, Ghaboussi 
and Pecknold accounted for the stresses from the material self-weight. The self-
weight stresses were not included in the Clough and Mana (1976) procedure. 

The validity of the Ghaboussi and Pecknold (1984) procedure was also 
demonstrated by Chow (1985). Using this procedure, Chow showed that the 
Desai and Sargand (1984) method does not account for the body forces. Brown 
and Booker (1986) performed further studies showing the uniqueness of the 
solution using the Ghaboussi and Pecknold procedure for linearly elastic 
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materials. It was also shown that the procedure does not require a large degree of 
mesh refinement to obtain accurate results for linear elastic materials. 

Borja, Lee, and Seed (1989) extended the Ghaboussi and Pecknold (1984) 
procedure to nonlinear materials using a variational formulation that accounts for 
time-varying problem domain and boundaries. Independence of the solution from 
the number of construction stages was shown not only for elastic materials but 
also for a certain class of elastoplastic materials with a shrinking elastoplastic 
zone. Similar to the Ghaboussi and Pecknold procedure, changes due to excava-
tion are treated as part of the nonlinear problem, although a different numerical 
strategy is used to resolve the force residuals from the unbalanced forces. 

Based on this review, the methods can be grouped into four main types of 
numerical procedures for modeling excavation processes, as summarized in 
Table 3.1 and Figure 3.2. Chapter 4 presents an evaluation of these procedures, 
their advantages and disadvantages, and the requirements for implementing the 
recommended procedure in SOILSTRUCT-ALPHA. 

Table 3.1 
Main Types of Numerical Procedures for Simulating Excavation 
Processes 
Numerical Procedure Summary of the Procedure and Variants  
Excavation forces from 
stresses along the 
excavation boundary 
(Figure 3.2a) 
 

Originally developed by Brown and King (1966). 
Excavation boundary stresses are determined from the boundary 
stresses of the excavation element (Christian and Wong 1973). 
Excavation boundary stresses are determined from the average of 
the element stresses of two elements adjacent to the excavation 
boundary (Dunlop, Duncan, and Seed 1968). 
Stresses at the nodes of the excavated element are determined from 
interpolation of element stresses from four elements adjacent to the 
excavation boundary. Nodal stresses are then converted to 
excavation forces along the excavation boundary (Clough and 
Duncan 1969). 
Excavation boundary stresses are extrapolated using a fifth- or sixth-
order polynomial fitted through the stresses at the element centers in 
the same horizontal row of elements (Christian and Wong 1973). 

Accumulation of 
excavation forces 
(Figure 3.2b) 

Individual sets of excavation loads are calculated before the different 
stages of excavation are carried out. Each set of loads is modified to 
account for the changes in the load from the previous excavation 
stage. These changes are equal to the product of the stiffness matrix 
of the unexcavated elements and the displacements from the 
previous stage (Chandrasekaran and King 1974). 

Hybrid finite element 
procedure (Figure 3.2c) 

Uses finite elements with displacement and stress degrees-of-
freedom (Desai and Sargand 1984).   

Excavation forces from 
force residuals 
(Figure 3.2d) 

Excavation forces are calculated from stresses at the Gaussian 
points (Clough and Mana 1976). 
Body forces are included along with the internal stresses in the 
calculation of excavation forces (Ghaboussi and Pecknold 1984, 
Chow 1985, Brown and Booker 1986). 
The procedure is a generalization of the Newton-Raphson procedure 
to minimize force residuals from unbalanced (difference between 
internal and external) forces (Ghaboussi and Pecknold 1984). 
The procedure is generalized for nonlinear materials behavior (Borja, 
Lee, and Seed 1989). 
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Figure 3.2.  Excavation forces 



Chapter 3     Review of Other Excavation Models 43 

3.2  Methods Based on Force Residuals 
The method of calculating excavation forces from the differences between 

the internal element forces and external loads appears to be one of the most 
widely used and perhaps most successful procedure for modeling excavation. For 
this reason, a detailed review of this procedure is given in this section. The 
method is based on the minimization of the residual forces {R}calculated from 
the differences between the internal forces { }intF  and the external forces { }extF  
calculated at the nodes in a finite element discretization of a stress problem.  

{ } { } { }int 0extR F F= − =  (3.1) 

In a finite element discretization, { }intF  and { }extF  are calculated from the 
element stresses {σ}, body loads from self-weights {b} = {0    γ}T where γ is the 
unit weight (force/length3), and surface stresses or tractions {σs} at the 
boundaries: 

{ } [ ] { }int
T

V

F B dV= σ∫  (3.2) 

{ } [ ] { } [ ] { }T T s
ext

V S

F N b dV N dS= + σ∫ ∫  (3.3) 

where V and S are, respectively, the volume and surface area of the element, [N] 
is the global shape function matrix, and [B] is the global strain-displacement 
transformation matrix.  

For 2-D stress conditions, [B] is equal to 
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where i is the node number of the element. 

So, in 2-D plane stress/plane strain problems, the internal forces are equal to 
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Calculations of the internal and external forces at element level are illustrated in 
the case of the isoparametric four-noded quadrilateral element as shown in 
Appendix A. 

The internal and external loads are summed for all elements connected to a 
node from the global internal and external force vectors { }intF  and { }extF . 
During excavation, both of these force vectors will change, and the differences 
between the two force vectors correspond to the excavation loads at the excava-
tion boundaries. The changes in the internal forces are due to the removal of the 
element stresses of the excavated elements. For the deleted elements, the internal 
stresses { }σ  in Equation 3.2 are set to zero; thus, deleted elements no longer 
contribute to the internal forces.  

The changes in the external forces are due to the removal of the nodal forces 
for the nodes within the excavation and to the reduction of the nodal forces in the 
nodes along the excavation boundaries. For the deleted elements, the body loads 
{ }b  and the surface tractions on the boundary of the deleted elements { }sσ  in 

Equation 3.3 are set to zero; thus, deleted elements no longer contribute to the 
external forces.  

The difference { }extF -{ }intF  will cause deformations { }u∆ , which are 
computed from the global force-displacement relation: 

[ ]{ } { } { }intextK u F F∆ = −  (3.6) 

where [ ]K = [ ] [ ][ ]T

V

B D B dV∫  is the global stiffness matrix ( [ ]D  is referred to as 

either the constitutive or stress-strain matrix). The deformations { }u∆  are the 
deformations induced by the excavation. 

One approach to apply the method of force residuals is illustrated in a 
flowchart in Figure 3.3. 

Consistent nodal point forces due to the self-weight of each element are 
computed in Equation 3.3 using the following { }b -matrix: 

{ } 0
b

 
=  γ 

 (3.7) 

where γ is the unit weight of the soil. If the element is rectangular, the volume 
integral of [ ] { }0T TN γ in Equation 3.3 predicts y-direction loads at each node, 
each equal to one quarter of the total forces (i.e., the total weight) on the element. 
This is regardless of the orientation of the element with respect to the y-axis 
(Cook, Malkus, and Plesha 2002, p 114). 
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Figure 3.3. Flowchart for excavation modeling using the method of force 
residuals 
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3.3  Example Calculation 
The problem analyzed using the Clough and Duncan procedure in 

Section 2.2 will be reanalyzed to illustrate the use of the procedure described 
above. For convenience, the finite element mesh (Figure 2.9) is reproduced 
below as Figure 3.4. 

Figure 3.4.  Nodal loads from self-weight (forces shown are in kilonewtons) 

Steps 1 and 2: Gravity turn-on analysis and results of analysis  
 

These steps are the same as those used in the Clough and Duncan procedure. 
At the end of this step, the nodal load vectors due to element self-weights are as 
shown in Figure 3.4. 

Step 2: Calculation of equivalent internal element forces from 
internal stresses 

 
These are the nodal forces that are equivalent to the internal stresses. The 

authors of this report will refer to them as the internal element forces. This step 
corresponds to the calculation of the equivalent element nodal forces ( )intxiF  and 

( )intyiF for each element using Equation 3.5 corresponding to the stresses xσ , yσ , 

and xyσ  in the element. Recall that the element stresses due to the self-weight 
loads in Elements 1, 2, and 3 are yσ = 10 kPa and xσ = 5 kPa, and the corre-
sponding stresses for Elements 4, 5, and 6 are yσ = 30 kPa and xσ = 15 kPa. For 
all elements, xyσ = 0. The calculations of element nodal forces are carried out for 
all the element nodes i (= 1 to 4 for the four-noded constant stress element).  
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In the case of constant stress elements this operation is trivial, as the element 
forces are simply based on force equilibrium. A constant stress distribution will 
yield an equal distribution of nodal forces among the nodes. This is shown in 
Figure 3.5 below in the calculation of the horizontal nodal forces at the two 
nodes on the right side of Element 2. The horizontal nodal forces are simply what 
are needed to balance the horizontal stress xσ = 5 kPa in the elements based on 
the free-body diagram shown. 

Figure 3.5.  Calculation of reversed internal element nodal forces based on force 
equilibrium 

The calculation of the internal element forces using Equations 3.2 and 3.5 is 
also illustrated in the Appendix A. For a general loading condition, the four-
noded isoparametric element discussed in Appendix A does not in general have a 
constant strain nor constant stresses throughout the element. It can be shown that 
for the loading condition (i.e., gravity turn-on) applied to the Figure 3.4 (homog-
enous, elastic) regular mesh, the four-noded isoparametric element has constant 
stress throughout each element. For the isoparametric element, Equation A.22 
results in the equivalent nodal point forces given in Figure 3.5. Appendix A 
discusses the different methodologies for computing the equivalent internal 
forces from the stress field within the element. The horizontal forces in all the 
nodes of the element are shown to be equal to 2.5 kN, as is obtained in Figure 3.5 
and also from Equation A.22 with a uniform stress field. The complete element 
forces corresponding to the element stresses of yσ = 10 kPa and xσ = 5 kPa in 
Elements 1, 2, and 3, and yσ = 30 kPa and xσ = 15 kPa in Elements 4, 5, and 6 
are shown in Figure 3.6.  

Step 3: Calculation of internal nodal forces from equivalent 
internal element forces 

 
In this step, the internal nodal forces from all the element stresses are 

obtained. This is done by summing the internal element forces from all the 
elements connected to each node after the excavation. The results from this step 
are shown in Figure 3.7. Note that only the forces along the excavation bound-
aries need to be calculated, as shown in Figure 3.7. It can be demonstrated that 
the summation of internal and external forces in the nodes that do not coincide 
with the excavation boundaries will be zero, and these nodes will be in equili-
brium. The element internal forces are shown for both the excavated element 
(Element 2) and the remaining soil. The internal forces for Element 2 are the  



48 Chapter 3     Review of Other Excavation Models 

Figure 3.6.  Reversed internal nodal forces from element stresses 

same as those in Figure 3.6. For the remaining soil, the nodal forces are calcu-
lated from element force contributions from all elements connected to a node. 
For example, consider the upward vertical force of 25 kN for node 6 in Fig-
ure 3.7b. The elements connected to node 6 after the excavation are 1, 4, and 5. 
The upward vertical force of 25 kN for node 6 is obtained from summation of the 
downward 5 kN from Element 1, the upward force of 15 kN for Element 4, and 
another upward force of 15 kN for Element 5. Similar operations are carried out 
for all the nodes for both horizontal and vertical forces. 

Figure 3.7.  Reversed total internal element forces along the excavation boundaries (forces are in 
kilonewtons) 
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Step 4: Calculation of external loads 
 

The external nodal loads due to the self-weight on the excavated element and 
the remaining soil after the excavation are calculated similarly to the loads in 
Figure 3.4. The new external nodal loads after excavation are shown in Fig-
ure 3.8. For the excavated Element 2, the external loads are simply equal to 
one quarter of the weight of the element (20 kN/4 = 5 kN) equally distributed 
among the four nodes. For the remaining soil, the main difference from Fig-
ure 3.4 is that Element 2 no longer contributes to the external loads. Thus, the 
external loads at nodes 2, 3, 6, and 7 will have to be modified to account for the 
deletion of Element 2. The external loads in the other nodes not in the excavation 
boundary will be unchanged. For example, the nodal force in node 2, which was 
10 kN in Figure 3.4, is now only 5 kN. This force comes from one quarter of the 
weight of Element 1, the only element left connected to node 2 after the 
excavation. 

Figure 3.8.  Total external nodal loads along the excavation boundaries (forces are in kilonewtons) 

Step 5: Calculate unbalanced excavation forces 
 

After the gravity turn-on analysis, the internal forces and external forces are 
equal and the system is in equilibrium. However, the excavation of Element 2 
will create unbalanced forces from the differences in the new external and 
internal forces. Adding the reversed internal forces (Figure 3.7) to the corre-
sponding external loads from the self-weights (Figure 3.8) gives the net unbal-
anced excavation forces along the excavation boundaries (Figure 3.9). These are 
the forces that will cause displacements due to excavation. 

Note the correspondence between the excavation forces on the excavated 
element and the remaining soil. The forces are of equal magnitudes but are 
opposite in sign. This means that excavation forces can be calculated using either 
the excavated element(s) or the remaining soil, and the results will be the same.  
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Figure 3.9.  Excavation forces along the excavation boundaries (forces are in kilonewtons) 

Note also the differences between the horizontal excavation forces shown in 
Figure 3.9b and those obtained from the Clough and Duncan procedure in 
Figure 2.10. The results of the procedure based on minimization of residual 
forces are discussed further in Section 4.2. 
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4 Assessment of Numerical 
Models for Excavation 

This chapter provides a detailed comparison of the numerical procedures for 
simulating excavation presented in Chapter 3. The different numerical procedures 
are evaluated in terms of uniqueness of the solution, satisfaction of force equi-
librium, and convergence of the solution. Comparisons are also made in terms of 
practical issues, such as ease of implementation in SOILSTRUCT-ALPHA. 

 
4.1  Comparisons of Models 

Four types of numerical models for simulating excavation were identified 
from the review performed in Chapter 3, and the main features of these numerical 
models were summarized in Table 3.1. Based on this review, the advantages and 
disadvantages of the four methods were also identified. A brief summary of the 
major advantages and disadvantages of the methods is given in Table 4.1.  

Table 4.1 
Advantages and Disadvantages of Different Types of Numerical 
Procedures for Simulating Excavation Processes 
Numerical 
Procedure 

Advantages/Disadvantages 

Excavation forces 
from stresses along 
the excavation 
boundary 

Attempts to account for stress concentrations at sharp excavation corners 
and between elements of different sizes. 
Does not guarantee force equilibrium between internal element forces and 
external loads. 
Results are dependent on the excavation sequence, and do not guarantee 
a unique solution for elastic problems. 

Accumulation of 
excavation forces 

Solution is independent of the number of excavation stages for elastic 
problems. 
Difficult to program, particularly for complicated excavation sequences and 
geometries. 
Requires large computer memory to store loads from previous excavation 
sequences. 

Hybrid finite element 
procedure 

Solution is independent of the number of excavation stages for elastic 
problems.  
Uses nonstandard element formulations. 
Difficult to program and requires more computer resources. 

Excavation forces 
from force residuals 

Consistent formulation, guaranteeing force equilibrium between internal 
element forces and external loads. 
Results are independent of the excavation sequence for elastic materials. 
Uses standard finite element calculations (e.g., use of the [B]-matrix and 
Gaussian quadrature to calculate internal elements forces). 
Can be extended to nonlinear problems in a consistent manner. 
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As mentioned in Chapter 3, although the Clough and Duncan (1969) 
approach was one of the earliest procedures to be widely used to analyze exca-
vation problems, Christian and Wong (1973) later recognized potential problems 
with this approach. One difficulty of using the Clough and Duncan procedure is 
that the results of the modeling are strongly dependent on the number of steps 
used to simulate the excavation. The method they suggested to minimize the 
dependency of results on the number of excavation steps was to model the exca-
vation in as few steps as possible. However, the suggested method goes against 
the philosophy in finite element analysis of achieving a converging solution as 
the problem domain is refined (both in size and the load increment). It also poses 
a difficulty for nonlinear problems where the solution calls for the application of 
small load increments at a time. 

Christian and Wong (1973) believed that the discrepancies in the results were 
due to the inability of finite elements to model high stress concentrations at the 
toe of the excavation. However, even with an improved method to extrapolate 
stresses along the excavation boundaries using a fifth-order polynomial (in com-
parison to the bilinear interpolation used in the Clough and Duncan procedure), 
the results were still dependent on the number of excavation steps used. In fact, 
the difficulties associated with the Clough and Duncan procedure can be attribu-
ted to the attempt at arriving at an accurate representation of the stress concen-
trations caused by excavation. It was argued, quite reasonably, that an accurate 
representation of the stresses along the excavation boundaries is essential in 
obtaining an accurate solution of the excavation process. Unfortunately, their 
method can produce boundary stresses that are not in equilibrium with the ele-
ment stresses and self-weights of the excavated elements. 

Although three other methods of excavation modeling were identified, two of 
these methods have fallen out of use in recent years. The method of Chandrase-
karan and King (1974) is based on the accumulation of loads from previous 
stages of excavation and requires the excavated region to be divided into differ-
ent stages. The loads at the nodes corresponding to the boundaries dividing the 
excavation stages must be recalculated and stored at every stage of the excava-
tion. This method is cumbersome, difficult to program (particularly for compli-
cated excavation sequences and geometries), and uses a lot of computer memory.  

Another method that has not found wide application is that developed by 
Desai and Sargand (1984). Again, this method is an outcome of the belief that 
stresses along the excavation boundary must be accurately represented to model 
excavation accurately. To accomplish this, Desai and Sargand used a hybrid 
finite element formulation where stresses, in addition to the usual displacements, 
are treated as nodal unknowns. The result of this formulation, however, is an 
increase in complication of the finite element solution. Hybrid finite element 
formulations are more difficult to program and require more computational 
resources due to the increased number of nodal unknowns. Moreover, it is not 
clear how the Desai and Sargand procedure can be extended to account for body 
loads from element self-weights. 

Of the four methods reviewed, it appears that the most rigorous and analyti-
cally robust method is the one based on balancing residual forces from the differ-
ences between the internal and external loads in a loaded body. This method is 
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now the most widely used and accepted procedure for excavation modeling (e.g., 
Ghaboussi and Pecknold 1984; Borja, Lee, and Seed 1989; Langer and 
Stockmann 1985; Morrison and Duncan 1996). The objective of this method is 
first and foremost to balance any unbalanced loads created by the excavation. 
The method is based on the recognition that, prior to excavation, a body of soil is 
in a state of equilibrium with the internal stresses (stresses in the elements) just 
balancing the external loads (from body weights and external surface tractions). 
Excavation disturbs this equilibrium when stressed elements are taken out 
(changing the internal loads) and the loads from the self-weights are reduced by 
the excavation (changing the external loads). By ensuring that force equilibrium 
is satisfied at every stage of calculation, the method based on minimization of 
residual forces guarantees a unique solution for any number of excavation stages 
for an elastic material. This was proven formally by Ghaboussi and Pecknold 
(1984).  

Aside from rigorously satisfying force equilibrium, the method based on 
force residuals has other distinct advantages over the other methods. One major 
advantage is that the method requires quantities that can be directly obtained 
from standard finite element calculations. This is particularly true for the calcula-
tion of the forces from internal stresses based on Equation 3.2. Calculation of 
element stresses is routinely done in all finite element codes. Also, the [ ]B -
matrix is already available from the calculation of the stiffness matrix, and it can 
be stored for later use or recalculated when needed in the evaluation of the 
internal nodal forces. Similarly for the recalculation of the external loads, the 
new external loads may either be prescribed manually or calculated from Equa-
tion 3.3. The numerical integration required in Equations 3.2 and 3.5 can be done 
using routines for generating element matrices. In fact, most of the calculations 
are standard and can be done at the element level, and later assembled following 
standard finite element assembly procedures. 

Another major advantage is that the method based on balancing of force 
residuals lends itself naturally to nonlinear problems, as shown by Ghaboussi and 
Pecknold (1984) and Borja, Lee, and Seed (1989). In the case of nonlinear prob-
lems, the force residuals are due to the loads from differences in stresses between 
the correct and the current solution (the so-called initial stresses in nonlinear 
analysis). In fact, in the formulations of Ghaboussi and Pecknold (1984) and 
Borja, Lee, and Seed (1989), changes in the problem geometry from excavation 
and addition of soil mass (e.g., from embankments) are simply treated as part of 
the nonlinear problem. In this manner, excavation modeling can take advantage 
of available methods to solve nonlinear problems. 

 
4.2 Performance of Numerical Procedures for 

Excavation Modeling 
Based on the above comparisons, it is apparent that the most viable and 

realistic alternative to the procedure based on interpolation of stresses along the 
excavation boundary, in particular the Clough and Duncan procedure used in 
SOILSTRUCT-ALPHA, is the one based on the minimization of force residuals. 
The other methods based on accumulation of excavation loads and the use of 
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hybrid finite element formulation have not gained much acceptance, and are 
computationally more difficult to implement and use. As mentioned, the method 
based on achieving force equilibrium between internal and external forces is cur-
rently the most accepted and widely used method for modeling excavation. In the 
following sections, further comparisons are made between the procedure based 
on interpolation of boundary stresses and the method based on force residuals. As 
the Clough and Duncan procedure is used to interpolate the stresses along the 
excavation boundary in SOILSTRUCT, the comparisons here will be made using 
the Clough and Duncan procedure. The comparisons and performance analyses 
are made to show whether and how the two methods meet three fundamental 
requirements: (a) the solution must be unique for path-independent linear prob-
lems, (b) force equilibrium must be satisfied at every stage of the calculation, and 
(c) the solution must be convergent with refinement of the finite element 
discretization. 

 
4.2.1  Uniqueness of solution for homogenous elastic regime 

As discussed in Chapter 3, the uniqueness of solution for excavation in 
homogenous elastic media has been demonstrated by Clough and Duncan (1969) 
for one-dimensional (1-D) excavation and fill placement, and more formally by 
Ishihara (1970) for general 2- and 3-D excavation. The simple problem shown in 
Figure 4.1a involving excavation in an elastic soil will be used to illustrate 
whether the methods based on force residuals and the Clough and Duncan pro-
cedure yield unique solutions for elastic materials independent of the number of 
excavation steps. The problem consists of 16 four-noded isoparametric quadri-
lateral finite elements with the same elastic properties for all elements. The soil 
has a unit weight of 120 pcf, a Young’s modulus of E = 1⋅106 psf and Poisson’s 
ratio of ν = 0.3. Each element is 10 by 10 ft (3 by 3 m) in size. The objective is to 
simulate the displacements of the soil after Elements 1, 2, 5, and 6 are deleted 
from the problem domain. Roller boundaries are used on the sides and the base of 
the model to prevent displacements normal to the boundaries but allow displace-
ments parallel to the boundaries. The first step in the modeling is the gravity 
turn-on analysis to determine the initial stresses from the element self-weights. 
This is followed by the deletion of the elements in the excavated region. 

Uniqueness of solution will be investigated first in the case of the method of 
force residuals. Figure 4.1b shows the deformed mesh (with displacements exag-
gerated 10×) after the excavation is made in one stage (i.e., Elements 1, 2, 5, and 
6 were taken out at the same time). The most prominent effect of the excavation 
is the heaving at the base of the excavation, with the maximum upward move-
ment of the base equal to 0.401 ft (0.12 m). There are only minor lateral move-
ments along the vertical edge of excavation.  

Figures 4.2a and b show the results for the case of a two-step excavation. The 
nodal forces shown in these two figures are discussed below. In the first stage of 
the excavation, only the first layer (consisting of Elements 1 and 5) was deleted. 
The deformed mesh after this first stage of excavation is shown in Figure 4.2a. In 
the second stage, Elements 2 and 6 (corresponding to the second row) are 
deleted. The deformed mesh after the second stage excavation is shown in  
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Figure 4.1.  Method of force residuals using four-nodal isoparametric 
quadrilateral elements—single-stage excavation  
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Figure 4.2.  Method of force residuals using four-nodal isoparametric 
quadrilateral elements—two-stage excavation (deformations 
magnified 10x; nodal forces given in pounds) 
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Figure 4.2b. The maximum heave at the base of the excavation is also 0.401 ft. 
Comparison of Figures 4.1b and 4.2b shows that the two figures are identical, 
demonstrating that the results of one- and two-stage excavation are identical for 
this case. 

To illustrate further the uniqueness of excavation solutions for elastic mate-
rials using the method of force residuals, the same problem shown in Figure 4.1a 
is reanalyzed using higher order eight-noded isoparametric quadrilateral elements 
(Figure 4.3a). Due to the higher order of the element used, the mesh shown in 
Figure 4.3a has twice as many nodes as in Figure 4.1a. The same properties and 
dimensions are used as those in Figure 4.1. The results of the one- and two-stage 
excavation are shown in the deformed meshes with exaggerated deformations in 
Figure 4.3b and 4.4, respectively. Again, identical results are obtained from the 
single- and the two-stage excavations. The maximum heave at the base of the 
excavation is 0.399 ft for both Figures 4.3b and 4.4b, which is only slightly 
smaller than the maximum heave of 0.401 ft from the analysis using four-noded 
elements.  

The same problem shown in Figure 4.4 is now analyzed using the method 
based on the Clough and Duncan interpolation of stresses along the excavation 
boundary. The result of the one-stage simulation is shown in a deformed mesh in 
Figure 4.5a. The maximum heave at the base of the excavation is equal to 
0.406 ft, which is only slightly higher than the corresponding value of 0.401 ft 
for the method of force residuals. A comparison of this result with that obtained 
from the method of force residuals is shown in Figure 4.5b. As can be seen, there 
is very little difference in the results from the two methods, showing that the one-
stage Clough and Duncan procedure can yield comparable results to the method 
of force residuals, at least for the simple problem analyzed. 

The results of the two-stage excavation using the Clough and Duncan pro-
cedure are shown in Figure 4.6. The deformed mesh at the end of the first stage 
excavation is shown in Figure 4.6a, and for the second stage in Figure 4.6b. (The 
nodal forces shown in Figures 4.6a and 4.6b are discussed below.) The maximum 
heave at the base of the excavation is about 0.419 ft, which is slightly larger than 
that for the single-stage excavation. A comparison of the deformed mesh at the 
end of the complete excavation from the single- and two-stage excavation using 
the Clough and Duncan procedure is shown in Figure 4.7. As can be seen, the 
results are different with the two-stage excavation, showing more heave at the 
base of the excavation and at the top of the vertical edge of the excavation than 
the one-stage excavation. This result is counter to the requirement that the results 
be independent of the number of excavation stages for linear elastic materials. 

It is expected that differences between multistage excavation and single-stage 
excavation will increase with increasing number of excavation stages in the 
Clough and Duncan procedure. This is due to the accumulative nature of the error 
in the magnitude and distribution of excavation forces in their procedure (Desai 
and Sargand 1984). One approach to reduce inaccuracies in the Clough and 
Duncan procedure is to perform as few excavation steps as possible, and prefer-
ably use only a single stage of excavation. The results given above show that, at 
least for simple geometries, the single-stage excavation approach can yield simi-
lar results to those obtained from the method of force residuals. Christian and  
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Figure 4.3.  Method of force residuals using eight-nodal isoparametric 
quadrilateral elements—single-stage excavation 
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Figure 4.4.  Method of force residuals using eight-nodal isoparametric 
quadrilateral elements—two-stage excavation (deformations 
magnified 10x) 
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Figure 4.5.  Comparison the results of a single-stage excavation using the 
Clough and Duncan procedure and the Method of Force Residuals 
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Figure 4.6.  Clough and Duncan procedure—two-stage excavation (deformations 
magnified 10x) (nodal forces shown are in pounds) 
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Figure 4.7.  Comparison of the results of a single-stage (thin lines) and a two-
stage (thick lines) excavation using the Clough and Duncan 
procedure (deformations magnified 10x) 

Wong (1973) also provided numerical results to support the use of few excava-
tion stages. It is should be noted, however, that this recommendation runs counter 
to the requirement of using small load increments for problems with significant 
material nonlinearity. Also, the nature of the construction (e.g., excavations using 
tieback construction) can set a limit on the minimum number of excavation 
stages that can be simulated. 

The results of the different simulations are summarized in Table 4.2 in terms 
of the maximum heave at the base of the excavation. The method of force residu-
als gave displacements of 0.401 ft for both the one- and the two-stage excavation 
using four-noded elements. The corresponding results using the eight-noded 
elements are only slightly less at 0.399 ft, showing very minimal dependency of 
the results from the level of discretization. The results of the Clough and Duncan 
procedure gave a maximum heave of 0.406 ft for the single-stage excavation and 
0.419 ft for the two-stage excavation.  

Table 4.2 
Calculated Maximum Heave at End of Excavation 
Model One-Stage Excavation Two-Stage Excavation 
Method of force residuals 
      4-noded elements 
      8-noded elements 

 
0.401 ft 
0.399 ft  

 
0.401 ft 
0.399 ft 

Clough and Duncan procedure 
      4-noded elements 

 
0.406 ft 

 
0.419 ft 

Note: To convert feet to meters, multiply by 0.3048. 
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The larger heave at the base of the excavation and of the original ground 
surface at the top of the vertical excavation boundary for the two-stage excava-
tion compared to the single-stage excavation (Figure 4.7) is attributed to the 
larger vertical excavation forces in Figure 4.6b. This will be discussed further in 
Section 4.2.2 in connection with force equilibrium. The results shown in Figure 
4.7 illustrate that the Clough and Duncan procedure does not yield a unique result 
independent of the number of excavation stages, as expected for linear elastic 
materials. 

The element internal forces were calculated using stresses evaluated at four 
Gaussian quadrature points. These are the internal forces used in the force resid-
ual method shown in Figures 4.1-4.4. Note also that there are horizontal forces at 
the lateral vertical boundaries due to the gravity turn-on. However, these forces 
are not active since the nodes along the lateral boundaries are fixed along the hor-
izontal direction. These forces are, therefore, not shown in Figures 4.2 and 4.6. 

 
4.2.2  Force and moment equilibrium 

The lack of moment equilibrium in the Clough and Duncan procedure for 
constant stress elements can be shown by recalling the example problem that was 
analyzed in Section 2.2. At the end of the calculation, the stresses along the exca-
vation boundaries and the equivalent nodal forces (but opposite in sign) from 
these stresses are as shown in Figure 4.8 below. It can be seen that equilibrium of 
forces is satisfied along the vertical direction, as shown in Figure 4.9, since the 
nodal force of 2(10) kN equals half the weight of the element (10 kN) plus the 
effect of vertical stress at the element center of (10 kPa)(1 m2) = 10 kN. 

In the horizontal direction, the horizontal forces required to satisfy force and 
moment equilibrium at the top and bottom nodes are 2.5 kN for a constant stress 
element. However, the nodal forces are equal to 1.67 kN at the top nodes and 
3.33 kN at the bottom nodes (in Figure 4.8b) according to the Clough and 
Duncan procedure. Horizontal force equilibrium is achieved only on the average, 
as the average horizontal nodal force is equal to (1.67 + 3.33)/2 = 2.5 kN. How-
ever, moment equilibrium will not be satisfied for a constant stress element. 

In comparison, the excavation nodal forces obtained by minimizing the 
residual forces, which are reproduced in Figure 4.10, satisfy force and moment 
equilibrium both in the horizontal and vertical directions.  

More convincing evidence of the lack of force equilibrium in the Clough and 
Duncan procedure can be obtained from the results of the finite element analysis 
carried out in Section 4.2.1, particularly by comparing the excavation nodal 
forces shown in Figures 4.2 and 4.6. As can be seen in Figures 4.2a and 4.6a, the 
vertical excavation forces from the method of force residuals and the Clough and 
Duncan procedure are the same for the first stage of excavation. Also, the sum-
mation of the vertical excavation forces equals 24,000 lb for both procedures, 
which is the same as the weight of the two excavated elements. Thus, force 
equilibrium is satisfied for both procedures for the first-stage excavation. 
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Figure 4.8.  Interpolated stresses at element edges (a) and equivalent nodal forces (b) along the excava-
tion boundaries from Element 2, calculated from the Clough and Duncan procedure (stresses 
are in kilopascals, forces are in kilonewtons) 

 
 

Figure 4.9.  Nodal forces required to satisfy equilibrium of forces in the (a) vertical and (b) horizontal 
directions 
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Figure 4.10.  Equivalent nodal forces based on 
minimization of force residuals 
(forces are in kilonewtons) 

The lack of force equi-
librium for the Clough and 
Duncan procedure becomes 
apparent for the second stage 
of excavation. This can be 
seen by comparing the verti-
cal excavation forces in 
Figures 4.2b and 4.6b. The 
summation of the vertical 
excavation forces gives 
24,000 lb (= 6,324 + 14,347 
+ 7,647 – 4,318) for the 
method of force residuals. 
This value is again equal to 
the total weight of the two 
excavated elements in the 
second stage of excavation. 
In comparison, the summation of the vertical forces from the Clough and Duncan 
procedure is equal to 30,397 lb (= 6,800 + 15,030 + 9,555 - 988). This is much 
larger than the total weight of the two excavated elements of 24,000 lb and, 
therefore, force equilibrium is not satisfied for the second stage of excavation.  

 
4.2.3  Convergence of solution 

As pointed out by Ghaboussi and Pecknold (1984), a clear distinction should 
be made between solution accuracy and step-size independence. While it is true 
that more accurate results should be obtained by the use of higher order elements 
or finer discretizations, this has little to do with the problem of cumulative step 
errors. If the numerical solution process is carried out correctly, the solution will 
always be independent of the number of steps, no matter how crude the finite 
element mesh used to model the stress distribution. Of course, a finer discretiza-
tion will yield a more accurate result using the method of force residuals. How-
ever, as pointed out by Brown and Booker (1986) the method of force residuals 
does not require a large degree of mesh refinement or the use of high-order finite 
elements to obtain accurate results for an elastic material. This was shown above 
where the finite element model using four-noded elements yielded results almost 
identical to the finite element model using eight-noded finite elements (and 
doubling the number of nodes).  

 
4.3 Implementation Issues in SOILSTRUCT-

ALPHA 
Based on the comparisons made in Section 4.1 and the results of the finite 

element analysis carried out in Section 4.2, it is recommended that the method of 
force residuals be implemented as another option for excavation modeling in 
SOILSTRUCT-ALPHA. There are several alternatives for implementing the 
method of force residuals in SOILSTRUCT-ALPHA. In the different alterna-
tives, the overriding issue is the type of element that is available or can be 
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implemented in SOILSTRUCT-ALPHA. Currently, the only continuum element 
available in this code is the so-called QM5 quadrilateral element. The properties 
of this element are discussed further below.  

The alternatives for implementing the method of force residuals in 
SOILSTRUCT-ALPHA are 

a. Using the existing QM5 finite element routine with constant element 
stresses. 

b. Using the existing QM5 finite element routine but with element stresses 
calculated at the Gaussian quadrature points. 

c. Using a four-noded isoparametric finite element. 

d. Using higher order (e.g., eight-noded) finite elements. 

The simplest option is, of course, to retain the existing Clough and Duncan 
procedure in SOILSTRUCT-ALPHA, and use as few excavation steps as pos-
sible based on the recommendation by Christian and Wong (1973). As shown 
above, a single-stage excavation may yield results comparable to those obtained 
from the method of force residuals, at least for linear elastic problems. Because 
this approach is not feasible for many problems of practical interest, it is recom-
mended that the method of force residuals be implemented in SOILSTRUCT-
ALPHA. The following sections discuss issues related to this implementation. 

 
4.3.1  Implementation using QM5 or other element types 

Using the existing QM5 element appears to be the most straightforward way 
of implementing the method of residuals in SOILSTRUCT-ALPHA. It is desir-
able to retain the use of QM5 element since this would involve the least amount 
of modifications to SOILSTRUCT-ALPHA, and there is already a large experi-
ence base with the use of this element. In the following, a brief description of 
QM5 is given first to clarify the feasibility of implementing the method of force 
residuals in SOILSTRUCT-ALPHA.  

QM5 is one of the family of higher order quadrilateral elements developed 
by Doherty, Wilson, and Taylor (1969) for stress analysis of axisymmetric solids. 
The axisymmetric formulation was reduced to a plane strain formulation when 
QM5 was implemented in SOILSTRUCT. The main feature of the five-noded 
quadrilateral element QM5 is that it has better bending characteristics over other 
elements with the same number of nodes. This is accomplished by using a dis-
placement function of the following form: 

( )( )

( )( )

2 2
1 2 3 4

2 2
1 2 3 4

1 1

1 1

o

o

u a a s a t a st a s t

v b b s b t b st b s t

= + + + + − −

= + + + + − −

 (4.1) 
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where u and v are the horizontal and vertical displacements, ao … a4 and bo … b4 
are interpolation constants that can be determined from the values of u and v at 
the five nodes (the fifth node is located at the element centroid), and s and t are 
the local element coordinates. (See Appendix A for an explanation of local 
coordinates.) The first four terms in the two polynomials in Equation 4.1 are the 
same as those used in standard four-noded isoparametric elements. Note that the 
equation is an incomplete polynomial. 

The fifth terms involving a4 and b4 are added to improve the bending per-
formance of the standard four-noded quadrilateral element. However, compati-
bility requires that only the first four bilinear terms in Equation 4.1 can be used 
for the four corner nodes. This forces the element to have linear displacements 
along the element sides. To retain the improved bending performance of the 
element, a constant shear strain is imposed on the element. The shear strain is 
calculated at the center or the fifth node of the element using the displacement 
function given in Equation 4.1. Once the shear strain has been calculated, the 
central node is deleted from the finite element formulation using a method of 
static condensation. In the assembly of the stiffness matrix, only the four corner 
nodes are included, and the central node does not participate in the displacement 
calculations.  

Due to the assumed constant shear strain in the element, only one set of 
stresses is currently calculated in QM5, and these are calculated at the element 
center. This is equivalent to assuming that QM5 is a constant stress element. It is 
possible to calculate at least four different stresses at four Gaussian stress points 
in QM5; however, this will require the displacements at the central node to be 
calculated. Two methods were tried to recover the displacements at the central 
node from the four corner nodes: averaging the four corner displacements, and 
using a technique to decondensate the internal degrees of freedom (Desai and 
Abel 1972). 

The first method, while very simple and straightforward, yielded very high 
forces at the central node that are an order of magnitude larger than the forces at 
the corners.  

The second method was found to be very cumbersome, involving re-solution 
of the systems of equations in order to recover the internal degrees-of-freedom 
from the four corner nodes. Such a procedure was nonetheless tried, and the 
resulting finite element formulation was used in the same problem analyzed 
(shown in Figure 4.2). To achieve complete integration of the fourth-order dis-
placement function (Equation 4.1), a 3 by 3 Gaussian quadrature was used to 
integrate the stiffness matrix, and the element stresses are determined at the nine 
quadrature points. The result of a two-stage excavation using the QM5 with 
recovered internal displacements is shown in Figure 4.11. As can be seen, the 
overall pattern of displacement looks reasonable, but individual elements gave 
very unusual displacement modes. The displacement mode of each element is 
due to the imposed constant shear strain within the element and the compatibility 
condition that elements must show linear displacements along the edges. The 
results of the analysis indicate that it is difficult to obtain a reasonable displace-
ment response from the QM5 element if the internal displacements are recovered  
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Figure 4.11.  Deformed mesh after excavation using the QM5 element with 
recovered internal displacements  

to calculate stresses at the Gaussian points while at the same time keeping the 
constant shear strain condition. 

Regardless of how the internal element stresses are determined, only one set 
of element nodal forces can be calculated for an element. This means that, 
although stresses can be calculated at four or nine Gaussian points, these stresses 
will have to be weighted and summed to get a single set of nodal forces. How-
ever, calculating stresses at the Gaussian points will give a better representation 
of the stresses within the elements, and thus highly stressed regions in the ele-
ment are better represented than by assuming a constant stress distribution. A 
better representation of element stresses will eventually yield a more realistic 
distribution of element forces. Finally, it should be noted that the central node 
should give zero residual forces at the end of the gravity turn-on and excavation 
analyses since a central node is not connected to any other node. Thus, there is no 
added value in keeping the internal degree-of-freedom in the calculation of 
excavation forces. 

Based on the above observations and considerations of other element types, a 
summary of the finite element options for simulating excavation in 
SOILSTRUCT-ALPHA is given in Table 4.3. 
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Table 4.3 
Summary of Advantages and Disadvantages of Finite Element 
Routines That Could Be Used in Implementing the Method of Force 
Residuals in SOILSTRUCT-ALPHA 
Method Advantages/Disadvantages 
Using QM5 with only 
one set of element 
stresses. 

This is the simplest and most straightforward approach of introducing the 
method of force residuals in SOILSTRUCT-ALPHA.  
Most of the required routines are already available in the code. 
It is anticipated that even with a constant-stress QM5 element, there will 
be improvement over the Clough and Duncan procedure. 

Using QM5 but extract 
four stresses at the four 
Gaussian points. 

This will require very complicated programming to recover the internal 
degree-of-freedom (DOF) that was taken out during the static 
condensation.  
The extra calculations will significantly slow down the code.  
The added sophistication is shown not to give substantial improvement 
from the current constant stress QM5. In fact, the QM5 element with 
recovered internal displacements is shown to exhibit rather unusual 
displacement response.  

Introduce a new four-
noded element.  

This is preferred over the second option, as it will require less 
programming, and the code will be more robust than one where internal 
DOFs are recovered from QM5. This is particularly true if elements with 
four nodes are used as in the reduced QM5 element.  
An isoparametric four-noded quadrilateral (Q4), which will yield four 
stresses at the Gaussian points, can replace or be used side-by-side with 
the QM5 that has the same number of DOFs. 
The Q4 does not have the advantage of the improved bending 
performance of the QM5. The Q4 can be modified to produce an 
improved bending performance, again by imposing a constant strain 
condition in the element, as was done in the element QM4 developed by 
Doherty, Wilson, and Taylor (1969). As in the QM5, the penalty is that only 
one set of stresses can be calculated in the QM4. 

Introduce a higher order 
element.  

Higher order elements will yield better performance including bending that 
lower order elements. 
This will require the most modification, particularly in the data structure of 
the code to allow for midside nodes. Modifications would be necessary in 
almost all parts of the code, including the interface element routine and 
the calculation of initial stresses 

 
 
4.3.2  Interface elements 

Another issue that needs to be considered in implementing a new excavation 
routine in SOILSTRUCT-ALPHA is the influence of interface elements. These 
elements are introduced between the soil and a retaining structure to permit rela-
tive deformation between the soil and the structure. There has been an active 
development of models for interface behavior in SOILSTRUCT-ALPHA 
(Gόmez, Filz, and Ebeling 2000a, 2000b). Currently, however, the interface 
element has no influence on the excavation routine in SOILSTRUCT-ALPHA. 
During excavation, the interface elements are assumed to be “locked” and are 
given large normal and shear stiffness values during the excavation simulation.  

Interface elements are 1-D elements or elements without thickness intro-
duced between the structure and the soil. Interface elements allow adjacent 
continuum soil and structure elements to move independently of each other. In 
the case of the problem shown in Figures 1.3 and 2.1, interface elements would 
be used between the two sides of the slurry wall and the soil (see Figure 4.12). 
The behavior of these interface elements is governed by normal and shear 
stiffnesses, with the former controlling the opening and closure and the latter  
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Figure 4.12.  Use of interface elements to model interaction between soil and 
structure 

controlling the shear displacement along the interface. In SOILSTRUCT-
ALPHA, the interface element has four nodes, with each of two nodes in a pair 
having the same coordinates.  

Interface behavior can have important influence on the excavation forces that 
are built up in the structure due to the backfilling of the soil around the structure, 
or due to the driving shear stresses in the case of structures driven into the soils. 
In the case of backfilling, an important effect is the generation of downdrag or 
vertical shear force exerted by the backfill on the structure, as referred to in 
Section 1.2. As noted above, downdrag effects have been reported in earlier 
studies by Ebeling, Duncan, and Clough (1990); Ebeling et al. (1993); Ebeling 
and Mosher (1996); Ebeling and Wahl (1977); and Ebeling, Peters, and Mosher 
(1997). The main purpose of interface elements is to be able to permit slippage 
between the soil and the structure during construction and also during subsequent 
loading of the structure. 

To include interface elements in the excavation simulation using the method 
of force residuals, it is necessary to calculate the internal forces in the interface 
elements. In case of continuum elements, the internal forces are calculated from 
the built-up stresses {σ} in the element using the equation 

{ } [ ] { }int
T

V

F B dV= σ∫  (4.2) 

A more direct approach can also be used to calculate the internal force that is 
applicable to both continuum and interface elements. Again, for continuum 
elements, the stress increments {σ} are related to the strain increments {ε} by the 
constitutive matrix [D]: 
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{ } [ ]{ }Dσ = ε  (4.3) 

while the strain increments {ε} are related to the incremental element nodal 
displacements { }eu by the strain-displacement matrix: 

{ } [ ]{ }eB uε =  (4.4) 

Substitution in Equation 4.2 gives the internal nodal loads: 

{ } { } [ ]{ }{ }int
T e

V

F B D B u dV= ∫  (4.5) 

Here, the quantity { } [ ]{ }T

V

B D B dV∫  is actually equal to the element stiffness 

matrix ek    and, therefore, Equation 4.4 can also be written as 

{ } { }int
e eF k u =    ,   { } [ ]{ }Te

V

k B D B dV  =  ∫  (4.6) 

Equation 4.6 provides another way of calculating equivalent internal nodal 
forces from element stresses. In the case of interface elements, the internal forces 
can be calculated from the relative nodal displacements along the element and the 
normal and shear stiffnesses of the interface: 

{ } { }int
e eF k u =    (4.7) 

Note that Equation 4.7 is applicable to all kinds of elements, and thus, the 
internal forces can be computed in a consistent manner and included in the inter-
nal stresses from the continuum elements. The internal forces in the interface are 
then included in the calculation of the residual forces due to excavation. Deletion 
of interface elements causes no change in the external body loads as interface 
elements have no self-weights. In this manner, no special programming is needed 
to handle interface elements in the excavation simulation using the method of 
force residuals. In the case of nonlinear material response, Equation 4.7 must be 
evaluated incrementally using the nonlinear stiffness matrix ek    consistent with 

the variation of stresses and strain.  

To illustrate the importance of interface response and to show the use of the 
method of force residuals to account for interface elements in excavations, the 
problem shown in Figure 4.13 below is used. This is a similar problem to that 
analyzed in Section 4.3.1 except that interface elements are placed along the ver-
tical excavation boundary, extending from the top to the bottom of the model. In 
practice, such elements will be installed between soil elements and a structural 
element (e.g., a slurry wall). However, in this simple problem, the interface ele-
ments are placed artificially between soil elements. Again, the objective is to 
simulate the deformation of the soil after Elements 1, 5, 2, and 6 are deleted.  
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The interface element used is the four-noded isoparametric interface element 
developed by Beer (1985) and Carol and Alonso (1983). This interface element is 
similar in formulation to the interface element developed by Goodman, Taylor, 
and Brekke (1968) with the numerical integration proposed by Morrison and 
Duncan (1995). For simplicity, the relative displacements at the two sides of the 
element are related to the normal and shear forces nF  and sF  along the element 
by linear elastic normal and shear stiffnesses nK  and sK : 

( )
( )

0
0

top botn n

s s top bot

u uF K
F K v v

 −     =    
−      

 (4.8) 

where ( )top botu u−  and ( )top botv v−  are the relative displacements normal and 
parallel to the interface.  

The response of the soil after the single-stage excavation is shown in 
Figures 4.14-4.16. In all the simulations, the same normal stiffness of 

nK = 1⋅106 lb/ft is used, while three different values of the shear stiffness 

sK (equal to 1⋅106, 1⋅103, 1⋅102 lb/ft) were used. The values of the maximum 
vertical displacements or heave at the base of the excavation from the simulations 
with the different shear stiffness values are also summarized in Table 4.4 below. 
The simulation using sK = 1⋅106 lb/ft gave almost the same response as the case 
without interface elements, except for the slight interpenetration or overlap of the 
soil elements attached to the interface below the excavation. Note that the 
overlap of the finite elements shown in Figure 4.14 can be reduced by using a 
higher value of the contact normal stiffness nK .  

Table 4.4 
Effects of Interface Shear Stiffness on Maximum Heave at Base of 
Excavation 
Shear Stiffness Maximum Vertical Displacement 

sK =1⋅106 lb/ft 0.403 ft 

sK =1⋅103 lb/ft 0.402 ft 

sK =1⋅102 lb/ft 0.398 ft 

Notes: nK = 1⋅106 lb/ft for all simulations. To convert feet to meters, multiply by 0.3048. 

 
 

As shown in Table 4.4, there is very little effect of the interface shear stiff-
ness on the maximum heave at the base of the excavation. The main effect of the 
shear stiffness is on the pattern of deformation below the excavation. The heave 
of the remaining soil below the excavation becomes more uniform as the inter-
face shear stiffness is reduced. For the lowest value of sK = 1⋅102 lb/ft used, the 
soil below the excavation deformed in a piston-like manner with an almost com-
plete vertical slip along the interface.  
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The results shown in Figures 4.13-4.16 show the significance of including 
interface elements in the excavation simulation. The results also demonstrate that 
interface elements can be included in a consistent manner using the method of 
force residuals with internal forces determined from Equation 4.7. 

 
4.3.3  Nonlinear material properties and the ALPHA method 

Soil and interface behavior are modeled using nonlinear models in 
SOILSTRUCT-ALPHA. For instance, soils are modeled using the Duncan and 
Chang (1970) hyperbolic model. Currently, the so-called ALPHA method 
(Ebeling, Duncan, and Clough 1990; Regalado, Duncan, and Clough 1992) is 
used in the code for analyzing the nonlinear response of soil structures. It is, 
therefore, important to investigate how the method of force residuals can be 
implemented in SOILSTRUCT-ALPHA taking into consideration the ALPHA 
method. Nonlinear analysis is carried out in a series of increments or steps in 
SOILSTRUCT-ALPHA. For each increment the deformation moduli of the 
different materials are adjusted according to the level of the current stress and 
deformation, and the analysis for each increment is carried out as if the materials 
behave linearly. 

Consider the case of the structure shown in Figure 4.17. Let P be the current 
load, let ∆P be the load increment, and assume that the current stresses at the 
most stressed element are below the failure surface in the Mohr-Coulomb 
diagram (Figure 4.17a). Due to the finite nature of the load increment ∆P, some 

Figure 4.13.  Simulation of excavation with interface elements 
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Figure 4.14.  Deformed mesh after excavation with sK = 1⋅106 lb/ft (deformations 
magnified 10x) 

Figure 4.15.  Deformed mesh after excavation with sK = 1⋅103 lb/ft (deformations 
magnified 10x) 
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Figure 4.16.  Deformed mesh after excavation with sK = 1⋅102 lb/ft (deformations 
magnified 10x) 

elements will experience stresses that overshoot the failure surface (Fig-
ure 4.17b). Ideally, the load should be applied in each increment such that it is 
large enough to bring the most severely stressed soil element(s) exactly to failure 
(i.e., no overshoot), as shown in Figure 4.17c. The load ∆P should then be 
reduced by a factor in order to bring the most-stressed element just to a failure 
condition. This factor, called α (hence the term “ALPHA method”), is calculated 
from the stresses that are just tangential to the Mohr-Coulomb surface (Fig-
ure 4.17c). Using the α-factor to reduce the load will ensure that failure takes 
place only in the worst stressed element and nowhere else in the modeled region. 
The ALPHA-factor is applied to both continuum and interface elements. 

Due to its incremental nature, the method of force residuals can be equally 
and directly implemented using the ALPHA-method to integrate the nonlinear 
equations. As shown in Section 3.2, in the method of force residuals, the loads 
due to excavation are calculated from the difference in the internal and external 
forces: 

[ ]{ } { }K u R∆ =  (4.9) 

{ } { } { }int extR F F= −  (4.10) 
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Figure 4.17.  ALPHA-method in factoring out load increments to avoid overshoot  

Therefore, using the ALPHA-method, the α-factor can be directly applied to the 
residual force vector { }R . An advantage is that the force residuals may either be 
applied using a single stage excavation or using multiple stages of excavation. In 
a single-stage excavation, the residual forces along the excavation boundary are 
calculated all at once but are applied incrementally using the α-factor. An alter-
native is to perform the excavation in stages taking a few elements at a time (via 
a layer-by-layer excavation for instance), and apply the ALPHA-method for each 
excavation stage. The latter method is preferred, as the excavation response of 
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the soil will now be dependent on the number of excavation stages used and the 
size of each excavation stage. 

 
4.3.4  Programming issues 

There are some programming issues that need to be addressed in the imple-
mentation of the method of force residuals in SOILSTRUCT-ALPHA. As 
mentioned above, implementing the method of residuals using the existing QM5 
element with constant stresses would entail the least amount of modification of 
SOILSTRUCT-ALPHA. The modifications and related programming issues 
discussed below are based on using the QM5 with constant stresses. 

The Clough and Duncan excavation procedure is currently implemented in 
the subroutine EXCAV. This subroutine is called once every loading increment 
by the MAIN program. For each element to be excavated, EXCAV locates the 
centers of the four interpolation elements and performs the interpolation on the 
stresses at the centers of these elements. The interpolation constants are then used 
to determine the stresses at the nodes of the elements, which are then passed to 
the subroutine EQNDFO, which converts the nodal stresses to equivalent nodal 
forces along the excavation boundary.  

Instead of rewriting EXCAV, it is proposed to develop a new subroutine 
EXCAV2 to implement the method force residuals in SOILSTRUCT-ALPA. 
EXCAV can be retained, and EXCAV2 may be used as an alternative to EXCAV 
so that users will be allowed to choose either excavation procedure. Another 
solution is to develop a new version of SOILSTRUCT-ALPHA where EXCAV2 
completely replaces EXCAV and is the only procedure available.  

The main calculations to be done in EXCAV2 are these: (a) modifying the 
element properties of the excavated elements, (b) calculating the internal forces, 
(c) modifying the load vector to account for deleted elements, and (d) calculating 
the residual force vector. The calculation of the internal element forces will be 
performed after the incremental displacements have been solved for a previous 
loading increment and the global displacements and element stresses have been 
updated. The calculations of the residual forces should be made only on the 
nodes along the excavation boundary. The residual forces are incremental, and 
the calculated displacements and stresses are also incremental and must be added 
to the cumulative displacement and stress vectors. Special precautions must be 
made to incorporate the effects of seepage, temperature, and added elements 
from fill placement lifts in the residual force calculations. The flow charts for two 
recommended procedures to incorporate the method of residuals in 
SOILSTRUCT-ALPHA are given in Figures 4.18 and 4.19. 

 4.3.4.1  Calculation of equivalent internal nodal forces. There are two 
options in calculating the internal element force vector: (a) using the [ ]B -matrix, 
the element stresses { }σ , and Equation 3.2 (as illustrated in Figure 4.18) and 
(b) using the element matrices [ ]ek , the element displacements{ }eu , and 
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Figure 4.18.  Flowchart for implementing the method of force residuals in SOILSTRUCT-
ALPHA using element stresses for calculating internal element forces 
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Figure 4.19.  Flowchart for implementing the method of force residuals in SOILSTRUCT-
ALPHA using incremental element displacements in calculating internal element 
forces 
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Equation 4.7 (as illustrated in Figure 4.19). The element stiffness matrices are 
calculated in the subroutines QUAD, JTSTF, and BAREL for the continuum, 
interface, and structural elements, respectively. These subroutines pass the 
stiffness matrices to the subroutine STRSTF, which assembles the global stiff-
ness matrix at the start of every new load increment. Although QUAD, JTSTF, 
and BAREL generate the [ ]ek -matrices, the element [ ]B -matrices are not gen-
erated explicitly (QUAD assembles the elements of the [ ]B -matrix, but these are 
not stored in any matrix and are currently not passed to other subroutines). Ele-
ment stresses are generated in STRESS, JSTRES, and BSTRES for the con-
tinuum, interface, and structural elements, respectively. Note that [ ]ek  is the 
tangent element stiffness matrix for incremental analyses. 

Using the first option would, therefore, require that the [ ]B -matrices be 
generated (for JTSTF and BAREL), stored in a matrix, and passed via the 
COMMON block. In the second option, the internal forces must be stored in an 
array and updated incrementally using the incremental displacements from each 
increment of loading (and taking into consideration the nonlinear response of the 
soil and the interface elements). The accumulated internal forces should include 
the internal forces from displacements generated in the gravity turn-on analysis.  

The advantage of calculating the internal element forces by using the element 
stresses and Equation 3.2 is that the element stresses are already updated and 
stored globally by SOILSTRUCT-ALPHA. The disadvantage of the approach is 
that the element [ ]B  matrices must be generated; however, these are needed only 
for the excavated elements. 

The advantage of calculating the internal element forces by accumulating and 
storing the element internal forces from Equation 4.7 using the element tangent 
stiffness matrix [ ]ek  is that a new matrix corresponding to [ ]B  is not created and 
passed via the COMMON statement. The disadvantage of this approach is that 
the internal element load vector must be stored for each element in the entire 
mesh and updated continuously. 

4.3.4.2  Calculation of external element forces. To calculate the external 
forces, a new subroutine must be written that modifies the current external load 
vector to account for the deletion of the weight of the excavated elements. 
Changes in the external loads due to deletion of the weight of structural elements 
can and should also be accounted for. This requires that the load vector must be 
stored separately and not be overwritten by the displacement vector as is com-
monly done in many finite element programs. The load vector must also continu-
ously track the changes made to the external loads calculated from the in situ 
stresses created in the INITIAL subroutine. These changes, which are mainly 
from the weights of added elements simulating embankment lift, are calculated in 
the subroutine BUILD. Changes from external loads on the boundaries of the 
excavated elements should also be accounted for in the load vector. 

 



Chapter 5     Summary and Conclusions 81 

5 Summary and Conclusions 

The Corps uses SOILSTRUCT-ALPHA to perform soil-structure interaction 
analyses of multi-anchored or tieback retaining walls. Permanent multi-anchored 
walls have been used as guide walls and approach walls on navigation projects, 
and as retaining walls on highway and railroad protection and relocation projects.  
A critical aspect for SSI analyses of such structures is the modeling of the 
excavation process. The case of the Bonneville temporary tieback wall was used 
to illustrate the importance of SSI analyses, and particularly the need for a robust 
and efficient procedure to simulate excavation processes. The excavation 
algorithm in SOILSTRUCT was developed in the late 1960s by Clough and 
Duncan (1969), and it has not been updated since that time, even though 
improved methods have been developed by Ghaboussi and Pecknold (1984), 
Borja et al. (1989), and others.  

The objectives of the study described in this report are to 

a. Complete a comprehensive literature review of numerical modeling of 
excavation. 

b. Determine the suitability of existing excavation algorithms for their use 
in SOILSTRUCT. 

c. Provide the information necessary to implement an improved excavation 
algorithm in SOILSTRUCT. 

The Clough and Duncan excavation algorithm was reviewed extensively. An 
example problem was analyzed to illustrate the main steps in this algorithm, 
particularly the extrapolation of stresses from nearby elements to the excavation 
boundary and integration of the extrapolated stresses to produce excavation 
forces at element nodes. In addition to the Clough and Duncan procedure, other 
algorithms were also reviewed, including 1) the method of force residuals, 2) the 
method based on accumulation of excavation forces along the excavation bound-
aries, and 3) the method based on hybrid finite elements. Of these procedures, the 
method of force residuals is the most widely used procedure for modeling exca-
vation. The example problem analyzed using the Clough and Duncan procedure 
was reanalyzed to illustrate the main steps involved in the method of force 
residuals.  

The different excavation algorithms were rigorously analyzed and compared 
in terms of their numerical performance. It was shown that the Clough and 
Duncan excavation procedure yields results that are dependent on the number of 
excavation stages used in the simulations for linear elastic materials. For such 
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materials, it has been shown formally by Ishihara (1970) that the results of the 
excavation should be independent of the number of steps and the sequence used 
to simulate the excavation. The lack of uniqueness in the results of the Clough 
and Duncan excavation algorithms stems from the fact that the excavation forces 
applied along the excavation boundary are not always consistent with the stresses 
in the excavated elements. Force equilibrium is not necessarily satisfied, and the 
resulting deformations can be either larger or smaller than they should be. The 
lack of force equilibrium can result in a distribution of excavation unloading 
force in which either too much or too little force is applied to the underlying soil 
and, correspondingly, either too little or too much force is applied to the 
structure.  

One strategy to minimize the errors from the Clough and Duncan procedure 
is to use as few excavation stages as possible in the simulation. However, this 
strategy is not appropriate for problems with significant nonlinearity or for 
excavation problems in which struts or tiebacks are placed as excavation 
proceeds. 

Both the method based on the accumulation of forces and the method based 
on hybrid finite elements satisfy force equilibrium and uniqueness of solution for 
excavation in elastic media. However, both methods are complicated and difficult 
to implement in a finite element program, and the requirements of force equi-
librium and uniqueness of solution are satisfied only at the expense of additional 
computational effort.  

Of the four general methods reviewed, the most appropriate method for 
implementation in SOILSTRUCT-ALPHA is the method of force residuals. This 
procedure is based on the balancing of the residual forces from the differences 
between the external loads and the equivalent internal loads in a loaded body. 
The method was shown to satisfy uniqueness of solution and force equilibrium in 
example calculations. It was also noted that the method of force residuals is now 
the most widely used and accepted procedure for excavation modeling. Other 
advantages of the method of force residuals are that it uses standard finite ele-
ment calculations and can be easily extended to nonlinear problems in a con-
sistent manner. Based on these considerations, it was recommended to update the 
excavation algorithm in SOILSTRUCT-ALPHA by using the method of force 
residuals. 

A detailed discussion of the issues related to implementation of the method 
of force residuals in SOILSTRUCT-ALPHA was provided. These issues include 
1) the type of finite element(s) to be used, 2) the implementation of interface 
elements, 3) the use of the APHA method for nonlinear problems, and 4) issues 
related to the computer programming of the method of force residuals in 
SOILSTRUCT-ALPHA. 

The following specific recommendations were given concerning implemen-
tation of the method of force residuals in SOILSTRUCT-ALPHA: 

a. With regard to the finite element formulation, it is recommended to keep 
the current QM5 finite element with constant stresses in the code. This 
has the advantage of retaining the improved bending performance of the 
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QM5. It is also suggested to implement a new four-noded isoparametric 
Q4 finite element, which permits the calculation of element stresses at 
four Gaussian quadrature points. An isoparametric element will give 
better resolution of stresses and excavation forces at sharp excavation 
boundaries than the QM5. Future extension to SOILSTRUCT-ALPHA 
should also consider higher order elements such as the eight-noded 
isoparametric Q8 finite element. 

b. It was shown that interface elements can be accounted for in similar 
manner as continuum elements in the method of force residuals. Example 
problems were used to show the significance of interface behavior in 
excavation modeling.  

c. It was shown that the ALPHA method for nonlinear materials can be 
used in conjunction with the method of force residuals. It is 
recommended that excavation be performed in stages, taking out a few 
elements at a time (via a layer-by-layer excavation for instance) and 
applying the ALPHA-method for each excavation stage. This method is 
preferred because both geometric and material nonlinearity can be better 
accommodated. 

d. Two algorithms for implementing the method of force residuals in 
SOILSTRUCT-ALPHA are described. Flowcharts are given for these 
two algorithms. 
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Appendix A 
Internal and External Nodal 
Forces Using Isoparametric 
Elements  

To clarify the nature of the equivalent external nodal forces from surface 
tractions { }extF  (shown in Figure 2.3 and given in Equation 3.3) and the equiva-
lent internal element forces { }intF  from the element internal stresses (given in 
Equation 3.4), isoparametric elements will be used. Isoparametric elements use 
the same shape functions to describe the geometry (or shape) of the element and 
the unknowns that are being solved. Further details of the isoparametric formu-
lation can be found in finite element textbooks (e.g., Cook, Malkus and Plesha 
1989). 

 
A.1  External Nodal Forces from Surface Tractions 

Consider the line element or the edge of a two-dimensional (2-D) element 
shown in Figure A.1, which has linear displacements u and under the surface 
tractions σs. To represent the displacements u along the line or edge of an ele-
ment, a linear function of the coordinate x can be assumed: 

1 2( )u x a a x= +  (A.1) 

The values of the interpolation constants 1a  and 2a  can be obtained from the 
known values of u at the element endpoints at 1xx =  and 2xx = : 

1 1 2 1

2 1 2 2

u a a x
u a a x

= +
= +

  (A.2) 

Solving these two equations simultaneously gives the values of the two 
unknowns, 1a  and 2a : 
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Figure A.1.  One-dimensional isoparametric element showing (a) local coordinates and (b) linear function 
approximation 

2 1
1 1 1

2 1

2 1
2

2 1

u ua u x
x x
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x x
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 (A.3) 

Substituting Equation A.3 in Equation A.1 yields 
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 
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 
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 (A.4) 

where the iN  values are called element shape functions. The shape functions iN  
can be also expressed in terms of the local coordinate (s):  

[ ]{ }

1 2

1

2 1

( ) ( )

1 1( ) , ( )
2 2

2 1

u s N s u

s sN s N s

x xs
x x

=

− += =

 −= − − 

 (A.5) 

The local coordinate s takes a value between -1 at x = x1 and +1 at x = x2, and 
s = 0 at the midpoint between x1 and x2 (Figure A.1). 
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Equation 3.3, which gives the equivalent nodal forces { }extF from the surface 
traction σs, is actually calculated from the work TW done by the surface traction σ 
in producing the surface deformations u: 

2

1

1

1
( ) ( ) ( ) ( )

x

T ext extx
W F x u x dx F s u s ds

+

−
= =∫ ∫  (A.6) 

Using the linear distribution of displacement u in Equation A.4a, 

1 1

1
2

1 1( )
2 2T ext

us sW F s ds
u

+

−

 − + =      
∫  (A.7) 

In the case of the constant distribution of traction force σs along the line element, 
as shown in Figure 2.3a, 

( )ext oF s = σ  (A.8) 

1 1

1
2

1 1
2 2T o

us sW ds
u

+

−

 − + = σ      
∫  (A.9) 

Performing the integration,  

[ ]1 1

1
2

1 1
2
o

T

uLW ds
u

+

−

 σ=  
 

∫  (A.10) 

results in the external force vectors shown in Figure 2.3a 

{ } [ ]1 1
2
o

ext
LF σ=  (A.11) 

where 2 1L x x= −  is the length of the element. 

In the case where the traction force σs varies linearly along the side of the 
element, as shown in Figure 2.3b, the same displacement function [ ])(sN  can be 
used to express the variation of the surface traction σs, as 

[ ]1 2( ) ( ) ( ) I
ext

j
F s N s N s

σ 
=  σ 

 (A.12) 

where Iσ  and Jσ are the magnitudes of the surface tractions at nodes I and J. 
Substituting in Equation A.7: 



A4 Appendix A     Internal and External Nodal Forces Using Isoparametric Elements 

1
1

1

2

1
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T I j

s u
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∫  (A.13) 

Performing the integration yields the external load vector shown in Figure 2.3b. 

{ } 2 1
1 26

I
ext

J

LF
σ  

=    σ   
 (A.14) 

Similar procedures can be derived for the external forces from body loads as 
given in Equation 3.3. 

 
A.2 Equivalent Internal Nodal Forces from 

Element Stresses 

The meaning of the internal force vector { }intF  given in Equations 3.2 and 
3.5 will be illustrated in this section using the four-noded isoparametric quadri-
lateral element. This element is shown in Figure A.2 in the global { }yx,  coordi-
nates. Using the isoparametric formulation, the element can be mapped to the 
local (or natural) { }ts,  coordinate system shown in Figure A.2. 

Figure A.2.  Quadrilateral finite element (a) in the global coordinate system and (b) in the local (natural) 
coordinate system 
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Using shape functions, the horizontal and vertical displacements u and v are 
interpolated from the x and y displacements { } { }1 2 3 4u u u u u=  and 

{ } { }1 2 3 4v v v v v=  at the four nodes of the elements 

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

u N u N u N u N u

v N v N v N v N v

= + + +

= + + +
 (A.15) 

In the isoparametric formulation, the same functions used to express the 
unknowns u and v are used to express the shape of the elements: 

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

x N x N x N x N x

y N y N y N y N y

= + + +

= + + +
 (A.16) 

where { } { }1 2 3 4x x x x x=   and { } { }1 2 3 4y y y y y=  are the coordinates 
of the four nodes. 

Using a linear combination of the 1-D shape function, iN , given in 
Equation A.5 for both the local axes s and t, the four 2-D shape functions 
required in Equations A.15 and A.16 can be written as 

1 2

3 4

(1 )(1 ) (1 )(1 )
4 4

(1 )(1 ) (1 )(1 )
4 4

s t s tN N

s t s tN N

− − + −= =

+ + − += =

 (A.17) 

The [ ]B -matrix needed in Equation 3.3 to determine the internal nodal forces is 
defined as 

[ ]
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i
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i i

N
x

NB
y

N N
y x

 ∂
 

∂ 
 ∂=  ∂ 
 ∂ ∂
 ∂ ∂  

 (A.18) 

The derivatives /iN x∂ ∂  and /iN y∂ ∂  in the above equation can be obtained from 
the derivative /iN s∂ ∂  and /iN t∂ ∂  via the following transformation: 
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 (A.19) 

where [ ]J  is the Jacobian matrix: 
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J
x y

NN N N
x y

t t t t

∂∂ ∂ ∂    ∂ ∂ ∂∂     =     ∂∂ ∂ ∂       ∂ ∂ ∂ ∂ 

 (A.20) 

From Equation A.17, the derivatives /iN s∂ ∂  and /iN t∂ ∂ can be obtained simply 
as 

1 1

2 2

3 3

4 4

(1 ) (1 )
4 4

(1 ) (1 )
4 4

(1 ) (1 )
4 4

(1 ) (1 )
4 4

N Nt s
s t

N Nt s
s t

N Nt s
s t

N Nt s
s t

∂ ∂− −= − =
∂ ∂

∂ ∂− += = −
∂ ∂

∂ ∂+ += = −
∂ ∂

∂ ∂+ += − =
∂ ∂

 (A.21) 

In the local s and t coordinate system, the equivalent internal force vector is 
expressed as 

{ } [ ] { } [ ] { }1 1

int 1 1

T T

V

F B dV B J dsdt
+ +

− −
= σ = σ∫ ∫ ∫  (A.22) 

where J  is the determinant of the Jacobian matrix: 

( )
( )

,
det

,

x y
x y s sJ

x ys t
t t

∂ ∂
∂ ∂ ∂= =

∂ ∂∂
∂ ∂

 (A.23) 



 

Appendix A     Internal and External Nodal Forces Using Isoparametric Elements A7 

The derivatives /x s∂ ∂ , /x t∂ ∂ , /y s∂ ∂  and /y t∂ ∂ can be obtained from 
Equation A.15 as 

4 4

1 1

4 4

1 1

i i
i i

i i

i i
i i

i i

N Nx xx x
s s t t

N Ny yy y
s s t t

= =

= =

∂ ∂∂ ∂= =
∂ ∂ ∂ ∂

∂ ∂∂ ∂= =
∂ ∂ ∂ ∂

∑ ∑

∑ ∑

 (A.24) 

For illustration, only the value of the horizontal force at node 1 will be 
calculated. From Equation A.23, 

( ) 1 1

1 11int 1 1x xF B J dsdt
+ +

− −
= σ∫ ∫  (A.25) 

Expanding the above equations, it can be shown that 11B  and J  take the 
following values: 

( ) ( ) ( )11 4 2 3 4 2 3
1

8
B y y s y y t y y

J
==  − + − + −    (A.26) 

{ } [ ]{ }1
8

T
i iJ x a y=  (A.27) 

where 

[ ]

0 1 1
1 0 1 ( )

(1 ) 0 1
1 (1 ) 0

t t s s
t s s t

a
s t s t

s s t t

− − − 
 − + − + =
 − − + +
 − + − +  

 (A.28) 

For Element 2 in the example problem solved in Chapters 2 and 3, 
{ } { }1 2 2 1ix =  and { } { }1 1 2 2iy = . Also, in the same example 
problem in Chapters 2 and 3, the stresses are constant in the four-noded isopara-
metric element. Thus, the shape functions can be evaluated anywhere in the 
element. For convenience, the local coordinates of the center of the element, 
s = 0 and t = 0 are used. These values give J =1/4 and 

( ) ( ) ( )11 1
4

1 11 0 0 0 1
8 2

B =  + + −  =   (A.29) 
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( ) 1 1

1 int 1 1

1 1 1
2 4 2x x xF dsdt

+ +

− −
= σ = σ∫ ∫  (A.30) 

Note that, in general, the equivalent internal force vector given in Equa-
tion A.22 is evaluated by numerical integration. The most common technique 
used is the Gaussian quadrature. In this technique, the function to be integrated is 
evaluated at some optimum locations (called quadrature points), the value of the 
function multiplied by a weighting factor, and summed for all quadrature points. 
In similar manner, the element stiffness [ ]k  given in Equation A.31 below is also 
integrated numerically. 

[ ] [ ] [ ][ ]1 1

1 1

Tk B D B J dsdt
+ +

− −
= ∫ ∫  (A.31) 

For a four-noded isoparametric element, exact numerical integration is 
achieved with four quadrature points, while for an eight-noded element, eight 
quadrature points are required. Consequently, values of equivalent internal nodal 
forces { }intF  and the element stiffness matrix [ ]k depend upon the characteristics 
of the element shape functions being used and how the numerical integration is 
carried out in Equations A.22 and A.31. Thus, it is not sufficient to calculate 
excavation forces from equivalent internal forces alone. To ensure consistency in 
the method of force residuals, the following conditions should also be met: 

a. The same shape function(s) used to formulate the [ ]B -matrix for the load 
vector in Equation A.22 should be used in the[ ]B -matrix for the stiffness 
matrix in Equation A.31. 

b. The equivalent internal nodal forces should be evaluated using the 
stresses at the same Gaussian points used to evaluate the stiffness matrix.  

 

Condition b also implies that the same level of Gaussian quadrature (i.e., the 
same number of quadrature points) is used in evaluating the stiffness matrix and 
the equivalent internal load vector.   
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Appendix B 
Notation 

{ }a  Interpolation coefficient matrix 
 

ia , ib  Interpolation constants 
 
{ }b  Self-weight matrix = { }Tγ0  
 
[ ]B  Strain-displacement matrix 
 
[ ]D  Constitutive matrix 
 

iF  Nodal force at node i   
 
{ }extF  External load vector 
 
{ }intF  Internal load vector 
 
[ ]k  Element stiffness matrix 
 
[ ]K  Global stiffness matrix 
 

nK , sK  Interface normal and shear stiffnesses 
 

oK  Coefficient of earth pressure at rest 
 
L  Length of an element edge 
 
[ ]m  Coordinate matrix 
 
[ ]n  Coordinate matrix 
 
[ ]N  Element shape functions 
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[ ]R  Residual force vector 
 
s,t Local coordinates 
 
u, v Horizontal and vertical displacement 
 
[ ]u∆  Displacement increment vector 
 
W  Weight of an element 
 
γ Unit weight of soil 
 
{ }ε  Element strains 
 
ν Poisson’s ratio 
 
{ }σ  Element stresses 
 
{ }sσ  Surface tractions 

 
,x yσ σ  Stresses along the x- and y-axes 

 
φ Angle of friction 
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