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Abstract: This research report describes the engineering formulation and 

corresponding software developed for the rotational response of rock-founded, 

toe-restrained Corps retaining walls to earthquake ground motions. The PC 

software CorpsWallRotate (sometimes referred to as CWRotate) was developed to 

perform an analysis of permanent wall rotation for each proposed retaining wall 

section to a user-specified earthquake acceleration time-history. A particular 

formulation of the permanent sliding (i.e., translational) displacement response 

of retaining walls is also described. The resulting engineering methodology and 

corresponding software are applicable to a variety of retaining walls that are 

buttressed at their toes by a structural feature (e.g., navigation walls retaining 

earth, spillway chute walls, spillway discharge channel walls, approach channel 

walls to outlet works structures, highway and railway relocation retaining walls, 

and floodwall channels). CorpsWallRotate is particularly applicable to L-walls and 

T-walls (cantilever retaining walls) and may also be used to predict permanent, 

seismically induced displacements on retaining walls with or without a toe 

restraint. 

Formal consideration of the permanent seismic wall displacement in the seismic 

design process for Corps-type retaining structures is given in Ebeling and 

Morrison (1992). The key aspect of the engineering approach presented in this 

1992 document is that simplified procedures for computing the seismically 

induced earth loads on Corps retaining structures are also dependent upon the 

amount of permanent wall displacement expected to occur for each specified 

design earthquake. The Ebeling and Morrison simplified engineering procedures 

for Corps retaining structures, including waterfront retaining structures, are 

geared towards hand calculations. The engineering formulation and 

corresponding PC software CorpsWallRotate discussed in this report extend 

simplified procedures to walls that rotate or slide during earthquake shaking and 

make possible the use of acceleration time-histories in the Corps’ design/analysis 

process when time-histories are made available on Corps projects. The 

engineering methods contained in this report and implemented within 

CorpsWallRotate allow the engineer to rapidly determine if a given retaining wall 

system has a tendency to rotate or to slide for a specified seismic event. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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Considerations for Assigning Shear Strength Parameters 

A key item in the permanent deformation and permanent rotation analysis of a Corps 
earth retaining structure using the PC-based software, CorpsWallRotate, described in 
this report, is the selection of suitable shear strength parameters. In an effective stress 
analysis, the issue of the suitable friction angle is particularly troublesome when the 
peak friction angle is significantly greater than the residual friction angle. In the 
displacement controlled approach examples given in Section 6.2 of Ebeling and 
Morrison (1992), effective stress based shear strength parameters (i.e., effective 
cohesion c’ and effective angle of internal friction φ’) were used to define the shear 
strength of the dilative granular backfills, with c’ set equal to zero in all cases due to 
the level of deformations anticipated in a sliding block analysis during seismic 
shaking. In 1992 Ebeling and Morrison concluded that it is conservative to use the 
residual friction angle in a sliding block analysis, and this should be the usual practice 
for displacement based analysis of granular retained soils. The primary author of this 
report would broaden the concept to the assignment of effective (i.e., c’ and φ’) or total 
(i.e., undrained Su) shear strength parameters for the retained soil to be consistent 
with the level of shearing-induced deformations encountered for each design 
earthquake in a rotational analysis and note that active earth pressures are used to 
define the loading imposed on the structural wedge by the driving soil wedge. (Refer to 
Table 1.1 in this report for guidance regarding wall movements required to fully 
mobilize the shear resistance within the retained soil during earthquake shaking.) In 
an effective stress analysis, engineers are cautioned to carefully consider the 
reasonableness of including a nonzero value for effective cohesion c’ in their 
permanent deformation and permanent rotation analyses. 
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Assumption Made for the Soil Driving Wedge in a Cohesive Soil 

CorpsWallRotate performs a permanent displacement analysis of a retaining wall due to 
earthquake shaking. Reversal in the direction of the horizontal component of the time-
history of earthquake ground shaking occurs many times during the typical tens of 
seconds of ground motion. Consequently, a reversal in direction of the inertial force 
imparted to the structural wedge and to the soil driving wedge occurs many times 
during the course of the analysis using CorpsWallRotate. In a traditional soil wedge 
formulation for static loading, a crack is typically considered to exist within the upper 
portion of the soil driving wedge for a cohesive soil (with shear strength, Su, specified 
in a total stress analysis or c’ specified in an effective stress analysis) and the planer 
wedge slip surface is terminated when it intersects the zone of cracking at a depth, 
dcrack, below the ground surface (e.g., see Appendix H in EM 1110-2-2502). This 
assumption is not made in the CorpsWallRotate formulation for dynamic loading. 
Instead, it is assumed that in the dynamic wedge formulation, the crack within the 
zone of cracking at the top of the retained cohesive soil of the driving wedge will not 
remain open during earthquake shaking due to the inertial load direction reversals 
during this time-history based CorpsWallRotate analysis. So, even for cohesive soils the 
planar slip surface, obtained from the sweep-search method of analysis of the driving 
wedge used by CorpsWallRotate to obtain a value for the earthquake induced resultant 
driving force PAE (acting on the structural wedge), extends uninterrupted within the 
driving soil wedge (in the retained soil) to the ground surface and is not terminated by 
a vertical crack face to the ground surface when it enters the zone of cracking. 

In order to assign a location to PAE, the static value for active earth pressure force, PA, 
is needed (refer to Equation 3.24 for the level ground, moist backfill case and to 
Appendix C for all other cases). CorpsWallRotate proceeds with the computation of hPAE, 
the location of the resultant force PAE, using the value for PA computed by procedure 
discussed in Appendix A. The computation of hPAE by CorpsWallRotate is described in 
Appendix C. 

In a traditional soil wedge formulation for static loading, a crack is typically considered 
to exist within the upper portion of the soil driving wedge for a cohesive soil and the 
planer wedge slip surface is terminated when it intersects the zone of cracking at a 
depth, dcrack, below the ground surface (e.g., see Appendix H in EM 1110-2-2502). This 
assumption is made in the CorpsWallRotate formulation for static loading force PA (but 
not when computing PAE for dynamic loading). A sweep-search wedge method of 
analysis as discussed in Appendix A is used by the CorpsWallRotate to determine the 
value of the active earth pressure force, PA. 
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Earth pressure distributions and depth of cracking: The earth pressure distribution 
applied to the structural wedge by the driving soil wedge in a CorpsWallRotate analysis is 
made up of two components, the earth pressure distribution due to the static active 
earth pressures and a trapezoidal earth pressure distribution due to the incremental 
dynamic force component, ΔPAE (with AE AEP P PAΔ = − ). The methodologies discussed 

in Appendix A are used by CorpsWallRotate to first determine the resultant earth 
pressure forces PA and PAE and then the methodologies discussed in Appendix C are 
used to compute the resulting earth pressure distributions for PA and ΔPAE, 
respectively. In order to compute values of PAE and PA by the dynamic and static 
sweep-search solutions of trial soil wedges, a depth of cracking needs to be specified in 
each sweep-search analysis made by CorpsWallRotate of a cohesive soil. Initial sweep-
search soil wedge solutions are always made assuming a zero depth of crack. This is 
deemed sufficient for all PAE computations, as discussed previously. However, an 
iterative procedure is used to determine the value for the depth of cracking in the 
analysis of PA in cohesive soils and the corresponding earth pressure distribution 
(which includes both compression as well as tensile stresses). After the resulting static 
earth pressure force, PA, computation is completed, a resulting earth pressure 
distribution is constructed and new depth of cracking for static loading is determined. 
CorpsWallRotate then proceeds with second sweep-search trial wedge analysis of the 
retained soil for a new value for PA corresponding to this new, nonzero crack depth 
value. A new static earth pressure distribution and a third value for crack depth is then 
determined. The process is repeated until the depth of cracking used in the sweep-
search trial wedge analysis and the depth of cracking determined from the static active 
earth pressure distribution are nearly the same value. 

In the special case of cohesive soils, the CorpsWallRotate analysis disregards the tensile 
stresses when defining the static active earth pressures and the corresponding 
resulting static active earth pressure force to be applied to the structural wedge, as well 
as when computing the resulting force location hPA of this modified stress distribution. 
A trapezoidal earth pressure distribution is used to define ΔPAE for cohesive as well as 
cohesionless soils. 
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1 Introduction to Rotational or Sliding 
Response of Toe-Restrained Retaining 
Walls to Earthquake Ground Motions 

1.1 Introduction 

Engineering formulations and software provisions based on sound seismic 
engineering principles are needed for a wide variety of the Corps retaining 
walls that (1) rotate or (2) slide (i.e., translate) during earthquake shaking 
and (3) for massive concrete retaining walls constrained to rocking. The 
engineering formulation discussed in this report was developed to address 
the first two of these three modes of retaining wall responses to 
earthquake shaking. 

This research report describes the engineering formulation developed for 
the permanent rotational response of rock-founded, toe-restrained 
retaining walls to earthquake ground motions as idealized in Figure 1.1. 
The corresponding PC software, CorpsWallRotate, developed to perform a 
rotating or sliding analysis of each user-specified retaining wall section is 
also discussed. Baseline-corrected, horizontal and vertical acceleration 
time-histories are used to represent the earthquake ground motions in this 
formulation. They are user input to CorpsWallRotate. A particular 
formulation of the permanent sliding displacement response of retaining 
walls (Figure 1.2) for a user-specified earthquake acceleration time-history 
is also described. (Note that a more versatile, simplified sliding block 
formulation that eliminates the need for an acceleration time-history, 
CorpsWallSLIP, has also been developed and is discussed in Ebeling et al. 
(2007).) The engineering methodology and software are particularly 
applicable to rock-founded L-walls and T-walls (usually referred to as 
cantilever retaining walls) and semi-gravity walls. Figure 1.3 shows an 
example of retaining walls that border a spillway channel in which the 
base slab will act as a strut during a seismic event. CorpsWallRotate is 
applicable to a variety of retaining walls buttressed at their toe by a 
structural feature such as a reinforced concrete slab. The presence of the 
structural feature at the toe of the retaining wall may result in a tendency 
for the earth retaining structure to rotate rather than slide during 
earthquake shaking. Other examples of Corps earth retaining structures 
having this structural feature include navigation walls, spillway chute 
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walls, spillway discharge channel walls, approach channel walls to outlet 
works structures, highway and railway relocation retaining walls, and 
floodwall channels. CorpsWallRotate may also be used to predict permanent 
seismically induced (rotational or translational) displacements of retaining 
walls with or without toe restraint. 

EQ

θr

Figure 1.1. Rotational response of a cantilever retaining wall with a permanent earthquake-
induced rotation, θr. 

There are three categories of analytical approaches used to perform a 
seismic stability analysis. They are listed in order of sophistication and 
complexity: 

• Pseudo-static methods with a preselected seismic coefficient 
• Sliding block methods 
• Stress-deformation methods 
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ΔS

EQ

Figure 1.2. Translational response of a cantilever retaining wall with a permanent earthquake-
induced sliding displacement, Δs. 

Each category will be subsequently discussed. Because sliding block 
methods are the focus of this report, this category will be discussed last. 
The sliding block method of analysis serves as a basis for introducing the 
analysis of permanent wall rotation due to seismic loading. 
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Spillway Channel

Base Slab

Cantilever
Retaining 

Wall

Figure 1.3. Rock-founded cantilever retaining wall bordering a spillway channel. 

1.1.1 Pseudo-static methods with a preselected seismic coefficient 

Pseudo-static methods with a preselected seismic coefficient in the 
horizontal and in the vertical direction often require bold assumptions 
about the manner in which the earthquake shaking is represented and the 
simplifications made for their use in stability computations. Essentially, 
pseudo-static methods are force-equilibrium methods of analysis 
expressing the safety and stability of an earth retaining structure to 
dynamic earth forces in terms of (1) the factor of safety against sliding 
along the base of the wall, (2) the ability of the wall to resist the earth 
forces acting to overturn the wall, and (3) the factor of safety against a 
bearing capacity failure or crushing of the concrete or rock at the toe in the 
case of a rock foundation. An example using 1992 Corps criteria (now 
outdated) is discussed in Section 6.2 of Chapter 6 in Ebeling and Morrison 
(1992). Pseudo-static methods with horizontal and vertical preselected 
seismic coefficients represent earthquake loading as static forces. In these 
types of computations, the earthquake “demand” is represented by (1) a 
horizontal seismic coefficient and (2) a vertical seismic coefficient 
(sometimes specified as zero) acting at mass centers. Values for these 
coefficients (typical symbols are kh and kv) are dimensionless numbers 
that, when multiplied times the weight of some body, give a pseudo-static 
inertia force for use in analysis or design. The horizontal and vertical 
inertia forces are applied to the mass center of the body as shown in 
Figure 1.4. The coefficients kh and kv are, in effect, decimal fractions of the 
acceleration of gravity (g). For some analyses, it is appropriate to use 
acceleration values of khg and kvg smaller than the horizontal and vertical 
peak accelerations, respectively, anticipated during the design earthquake 
event. It is important to recognize that this category of method of analysis 
does not provide quantative information regarding seismically-induced 
displacements. 
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Figure 1.4. Gravity retaining wall and driving soil wedge treated as a rigid body. 

For retaining walls in which the permanent relative motion of the 
retaining structure and retained soil (i.e., the backfill) are sufficient to fully 
mobilize the shear strength in the soil, soil wedge solutions in which a 
wedge of soil bounded by the structural wedge and by an assumed failure 
plane within the retained soil are considered to move as a rigid body and 
with the same horizontal acceleration (Figure 1.4). Table 1.1 lists the 
approximate magnitudes of movements required to reach minimum active 
earth pressure conditions. Although this Clough and Duncan guidance is 
for static loading, after careful evaluation Ebeling and Morrison (1992, in 
Section 2.2.2) concluded that the Table 1.1 values may also be used as 
rough guidance for minimum retained soil seismic displacement to fully 
mobilize a soil’s shear resistance, resulting in dynamic active earth 
pressures. 
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Table 1.1. Approximate magnitudes of movements required to reach minimum active earth 
pressure conditions (after Clough and Duncan (1991)) 

Values of Y/Ha 

Type of Retained Soil Active 

Dense Sand 0.001 

Medium-Loose Sand 0.002 

Loose Sand 0.004 
aY = movement of top of wall required to reach minimum active pressure, by tilting 
or lateral translation. 
H = height of wall. 

 

A commonly cited expression for the forces the driving soil wedge exerts 
on the structural wedge was first proposed by Okabe (1924, 1926) and 
Mononobe and Matsuo (1929). A form of their expression for PAE in use 
today (see Chapter 4 in Ebeling and Morrison (1992)) is given in 
Figure 1.5. Their formulation is referred to as Mononobe-Okabe with PAE 
expressed in terms of an active earth pressure coefficient, KAE, with the 
subscript A designating active and the subscript E designating earthquake. 
The Mononobe-Okabe formulation is an extension of Coulomb’s theory of 
static active earth pressures with a horizontal seismic coefficient and a 
vertical seismic coefficient acting at the center of a Coulomb’s “driving” 
soil wedge mass of a moist retained soil (i.e., with no water table), as 
shown in this figure. Equation 36 in Chapter 4 of Ebeling and Morrison 
(1992) gives the Mononobe-Okabe relationship for KAE. The general wedge 
solution resulting in this same value for PAE as can be calculated by the 
Mononobe-Okabe relationship is given in Appendix A of Ebeling and 
Morrison (1992). For retaining wall problems analyzed using the 
simplified wedge method, EM 1110-2-2100 in Section 5-5, part (3)b 
provides guidance on assumptions regarding the magnitude of the seismic 
coefficient kh that may be used as a fraction of peak ground acceleration. 
Guidance is also given regarding the magnitude of the seismic coefficient, 
kv, expressed as a fraction of the value for kh. Minimum kh values are cited 
in Table G-1, Section G-4 of Appendix G, part (a) in EM 1110-2-2100, 
according to the seismic zone in which the project resides. 

Because seismically induced deformations are not an explicit part of this 
computational process and given that pseudo-static methods represent 
earthquake loads by static forces, the results are difficult to interpret. This 
is because displacement is more closely related to assessment of the 
seismic performance for a retaining structure than are factors of safety. 
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Figure 1.5. Simplified “driving” wedge method of analysis and the Mononobe-Okabe active 
earth pressure force relationship. 

1.1.2 Stress-deformation methods 

Stress-deformation methods are specialized applications of finite element 
or finite difference programs for the dynamic analysis of earth retaining 
structures to seismic loading using numerical techniques to account for 
the nonlinear engineering properties of soils. The problem being analyzed 
is often referred to as a soil-structure interaction (SSI) problem. 
Acceleration time-histories are typically used to represent the earthquake 
ground motions in this type of formulation. The general procedure of 
stress-deformation dynamic analysis is straightforward and follows the 
usual engineering approach: (1) define the problem, (2) idealize the 
physical system, (3) set up the equations of motion for the dynamic 
problem, (4) characterize the dynamic engineering properties of the 
(structure, soil, and/or rock) materials as per the constitutive material 
model(s) being used, (5) solve the equations of motion, and (6) evaluate 
the results. Steps (1), (2), (4), and (6) are handled by the engineer while 
steps (3) and (5) are dealt with by the engineering software. A partial 
listing of computer-based codes for dynamic analysis of soil systems is 
given in Appendix D of Ebeling and Morrison (1992). Use of this type of 
advanced engineering software requires specialized knowledge in the 
fields of geotechnical and structural engineering dynamics as well as in 
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numerical methods. Two computer programs, FLUSH and FLAC, will 
briefly be discussed to give the reader a sense of what is involved with th
application of computationally complex numerical codes in a complete 
soil-structure interaction dynamic a

e 

nalysis and the numerous input and 
modeling considerations required. 

1.1.2.1 FLUSH 

n 

nd 

 
ct 

 
method in this 

dynamic analysis (Lysmer, Udaka, Tsai, and Seed 1975). 

 

ctive 

llow 

nd 
al 

ing 

2-D mesh as it pertains to the height of the elements and with regard to 

The ASCE Standard 4-86 (1986) states that SSI denotes the phenomeno
of coupling between a structure and its supporting soil or rock medium 
during earthquake shaking. The resulting dynamic soil pressures are a 
result of the degree of interactions that occur between the structure a
the soil. This response is dependent on (1) the characteristics of the 
ground motion, (2) the retained and foundation soils (or rock), and (3) the
structure itself. One method of analysis for SSI is referred to as the dire
method and treats the structure and the surrounding retained soil and 
foundation medium in a single analysis step. FLUSH is a classic example
of this category of software which uses the finite element 

Two-dimensional (2-D) cross sections of the retaining structure and 
portions of the retained soil and foundation are typically modeled in the
FLUSH analysis. Nonlinear soil behavior is treated through equivalent 
linearization of the shear stiffness of each soil element with the effe
shear strains that develop during earthquake shaking for the user-
specified earthquake acceleration time-history. Material damping is 
assigned to each soil (and/or rock) element and to each structural element 
comprising the mesh. Material damping is strain-compatible for each soil, 
rock, and structural material type. FLUSH solves the equation of motion in 
the frequency domain. The acceleration time-history is introduced through 
the base nodes of the mesh; fictitious (artificial) boundary conditions a
for the introduction of vertically propagating shear waves resulting in 
horizontal motion of the nodes of the mesh during earthquake shaking a
for vertically propagating compression waves that allow for the vertic
motion of the nodes. Lateral boundaries, referred to as transmitting 
boundaries, are imposed on the 2-D mesh to allow for energy absorb
boundary conditions to be specified. Because it is essentially a wave 
propagation problem being solved, great care is exercised by the seismic 
engineer to size the mesh so that moderate to high wave frequencies are 
not artificially excluded in the dynamic numerical analysis. Sizing of the 
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the maximum shear wave frequency vertically transmitted by the elements 
first involves the analysis of representative 1-D soil columns. 

To assess the maximum frequency that may be transmitted by a user-
proposed 2-D finite element mesh in a FLUSH analysis, representative 
imaginary sections within the 2-D model problem are first analyzed by the 
vertical shear wave propagation program SHAKE (Schnabel, Lysmer, and 
Seed 1972) and by a 1-D finite element column using FLUSH. Strain-
compatible shear stiffness results from the SHAKE analyses are used to 
determine the maximum height of the soil elements for the maximum 
frequency of the vertically propagating shear wave needed to be 
transmitted in the FLUSH (2-D) analysis. A 1-D soil column is then 
constructed using finite elements and analyzed using FLUSH to verify that 
the required vertically propagating shear wave frequencies are being 
transmitted by the FLUSH mesh. The wavelength associated with the 
highest frequency transmitted by the mesh is related to the heights of the 
elements and to the strain-compatible shear wave velocities via the strain-
compatible shear stiffness of each of the elements. Recall that FLUSH 
accounts for nonlinear response of soils during earthquake shaking 
through adjustments of the soil shear stiffness and material damping 
parameters as a function of shear strain that develop in each element of 
the finite element mesh. Note that the results of this assessment are 
dependent on the characteristics of the acceleration time-history used in 
the analysis. 

FLUSH output obtained via the extraction mode includes time-histories of 
the dynamic stresses within each element and dynamic displacements at 
each node in the finite element model. Time-histories of nodal point forces 
may also be obtained using specialized software. The computed dynamic 
stresses are then superimposed on the static stresses so as to attain the 
total stresses. Static stresses are typically obtained from a SOILSTRUCT 
finite element analysis (Ebeling, Peters, and Clough 1992). 

In a static analysis using SOILSTRUCT, the nonlinear stress-strain 
behavior of soils is accounted for in an incremental, equivalent linear 
method of analysis in which the sequential excavation (if any), followed by 
sequential construction of the structure and incremental placement of 
retained soil, is made. Examples of this application to Corps structures for 
static loading(s) are given in Clough and Duncan (1969), Ebeling et al. 
(1993), Ebeling and Mosher (1996), Ebeling, Peters, and Mosher (1997), 

 



ERDC/ITL TR-06-2 10 

Ebeling and Wahl (1997), and Ebeling, Pace, and Morrison (1997). The 
mesh used in the FLUSH dynamic analysis will be the basis for the mesh 
used in the SOILSTRUCT static analysis, for the convenience of combining 
results. 

1.1.2.2 FLAC 

The Corps recently completed its first research application of FLAC to the 
seismic analysis of a cantilever retaining wall (Green and Ebeling 2002). 
FLAC is a commercially available, 2-D, explicit finite difference program 
written primarily for geotechnical applications. The basic formulation of 
FLAC is plane-strain. Dynamic analyses can be performed with FLAC 
using the optional dynamic calculation module, wherein user-specified 
acceleration, velocity, or stress time-histories can be input as an exterior 
boundary condition or as an interior excitation. FLAC allows for energy 
absorbing boundary conditions to be specified, which limits the numerical 
reflection of seismic waves at the model perimeter. The nonlinear 
constitutive models (10 are built-in), in conjunction with the explicit 
solution scheme, in FLAC give stable solutions to unstable physical 
processes, such as sliding or overturning of a retaining wall. FLAC solves 
the full dynamic equations of motion, even for essentially static systems, 
which enables accurate modeling of unstable processes, e.g., retaining wall 
failures. 

FLAC, like FLUSH, has restrictions associated with the wavelength 
associated with the highest frequency transmitted within the grid. A 
procedure similar to that used to design the FLUSH mesh and involving 1-
D soil column analyses, via SHAKE, is used to lay out the FLAC grid for 
the dynamic retaining wall problem analyzed and for the specified 
acceleration time-history. Section 3.3.4 of Green and Ebeling (2002) 
discusses the dimensions of the finite difference grid and the maximum 
frequency that can pass through without numerical distortion. 

A disadvantage of FLAC is the long computational times, particularly when 
modeling stiff materials, which have large physical wave speeds. The size 
of the time-step depends on the dimension of the elements, the wave 
speed of the material, and the type of damping specified (i.e., mass 
proportional or stiffness proportional), where stiffness proportional to 
include Rayleigh damping, requires a much smaller time-step. The critical 
time-step for numerical stability and accuracy considerations is 
automatically computed by FLAC, based on these factors listed. For those 
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readers unfamiliar with the concept of critical time-step for numerical 
stability and accuracy considerations in a seismic time-history engineering 
analysis procedure, please refer to Ebeling (1992, Part V), or to Ebeling, 
Green, and French (1997). The Lagrangian formulation in FLAC updates 
the grid coordinates each time-step, thus allowing large cumulative 
deformations to be modeled. This is in contrast to Eularian formulation in 
which the material moves and deforms relative to a fixed grid, and is 
therefore limited to small deformation analyses. 

1.1.2.3 FLUSH versus FLAC 

The advantages of FLUSH are that it has considerably faster run times 
than FLAC and has been applied to a number of dynamic SSI problems. 
FLUSH is now freely downloadable from the Internet. The major 
disadvantage of FLUSH is that it does not allow for permanent 
displacement of the wall (although strain softening associated with 
earthquake-induced soil or rock deformations is accounted for in the 
analysis). A disadvantage of FLAC is that the earthquake engineering 
community and the Corps are just now developing modeling procedures 
for the application of FLAC to dynamic SSI problems, learning how to 
perform the analyses and interpret the computed results. 

1.1.3 Sliding block methods 

Sliding block methods of analysis of earth retaining structures can be 
viewed as a compromise between the simplistic pseudo-static methods 
with a preselected seismic coefficient and the computationally complex 
stress-deformation methods of analysis (e.g., via FLUSH, FLAC, etc.). 
Sliding block methods of analysis calculate a permanent deformation of a 
retaining structural system due to a user-specified design earthquake 
event. 

The numerous variations of rigid sliding block methods of seismic analysis 
as applied to slopes, earthen dams, retaining wall systems, and 
foundations have their roots in the methodology outlined in Newmark 
(1965) and what has come to be known as the Newmark sliding block 

 



ERDC/ITL TR-06-2 12 

model.1 This problem was first studied in detail by Newmark (1965) using 
the sliding block on a sloping plane analogy. Procedural refinements were 
contributed by Franklin and Chang (1977), Wong (1982), Whitman and 
Liao (1985), Ambraseys and Menu (1988), and others. Makdisi and Seed 
(1978) and Idriss (1985, Figure 47), proposed relationships based on a 
modification to the Newmark permanent displacement procedure to allow 
for the dynamic response of embankments. 

1.1.3.1 Concepts of Newmark’s sliding (rigid) block method of analysis 

Franklin and Chang (1977) and Hynes-Griffin and Franklin (1984) 
illustrate key concepts of a Newmark sliding block analysis using a 
potential sliding mass within an embankment under earthquake loading. 
The problem engineering idealization is shown in Figure 1.6. The 
Figure 1.6.a potential sliding mass is in a condition of incipient sliding 
with full mobilization of the shear resistance for the soil along the slip 
plane shown in this figure. The corresponding sliding factor of safety is 
equal to unity. This condition results from the acceleration of the earthen 
mass into the embankment (i.e., to the left) and away from the cut. W is 
the weight of the sliding mass. The force N times W in this figure is the 
inertia force required to reduce the sliding factor of safety to unity. By 
D’Alembert’s principle, the inertia force, N times W, is applied 
pseudostatically to the soil mass in a direction opposite to acceleration of 
the mass, N times g, with N being a decimal fraction of the acceleration of 
gravity, g (the universal gravitational constant). The acceleration of the 
soil mass contained within the slip plane shown in Figure 1.6.a is limited 
to an acceleration value of N times g because the shear stress required for 
equilibrium along the slip plane can never be less than the shear strength 
of the soil. To state this in another way, the sliding factor of safety can 
never be less than 1.0. So if the earthquake-induced ground acceleration 
should increase to a value greater than the value N times g, the Figure 1.6.a 
mass above this slip plane would move downhill relative to the 
embankment. During this permanent slope displacement, the “sliding” 

                                                                 

1 An interesting footnote in seismic engineering history is given in Whitman (2000): Dr. Robert Whitman, 
Professor Emeritus of MIT, in 1953 performed a calculation of the permanent displacement of a slope 
as a result of earthquake-induced ground motions using a sliding block concept for a consulting job 
that Professor Donald Taylor (of MIT) had with the U.S. Army Corps of Engineers. Professor Newmark 
was part of the same consulting panel and sent word back to Dr. Whitman that he found this approach 
to be interesting, and that if he (Whitman) did not pursue it, he (Newmark) would. Dr. Whitman did not, 
and Professor Newmark did. Professor Newmark’s research culminated in his now classic 1965 
Geotechnique paper on this topic, the fifth Rankine lecture. 

 



ERDC/ITL TR-06-2 13 

mass would only feel the acceleration value N times g and not the ground 
acceleration values. 

Figure 1.6. Elements of the Newmark (rigid) sliding block method of analysis (from Hynes-
Griffin and Franklin 1984). 
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Figure 1.6.b shows the force polygon for the “sliding” soil mass. The 
inclination angle θ of the inertia force may be found as the angle that is 
most critical, that is, the angle that minimizes N. Franklin and Chang 
(1977) and Hynes-Griffin and Franklin (1984) state that the angle θ is 
typically set equal to zero in seismic slope stability analyses. The angle β is 
the direction of the resultant force, S, of the distributed shear stresses 
along the interface and is determined during the course of the slope 
stability analyses to determine the value of N that results in a sliding factor 
of safety of 1.0 for the slope’s sliding mass. The force P is the resultant of 
the normal forces. The Figure 1.6.b force polygon for the slope mass is 
applied to an “idealized” sliding rigid block model on a plane inclined at an 
angle β to horizontal in Figure 1.6.c. This idealization is the basis for the 
designation as the Newmark’s sliding (rigid) block method of analysis, 
representing the sliding mass of the embankment. 

Figure 1.6.d is an idealization of the limiting force versus displacement 
relationships applied to this problem. The resistance to sliding is assumed 
to be rigid-plastic, as shown in this figure. This resistance to sliding is 
unsymmetrical because the block can slide downhill more easily than 
uphill. It is the usual practice to assume that uphill sliding never occurs, 
i.e., a worst-case assumption, and results in the greatest permanent 
displacement (downhill). 

Figure 1.6.e shows a time-history plot of the velocity of the embankment 
during earthquake shaking. Not shown is the corresponding 
(ground/embankment) acceleration time-history for this particular 
earthquake event. (Earthquake shaking is usually represented by an 
acceleration time-history. Since the ground acceleration varies with time, 
let ground acceleration be represented by variable fraction A times the 
constant acceleration of gravity, g. Recall that the integral of the 
acceleration time-history is equal to the Figure 1.6.e velocity time-history.) 
For an embankment that suffers a slope failure from seismic ground 
motions, the total permanent displacement of a sliding mass relative to the 
base is the sum of the increments of displacement occurring during a 
number of individual pulses of ground motion. These incremental relative 
displacements are determined as follows. For each time the acceleration of 
the embankment, equal to A times g, is greater than the constant N times 
g, relative displacements (between the slope mass and the embankment) 
will initiate. There are four of these incremental, permanent displacement 
pulses occurring in Figure 1.6.e. During slope displacements, the sliding 
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mass will move at a slower velocity than will the embankment (designated 
the ground velocity in this figure). The integral of the difference in 
velocities between the sliding mass and the embankment velocity is equal 
to the incremental, relative displacement of the sliding mass. The total 
permanent downhill displacement is the sum of the four incremental 
displacement cycles depicted in this figure. Note that incremental sliding 
of the slope terminates when the velocities of the embankment and of the 
sliding mass converge to the same value. 

Summary: The idealized engineering problem depicted in Figure 1.6 
describes the essential features of the Newmark sliding (rigid) block 
method of analysis as first applied to slopes: (1) There is a level of 
earthquake shaking as characterized in terms of a value of acceleration 
designated N times g, which fully mobilizes the shear resistance along a 
sliding plane of a potential sliding mass, corresponding to a factor of safety 
against sliding of 1.0 for that mass. (2) For a given embankment (or 
equivalently, ground) acceleration time-history in which accelerations 
exceed the value of N times g, incremental permanent displacements will 
occur. (3) The magnitude of the incremental displacements may be 
numerically quantified using the procedure outlined in Figure 1.6.e. (4) 
Total permanent displacement is equal to the sum of the incremental 
displacement pulses. Although this procedure has been applied to other 
types of structures, the essential features of the Newmark (rigid) sliding 
block method of analysis remain the same. 

1.1.3.2 Sliding block method of analysis applied to retaining structures 

A variation proposed on the Newmark sliding block method of analysis for 
earth retaining structures is the displacement controlled approach 
(Section 6.3 in Ebeling and Morrison (1992)). It incorporates retaining 
wall movements explicitly in the stability analysis of earth retaining 
structures. This methodology is applied as either (1) the displacement 
controlled design of a new retaining wall or as (2) an analysis of 
earthquake-induced displacements of an existing retaining wall. 

The displacement controlled design of retaining wall: In this 
approach the retaining wall geometry is the primary variable. It is, in 
effect, a procedure for choosing a seismic coefficient based upon explicit 
choice of an allowable permanent displacement. Once the seismic 
coefficient is selected, the usual stability analysis against sliding is 
performed, including the use of the Mononobe-Okabe equations (or, 
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alternatively, a sweep-search, soil wedge solution). The wall is 
proportioned to resist the applied earth and inertial force loadings. No 
safety factor is required to be applied to the required weight of wall 
evaluated by this approach; the appropriate level of safety is incorporated 
into the step used to calculate the horizontal seismic coefficient. This 
procedure of analysis represents an improved alternative to the 
conventional equilibrium method of analysis that expresses the stability of 
a rigid wall (of prescribed geometry and material properties) in terms of a 
pseudo-static method with a preselected seismic coefficient and 
preselected factor of safety against sliding along its base, discussed in 
Section 1.1.1. Section 6.3.1 in Ebeling and Morrison (1992) outlines the 
computational steps in the (seismic) displacement controlled design of a 
retaining wall. 

The analysis of earthquake-induced displacements of a 
retaining wall: The retaining wall geometry and material properties are 
typically first established for the usual, unusual, and extreme load cases 
with nonseismic loadings. In the subsequent seismic analysis of the 
retaining wall using the earthquake-induced displacement approach, the 
primary variable is the permanent displacement. The seismic inertia 
coefficient N* that reduces the sliding factor of safety for the driving soil 
wedge and the structural wedge to unity is first determined. (Ebeling and 
Morrison (1992) designated the value for a retaining wall’s maximum 
transmissible acceleration as N*g.) Figure 1.7 shows the driving soil wedge 
and structural wedge treated as a single rigid block in this approach. The 
resulting permanent seismic displacement of the retaining wall is 
subsequently determined for the earthquake specified by the design 
engineer. Section 6.3.2 in Ebeling and Morrison (1992) outlines the 
computational steps in the analysis of earthquake-induced displacements 
of a retaining wall (with specified geometry and material properties). 

The analytical procedure that was developed by Richards and Elms (1979) 
recognizes that for some limiting value of horizontal acceleration, 
identified as N*g in Figure 1.7, the horizontal inertia force acting on a 
retaining wall with no toe fill will nominally exceed the shear resistance 
provided by the foundation along the interface between the base of the 
wall and the foundation. This implies that although the soil base (i.e., the 
foundation to the wall) may be accelerating horizontally at values greater 
than N*g, the wall will be sliding along the base under the action of the 
horizontal inertial force that corresponds to the horizontal acceleration, 
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Figure 1.7. Gravity retaining wall and failure wedge treated as a sliding block (after Whitman 
1990). 

N*g. This results in movement of the soil base relative to the movement of 
the wall and vice versa. The relative movement commences at the point in 
time designated as point a in the first time-history shown in Figure 1.8 and 
continues until the (absolute) velocity of the base is equal to the (absolute) 
velocity of the wall, designated as time point b in the second time-history 
of this same figure. The (absolute) velocity of the soil base is equal to the 
integral over time of the soil acceleration, and the (absolute) velocity of the 
wall between time points a and b is equal to the integral of the wall 
acceleration, which is a constant N*g. The relative velocity of the wall, vr, 
shown in the third time-history is equal to the integral of the difference 
between the base acceleration and the constant wall acceleration, N*g, 
between time points a and b, as shown in Figure 1.8. The relative 
displacement of the wall is the fourth time-history and equal to the 
integral of the relative velocity of the wall, which occurs between the two 
points in time labeled a and b in Figure 1.8. Note that at time point b when 
the wall is stopping its first increment of relative movement, the 
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acceleration is less than N*g as shown in the first time-history. This 
observation demonstrates that the relative velocity of the wall (shown in 
the third time-history) controls the cessation of the seismically induced 
incremental wall movement. Additional incremental relative 
displacements occur for the wall between the two later points in time 
labeled c and d in Figure 1.8 with the residual relative wall displacements, 
dr, equal to the cumulative relative displacements computed during the 
entire time of earthquake shaking (labeled as point d in the fourth time-
history). Lastly, N*g is referred to as either the maximum transmissible 
acceleration or the yield acceleration.  

Figure 1.8. Incremental failure by base sliding (adapted from Richards and Elms 1979). 

Ebeling and Morrison (1992) observe that the approach has been 
reasonably well validated for the case of walls retaining granular, moist 
backfills (i.e., no water table). A key item is the selection of suitable shear 
strength parameters. In an effective stress analysis, the issue of the 
suitable friction angle is particularly troublesome when the peak friction 
angle is significantly greater than the residual friction angle. In the 
displacement controlled approach examples given in Section 6.2 of 
Ebeling and Morrison (1992), effective stress based shear strength 
parameters (i.e., effective cohesion c′ and effective angle of internal 
friction φ′) were used to define the shear strength of the dilative granular 
backfills, with c′ set equal to zero in all cases because of the level of 
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deformations anticipated in a sliding block analysis during seismic 
shaking. In 1992 Ebeling and Morrison concluded that it is conservative to 
use the residual friction angle in a sliding block analysis, and this should 
be the usual practice for displacement-based analysis of granular retained 
soils. For this report the primary author would broaden the concept to the 
assignment of effective (or total) shear strength parameters for the 
retained soil to be consistent with the level of shearing-induced 
deformations encountered for each design earthquake in a rotational 
analysis and note that active earth pressures are used to define the loading 
imposed on the structural wedge by the driving soil wedge. (Refer to 
Table 1.1 for guidance regarding wall movements required to fully mobilize 
the shear resistance within the retained soil during earthquake shaking.) 

CorpsWallRotate has the ability to perform a sliding analysis of a user-
specified retaining wall section such as the rock-founded retaining wall 
shown in Figure 1.9. This retaining wall is an idealization of the Figure 1.3 
cantilever retaining wall problem. Besides the overall wall and retained 
soil geometry and material properties, the engineer provides as input 
baseline-corrected, horizontal and vertical acceleration time-histories that 
are used to represent the earthquake ground motions. CorpsWallRotate 
represents the effect of the invert spillway slab on the toe of the cantilever 
wall through a user-specified, limiting resisting force, Presist. The 
magnitude of the Presist may be estimated using the simplified procedure 
developed by Strom and Ebeling (2004). Details regarding the sliding 
block method of analysis formulated in CorpsWallRotate are given in 
Chapter 4 of this report. 

In most sliding block formulations, including that used in CorpsWallRotate, 
an active earth pressure force is applied to the structural wedge in the 
permanent displacement analysis. Table 1.1 lists the approximate 
magnitudes of movements required to reach minimum active earth 
pressure conditions. Although this Clough and Duncan guidance is for 
static loading, after careful evaluation Ebeling and Morrison (1992, in 
Section 2.2.2) concluded that the Table 1.1 values may also be used as 
rough guidance for minimum retained soil seismic displacement to fully 
mobilize a soil’s shear resistance, resulting in dynamic active earth 
pressures. That is, the permanent displacements computed using 
CorpsWallRotate must equal or exceed the Table 1.1 values (given as 
displacement-normalized wall heights in this table). If not, then the 
dynamic earth pressures are underestimated in the analysis. 
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Figure 1.9. Permanent, seismically induced displacement of a rock-founded cantilever wall 
retaining moist backfill and with toe restraint, computed using CorpsWallRotate. 

1.2 Rotational analysis of a retaining structure modeled as a rigid 
block—existing methodologies 

The permanent displacement of retaining structures is not restricted to 
walls that slide along their base as a result of inertial forces imparted 
during earthquake shaking. For some retaining wall system configurations 
and material properties, permanent displacements may instead result 
from the rotation of a retaining wall about a point along its wall-to-
foundation interface. The limited research in this topic has focused on 
methodologies that calculate the permanent displacement caused by 
seismically induced rotation of a retaining wall modeled as a rigid block. 
Published analytical methods include those of Nadim and Whitman 
(1984), Siddharthan et al. (1992), Richards et al. (1996), Steedman and 
Zeng (1996), and Zeng and Steedman (2000). Figure 1.10 shows the 
Steedman and Zeng (1996) or, equivalently, the Zeng and Steedman 
(2000), rotating block methodology for computing permanent rotation 
and thus displacements of a gravity retaining wall using a horizontal 
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acceleration time-history to represent earthquake shaking. Key 
formulation features include a gravity retaining wall modeled as a rigid 
block; the gravity wall rotating about its toe and on a rigid foundation; a 
gravity wall retaining moist backfill; and sufficient wall movements away 
from the retained soil such that the shear strength of the soil is fully 
mobilized, resulting in the active earth pressure force, PAE. All these 
formulations use the Mononobe-Okabe relationship to compute the value 
of PAE, which is expressed in terms of an active earth pressure coefficient, 
KAE. Vertical ground accelerations are ignored, for simplicity in their 
formulation. Note that with the point of rotation assigned to the toe of the 
gravity wall, the resultant foundation-to-wall reaction forces, Fs and N, act 
through this point as well. 

A rotation θ about the toe of the Figure 1.10 wall is developed once a wall-
specific threshold acceleration is exceeded during earthquake shaking 
represented by a ground acceleration, aground.1 During rotation, the angular 
acceleration of the mass center (labeled point c) of rigid body is α. (Recall 
that mass is equal to the weight W divided by the acceleration of gravity g.) 
The x- and y-axis accelerations of (rigid) mass center point c during 
rotation are labeled (ac)x and (ac)y in this figure. This results in the 
accumulation of permanent wall rotation with time during further 
(horizontal) acceleration of the rigid base. When ground acceleration 
drops below the threshold acceleration for rotation for the wall, restoring 
forces and moments will act to slow the speed of angular rotation down, 
thus reducing the rate of increase of the tilt angle about the toe. Wall 
rotation ceases when the angular rotational velocity (of the mass center 
about point o) returns to zero. Additional increments of wall rotation Δθ 
occur each time a (horizontal) ground acceleration pulse exceeds the 
threshold acceleration for rotation for the wall in the same manner that 
permanent sliding displacements accumulate for a Newmark rigid sliding 
block model. 

                                                                 
1 The reader is cautioned that the notation given in this section is the same as that used by Steedman 

and Zang (1996) and is not universally consistent with the notation adopted by the authors of this 
report for the new formulation that is discussed in Chapter 3 and implemented in CorpsWallRotate. 
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Figure 1.10. Forces and accelerations of a rigid block model of a gravity retaining wall with 
rotation during horizontal shaking of the rigid base (after Zeng and Steedman 2000). 

An important difference between the Newmark sliding block method of 
analysis for earth retaining structures (i.e., the displacement controlled 
approach that is discussed in Section 1.1.3) and the rotational analysis of a 
retaining structure modeled as a rigid block is the acceleration imparted to 
the rigid block. When a rigid block undergoes permanent sliding 
displacement during earthquake shaking, the largest magnitude horizontal 
acceleration felt by the rigid block (and the retaining structure contained 
within the rigid block) is N*g, which is less than the peak value for ground 
acceleration. The maximum transmissible acceleration, N*g, is sometimes 
referred to as the yield acceleration; it is not the user-defined, horizontal 
ground (or, equivalently, the rigid base) acceleration. For a rigid block that 
undergoes rotation during earthquake shaking, the accelerations felt by 
this rigid block during shaking are those of the ground acceleration time-
history. This is because continuous contact between the rigid block 
undergoing rotation and the ground is maintained at the point of rotation, 
i.e., point o, during the entire earthquake shaking process. 

 



ERDC/ITL TR-06-2 23 

Relative-motion analysis of the rigid body model of the Figure 1.10 
retaining wall is used to establish the acceleration of (rigid) mass center 
point c by establishing the relationship between the acceleration of point c 
and the acceleration of point o (the point of rotation at toe of the wall). In 
the Zeng and Steedman (2000) Figure 1.10 retaining wall problem, the 
(translational) acceleration of point o at the toe of the retaining wall is set 
equal to the horizontal acceleration vector of the ground, aground, and is a 
known, user-specified quantity. (Note that its value is established by the 
user-defined acceleration time-history and changes in magnitude and 
possibly direction at each increment in time during earthquake shaking.) 
At each instant in time, the acceleration of the center of mass at point c, ac, 
in Figure 1.10 is expressed in terms of the (translational) acceleration of 
point o, ao, plus the acceleration of point c relative to point o, ac/o, 

 = +o cca a a o  1.1 

Note that accelerations ac and ao are absolute accelerations of the two 
respective points on the rigid body. If the vectors ac and ao are equal in 
magnitude and direction, the rigid body undergoes pure translation. In all 
other cases, rotation of the rigid body will occur. The acceleration of point 
c relative to point o, designated ac/o, may be expressed in terms of normal 
and tangential components, respectively, of the acceleration of point c 
relative to point o, 

 ( ) ( )= +c / o tangent normalc o c oa a a  1.2 

Thus, the accelerations felt at the Figure 1.10 mass center c are the sum of 
three components: 

 ( ) ( )= + +ground tangent normalc c o c oa a a a  1.3 

Figure 1.11 shows these relative acceleration vectors acting at point c. As 
the mass center rotates about the toe of the wall, (ac/o)tangent is the 
acceleration vector of the rigid mass tangent to the path of rotation of the 
center of the rigid mass rotating about this point o, 

 ( ) α= ×
tangentc o ca r  1.4 
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in which 

 α = the angular acceleration of the center of rigid mass, point c, 
about the point of rotation, point o 

 rc = the vector from the point of rotation, point o, to the center of 
rigid mass, point c 

Note that the direction of vector (ac/o)tangent is consistent with the direction 
of vector α. 

(ac/o)tangent

i

(ac/o)normal
Y

XO rigid base

retained soil

rc

α

gravity wall

θ

c

toe aground

xc

yc

Figure 1.11. The acceleration of point c relative to point o expressed in terms of normal and 
tangential components. 

Additionally, as the mass center rotates about the toe of the wall, the 
normal acceleration is defined as 

 ω ω= × ×c / o normal( ) ( ca )r  1.5 

in which ω the angular velocity of (rigid) mass center point c about its 
point of rotation, point o. The vector anormal is the time rate of change of 
the change in velocity’s direction at point c as it rotates about point o. The 
direction of (ac/o)normal is always towards point o, the center of the circular 
path of rotation as shown in Figure 1.11. 
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Introducing Equations 1.4 and 1.5, Equation 1.3 becomes 

 α ω= + × − 2
groundc ca a r rc  1.6 

From Figures 1.10 and 1.11, the horizontal and vertical acceleration 
components of the center of the rigid mass, point c, are 

 α ω= − • − •2
ground( )c x c ca a y x  1.7 

and 

 α ω= • − •2( )c y c ca x y  1.8 

Thus for a rigid block that undergoes rotation during earthquake shaking, 
the horizontal acceleration of (rigid) mass center point c is a function not 
only of the horizontal ground acceleration but it is also a function of the 
angular acceleration and the angular velocity during rotation of point c 
about point o. This differs from the situation of a rigid block that 
undergoes permanent sliding displacement during earthquake shaking; 
the largest magnitude horizontal acceleration felt by this rigid block is 
N*g. Recall that N*g, the maximum transmissible acceleration, is 
sometimes referred to as the yield acceleration; it is not the user-defined, 
horizontal ground (or, equivalently, rigid base) acceleration. Unlike the 
sliding (rigid) block model, which effectively isolates the sliding block from 
the shaking base below, the rotating rigid block model continues to 
transmit horizontal acceleration through the “pin,” located at the toe of the 
wall, into the wall. 

For the Steedman and Zeng (1996) (rigid) gravity wall formulation, 
vertical ground accelerations are ignored. However, for a rigid block that 
undergoes rotation during earthquake shaking, vertical acceleration of 
(rigid) mass center point c will occur, but is not a function of the 
horizontal ground acceleration: The vertical acceleration of point c is 
solely a function of the angular acceleration and the angular velocity 
during rotation. The Steedman and Zeng rotational model for the 
prediction of permanent displacement has been validated by comparison 
with experimental data of a large gravity wall constrained to rock and 
subjected to a series of damaging earthquakes in centrifuge testing, as 
described in Steedman and Zeng (1996). 
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1.3 New rotational analysis model based on a rigid block problem 
formulation 

An engineering formulation developed for the rotational response of rock-
founded, toe-restrained retaining walls to earthquake ground motions is 
given in this report. Rock-founded, cantilever walls retaining moist 
backfills of the type shown in Figure 1.3 that are buttressed at their toe by 
an invert spillway slab exemplify this category of retaining structure. 
(Recall that this new engineering procedure and corresponding software 
are not limited to cantilever walls.) The analysis of the earthquake-induced 
permanent rotation of the rock-founded retaining wall is idealized in 
Figure 1.12. The buttressing effect of e.g. an invert spillway slab is 
represented by the user-specified force Presist acting on a vertical section 
extending upwards from the toe of the wall; Strom and Ebeling (2004) 
present a simplified engineering procedure to estimate the magnitude of 
Presist. As in Zeng and Steedman (2000), rotation of a rigid block model of 
the structural retaining wall system is assumed in this new formulation to 
occur about the toe of the structure (i.e., the rigid block is “pinned” to the 
rigid, rock foundation base at its toe). However, this new procedure differs 
from the Steedman and Zeng formulation by (1) formal consideration of a 
toe-restraint in the analysis (due to the presence of a reinforced concrete 
slab against the toe of the wall); (2) the ability of the user to assign a 
vertical acceleration time-history in addition to a horizontal acceleration 
time-history; (3) consideration of a pool of water in front of the wall, a 
submerged foundation and a partially submerged retained soil; and (4) the 
implementation of this formulation within corresponding PC software 
CorpsWallRotate using a graphical user interface (GUI) for input of 
geometry, input of material properties, input/verification of earthquake 
time-history files, and visualization of results. In addition, (5) a sweep-
search wedge formulation within the retained soil is used to determine the 
value of PAE rather than relying on the Mononobe-Okabe relationship 
(cited in the Steedman and Zeng (1996) formulation). Recall that the 
Mononobe-Okabe relationship is valid for a retained soil with a constant 
surface slope and whose strength is characterized by the Mohr-Coulomb 
shear strength parameter φ (e.g., refer to Equations 33 through 35 in 
Ebeling and Morrison (1992)). The advantage of the sweep-search method 
as formulated in this report is that it allows for (a) the analysis of bilinear 
ground surfaces for the retained soil and/or (b) the analysis of cohesive 
(Su) soils. Details regarding the rotating block method of analysis 
formulated in CorpsWallRotate are given in Chapter 3 of this report. 
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CorpsWallRotate applies an active earth pressure force to the structural 
wedge in the permanent rotation analysis, as is done in most sliding block 
formulations for retaining walls. Table 1.1 lists the approximate 
magnitudes of movements required to reach minimum active earth 
pressure conditions. Although this Clough and Duncan guidance is for 
static loading, after careful evaluation Ebeling and Morrison (1992, in 
Section 2.2.2) concluded that the Table 1.1 values may also be used as 
rough guidance for minimum retained soil seismic displacement to fully 
mobilize a soils shear resistance, resulting in dynamic active earth 
pressures. That is, the permanent displacements resulting from rotations 
computed using CorpsWallRotate must equal or exceed the Table 1.1 values 
(given as displacement-normalized wall heights in this table). If not, then 
the dynamic earth pressures are underestimated in the analysis. 

Figure 1.12. Permanent, seismically induced displacement due to the rotation about the toe 
of a rock-founded cantilever retaining wall and with toe restraint, computed using 

CorpsWallRotate. 
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1.4 Seismic design criteria for Corps retaining structures 

Current Corps engineering methodology is to evaluate retaining walls for 
usual, unusual, and extreme loadings. Consideration of earthquake 
loadings is part of the design process for Corps earth retaining structures. 
Engineering Regulation (ER) 1110-2-1806 provides requirements 
governing the seismic design and evaluation of structures located at Corps 
projects. The engineering procedures outlined in this Corps document are 
applicable to the analysis of existing, or the design of new earth retaining 
structures. The Corps regulation for earthquake loadings, ER 1110-2-1806, 
specifies two project specific earthquakes, the Operational Basis 
Earthquake (OBE) and the Maximum Design Earthquake (MDE). 

The OBE is an earthquake that can reasonably be expected to occur within 
the service life of the project, that is, with a 50-percent probability of 
exceedance during the service life. (This corresponds to a return period of 
144 years for a project with a service life of 100 years.) The associated 
performance requirement is that the project functions with little or no 
damage, and without interruption of function. The purpose of the OBE is 
to protect against economic losses from damage or loss of service, and 
therefore alternative choices of return period for the OBE may be based on 
economic considerations. The OBE is determined by a Probabilistic 
Seismic Hazard Analysis (PSHA). The OBE is classified as an unusual 
event. Retaining walls are expected to remain serviceable and operable 
immediately following an OBE event, or immediately following any 
earthquake that can reasonably be expected to occur within the service life 
of the project. 

The MDE is the maximum level of ground motion for which a structure is 
designed or evaluated. The associated performance requirement is that the 
project performs without catastrophic failure, such as an uncontrolled 
release of a reservoir, although severe damage or economic loss may be 
tolerated. For critical features, the MDE is the same as the Maximum 
Credible Earthquake (MCE). [Section 5(a) and Table B-1 in ER 1110-2-
1806 outlines the assessment of the hazard potential classification of Civil 
Works projects and is related to the consequences of project failure. 
Critical features are the engineering structures, natural site conditions, or 
operating equipment and utilities at high hazard projects whose failure 
during earthquake could result, in loss of life.] For all other features, the 
MDE shall be selected as a lesser earthquake than the MCE which provides 
economical designs meeting appropriate safety standards. The MDE is the 
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maximum level of ground motion for which a structure is designed or 
evaluated. Although not formally stated in the ER, recent (limited) 
application to select, normal Corps (non-critical) structures is to assume 
the MDE is an earthquake that has a 10 percent chance of being exceeded 
in a 100-year period (or a 950-year return period). The MDE for non-
critical structures is established for each project on an individual basis, 
often in consultation with CE-CW (Headquarters). The MDE for normal 
structures is determined by PSHA. For critical structures the MDE is the 
MCE, which is determined by a deterministic seismic hazard assessment 
(DSHA). The MCE is defined as the greatest earthquake that can 
reasonably be expected to be generated on a specific source, on the basis of 
seismological and geological evidence. Significant damage resulting from 
an MDE event can be considered as acceptable provided the damaged 
structure can be repaired and put back in service without risk to life. 

Factors of safety and safety requirements for retaining walls subject to 
seismic loading conditions are provided in EM 1110-2-2100. This 
supersedes the stability guidance for retaining walls contained in EM 1110-
2-2502 (but not the engineering procedures, which are based on the 
simplified pseudo-static procedure of analysis). 

Factors of safety for sliding and flotation, and the safety provisions related 
to resultant location and allowable bearing capacity contained in EM 1110-
2-2100 are dependent on: 

• Load condition category (usual, unusual, or extreme), 
• Site information knowledge (well-defined, ordinary, or limited), and 
• Structure importance (normal, or critical). 

EM 1110-2-2100 associates each of the three load condition categories to a 
range in annual probability (or, equivalently, a range in return period). 
Additional “structure specific” information related to load condition 
categories and probabilities are contained in Appendix B of 
EM 1110-2-2100. 

1.5 Axial load capacity of spillway invert slabs 

Reinforced concrete slabs provide an important contribution to the overall 
seismic stability of retaining walls. Figure 1.3 shows for example, an invert 
spillway buttressing a cantilever retaining wall that borders a spillway 
channel. Key to the seismic performance of this spillway retaining wall is 
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the stabilizing force that the channel invert slab exerts at the toe of this 
wall. The magnitude of this stabilizing force will depend on the limit state 
axial load capacity of this invert slab. 

Invert slabs can be founded on earth or rock. Types of construction used 
by the Corps include an “independent block plan” and a “continuous 
reinforcing plan.” Invert slabs when loaded axially can exhibit either short 
column, or long column behavior with the later referring to slabs whose 
axial capacity is reduced by second-order deformations (i.e., P • Δ effects). 

Slab capacity in terms of axial load versus moment interaction is 
determined based on ultimate strength design principles, which can be 
applied to both unreinforced (plain concrete) and reinforced concrete 
invert slab sections. Influences from the subgrade reaction, slab dead load, 
and axial load eccentricity when considered in a second-order analysis 
suggest the axial load capacity can be based on a short column design with 
second-order displacements due to P • Δ effects having little if any effect 
on column axial load capacity, according to Strom and Ebeling (2004). 

The axial load resistance Presist provided by the Figure 1.3 invert slab is 
illustrated in Figure 1.12. Limited investigations, by Strom and Ebeling 
(2004), based on the Corps minimum thickness for invert slabs 
constructed on rock and earth, and for both continuous reinforcing plans 
and independent block plans, indicate the limit state axial load capacity, or 
ultimate axial load resistance of the slab (Presist) may be on the order of: 

• 120 kips per foot width of slab for a 1.0-foot-thick invert slab on rock. 
• 240 kips per foot width of slab for a 2.0-foot-thick invert slab on soil. 

The above values are valid for both anchored and unanchored invert slabs, 
and for the minimum contraction joint spacings typically found on Corps 
projects. However, a site-specific evaluation of the limiting axial resisting 
force due to the buttressing effect of the any type of slab on the toe of a 
retaining wall is required. Refer to Strom and Ebeling (2004) for a 
simplified engineering methodology for the assessment of Presist for all 
types of slabs buttressing all types of retaining structures, including the 
Figure 1.3 invert spillway slab. 
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1.6 Background and research objective 

Engineer Manual 1110-2-2502 Retaining and Flood Walls gives 
engineering procedures that are currently being used by District Engineers 
in their initial assessment of seismic wall performance of existing earth 
retaining structures and the (preliminary) sizing of new retaining 
structures. The engineering procedures given in EM 1110-2-2502 for 
retaining walls make extensive use of the simplified pseudo-static 
procedure of analysis of earth retaining structures and expresses wall 
performance criteria in terms of computed factors of safety against sliding 
and bearing failure, and base area in compression. The simplified pseudo-
static procedure of analysis makes it difficult to interpret the actual wall 
performance for Corps projects subjected to “strong” design ground 
motions because of simplifications made in the procedure of analysis. In a 
pseudo-static analysis an oversimplification occurs when the engineer is 
forced to render the complex, horizontal and vertical earthquake 
acceleration time-history events to constant values of accelerations and 
assume a constant direction for each. These constant values are denoted as 
the pseudo-static acceleration coefficients in the horizontal and vertical 
directions (refer to Section 1.1.1 of this report). The engineer is also 
required to assume a constant direction for each of these components. An 
acceleration time-history, in actuality, varies both in magnitude and in 
direction with time. 

The simplified pseudo-static procedure does not allow for interpretation of 
actual wall performance by District Engineers. Intense shaking imparted 
by the OBE and MCE design events makes the interpretation of the 
simplified procedure of analysis even more difficult. The more important 
questions for the wall are whether the wall slides into the spillway basin, 
or rotates into the spillway basin, or even tips over onto its side during the 
earthquake event. The simplified pseudo-static procedure of analysis is not 
capable of answering these questions. The answers depend on the 
magnitude of the pseudo-static coefficient used in the calculations 
compared to the magnitude of the peak values for the acceleration pulses 
as well as the number and duration of these strong shaking acceleration 
pulses in the design earthquake event time-history. When considering 
both horizontal and vertical accelerations, the resulting wall response is 
further complicated by the time-history of phasing between the pulses of 
horizontal and vertical accelerations. Only the permanent wall sliding 
displacement/wall rotation method of time-history analysis can answer 
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these questions. Again, wall displacements will influence the seismic earth 
pressure forces imparted on the wall by the retained soil. 

Formal consideration of the permanent seismic wall displacement in the 
seismic design process for Corps-type retaining structures is given in 
Ebeling and Morrison (1992). The key aspect of the engineering approach 
presented in this Corps document is that simplified procedures for 
computing the seismically induced earth loads on retaining structures are 
also dependent upon the amount of permanent wall displacement that is 
expected to occur for each specified design earthquake. The Ebeling and 
Morrison simplified engineering procedures for Corps retaining structures 
are geared towards hand calculations. The engineering formulation and 
corresponding PC software CorpsWallRotate discussed in this report extend 
these simplified procedures to walls that rotate during earthquake shaking 
and make possible the use of acceleration time-histories in the Corps 
design/analysis process when time-histories are made available on Corps 
projects. CorpsWallRotate may be used to predict permanent seismically 
induced rotational or translational displacements of walls retaining 
backfill, with or without a toe restraint. It is particularly applicable to rock-
founded L-walls and T-walls (i.e., cantilever retaining walls) which border 
spillway channels (Figure 1.3). 

The engineering methods contained in this report and implemented within 
CorpsWallRotate allow the engineer to determine if a given retaining wall 
has a tendency to rotate or to slide for a specified seismic event. This is a 
new capability for the seismic design/evaluation process for Corps 
retaining structures. 

1.7 Organization of report 

Chapter 2 discusses four existing rotational analysis models of a retaining 
wall rotating about a point along its base. All of these engineering 
formulations involved retaining walls without toe restraint. 

Chapter 3 describes the new engineering formulation for the seismic 
analysis of the permanent rotation of a retaining structure modeled as a 
rigid block with toe restraint. The numerical method used to compute the 
rotation time-history of the rigid block model about its toe is presented. 

Chapter 4 describes a new translational block analysis model of a retaining 
structure buttressed by a reinforced concrete slab. It is a special variation 

 



ERDC/ITL TR-06-2 33 

of the engineering formulation for the seismic analysis of the permanent 
displacement of a retaining structure modeled as a rigid sliding block but 
with a toe restraint. The numerical method used to compute the sliding 
displacement time-history of the rigid block model is presented. 

Chapter 5 describes key aspects of the visual modeler and visual post-
processor CorpsWallRotate. Specifically, a description of the GUI for input of 
geometry, input of material properties, input/verification of earthquake 
time-history files, and for visualization of results is presented to make the 
user familiar with its operation. 

Chapter 6 presents a summary, conclusions, and recommendations for 
additional research. 

Appendix A presents a derivation of the dynamic active earth pressure 
force using the sweep-search wedge method which is implemented in 
CorpsWallRotate to calculate PAE. 

Appendix B provides an abbreviated review of dynamics of a rigid body. 

Appendix C describes an approach used for computing the dynamic active 
earth pressure distribution for a partially submerged, retained soil. 

Appendix D describes the procedures used to compute the water pressures 
acting on the structural wedge, including the computation of 
hydrodynamic water pressures due to earthquake shaking of a pool (when 
present) in front of the retaining wall. With most Corps hydraulic 
structures that act as earth retaining structures possessing a vertical face 
in contact with the pool (when present), hydrodynamic water pressures 
are approximated in the CorpsWallRotate using the Westergaard (1931) 
procedure. 

Appendix E outlines the mass moment of inertia computation made by 
CorpsWallRotate for the structural wedge. 

Appendix F lists and describes the contents of the ASCII input data file to 
the FORTRAN engineering computer program portion of CorpsWallRotate. 
This data file, always designated as CWROTATE.IN, is created by the GUI, 
the visual modeler portion of CorpsWallRotate. 
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Appendix G lists the CorpsWallRotate ASCII output files. 

Appendix H discusses two example computations of static, active earth 
pressure distributions and depth of cracking in cohesive soils. 
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2 Existing Rotational Analysis Models of a 
Retaining Wall Rotating About a Point 
Along its Base 

2.1 Introduction 

The permanent displacement of retaining structures is not restricted to 
walls that slide along their base as a result of inertial forces imparted 
during earthquake shaking. For some retaining wall system configurations 
and material properties, permanent displacements may instead result 
from the rotation of a retaining wall about a point along its wall-to-
foundation interface. The limited research on this general topic has 
focused on engineering methodologies that calculate the permanent 
displacement due to seismically induced rotation of a retaining wall 
modeled as a rigid block. Published analytical methods include those of 
Nadim and Whitman (1984), Siddharthan et al. (1992), Fishman and 
Richards (1997, 1998), Steedman and Zeng (1996), and Zeng and 
Steedman (2000). All four studies involve engineering formulations for 
retaining walls without toe restraint. This chapter reviews key aspects of 
these existing, simplified formulations used to analyze seismically-induced 
permanent displacement due to rotation of a rigid block retaining wall 
about a point along its base.1 

The reader is cautioned that the notation given in each of the 
sections is the same as that used by the developers of each of the 
formulations being discussed (as used in their cited papers) and 
is not universally consistent with the notation adopted by the 
authors of this report for the new formulation that is discussed 
in Chapter 3 and implemented in CorpsWallRotate. 

During ground shaking, inertial forces are induced on the retaining wall 
system. Acceleration time-histories are used to represent ground shaking 
in these simplified models of retaining wall systems. The time-varying 
inertial forces lead to elastic deformations which can ultimately result in 
permanent rotation of the wall or sliding of the wall. In the case of 
permanent rotation of a rigid block model of the retaining wall system, 

                                                                 
1 Appendix B provides an abbreviated review of dynamics of a rigid body. 
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(1) inertial forces vary in magnitude and direction with time, and (2) their 
magnitudes are proportional to the value of acceleration at any given 
instant in time but act in the direction opposite to acceleration. 
Additionally, a rotational acceleration about a point of rotation develops 
once the threshold acceleration for lift-off of the base of the wall in 
rotation is exceeded, which leads to permanent rotation of the wall relative 
to the top-of-foundation. When the ground acceleration drops below this 
threshold acceleration value, restoring forces and moments will act to slow 
the speed of rotation, reducing the rate of increase of the angle of wall 
rotation. An increment of permanent wall rotation occurs during this 
interval in time. Additional permanent rotation will be induced during 
further cycles of ground acceleration if the threshold acceleration for lift-
off of the base of the wall in rotation is again exceeded. The angle of 
permanent wall rotation accumulates with each of these excursion cycles 
in a manner similar to the accumulation of permanent sliding 
displacement in Newmark’s sliding block method, briefly discussed in 
Chapter 1 and discussed in detail in Chapter 4. The primary author of this 
report observes that that for a retaining wall system of specified geometry 
and material properties (i.e., unit weights and shear strength parameters, 
etc.) the threshold values of acceleration corresponding to incipient lift-off 
of the base of the wall in rotation (about a specified point of rotation) and 
for incipient sliding of the wall are not the same. 

2.2 Nadim and Whitman rigid block model of a gravity wall with 
earthquake-induced, permanent rotation about a center of rocking 
located along the base of the wall 

One of the earliest formulations of a rigid block that rotates during 
earthquake shaking about a point along its base was developed by Nadim 
and Whitman (1984). Figure 2.1 depicts the idealized problem of a 
retaining wall that develops incremental, permanent rotations about a 
user-specified point of rotation during earthquake shaking. Nadim and 
Whitman termed this point as the “center of rocking,” and it is designated 
point O in this figure. Note that in this simplified formulation, there is no 
incremental rotation into the backfill; all incremental, permanent 
rotations that develop are directed away from the backfill. Acceleration 
time-histories are used to characterize earthquake shaking of the ground 
in this formulation. 
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Figure 2.1. Rotating gravity retaining wall (after Nadim and Whitman (1984)). 

The sign convention adopted by Nadim and Whitman (1984) for user-
specified horizontal khgg and vertical kvgg ground acceleration time-
histories are shown in the right-hand side of Figure 2.1. Positive horizontal 
ground acceleration is directed towards the retained soil and positive 
vertical acceleration is directed towards the foundation.1 Recall that g is 
the universal gravitational constant, while khg and kvg are the respective 
time-histories of the horizontal and vertical ground accelerations, 
expressed in decimal fraction. Notation with regards to the parameter “k” 
is as follows; the first subscript “h” or “v” means “horizontal” or “vertical,” 

                                                                 
1 The primary author of this report is of the opinion that this sign convention used is for the convenience 

of calculating the thrust force PAE provided by the driving soil wedge and not based on considerations 
associated with the structural wedge. 
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and the second subscript “g” or “w” means “ground” or “wall.” The 
earthquake shaking is represented by user-specified ground acceleration 
time-histories in this formulation. The components of wall acceleration are 
khw and kvw at the center of rocking. In this figure the notation of khw not 
equal to khg is meant to highlight the fact that the horizontal acceleration 
of the wall is not equal to the horizontal acceleration of the ground. It is 
assumed that there are no rotational movements of the ground so  in 
this figure is the absolute rotational acceleration as well as the rotational 
relative acceleration of the wall. 

θ&&

Incremental, permanent wall rotations can occur during “strong” 
earthquake acceleration “pulses” (i.e., sequences in the acceleration time-
history that contain high amplitude acceleration wave forms and usually of 
short duration) in which horizontal ground acceleration thrusts are 
directed towards the retained soil (i.e., acting in the Figure 2.1 positive khg 
direction). The resulting incremental, permanent wall movements will be 
directed away from the retained soil. When these incremental wall 
movements occur, they are assumed to be of sufficient magnitude to fully 
mobilize the shear resistance in the retained soil. Active earth pressures 
are assumed to act on the retained side of the wall during these 
incremental wall rotations. In order to satisfy continuity, Nadim and 
Whitman (1984) assumed the backfill soil is allowed to move in planes 
parallel to the plane of failure as shown in this figure. There are an infinite 
number of failure planes, all of which are parallel. The total active thrust 
acting on the back of the retaining wall is equal to the sum of the wall-to-
retained soil interface incremental forces of each of the Figure 2.1 soil 
slices within the retained soil. The angle that the rupture plane makes with 
horizontal α is established in this formulation using the Zarrabi (1979) 
relationship for α, which is based on the single, rigid-plastic active wedge 
used in the Mononobe-Okabe formulation with a potential failure plane 
that goes through the heel of the wall. In order to find the inclination α of 
the failure planes, Nadim and Whitman assume that the (resultant) active 
thrust from all of the Figure 2.1 soil slices is equivalent to the value of PAE 
computed using the Mononobe-Okabe formulation. Nadim (1980) 
observes that this assumption is equivalent to using the Mononobe-Okabe 
equation with an average khb and kvb for the entire rigid-plastic soil mass. 

For a specified value of α the resultant active force PAE and its line of 
action L (above the heel of the wall) are given by Nadim and Whitman 
(1984) as: 
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 H = height of wall 

 g = constant of gravitational acceleration 

 i  =  backfill slope 

 α  =  inclination of failure planes in retained soil 

 φ  =  friction angle of retained soil 

 φw  =  friction angle of wall-backfill interface 

 γ  =  unit weight of backfill 

   =  rotational acceleration of the wall θ&&

When there is no rotational acceleration, the value of PAE would become 
identical to PAE computed using the Mononobe-Okabe equation (refer to 
Figure 1.5), provided that the correct inclination of rupture plane α within 
the retained soil is used in Equations 2.1 through 2.4. Rotational 
acceleration causes an additional term in the equation for PAE. This term 
depends on the assumption made regarding continuity; in order for PAE to 

remain positive, b must be greater than 
3

aθ&& at each time-step in the time-

history response analysis. 

Equation 2.2 for the line of action L suggests that when  is positive (i.e., 
the wall is rotating away from the retained soil), PAE lies below the lower 

θ&&
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third point. Nadim (1980) notes that this conclusion is contrary to all 
previous results obtained by different investigators (also see Section 4.2.2 
in Ebeling and Morrison (1992)). Physically, as the wall tilts, each slice of 
soil in the backfill experiences a different acceleration. The soil close to the 
bottom of the wall is slipping least relative to the ground, hence its 
acceleration is largest. The topmost soil is lagging furthest behind the 
ground and has the lowest acceleration. Thus, the bottom soils contribute 
more to the lateral pressures and cause the resultant force below the lower 
third point. Conversely, as soon as the wall decelerates (i.e., when  is 
negative), the situation is reversed. Now the resultant force, PAE, lies well 
above the third point. So the point of application of the resultant force PAE 
changes, but the results of calculations made by Nadim (1980) indicate 
that on average, it falls slightly above the lower third point. 

θ&&

In the Nadim and Whitman (1984) formulation, the center of rocking is 
restricted to a point along the base of the wall. Note that they did not 
restrict this fixed point of rotation, i.e., the center of rocking in their 
vocabulary, to the toe of the wall in their formulation. However, this center 
of rocking, about which permanent rotation will occur during earthquake 
shaking, was fixed at a user-specified location along the base of the wall for 
the duration of each time-history analysis. In subsequent analyses, the 
user could then repeat the time-history analysis of permanent wall 
rotation for the same acceleration time-history but specifying another 
location of the center of rocking along the base of the wall. The center of 
rocking location that results in the largest permanent wall rotation is 
considered the solution for the problem by Nadim and Whitman. It is 
envisioned by the primary author of this report that a center of rocking 
location other than at the toe of the wall implys a flexible and somewhat 
compliant foundation. A soil foundation would satisfy this 
characterization. Nadim and Whitman refer to a soil foundation (versus a 
rock foundation) in their formulation discussions. 

Figure 2.2.a shows the dynamic forces acting on the Nadim and Whitman 
retaining wall. The wall has a weight per unit length of Ww and a mass 
moment of inertia per unit length ICG about the wall’s center of gravity, CG. 
The friction angle at the base of the wall is φb and the wall-to-retained soil 
interface friction angle is φw. The vertical acceleration of the rigid wall at 
the point of rocking (point O), kvwg, is the same as the vertical acceleration 
of the ground, kvgg. By definition, only sliding may take place at point O; 
the horizontal acceleration of point O, khwg, would be different during 
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sliding from the horizontal acceleration of the ground, khgg. The inertial 
forces act at the center of gravity of the wall. N and T are the foundation’s 
normal and shear reaction forces, respectively. Mr is the ultimate moment 
resistance of underlying “soil” foundation. The principal author of this 
report observes that the foundation reaction moment, Mr, in conjunction 
with the normal force, N, implies an eccentricity of the location of the 
foundation’s resultant reaction force N with respect to the user-defined 
center of rocking, as shown in Figure 2.2.b. 

For “large” khgg horizontal ground acceleration thrusts towards the 
retained soil (acting in the Figures 2.1 and 2.2.a positive khg direction), 
incremental wall rotations initiate when a limiting wall acceleration value 
for the wall is exceeded. (Recall that the inertial force acts opposite to the 
direction of acceleration, away from the retained soil for positive 
horizontal acceleration thrusts. Inertia forces have been applied according 
to D’Alembert’s principle which permits the problem to be treated as a 
static problem.) Thus, large horizontal acceleration thrusts in the direction 
of the retained soil will attempt to destabilize the wall, possibly resulting in 
incremental wall rotations in the positive θ direction shown in this figure 
(i.e., rotation outward) and corresponding incremental, permanent wall 
movements directed away from the retained soil. For a given retaining wall 
system configuration and material properties, there is a unique value of 
limiting acceleration for sliding and a unique value of limiting acceleration 
for lift-off of a wall in rotation about a point along its base. For any given 
retaining wall system, the values of these two limiting accelerations are 
typically not the same. 

Limiting acceleration of a wall — sliding 

When ground acceleration thrusts exceed a limiting value of sliding 
acceleration the wall will begin to slide. The limiting acceleration of the 
wall can be determined from the equilibrium equations of the wall. The 
equation of horizontal equilibrium for the Figure 2.2.a wall is 
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a. Dynamic forces acting on the retaining wall (after Nadim 1980). 

N
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Point
O
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b. Foundation reaction resultant force N eccentric to the point of rotation by a 
distance e. 

Figure 2.2. Dynamic forces acting on the retaining wall per the Nadim formulation 
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and the equation of vertical equilibrium is 
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Coulomb’s law of friction relates the maximum value of T to N by 

 ( )φ= •max tan bT N  2.8 

By setting 

 ( )=hw hw slide
k k  2.9 

the limiting horizontal acceleration value of (khw)slide for (incipient) sliding 
is determined by introducing Equations 2.6 and 2.7 into Equation 2.8, and 
solving for (khw)slide, 
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Permanent, incremental wall translations initiate when horizontal ground 
acceleration, khgg, thrusts towards the retained soil exceed the limiting 
horizontal wall acceleration value, (khw)slide. 

Limiting acceleration of a wall—lift-off of its base in rotation 

When ground acceleration thrusts exceed a limiting value of acceleration, 
the wall will begin to lift off of its foundation, rotating about the center of 
rocking (i.e., point O) at the base of the wall. The limiting acceleration of 
the wall can be determined from equilibrium equations of the wall. The 
moment equilibrium equation about point O is 
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Solving for , θ&&
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Irot is the mass moment of inertia about point O. If the applied moment 
from PAE and wall inertia is less than Mr, no permanent rotation takes 
place and  is zero. θ&&

By setting 

 ( )=hw hw tiltk k  2.14 

the limiting horizontal acceleration value of (khw)tilt for (incipient) lift-off 
of a wall in rotation about point O is determined by introducing 
Equation 2.14 into Equation 2.12 and setting the numerator equal to zero. 
(Recall wall rotations occur when a nonzero value is achieved.) Thus, a 
wall’s value of limiting yield acceleration is 

θ&&
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Since a key item of interest is the horizontal limiting acceleration, Nadim 
and Whitman set kvg equal to 0 in Equation 2.15, resulting in 
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Rotational acceleration of the wall is zero for values of horizontal ground 
acceleration less than or equal to (khw)tiltg. At a time-step ti into the ground 
acceleration time-history, when the horizontal ground acceleration value 
khgg is equal to or greater than (khw)tiltg, incremental rotation commences 
(i.e., the walls rotational acceleration  is nonzero). The time-history of 
rotational velocity  is obtained by numerical integration of the wall’s  

θ&&
θ& θ&&
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time-history. Incremental, permanent wall rotations stop when the value 
of  returns to zero. No wall rotations into the retained soil are allowed in 
the Nadim and Whitman (1984) formulation. The time-history of 
incremental, permanent wall rotation 

θ&

θ  (about point O) is obtained by 
numerical integration of the  time-history. After (1) this first pulse of wall 
rotations conclude and (2) should the horizontal ground acceleration 
value, khgg, be equal to or greater than (khw)tiltg at a later time, tj, then a 
second pulse of incremental, permanent wall rotations would commence. 
Several incremental pulses of permanent wall rotation occur during the 
course of a typical earthquake time-history analysis. The total permanent 
wall rotation at the end of earthquake shaking is equal to the sum of the 
incremental wall rotation pulses. 

θ&

Nadim and Whitman (1984) observations 

(1) Studies performed by Nadim (1980) show that when sliding starts 
before tilting [i.e., (khw)slide < (khw)tilt] only sliding movements take place, 
but when tilting starts before sliding, usually the wall movement is coupled 
tilting and sliding, with tilting movements dominating the displacement 
pattern. (2) The location of the critical center of rocking (i.e., point O) 
depends on the variation of the ultimate moment capacity of the 
foundation soil, Mr, and the moment of inertia of the wall with distance at 
the base of the wall. 

Summary observations regarding the Nadim and Whitman formulation by 
other researchers 

Along with others, Fishman and Richards (1997) observe that Nadim and 
Whitman (1984) employed coupled equations of motion to study the 
problem of seismically induced tilting of gravity retaining walls. Based on 
the work of Nadim and Whitman (1984), Siddharthan et al. (1990, 1991, 
and 1992) developed a method to predict the seismic performance of 
retaining walls considering both rotation and translation deformation 
modes. Their coupled equations of motion were, in turn, updated and 
extended by Fishman and Richards (1997) for the analysis of bridge 
abutments with a pin connection at the intersection of the top of wall and 
the bridge deck. Key aspects of these two studies are summarized in the 
subsequent subsections. 
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2.3 Siddharthan, Ara, Anderson, Gowda, and Norris rigid block model 
of a gravity wall with earthquake-induced, coupled permanent rotation 
and sliding about a center of rotation located along the base of the 
wall 

Nadim and Whitman (1984) employed coupled equations of motion to 
study the problem of seismically induced tilting of gravity retaining walls. 
Based on the work of Nadim and Whitman (1984), Siddharthan et al. 
(1990, 1991, and 1992) developed a method to predict the seismic 
performance of retaining walls considering both rotation and translation 
deformation modes as shown in Figure 2.3. 

Figure 2.3. The Siddharthan, Ara, Anderson, Gowda, and Norris simplified rigid block model 
for seismically induced wall displacement (after Siddharthan, Ara, and Anderson (1990)). 

In the Siddharthan et al. (1990, 1991, and 1992) type of analysis, the 
permanent wall translation and rotation about a point along the base, 
referred to as the center of rotation, are designated as the primary 
unknowns. The center of rotation is selected prior to starting the dynamic 
analysis and sliding and rotation of the wall about this point are 
computed. From these results, the top-of-wall permanent displacement is 
evaluated as a function of time. In subsequent time-history analyses in 
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which the location of the center of rotation along the wall’s base is changed 
to another position (which is fixed for the duration of each time-history 
analysis), a number of top-of-wall permanent displacement values at the 
end of shaking are computed and tabulated. The maximum of these 
computed top-of-wall permanent displacement values is considered to be 
the design wall displacement. (This approach of altering the center or 
rotation so as to find the maximum permanent displacement is consistent 
with that used by Nadim and Whitman (1984).) 

Figure 2.4 shows a rigid retaining wall of height H subjected to base 
excitation, represented by horizontal and vertical ground accelerations, 

 and , respectively. Note the sign convention for horizontal and 

vertical ground accelerations in this formulation is the same as assumed 
by Nadim and Whitman (1984); positive horizontal ground acceleration is 
directed towards the retained soil and positive vertical acceleration is 
directed towards the foundation. Inertia forces have been (again) applied 
according to D’Alembert’s principle which permits the problem to be 
treated as a static problem. The response of the wall is given in terms of 
wall translation x (relative to the input excitation), and rotation θ about 
the center of rotation point O, which is located along the base of the wall. 
CG is the center of gravity of the wall; R is the distance from rotation point 
O to CG; ICG is the mass moment of inertia of the wall about the CG; δ is 
the wall-to-retained soil friction angle; α is the angle the back of the wall 
makes with respect to vertical; W is the weight of the wall; and PAE is the 
total dynamic active thrust on the wall. In their formulation the 
Mononobe-Okabe relationship is used to compute the value of PAE. The 
point of application of the total active force PAE is assigned to a height mH 
above the heel of the wall, with m being a value less than one. Its point of 
application is based on the Seed-Whitman guidelines as described in 
Section 4.2.2 in Ebeling and Morrison (1992), but with the incremental 
dynamic force, ΔPAE, assigned to 0.52H above the base rather than 0.6H as 
per Seed and Whitman (1970). (Recall that in the Seed-Whitman 
formulation the total force PAE is the sum of the static force component, 
PA, plus an incremental dynamic component, ΔPAE. PAE is computed using 
the Mononobe-Okabe relationship and PA is computed using the Coulomb 
active earth pressure force relationship; with ΔPAE = PAE - PA. Please refer 
to Figure 4.10 in Chapter 4 of Ebeling and Morrison (1992).) The base 
reaction is given in terms of the vertical and horizontal forces Pv and Ph 
and a moment of resistance, MO. 

)(txg&& )(tyg&&
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Figure 2.4. Forces and moments acting on a rigid block model of a gravity wall (after 
Siddharthan, Ara, and Anderson (1990)). 

The equation of horizontal equilibrium for the Figure 2.4 wall is 

( ) ( ) ( )δ α θ= + − − • + + • • •∑ &&&& && cos sinx h g AE
W W WF X P X t P R
g g g

η  2.17 

and the equation of vertical equilibrium is 

( ) ( ) ( )δ α θ= − − + • + + • • •∑ &&&& sin cosy v g AE
W WF W P Y t P R
g g

η  2.18 

Coulomb’s law of friction relates the maximum value of Ph to Pv by 

 ( ) ( )φ= •
max

tanh vP P b  2.19 

Solving Equations 2.17 and 2.18 for Ph and Pv, respectively, results in 

 ( ) ( ) ( )δ α θ= − + • + − • • •&&&& && cos sinh g AE
W W WP X t X P R
g g g

η  2.20 
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 ( ) ( ) ( )δ α θ= − + • + + • • •&&&& sin cosv g AE
W WP W Y t P R
g g

η  2.21 

Combining Equations 2.20 and 2.21 into Equation 2.19 results in 

 

( ) ( ) ( )

( ) ( ) ( ) ( )
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Rearranging, Equation 2.22 becomes 
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Introducing the trigonometric identity 

 ( ) ( )
( )
φ

φ
φ

=
sin

tan
cos

b
b

b

 2.24 

to the second term of the right-hand side of Equation 2.23 and rearranging 
terms results in 

 ( ) ( )
( )

( ) ( )
( )

φ φ
θ η η

φ φ

⎧ ⎫⎡ ⎤ ⎡⎪ ⎪• • • • + •⎨ ⎬
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⎢ ⎥ ⎢
⎪ ⎪

⎥
⎣ ⎦ ⎣⎩ ⎭

&& cos sin
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cos cos
b

b b

W R
g ⎦

b
 2.25 

Introducing the trigonometric identity 

 ( ) ( ) ( ) ( ) ( )η φ η φ η• + • = +sin cos cos sin sinb b φb  2.26 

Equation 2.25 becomes 

 
( )

( )
η φ

θ
φ
+

• • •&& sin

cos
b

b

W R
g

 2.27 
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Replacing the right-hand side of Equation 2.23 with Equation 2.27 and 
rearranging terms results in 

 

( ) ( )

( ) ( ) ( )

( )
( )

δ α

δ α φ

η φ
θ

φ

+ • +

⎡ ⎤
− − + • + •⎢
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+ • • •

&&

&&

&&&&

cos

sin tan

sin

cos

g AE

g AE b

b

b

W X t P
g

WW Y t P
g

W WX R
g g

=⎥  2.28 

Siddharthan, Ara, and Norris (1990) observe that this equation (2.28), 
which gives the equation of motion in the horizontal direction, can be 
uncoupled by omitting the last term, 

 
( )

( )
η φ

θ
φ
+

• • •&& sin

cos
b

b

W R
g

 2.27 bis 

(i.e., the rotation term), from the right hand side of this equation. Note 
that the resulting uncoupled equation is the same equation as used by 
Richards and Elm (1979) and given in Chapter 4 of this report. 

The equation of moment equilibrium for the Figure 2.4 wall is 

 θ θ⎛ ⎞
= • = + • •⎜

⎝ ⎠
∑ && &&2

O O CG
WM I I R
g ⎟  2.29 

which becomes 
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&&&& &&
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P R a mH
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 2.30 

in which a is the horizontal distance between the CG and the heel of the 
wall, η is the angle that the line joining points O and CG makes with the 
horizontal. φb is the friction angle at the interface between the wall base 
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and foundation soil, MyO is the yield moment of resistance, and mH is the 
location of the line of action of the backfill thrust from the base. 

Equations 2.28 and 2.30 are coupled equations for d2x/dt2 and d2θ/dt2. A 
step-by-step solution scheme is followed in order to obtain the wall 
translation, x, and rotation, θ, in the time domain. This step-by-step 
solution scheme is outlined in Siddharthan, Ara, and Anderson (1990). 

Siddharthan, Ara, and Norris (1992) note that it is customary in dynamic 
analyses to describe the response of a system in terms of generalized 
coordinates which may be displacements, rotations, or a combination of 
both. The generalized coordinates should be independent of each other, 
and one should be able to represent the response at any other point in 
terms of the generalized coordinates. For the retaining wall problem, it is 
necessary to specify a point about which the wall translation and rotation 
(generalized coordinates) need to be computed. This point is referred to as 
the center of rotation. Nadim and Whitman (1984) selected this point to be 
located at the base of the wall. In a linear problem, the displacement 
response at any point will not depend on the selection of the center of 
rotation. On the other hand, the retaining wall response is statically 
indeterminate and nonlinear. 

Siddharthan, Ara, and Norris (1992) observe that the resistance against 
rotation offered by the foundation soil and moment of inertia about the 
point of rotation depends on the selection of the center of rotation. 
Therefore, the center of rotation will affect the computed wall 
displacement. In the procedure adopted here, the center of rotation is 
selected before starting the dynamic analysis and the sliding and rotation 
of the wall about this point are computed. From these results, the top-of-
wall displacement is evaluated as a function of time. By varying the 
location of the center of rotation along the base of the wall and repeating 
the time-history analyses for the same ground motion, a number of top-of-
wall displacement values at the end of the excitation are noted. The 
maximum of these top-of-wall displacement values is considered to be the 
design displacement. 

Uncoupled equation for rotation 

Siddharthan, Ara, and Norris (1992) note that Equation 2.30 (in this 
report), which gives the rotational equation of motion, can be uncoupled 
by omitting the first term 
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 ( )η• •&& sin
W X R
g

 2.31 

(i.e., the sliding term) from the left-hand side of the equation, resulting in 
the uncoupled equation for rotation about the center of rotation, point O, 
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( ) ( ) ( ) (

( ) ( )[ ]

θ η

)η δ α

δ α η α
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The complete derivation of Siddharthan et al. (1990, 1991, and 1992) 
equations of motion is also given in Appendix A of Fishman and Richards 
(1997). 

To compare the Nadim and Whitman Equation 2.11 (this report) 
formulation for the Figure 2.2.a retaining structure to the Siddharthan 
et al. uncoupled Equation 2.32 for the Figure 2.4 retaining structure, some 
geometrical conversions are required: α is set equal to zero degree for the 
Figure 2.4 retaining wall in order to obtain a vertical wall-to-retained soil 
interface and the radius R and angle η in Figure 2.4 are converted into the 
Figure 2.2.a geometry designations by 

 = +2 2
1R B B2

3  2.33 

 ( )η• = 1cosR B  2.34 

 ( ) ( ) ( )[ ] ( )δ α η α δ+ • • + − • = • 2sin cos tan sinR a mH B  2.35 

 ( )η• = 3sinR B  2.36 

and 

 ( ) ( )δ α δ• + = •cos cosmH L  2.37 

when α is equal to zero. Introducing these geometry designations into the 
uncoupled Equation 2.32 and recognizing the differences in notation used 
for several of the variables, it is concluded that the resulting relationship is 
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the same as Nadim and Whitman’s Equation 2.11. Thus, the uncoupled 
Siddharthan et al. formulation for rotation is the same as the Nadim and 
Whitman formulation. 

Foundation response 

One of the input parameters is Myo which is assessed by Siddharthan et al. 
(1990, 1991, 1992) by assuming the foundation soil is represented by 
Winkler springs, and these springs are not bonded to the foundation. The 
resisting moment is determined by modeling the base as a strip footing 
resting on Winkler springs. Equations are given in Siddharthan, Ara, and 
Norris (1992) and Siddharthan, Gowda, and Norris (1991). Both full 
contact and partial contact (lift-off) were considered. Pv and Ph are the 
foundation’s normal and shear reaction forces, respectively. The principal 
author of this report observes that the foundation reaction moment, Myo, 
in conjunction with the normal force, Pv, implies an eccentricity of the 
location of the foundation’s resultant reaction force, Pv, with respect to the 
user-defined center of rocking. 

Fishman and Richards (1997) question the use of the Winkler spring 
model once the soil reaches its ultimate bearing pressure. Fishman and 
Richards (1997) present an alternative formulation for assessing the force 
and moment provided by the soil foundation to the wall; key aspects of 
their formulation are discussed in the subsequent subsection. 

Summary observations regarding the Siddharthan et al. formulation by 
other researchers 

Fishman and Richards (1997) observe that the advantage to the 
Siddharthan, Gowda, and Norris (1991) equations of motion is that they 
involve much less computational work than those originally proposed by 
Nadim and Whitman (1984) where they (i.e., Nadim and Whitman) 
assume that the locations and magnitudes of the wall forces (i.e., PAE) vary 
as a function of sliding and rotating wall acceleration. Recall that the only 
unknown variables in Equations 2.28 and 2.32 are  and ( )X t&& ( )tθ&& . 
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2.4 Fishman and Richards rigid block model of a bridge abutment with 
earthquake-induced, coupled permanent rotation and translation for 
free and fixed connections to bridge decks 

Siddharthan et al. (1990, 1991, and 1992) and Whitman (1992) proposed 
the use of coupled equations of motion to predict seismic-induced 
permanent deformation of retaining walls. These equations can be used to 
describe mixed modes of deformation including sliding and/or tilting. 
Equations of motion are cast in terms of relative acceleration between the 
retaining wall and foundation soil. Relative displacement and rotations are 
computed by double integration of the equations of motion with respect to 
time, similar to Newmark (1965) and Richards and Elms (1979). 
Specifically, Fishman and Richards (1997, 1998) modified these 
Siddharthan et al. coupled equations of motion (discussed in the previous 
subsection) and included the following modifications; (1) calculation of 
seismic bearing capacity (and, specifically, the possibility of seismic loss of 
bearing capacity); (2) estimation of the moment resistance of the 
foundation soil; and (3) extension of the equations to consider bridge 
abutments that may be forced to rotate about a point of fixity at the top of 
the abutment at the connection to the bridge deck. The Fishman and 
Richards (1997, 1998) free-body diagram of bridge abutment with a free 
connection to bridge deck is shown in Figure 2.5. Note the sign convention 
for horizontal and vertical ground accelerations in this formulation is the 
same as assumed by Nadim and Whitman (1984) and Siddharthan et al. 
(1990, 1991, and 1992); positive horizontal ground acceleration is directed 
towards the retained soil and positive vertical acceleration is directed 
towards the foundation. 

The inertial forces are applied according to D’Alembert’s principle. 
Fishman and Richards (1998) note that much like the Richards and Elms 
(1979) approach to translating walls, Newton’s fundamental laws of 
motion are applied to arrive at the coupled equations of motion proposed 
by Siddharthan et al. (1990, 1991, and 1992) and described in the previous 
section. The Siddharthan et al. coupled equations of motion for the 
Figure 2.5 notation are 
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Figure 2.5. Free-body diagram of bridge abutment with free connection to bridge deck (after 
Fishman and Richards (1998)). 
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Note that by taking α equal to zero degrees and adding in the vertical deck 
load FDV, the Siddharthan et al. equations (Equations 2.28 and 2.30) 
match Equations 2.38 and 2.39, respectively. PAE is the total dynamic 
active thrust on the wall. In their formulation the Mononobe-Okabe 
relationship is used to compute the value of PAE. Vertical acceleration can 
be included quite easily by using kh/(1-kv) instead of kh when computing 
PAE and W becomes (1-kv)W in the equilibrium equations (e.g., see 
Appendix A or Equation 33 and Figure 4.1a in Chapter 4 of Ebeling and 
Morrison (1992)). The point of application of the total active force PAE is 
assigned to a height mH above the heel of the wall, with m being a value 
less than one. Fishman and Richards (1997) assume that PAE acts at the 
wall mid-height, consistent with a Richards and Elms (1979) suggestion. 
An additional detail in their computations is that until the base moves 
creating an active situation, it acts as a “rigid” wall retaining “non-
yielding” backfill (in Ebeling and Morrison (1992) terminology). Citing 
results from Wood (1975) analyses, Fishman and Richards (1997) assume 
the seismic lateral pressure increment is parabolic with a thrust force PRE 
roughly twice the Mononobe-Okabe value and with the wall/retained soil 
interface friction angle, δ, is close to zero for this special case. 

Siddharthan et al. equations of motion apply to a retaining wall, but not to 
a pin-connected bridge abutment of the type shown in Figure 2.6. This 
figure shows the free-body diagram of the bridge abutment problem solved 
by Fishman and Richards. 

Derivation of the equation of motion for an abutment pinned at the top is 
presented in Appendix B of Fishman and Richards (1997). Summing 
moments about the pin results in 
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where N is the vertical soil resistance and S is the horizontal soil 
resistance. 

Rearranging the equation of motion results in, 
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Figure 2.6. Free-body diagram of bridge abutment with fixed connection to bridge deck (after 
Fishman and Richards (1997)). 

Numerical methods, as described in Fishman and Richards (1997), are 
used to solve for the acceleration components  and ( )X t&& ( )tθ&& . Specifically, 

a step-by-step solution scheme is followed in order to obtain the wall 
translation, x, and rotation, θ, in the time domain. A key aspect of their 
formulation is formal consideration of seismic bearing capacity of the 
foundation soil. 

2.5 Steedman and Zeng rigid block model of a gravity wall with 
earthquake-induced rotation about its toe 

Figure 2.7 shows the Steedman and Zeng (1996) or, equivalently, the Zeng 
and Steedman (2000) rotating block methodology for computing 
permanent rotation and thus displacements of a gravity retaining wall 
using a horizontal acceleration time-history to represent earthquake 
shaking. Key formulation features include; a gravity retaining wall 
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modeled as a rigid block; the gravity wall rotates about its toe and on a 
rigid foundation; a gravity wall retaining moist backfill; and sufficient wall 
movements away from the retained soil occur such that the shear strength 
of the soil is fully mobilized, resulting in the active earth pressure force 
PAE. Only a horizontal ground acceleration time-history is used to 
represent earthquake shaking, i.e., vertical ground accelerations are 
ignored for simplicity in their formulation. Note that with the point of 
rotation assigned to the toe of the gravity wall, the resultant foundation-to-
base of wall reaction forces Fs and N act through this point as well. 

W
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rc
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Fs

c
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h

H
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Figure 2.7. Forces and accelerations of a rigid block model of a gravity retaining wall with 
rotation during horizontal shaking of the rigid base (after Zeng and Steedman (2000)). 

A rotation θ about the toe of the Figure 2.7 wall develops once a wall-
specific threshold acceleration is exceeded during earthquake shaking that 
is represented by a horizontal ground acceleration aground, as depicted in 
this figure. During rotation, the angular acceleration of the mass center 
(labeled point c) of rigid body is α. (Recall that mass is equal to the weight, 
W, divided by the acceleration of gravity, g.) The x- and y-axis 
accelerations of (rigid) mass center point c during rotation are labeled (ac)x 
and (ac)y in this figure. This results in the accumulation of permanent wall 
rotation with time during further (horizontal) acceleration of the rigid 
base. When ground acceleration drops below the threshold acceleration for 
rotation for the wall, restoring forces and moments will act to slow the 
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speed of angular rotation, thus reducing the rate of increase of the tilt 
angle about the toe. Wall rotation ceases when the angular rotational 
velocity (of the mass center about point O) returns to zero. Additional 
increments of wall rotation Δθ occur each time a (horizontal) ground 
acceleration pulse exceeds the threshold acceleration for rotation for the 
wall in the same manner that permanent sliding displacements 
accumulate for a Newmark rigid sliding block model. 

The equation for the acceleration of the Figure 2.7 (rigid) mass center 
point c was shown in Section 1.2 to be 

 α ω= + × − 2
groundc ca a r rc  1.6 bis 

with the horizontal and vertical acceleration components of ac are 

 α ω= − • − •2
ground( )c x c ca a y x  1.7 bis 

and 

 α ω= • − •2( )c y c ca x y  1.8 bis 

These three equations demonstrate that for a rigid block that undergoes 
rotation during earthquake shaking, the horizontal acceleration of (rigid) 
mass center point c is a function not only of the horizontal ground 
acceleration but it is also a function of the angular acceleration α and the 
angular velocity ω during rotation of point c about point O. Recall that this 
differs from the situation of a rigid block that undergoes permanent 
sliding displacement during earthquake shaking; the largest magnitude 
horizontal acceleration felt by this rigid block is the maximum 
transmissible acceleration, N*g, as discussed in previous chapters. N*g is 
sometimes referred to as the yield acceleration. Note that N*g is not the 
user-defined, horizontal ground (or, equivalently, rigid base) acceleration. 
Unlike the sliding (rigid) block model, which effectively isolates the sliding 
block from the shaking base below, the rotating rigid block model 
continues to transmit horizontal acceleration through the “pin,” located at 
the toe of the wall, into the wall. 

In the Steedman and Zeng (1996) (rigid) gravity wall formulation, vertical 
ground acceleration is ignored. However, Equation 1.8 demonstrates for a 
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rigid block that undergoes rotation during earthquake shaking, vertical 
acceleration of (rigid) mass center point c will occur, but is not a function 
of the horizontal ground acceleration: The vertical acceleration of point c 
is solely a function of the angular acceleration and the angular velocity 
during rotation. The Steedman and Zeng rocking model for the prediction 
of permanent displacement has been validated by comparison with 
experimental data of a large gravity wall constrained to rock and subjected 
to a series of damaging earthquakes in centrifuge testing, as described in 
Steedman and Zeng (1996). 

Limiting acceleration of a wall — lift-off of its base in rotation 

When ground acceleration thrusts exceed a limiting value of acceleration, 
the wall will begin to lift off of its rigid foundation, rotating about the 
center of rocking (i.e., point O) at the toe of the wall. The inertial forces are 
applied according to D’Alembert’s principle and earth pressure force 
invoked by the (assumed pseudo-static) acceleration field. The limiting 
acceleration of the wall can be determined from equilibrium equations of 
the wall. For the Figure 2.7 gravity retaining wall subject to pure rotation, 
the onset of lift-off from its foundation in rotation, the rotating moment 

 ( )δ β= • • + • + •cosrotation tr c AEM k W y P h  2.42 

exactly equals the restoring moment 

 ( ) ( )δ β= • + • + • − •sin tanrestoring c AEM W x P B h β  2.43 

where W is the weight of the wall, ktr is the threshold acceleration 
coefficient in lift-off of the wall from its base (with a corresponding 
acceleration atr =ktr times g), PAE is the Mononobe-Okabe active earth 
pressure force, δ is the wall-to-retained soil friction angle; β is the angle 
the back of the wall makes with respect to vertical, h the location of the 
line of action of the backfill thrust from the base, and B is the width of the 
wall at its base. Equating Equations 2.42 and 2.43 results in the 
relationship for the threshold acceleration coefficient in lift-off of the wall 
from its base 
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Angular acceleration and rotation of a wall 

The equation for moment equilibrium about the center of rotation 
(assigned to toe) of the Figure 2.7 wall is 

 ( ) ( ) α⎛ ⎞ ⎛ ⎞
= − • • + • • + •⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ o c c c c y cx

W WM y a x a I
g g

 2.45 

in which Ic is the mass moment of inertia of the wall about its centroid 
(point c). Summing moments of the forces about the toe of the wall, the 
left-hand side of Equation 2.45 becomes 
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Introducing Equation 2.46 into Equation 2.45, substituting Equations 1.7 
and 1.8, and solving for the rotational acceleration α, results in 
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To calculate α, dynamic earth pressure PAE is calculated by using the 
horizontal ground acceleration ag (=khg) rather than the limiting value of 
acceleration atr when the wall will begin to lift off of its rigid foundation 
(=ktrg). Note that at each time-step i during wall rotation, the value for PAE 
changes and is computed using the value for kh (=ag/g) consistent with 
that time-step. 

Zeng and Steedman (2000) observe that in the rotating block method, this 
threshold acceleration for rotating, atr, does not represent the true 
acceleration of any particular points in the retaining wall system. In fact, 
the acceleration of points within the retaining wall system will vary 
throughout the rigid body. With regard to the calculation of the value for 
PAE, Zeng and Steedman assume the acceleration is uniform in the backfill 
and it is the same as the ground acceleration. 
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The velocity of rotation or angular velocity, is determined by integration of 
the acceleration of rotation 

  when ω is greater than zero 2.48 ω α= ∫
0

t

dt

or 

 ω = 0 when Equation 2.48 gives ω less than zero 2.49 

The angle of permanent (incremental) rotation is the integration of the 
angular velocity of rotation over the period of time being considered, 

 
0

t

dtθ ω= ∫  2.50 

Note that the cycle of permanent wall rotation through an angle θ ceases 
when the angular velocity ω is zero. The increment in permanent wall 
rotation ceases until the threshold acceleration for rotation atr is exceeded 
again. In practical application of the Steedman and Zang procedure to 
earthquake ground motions, numerical methods would be applied to 
perform these integrations. The final tilting angle is the accumulation of 
incremental tilting angles during the entire earthquake. 

Limiting acceleration of a wall sliding 

Zeng and Steedman (2000) also considered the possibility of a gravity 
retaining wall sliding along the rigid base during earthquake shaking. 
When ground acceleration thrusts exceed a limiting value of sliding 
acceleration the wall will begin to slide. The limiting acceleration of the 
wall can be determined from the equilibrium equations of the wall. 
Following established methods (discussed in previous chapters), sliding of 
the wall will occur when the mobilized frictional force at the base reaches a 
maximum and the earth pressure envoked by the assumed pseudo-static 
acceleration value of limiting sliding acceleration. For the Figure 2.8 wall 
at the instant when sliding starts, equilibrium of forces in the horizontal 
direction results in 

 ( )[ ] ( )[ ]δ β δ β• + • + = + • + •cos sin tants AE AE bk W P W P δ  2.51 
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where δb is the wall-to-base friction angle. The threshold sliding 
acceleration coefficient, kts, is 

 ( )[ ] ( ){ }δ β δ δ β= + • + • − • +sin tan cos /ts AE b AEk W P P W  2.52 
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Figure 2.8. Forces and acceleration of a rigid block model of a gravity retaining wall with 
sliding (i.e., translation) during horizontal shaking of the rigid base (after Zeng and Steedman 

(2000)). 

An increment of sliding of the rigid block model of the gravity wall will 
initiate when the (horizontal) ground acceleration, ag, is equal to the 
threshold sliding acceleration, ats ( = kts times g). Sliding will terminate 
when the velocity of the wall is equal to the velocity of the ground, as 
depicted in Figure 1.8. The increment in permanent wall translation ceases 
until the threshold acceleration for sliding, ats, is exceeded again. In 
practical application of the Steedman and Zang procedure to earthquake 
ground motions, numerical methods would be applied to perform these 
integrations. The final translation is the accumulation of incremental 
sliding displacements during the entire earthquake. 
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Zeng and Steedman (1996 and 2000) observations 

When the maximum ground acceleration is larger than the threshold 
accelerations for both sliding and rotation, lateral displacement and tilting 
may occur simultaneously. The sliding movement and tilting will interfere 
with each other and will affect both the threshold acceleration and the 
overall displacements. (1) Zeng and Steedman concluded that for a wall in 
which sliding is initiated first, the tilting of the wall is not possible. 
(2) Additionally, they concluded that if rotation starts first, the rotational 
motion will increase the threshold acceleration for sliding and, hence, 
reduce the total sliding displacement. An iterative, numerical procedure is 
briefly summarized in Zeng and Steedman (2000) for performing coupled 
rotation and displacement computations. (3) Steedman and Zeng (1996) 
observe that although the angle of friction on the base of the wall is clearly 
not significant in rocking, even a small tensile capacity on this surface will 
have an important effect on the onset of outward movement, raising the 
threshold for first yield. No tensile capacity was assumed in their models. 
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3 New Rotational Analysis Model of a 
Retaining Wall Rotating about its Toe and 
Buttressed by a Reinforced Concrete Slab 

3.1 Introduction 

This chapter describes a new engineering formulation developed for 
computing the rotational response to earthquake ground motions of toe-
restrained, rock-founded retaining walls. The resulting engineering 
formulation is implemented within corresponding PC software 
CorpsWallRotate using a graphical user interface (GUI) for input of 
geometry, input of material properties, input/verification of earthquake 
time-history files, and visualization of results. (Key aspects of the visual 
modeler and visual post-processor CorpsWallRotate are described in 
Chapter 5.) 

The permanent displacement of retaining structures is not restricted to 
walls that slide along their base as a result of inertial forces imparted 
during earthquake shaking. For some retaining wall system configurations 
and material properties, permanent displacements may instead result 
from the rotation of a retaining wall about a point along its wall-to-
foundation interface. Chapter 2 reviewed key aspects of four existing, 
simplified engineering formulations used to analyze seismically induced 
permanent displacement due to rotation of a rigid block retaining wall 
about a point along its base. These four formulations involve retaining 
walls without toe restraint. 

The idealized permanent displacement due to rigid body noncentroidal 
rotation of a retaining wall about its toe during earthquake shaking and 
with toe restraint is shown in Figure 3.1.1 The buttressing effect of a 
reinforced concrete slab is represented in this simplified dynamic model 
by the user-specified force Presist acting on a vertical section extending 
upwards from the toe of the wall as per Strom and Ebeling (2004). 

                                                                 
1 The planar kinematics of rigid body noncentroidal rotation about a fixed axis is described in 

Section B.6 of Appendix B. 
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Presist

Permanent
displacement

due to
rotation

about the 
toe of the wall

toe

Figure 3.1. Idealized permanent, seismically induced displacement due to the rotation about 
the toe of a rock-founded wall retaining moist backfill, with toe restraint, computed using 

CorpsWallRotate. 

The Figure 1.3 cantilever retaining wall that is buttressed by an invert 
spillway slab (which is a reinforced concrete slab) exemplifies this category 
of retaining structure system for Corps retaining walls. The primary author 
of this report is of the opinion that the assignment of the point of rotation 
to the toe of the wall becomes a reasonable simplifying assumption 
because of the constraint provided by the Figure 1.3 invert spillway slab to 
lateral translations, combined with the effects of the stiff, competent rock 
foundation.1 A key result of a CorpsWallRotate analysis idealized in 
Figure 3.1 is the permanent, earthquake-induced displacement of a 
retaining wall due to rotation about the toe of the wall. 

As in the Zeng and Steedman (2000) formulation discussed in Section 2.5, 
rotation of a rigid block model of the structural retaining wall system in 
this new formulation is assumed to occur about the toe of the wall (i.e., the 

                                                                 
1 A competent, rigid base is assumed in this initial formulation for CorpsWallRotate. Future improvements 

to CorpsWallRotate will include automated procedures to evaluate the bearing capacity for the rock 
foundation material. 
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rigid block is “pinned” to the rigid base at its toe). This new procedure 
differs from the Steedman and Zeng formulation by (1) formal 
consideration of a toe restraint in the analysis (caused by the presence of a 
reinforced concrete slab against the toe of the wall); (2) the ability of the 
user to assign a vertical acceleration time-history in addition to a 
horizontal acceleration time-history; (3) consideration of a pool of water in 
front of the wall, a submerged foundation and a partially submerged 
retained soil; and (4) the implementation of this formulation within 
corresponding PC software CorpsWallRotate using a GUI for input of 
geometry, input of material properties, input/verification of earthquake 
time-history files, and visualization of results. In addition, a sweep-search 
wedge formulation within the retained soil is used to determine the value 
of PAE rather than relying on the Mononobe-Okabe relationship (cited in 
the Steedman and Zeng (1996) formulation). Recall that the Mononobe-
Okabe relationship is valid for a retained soil with a constant surface slope 
and whose strength is characterized by the Mohr-Coulomb shear strength 
parameter φ (e.g., refer to Equations 33 through 35 in Ebeling and 
Morrison (1992)). The advantage of the sweep-search method as 
formulated in this report is that it allows for (a) the analysis of bilinear 
ground surfaces and/or (b) the analysis of “cohesive” (Su) soils.1 

The derivation for a rock-founded wall retaining moist backfill is 
presented first. This is followed by the formulation for a rock-founded wall 
retaining a partially submerged backfill and for the case of a pool in front 
of the retaining wall. 

3.2 Acceleration of rigid mass center (CG) 

An important difference between the Newmark (1965) sliding block 
method of analysis for earth retaining structures (i.e., the displacement 
controlled approach that is discussed in Section 1.1.3) and the rotational 
analysis of a retaining structure modeled as a rigid block is the 
acceleration imparted to the rigid block. When a rigid block undergoes 
permanent sliding displacement during earthquake shaking, the largest 
magnitude horizontal acceleration felt by the rigid block (and the retaining 
structure contained within the rigid block) is N*g, which is less than the 

                                                                 
1 In the formulation described in this report, a cohesive soil refers to a total stress analysis in which the 

shear strength of the soil is characterized in terms of its undrained shear strength, Su. Note that 
minimum wall movements needed to fully mobilize the shear resistance of the soil, on the order of 
those listed in Table 1.1, will impact the characterization of the retained soil shear strength parameters 
used in the permanent displacement analysis. 
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peak value for ground acceleration. The maximum transmissible 
acceleration N*g is sometimes referred to as the yield acceleration; it is not 
the user-defined, horizontal ground (or, equivalently, the rigid base) 
acceleration. For a rigid block that undergoes rotation during earthquake 
shaking, the accelerations felt by this rigid block during shaking are those 
of the ground acceleration time-history plus the contribution of angular 
acceleration and angular velocity during rotation of the rigid body about 
its point of rotation. This is because continuous contact between the rigid 
block undergoing rotation and the ground is maintained at the point of 
rotation, i.e., point 0, during the entire earthquake shaking process. Thus, 
large horizontal acceleration thrusts in the direction of the retained soil 
will attempt to destabilize the wall, possibly resulting in incremental wall 
rotations in the positive θ direction shown in Figure 3.2 (i.e., rotation 
outward) and corresponding incremental, permanent wall movements 
directed away from the retained soil. 

Relative-motion analysis of the rigid body model of the Figure 3.2 wall 
retaining moist backfill is used to establish the acceleration of (rigid) mass 
center point CG1 by establishing the relationship between the acceleration 
of point CG and the acceleration of point 0. In the CorpsWallRotate 
formulation, the acceleration of point 0 at the toe of the retaining wall is 
set equal to acceleration of the ground, aground, and is a known, user-
specified quantity. The horizontal and vertical components of the ground 
acceleration, aground, are designated as ah and av in this figure, with 
subscript “h” or “v” meaning “horizontal” or “vertical.”2 

The sign convention adopted for ground acceleration, aground, by Nadim 
and Whitman (1984), Siddharthan et al. (1990, 1991, and 1992), and 
Fishman and Richards (1997, 1998) for user-specified horizontal ah = khg 
and vertical av = kvg ground acceleration time-histories was adopted for 
this formulation and shown in Figure 3.2 as the rigid base accelerations. 
Positive horizontal ground acceleration is directed towards the retained 
soil and positive vertical acceleration is directed downward into the rigid  

                                                                 
1 Computation of the center of mass as well as mass of the structural wedge by CorpsWallRotate is 

outlined in Section B.3. 
2 Note that values of ah and av are established by a pair of user-defined horizontal and vertical 

acceleration time-histories in CorpsWallRotate, each of which changes in magnitude and possibly 
direction at each increment in time during earthquake shaking. 
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Figure 3.2. Free-body and kinetic diagrams of a rigid block model of a cantilever wall retaining 
moist backfill with rotation about the toe of the wall during horizontal and vertical shaking of 

the rigid level base. 

base foundation.1 Recall that g is the universal gravitational constant while 
kh and kv are the respective time-histories of the horizontal and vertical 
ground accelerations, expressed in decimal fraction. The acceleration of 
the center of gravity of the retaining wall structural system is designated 
by the subscript “CG.” Incremental, permanent wall rotations can occur 
during “strong” earthquake acceleration “pulses” (i.e., sequences in the 
acceleration time-history that contain high-amplitude acceleration wave 
forms and usually of short duration) in which horizontal ground 
acceleration thrusts are directed towards the retained soil (i.e., acting in 
the Figure 3.2 positive ah direction) and/or vertical ground acceleration 
thrusts are directed towards the rigid base (i.e., acting in the Figure 3.2 
positive av direction). The resulting incremental, permanent wall 
movements will be directed away from the retained soil. When these 
incremental wall movements occur, they are assumed to be of sufficient 
magnitude to fully mobilize the shear resistance in the retained soil. Active 
earth pressures are assumed to act on the retained side of the wall during 
these incremental wall rotations. 

                                                                 
1 The sign convention used in CorpsWallRotate is for the convenience of calculating the thrust force PAE 

provided by the driving soil wedge and not based on considerations associated with the structural 
wedge shown in Figure 3.2. Appendix A describes the PAE computation. 
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Referring to Figure 3.2, the rigid mass center is designated point CG and 
the center of rotation is point 0. The acceleration response of mass center 
point CG, aCG, will differ from the acceleration of point 0, equal to the 
ground acceleration, aground , according to the relationship 

 = + /0CG ground CGa a a  3.1 

where aCG/0 is the acceleration of the center of mass relative to toe of the 
wall (i.e., point 0). Note that accelerations aCG and a0 are absolute 
accelerations of the two respective points on the rigid body. If the vectors 
aCG and a0 are equal in magnitude and direction, the rigid body undergoes 
pure translation. In all other cases, rotation of the rigid body will occur. 
The acceleration of point CG relative to point 0, designated aCG/0, may be 
expressed in terms of normal and tangential components, respectively, of 
the acceleration of point CG relative to point 0, 

 ( ) ( )= +0 0 0tangent normalCG CG CGa a a  3.2 

Note that the direction of vector (aCG/0)tangent is consistent with the 
Figure 3.3 angular acceleration vector α while the vector (aCG/0)normal is 
always directed from CG towards the point of rotation, point 0, regardless 
of the direction of ω.1,2,3 The accelerations felt at the Figure 3.3 mass 
center CG are the sum of three components: 

  3.3 = + +ground CG/ 0 tangent  CG/ 0 normal( ) ( )CGa a a a

Introducing the cross product definitions of the tangential and normal 
acceleration vectors, (aCG/0)tangent and (aCG/0)normal, (i.e., Equations 3.4 and 
3.5 or, equivalently, Equation B.23) and referring to their Figure 3.4 
horizontal and vertical vector direction components, Equation 3.3 
becomes 

                                                                 
1 See Section B.5 in Appendix B. 

2 Recall that the angular velocity, ω, is θ θ= &d
dt  and the angular acceleration, α, is ω θ θ= = &&2

2
d d

dt dt . 

3 Consistency in the direction of the vectors (aCG/0)tangent and α is provided by evoking the right-hand rule 
in the derivation of 

 ( ) α= ×/ 0 /tangentCG CGa r 0  3.4 

and that the direction of vector (aCG/0)normal is in the same direction as vector –rCG/0  

 ( ) ( ) ( )ω ω ω= × × = − 2
/ 0 / 0CG CG CGnormal

a r / 0r  3.5 

as discussed in Hibbler (2001) on pages 294-295. 
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Figure 3.3. Tangential, normal, and angular accelerations of the center of mass (of a rigid 
block model of a cantilever wall retaining moist backfill) relative to the point of rotation during 

horizontal and vertical shaking of the rigid level base. 

  3.6 α ω= − • Δ − • Δ2
h /0( )CG h CG CGa a y x /0

and 

 α ω= − • Δ + • Δ2
/0( )CG v v CG CGa a x y /0  3.7 

Equation 3.6 demonstrates that the horizontal acceleration of point CG is 
solely a function of (a) the horizontal ground acceleration, (b) the angular 
acceleration, and (c) the angular velocity during rotation. Note that the 
horizontal acceleration of (rigid) mass center point CG is not a function of 
the vertical ground acceleration. Equation 3.7 demonstrates that the 
vertical acceleration of point CG is solely a function of (a) the vertical 
ground acceleration, (b) the angular acceleration, and (c) the angular 
velocity during rotation. Note that the vertical acceleration of (rigid) mass 
center point CG is not a function of the horizontal ground acceleration. 
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Figure 3.4. Horizontal and vertical components of the tangential and normal acceleration of 
the center of mass (of a rigid block model of a cantilever wall retaining moist backfill) relative 

to the point of rotation during horizontal and vertical shaking of the rigid level base. 

3.3 Threshold value of acceleration corresponding to incipient lift-off 
of the base of the wall in rotation 

During ground shaking, inertial forces are induced on the retaining wall 
system. Acceleration time-histories are used to represent ground shaking 
in the simplified CorpsWallRotate model of a retaining wall system. The 
time-varying inertial forces lead to elastic deformations, which can 
ultimately result in permanent rotation of the wall or sliding of the wall. In 
the case of permanent rotation of a rigid block model of the retaining wall 
system, (1) inertial forces vary in magnitude and direction with time and 
(2) their magnitudes are proportional to the value of acceleration at any 
given instant in time but acting in the direction opposite to acceleration. 
Additionally, a rotational acceleration about a point of rotation develops 
once the threshold acceleration for lift-off of the base of the wall in 
rotation is exceeded, which leads to permanent rotation of the wall relative 
to the top-of-foundation. When the ground acceleration drops below this 
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threshold acceleration value, restoring forces and moments will act to slow 
the speed of rotation, reducing the rate of increase of the angle of wall 
rotation. An increment of permanent wall rotation occurs during this 
interval in time. Additional permanent rotation will be induced during 
further cycles of ground acceleration if the threshold acceleration for lift-
off of the base of the wall in rotation is again exceeded. The angle of 
permanent wall rotation accumulates with each of these excursion cycles 
in a manner similar to the accumulation of permanent sliding 
displacement in Newmark’s sliding block method, briefly discussed in 
Chapter 1 and discussed in detail in a subsequent chapter. The primary 
author of this report observes that for a retaining wall system of specified 
geometry and material properties (i.e., unit weights and shear strength 
parameters, etc.) the threshold values of acceleration corresponding to 
incipient lift-off of the base of the wall in rotation (rotating about the toe of 
the wall in a CorpsWallRotate analysis) and for incipient sliding of the wall 
are not the same. 

So the first step in determining if the retaining wall will rotate prior to 
sliding during earthquake shaking, or vice versa, is to compute: (1) the 
value of acceleration that is needed for lift-off of the wall from its base in 
rotation about the toe of the wall (discussed in this chapter); and (2) the 
limiting acceleration required to reduce the factor of safety against sliding 
to a limiting value of 1.0 (commonly referred to as the maximum 
transmissible acceleration, N*g , sometimes referred to as the yield 
acceleration and discussed in Chapter 4). The second step is to compare 
these limiting acceleration values. For the simplified decoupled analyses 
outlined in this report, the mode of deformation is dictated by the smaller 
of the two acceleration values. 

The free-body and kinetic diagrams of Figure 3.2 are combined in 
Figure 3.5 into a single figure showing the dynamic forces acting on a rigid 
block model of the structural wedge with rotation about the toe of the wall 
during horizontal and vertical shaking of the rigid base.1 This cantilever 
wall retaining moist backfill is subjected to the five external forces of the 
weight of the structural wedge, W, the dynamic active earth pressure force, 
PAE, the resisting force, Presist, provided by the reinforced concrete slab at 
the toe of the wall, and the horizontal and vertical components of the rigid 

                                                                 
1 The inertial forces are applied according to D’Alembert’s principle. The advantage of the inertia-force 

method based on D’Alembert’s principle is that it converts a dynamics problem into an equivalent 
problem in equilibrium. 
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base-to-wall reaction forces T and N′, respectively, acting through the toe 
of the wall. 
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Figure 3.5. Inertia forces and resultant force vectors acting on a rigid block model of a 
cantilever wall retaining moist backfill with rotation about the toe of the wall during horizontal 

and vertical shaking of the rigid level base. 

At the onset of lift-off of the base of the Figure 3.5 retaining wall (with 
level base) subject to pure rotation about its toe, the rotating (i.e., 
overturning) moment equals the stabilizing (i.e., restoring) moment. The 
summation of moments about point 0 of the Figure 3.5 forces acting on 
the rigid body results in 

 
( ) ( ) ( )
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• • Δ + • • Δ + • •
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CG CG CG CG AE PAEh v
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W Wa y a x P h
g g

P h W x P x

=
 3.8 

Note that θ&&  is a very small number at the onset of lift-off and is set equal 
to zero as its limiting value when deriving this relationship. The 
component of the threshold acceleration occurring at lift-off of the base is 
designated as 

 ( ) ( )− − − −
= •CG CGthreshold rotation h threshold rotation ha k g  3.9 

where (kCG)threshold-rotation-h is a value of horizontal ground acceleration, 
expressed in decimal fraction. Note that the horizontal acceleration value 
[(kCG)threshold-rotation-h times g] is not a user-specified constant. Since the 
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horizontal limiting acceleration is of interest, one option is to set the 
vertical component of acceleration occurring at lift-off in rotation equal to 
zero, as done by Nadim and Whitman (1984).1 By making this assumption 
and introducing Equation 3.9, Equation 3.8 becomes 

 ( ) ( ) ( )δ δ
− −

• + • Δ +

• • Δ − • •
=

• Δ

Presist /0

/

/0

sin cos
resist CG AE

heel toe AE PAE
CG threshold rotation h

CG

P h W x P

x P h
k

W y
 3.10 

Because of the inclusion of acceleration in PAE formulation (refer to 
Appendix A), CorpsWallRotate solves Equation 3.10 using a trial-and-error 
numerical approach. Observe that this relationship agrees with the Nadim 
and Whitman equation (Equation 2.16) and the Steedman and Zang 
equation (Equation 2.44) when Presist is set equal to zero. 

3.4 Angular acceleration of the retaining wall structural wedge — 
general formulation 

If the maximum ground acceleration exceeds a threshold value of 
acceleration corresponding to incipient lift-off of the base of the wall in 
rotation, (aCG)threshold-rotation-h , then permanent rotation of the wall will 
occur. For the retaining wall shown in Figure 3.2, the equation of motion 
when rotation has initiated is 

 ( ) ( )α= • − • • Δ − • • Δ∑ 0 /0CG CG CG CG CGh

W WM I a y a x
g g /0v

                                                                

 3.11 

in which ∑  is the summation of moments about point 0 of external 

forces (including the weight of the structural wedge, W) acting on the rigid 
body (counterclockwise positive); and ICG is the mass moment of inertia 
about the center of gravity point, CG (refer to Equations B.15 or B.16).

0M

2 
Recall inertia forces have been applied according to D’Alembert’s principle 
which permits the problem to be treated as a static problem. Introducing 
Equations 3.6 and 3.7, results in 

 
1 Another option, implemented in CorpsWallRotate, is to assign a constant value to the vertical 

acceleration component. A procedure for determining the value for this constant is discussed in 
Sections 3.9 and 3.10. 

2 Computation of the mass moment of inertia in CorpsWallRotate is described in Appendix E. 
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Collecting terms, Equation 3.12 becomes 
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 3.13 

which reduces to 

 

( ) ( )α ⎧ ⎫⎡ ⎤∑ = • + • Δ + Δ⎨ ⎬⎣ ⎦⎩ ⎭
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 3.14 

By referring to Figure 3.6, introducing 

 ( ) ( ) ( )= Δ + Δ
2 2

/0 /0 /0CG CG CGr y x
2

 3.15 

and recognizing that the mass moment of inertia about the point 0 (the of 
rotation) is 

 ( )= + •
2

0 /CG CG
WI I r
g 0  3.16 

Equation 3.14 becomes 

 α ⎡ ⎤= • − • • Δ + • Δ⎣ ⎦∑ 0 0 /0 /h CG v CG
WM I a y a x
g 0  3.17 
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Figure 3.6. Equivalent kinetic diagrams for the rigid block model of a cantilever wall retaining 
moist backfill with rotation about the toe of the wall during horizontal and vertical shaking of 

the rigid level base. 

Solving for the retaining wall’s angular acceleration, Equation 3.17 
becomes 

 α
⎡ ⎤+ • • Δ + • Δ⎣ ⎦

=
∑ 0 /0

0

h CG v CG
WM a y a x
g

I

/0

 3.18 

or, equivalently, α is given by 

 

( ) ( )
α

⎡ ⎤+ • • • Δ + • • Δ⎣ ⎦
=

∑ 0 0

0

h CG v CG
WM k g y k g x
g

I

0

 3.19 

Thus, Equation 3.18 or, equivalently, Equation 3.19 provides for the 
calculation of the angular acceleration of the wall at every increment in 
time during earthquake shaking once the threshold value of acceleration 
corresponding to incipient lift-off of the base of the wall in rotation is 
exceeded and the wall is rotating. When the ground acceleration drops 
below (aCG)threshold-rotation-h , restoring forces and moments will act to slow 
the speed of the angular rotation, thus reducing the rate of increase of the 
permanent angle of rotation. Wall rotation ceases when the angular 
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rotational velocity of the center of gravity returns to zero. Additional 
increments of wall rotation occur each time a ground acceleration pulse 
exceeds (aCG)threshold-rotation-h in the same manner that permanent sliding 
displacements accumulate in a rigid block analysis. 

The velocity of rotation (i.e., angular velocity) is computed by integration 
of the angular acceleration during each segment of wall rotation (that 
initiates when the threshold acceleration is exceeded) 

 ω α ω= >∫
0

when 0
t

dt  3.20 

or 

 ω = 0 when Equation 3.17 gives ω less than 0 3.21 

Note that CorpsWallRotate assumes that the wall cannot rotate back into the 
retained soil, which is expressed by Equation 3.20. The permanent 
rotation of the wall is the integration of the angular velocity of rotation 

 θ ω= ∫
0

t

dt  3.22 

This series of computations using Equations 3.18 through 3.22 are 
repeated for each sequence of wall rotations that occurs for the duration of 
earthquake shaking. The experience of the primary author of this report is 
that when the acceleration time-histories used as input to CorpsWallRotate 
are based on previously recorded earthquake events (a typical scenario), 
the permanent rotation occurs during several, separate pulses occurring 
throughout the duration of shaking. 

Unlike the sliding (rigid) block model (discussed in Chapter 4), which 
effectively isolates the sliding block from the shaking base below, the 
rotating rigid block model continues to transmit horizontal acceleration 
through the “pin,” located at the toe of the wall, into the wall. The center of 
gravity wall accelerations during rotation are computed at each time 
increment during wall rotation using the value for angular velocity, ω, and 
angular acceleration, α, at that same instant in time using Equations 3.6 
and 3.7. 

 



ERDC/ITL TR-06-2 79 

3.5 Dynamic active earth pressure force PAE 

Figure 3.5 shows an idealized structural wedge containing a cantilever 
retaining wall retaining moist backfill with externally applied forces acting 
on it during the seismically-induced rotation θ of the wall about its toe, 
point 0. One of the forces identified in this figure is the dynamic active 
resultant earth pressure force exerted by the driving soil wedge on the 
structural wedge, PAE. Rather than relying on the Mononobe-Okabe 
relationship, a sweep-search wedge formulation within the retained soil is 
used to determine the value of PAE. Recall that the Mononobe-Okabe 
relationship is valid for a retained soil with a constant surface slope 
(including the case of a level backfill) and whose strength is characterized 
by the Mohr-Coulomb shear strength parameter φ (e.g., refer to Equations 
33 through 35 in Ebeling and Morrison (1992)). The computed value for 
PAE via the Figure 3.7.a sweep-search method in a cohesionless backfill will 
agree with the value computed using the Mononobe-Okabe relationship. 
The advantage of the sweep-search method as formulated in this report 
and implemented in CorpsWallRotate is that it allows for (1) the analysis of 
the more practical case of the bilinear ground surface depicted in Figure 
3.7.b and/or (2) the analysis of “cohesive” (Su) soils. Sufficient wall 
movement during earthquake shaking to fully mobilize the shear 
resistance within the retained soil as per Table 1.1 criteria is assumed in 
this formulation. The sweep-search formulation implemented within 
CorpsWallRotate is given in Appendix A for effective shear strength (c′, φ′) 
and for undrained (Su) shear strength soil parameters. 

The effect of an earthquake on the driving soil wedge is incorporated 
through the use of the user-specified horizontal and vertical components 
of the ground acceleration time-histories, ah (= khg) and av (= kvg), 
respectively. Recall that g is the universal gravitational constant, while kh 
and kv are the respective time-histories of the horizontal and vertical 
ground accelerations, expressed in decimal fraction. No potential site 
amplification effects are considered in this simplified formulation so the 
ground acceleration time-histories are assumed to act within the driving 
soil wedge as well. So, at each instant in time during earthquake shaking, 
the horizontal and vertical inertia forces (kh times soil wedge weight, W, 
and kv times soil wedge weight, W, respectively) acts at the center of mass 
of the soil wedge and in the direction opposite to that in which their 
respective component ground acceleration acts (refer to the right-hand 
side of Figures 3.7.a and b). 
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a. Infinite moist slope 

 
b. Bilinear moist slope 

Figure 3.7.  Structural wedge with toe resistance retaining a driving soil wedge with a moist slope (i.e., no water 
table) analyzed by effective stress analysis with full mobilization of (c′, φ′) shear resistance within the backfill. 
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The Mononobe-Okabe analysis procedure does not provide a means for 
calculating the point of action of the resulting force PAE, nor does the 
sweep-search soil wedge method of analysis. Limited tests results 
involving dry sands (as discussed on page 63 in Ebeling and Morrison, 
1992) indicate that the vertical position of PAE ranges from 0.4 to 0.55 
times the height of the wall (above the heel). PAE acts at a higher position 
along the back of the wall than the static active earth pressure force due to 
the concentration of soil mass comprising the sliding wedge above the 
mid-wall height (Figure 3.8). With the static force component of PAE acting 
below mid-wall height and the inertia force component of PAE acting above 
mid-wall height, the vertical position of the resultant force PAE will depend 
upon the magnitude of the accelerations applied to the mass comprising 
the soil wedge. Following the approach taken by Seed and Whitman 
(1970), PAE is defined as the sum of the initial static active earth pressure 
force, PA, and the dynamic active earth pressure force increment, ΔPAE, 

 = + ΔAE A AP P P E  3.23 

as depicted in Figure 3.8. The sweep-search method is also used in 
CorpsWallRotate to compute the resultant static active earth pressure force 
PA. After reviewing the various results, Seed and Whitman (1970) 
suggested applying the dynamic force component ΔPAE at 0.6 times H. 
Based on this recommendation, computation of the location of the 
resultant force PAE along the imaginary vertical section extending upwards 
from the heel of the wall is made using 

 

( )⎛ ⎞• + Δ • •⎜ ⎟
⎝ ⎠=

0.6
3A AE

PAE
AE

HP P
h

P

H

                                                                

 3.24 

with PA acting at H/3 for moist, level, granular (with c′=0) backfill.1 Note 
that the magnitude of PAE and thus, the magnitude of hPAE is a function of 
the seismic coefficient used in the driving wedge seismic analysis. The 
solution process implemented in CorpsWallRotate is to first compute PAE 
and PA, solve for ΔPAE using Equation 3.23, then solve for hPAE using 
Equation 3.24. 

 
1 Appendix C outlines procedures for determining the point of application of PA for other backfill cases. 

Appendix H discusses two example computations of static, active earth pressure distributions and 
depth of cracking in cohesive soils. 
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Figure 3.8. Resultant location of PAE based on the positions and magnitudes of the static 
active earth pressure force, PA, and incremental dynamic active earth pressure force, ΔPAE, of 

a moist, level, backfill (after Ebeling and Morrison (1992)). 
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Once the magnitude and location of PAE that act on the back of the rigid 
block model of the structural wedge are determined, an approach such as 
the procedure described in Ebeling and Morrison (1992) and shown in 
Figure 3.9 may be used to convert this force into equivalent pressure 
diagram. Key to this Ebeling and Morrison approach is the use of pressure 
distributions for each of the static PA and for ΔPAE force components that 
are consistent not only in their magnitudes but also consistent with their 
Figure 3.8 PA and ΔPAE force positions. The resulting total pressure 
distribution acting on the structural wedge is the sum of the triangular 
distribution of static active earth pressures that are consistent with PA for 
the moist granular backfill shown in the figure plus the trapezoidal stress 
distribution consistent with ΔPAE acting at 0.6 times H.1 

A key item is the selection of suitable shear strength parameters. In an 
effective stress analysis, the issue of the suitable friction angle is 
particularly troublesome when the peak friction angle is significantly 
greater than the residual friction angle. In the displacement-controlled 
approach examples given in Section 6.2 of Ebeling and Morrison (1992), 
effective stress-based shear strength parameters (i.e., effective cohesion c′ 
and effective angle of internal friction φ′) were used to define the shear 
strength of the dilative granular backfills, with c′ set equal to zero in all  
                                                                 
1 In the case of a water table and an effective stress analysis in which the effective shear strength 

parameters c′ and φ′ are assigned to the (granular) retained soil, this approach is altered by changing 
the distribution of equivalent static earth pressures representing PA to account for pore water 
pressures in the backfill in the usual manner for geotechnical engineering. This is demonstrated in 
Figure 7.10 in Ebeling and Morrison (1992) and discussed in Appendix C of this report. In the case of a 
total stress analysis, boundary water pressures (due to the presence of a water table in the retained 
soil) are not applied along the imaginary interface between the driving (soil) wedge and the structural 
wedge. 
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Figure 3.9. The computation of equivalent earth pressures acting on a rigid block model of a 
cantilever wall retaining moist, level, granular (with c′=0) backfill (after Ebeling and Morrison 

1992). 

cases due to the level of deformations anticipated in a sliding block 
analysis during seismic shaking. In 1992, Ebeling and Morrison concluded 
that it is conservative to use the residual friction angle in a sliding block 
analysis, and this should be the usual practice for displacement based 
analysis of granular retained soils. The primary author of this report would 
broaden the concept to the assignment of effective (or total) shear strength 
parameters for the retained soil to be consistent with the level of shearing-
induced deformations encountered for each design earthquake in a 
rotational analysis and note that active earth pressures are used to define 
the loading provided to the structural wedge by the driving soil wedge. 
(Refer to Table 1.1 for guidance regarding wall movements required to 
fully mobilize the shear resistance within the retained soil during 
earthquake shaking.) 
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3.6 Moments due to external forces acting about the toe of the 
structural wedge 

The Figure 3.5 cantilever wall, with level base, retaining moist backfill is 
subjected to the five external forces of the weight of the structural wedge, 
W, the dynamic active earth pressure force, PAE, the resisting force, Presist, 
provided by the reinforced concrete slab at the toe of the wall, and the 
horizontal and vertical components of the rigid base-to-wall reaction 
forces T and N′, respectively, acting through the toe of the wall. The 
moment due to these external forces about the point 0 at toe of the wall 
(counterclockwise positive, as previously stated) is 
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Since the foundation reaction shear force T and normal force N′ act 
through point 0 during rotation, they do not contribute to the moment. At 
each instant in time during earthquake shaking, the horizontal and vertical 
accelerations vary in direction. Thus, the magnitudes of PAE and hPAE vary 
as well. 

3.7 Angular acceleration of the retaining wall structural wedge — 
formulation implemented in CorpsWallRotate 

The relationship defining the angular acceleration of the retaining wall 
structural wedge that is implemented in CorpsWallRotate is derived by 
introducing Equation 3.25 into Equation 3.19. When rotation has initiated, 
the angular acceleration of the structural wedge (with level base) is 
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I
 3.26 

with the mass moment of inertia about the point 0 (the of rotation) given 
by 

 ( )= + •
2

0 /CG CG
WI I r
g 0  bis 3.16 

Recall α (or, equivalently, ) is the angular acceleration of the structural 
wedge of (total) mass M (=W/g) about point of rotation, point 0. The 
resulting engineering formulation is implemented in the corresponding PC 
software CorpsWallRotate and will perform a rotating analysis of each user-
specified retaining wall section. 

θ&&

Equation 3.26 agrees with the uncoupled Nadim and Whitman (1984) 
equation (Equation 2.12), with the Siddharthan et al. equation 
(Equation 2.32), when Presist is set equal to zero and with the Steedman 
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and Zeng equation (Equation 2.47) when the vertical ground acceleration 
is set equal to zero.1 

3.8 Numerical method for computing the rotational time-history of a 
rigid block retaining structure rotating about its toe 

3.8.1 Introduction to a step-by-step solution scheme 

Earthquake acceleration time-histories are used to represent the 
earthquake demand in this formulation, as is the case for all rotating wall 
formulations discussed in Chapter 2. Again, baseline-corrected, horizontal 
and vertical acceleration time-histories are to be used to represent the 
earthquake ground motions in CorpsWallRotate.2 It is the experience of the 
primary author of this report that the duration of ground acceleration 
time-histories used on Corps projects is on the order of tens of seconds, 
and up to about one minute of earthquake shaking. The number of time 
increments (i.e., discrete acceleration point values) contained in the 
acceleration time-history corresponds to the number of solutions made in 
the rotational wall analysis by CorpsWallRotate. The number of time 
increments is defined by the duration of earthquake shaking and the time 
increment DT used in digitization of the acceleration time-history. 
                                                                 
1 Note: In order to compare Equation 3.26 with (1) Nadim and Whitman (Equation 2.12), recognize that 

the equivalent geometry designations are 
Δ =/ 0 1CGx B  3.27 

Δ =/ 0 3CGy B  3.28 

 3.29 

and 

=PAEh L

Δ =/ 2heel toex B  3.30 

for a point of rotation specified about the toe, point 0, to to match the CorpsWallRotate formulation. 
In order to compare Equation 3.26 with (2) Siddharthan et al. (Equation 2.32) for a point of rotation 
specified about the toe, the equivalent geometry designations are 

( )ηΔ = •/ 0 cosCGx R  3.31 

( )ηΔ = •/ 0 sinCGy R  3.32 

 3.33 =PAEh mH
( ) ( )δ δ α• = • +cos cosPAEh mH  3.34 

( ) ( ) ( ) ( )[ ]δ δ α η αΔ • = + • • + − •/ sin sin cos tanheel toex R a mH  3.35 

but with α equal to zero to match the CorpsWallRotate structural wedge geometry. In order to compare 
Equation 3.26 with (3) Steedman and Zeng (Equation 2.47), the equivalent geometry designations are 

 3.36 Δ =/ 0CG cx x

Δ =/ 0CG cy y  3.37 

( ) ( ) ( )[ ]δ δ β βΔ • = + • − •/ sin sin tanheel toex B h  3.38 

but with β equal to zero to match the CorpsWallRotate structural wedge geometry. 
2 Note that CorpsWallRotate requires the time-step DT for the horizontal and vertical acceleration time-

histories used in the same analysis be the same value. 
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There is no standard time increment DT for the digitization and 
subsequent processing of acceleration time-histories for Corps projects. 
However, Ebeling, Green, and French (1997) observe that a DT equal to 
0.02, 0.01, or 0.005 second is the most common. For example, an 
earthquake acceleration time-history with 40 seconds of shaking and a 
time-step of 0.02 second will contain 2,000 discretized acceleration 
points. If the acceleration time-history was processed with a DT equal to 
0.01 or 0.005 second, then the discretized acceleration time-histories 
would contain 4,000, and 8,000 acceleration points, respectively. 

A step-by-step solution scheme is followed in order to obtain the wall’s 
rotational velocity, ω, and rotation, θ, in the time domain by 
CorpsWallRotate. An overview of the characteristics of this numerical 
formulation is depicted in Figure 3.10. A key feature of the numerical 
formulation used is the assumption of a linear variation in angular 
acceleration α over time-step DT, from time ti to time ti+1. Values of α are 
computed using Equation 3.26 at each time-step. This idealized figure 
assumes that the wall is undergoing positive angular acceleration, positive 
rotational (i.e., angular) velocity, and positive (permanent) rotation at 
time ti, which continues through time ti+1. (Other cases will be considered 
later.) It also assumes that the angular acceleration increases in magnitude 
over this time-step, DT, as depicted in this figure. Recall the velocity of 
rotation (i.e., angular velocity) is computed by integrating the angular 
acceleration during each segment of wall rotation (refer to Equation 3.20). 
So for a linear variation in angular acceleration over time-step DT, the 
rotational velocity, ω, is a quadratic relationship. Similarly, with the 
permanent rotation of the wall being the integration of the angular velocity 
of rotation (refer to Equation 3.21), the rotation of the wall about its toe is 
a cubic relationship. The value for angular acceleration, rotational velocity 
ω and (permanent wall) rotation θ at any point in time Δt after ti and 
before time ti+1 are given by the linear, quadratic, and cubic relationships 
contained on the right-hand side of these three figures (with Δt less than 
or equal to DT). 
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Figure 3.10. Complete equations for rotational motions over time increment DT based on 
linearly varying angular acceleration. 

3.8.2 Positive angular accelerations α0 and α1 at times ti and ti+1 

Expanding on the details of the computations for the numerical 
formulation depicted in Figure 3.10, the computation of the angular 
acceleration, α, rotational velocity, ω, and rotation, θ, at time ti+1 are made 
as follows: Values for α, ω, θ, at time ti are known from the previous 
computation step in the step-by-step solution scheme.1 The value for α at 
time ti+1 (designated alpha1 in the figure) is computed using Equation 
3.26. Referring to Figure 3.11, the rotational velocity ω at time ti+1 
(designated omega1) is computed from the value for ω at time ti 
                                                                 
1 Note that at time ti the angular acceleration α is designated alpha0, the rotational velocity ω is 

designated omega0 and the (permanent wall) rotation θ is designated theta0. 
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(designated omega0) plus the positive area under the linear angular 
acceleration relationship over the time-step DT, designated Areaa in this 
figure. By the trapezoidal rule, ω1 at time ti+1 is 

 ( )ω ω α= + • +1 0 0 12
DT α  3.38 

with the values for ω0 and α0 now known values that were computed in the 
previous solution step. Note the wall is in motion at time ti, as reflected by 
a positive value for ω0 (designated omega0 in Figure 3.11). Similarly, the 
wall rotation θ at time ti+1 (designated theta1) is computed from the value 
for θ at time ti (designated theta0) plus the positive area under the 
quadratic rotational velocity relationship over the time-step DT, 
designated Area0 in this figure. For this linear acceleration method, θ1 at 
time ti+1 is 

 ( )θ θ ω α= + • + • • +
2

1 0 0 0 12
6

DTDT α  3.39 

with the value for θ0 being a known value that was computed in the 
previous solution step. The value for rotational velocity ω and (permanent 
wall) rotation θ at time ti+1 are also described in terms of the area 
relationships contained in Figure 3.11. In this manner a step-by-step 
solution scheme is followed throughout the entire time-history of 
earthquake shaking in order to obtain the wall velocity, ω, and rotation, θ, 
at each increment in time in the Figure 3.11 case of positive values for α at 
times ti and ti+1. 

In summary, Figure 3.11 outlines a numerical procedure to obtain values 
for ω and for θ at time ti+1 in situations for which values of α at times ti and 
ti+1 are both positive. However, there are three other situations that can 
arise during the step-by-step solution: (a) the case of a negative value for α 
at time ti and a positive value for α at time ti+1; (b) the case of wall rotation 
decelerating over the entire time-step DT for which the values of α are 
negative at both times ti and ti+1; and (c) the case of a positive value for α at 
time ti and a negative value for α at time ti+1. In all four cases, the 
assumption of linear angular acceleration over time-step DT is made 
and the basic concept of integrating positive areas above and/or negative 
areas below the time line of angular acceleration α to obtain the change in  
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Figure 3.11. Rotational velocity and rotations at the end of time increment DT based on 
linearly varying angular acceleration. 

otational velocity ω and then, in turn, the integration of positive and/or 
negative areas above and/or below the time line of ω to obtain the change 
in rotation θ is used to determine the values for ω and θ, respectively, at 
time ti+1. These three additional step-by-step solutions will be discussed 
next. Note the frequent use of the trapezoidal rule for ω and the linear 
acceleration method for θ in the solution processes to be described. 

3.8.3 Positive angular acceleration α0 at time ti and negative angular 
acceleration α1 at ti+1 

Next consider a wall in motion (i.e., with a positive value for ω) at time ti 
but with the Figure 3.12 case of a negative value for α computed using 
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Equation 3.26 at time-step ti and positive value for α computed using 
Equation 3.26 at the next time-step of ti+1.1 The first step is to determine 
the time instant [ti plus lhsDT] at which the angular acceleration α is equal 
to zero, as labeled in the figure. By linear interpolation, this time 
increment lhsDT is 

 
⎛ ⎞= •⎜ ⎟−⎝ ⎠

0
1 0
DTlhsDT alpha

alpha alpha
 3.40 

The negative area between the negative portion of the linear acceleration 
line and the time line over the Figure 3.12 time increment lhsDT is 

 ( )α− + = • • +
1

0 0
2

NegativeArea lhsDT alpha  3.41 

Recall that the wall is in motion at time ti when ω (designated omega0 in 
the figure) is positive. There are two possible outcomes for the Figure 3.12 
step-by-step numerical solutions for values of ω and of θ at time ti+1 , 
depending upon the magnitude of omega0 relative to the magnitude of 
NegativeArea−α+. These possible scenarios are depicted by two columns of 
figures in Figure 3.12, labeled as the Case 1 and Case 2 figure groups. 

Case 1: This case results when the positive value for ω at time ti is greater 
than the magnitude of NegativeArea−α+ (i.e., the negative area between the 
negative portion of the linear acceleration line and the time line over the 
portion of the Figure 3.12 time increment labeled lhsDT). The three left-
hand side figures in Figure 3.12 are used to describe the Case 1 step-by-
step solution scheme: The top figure describes the angular acceleration α, 
the middle figure describes the rotational velocity ω, and the lower figure 
describes the permanent wall rotation θ. 

The top Case 1 figure depicts the case of a (labeled) negative triangular 
area between the linear angular deceleration α line and the time line (i.e., 
NegativeArea−α+ by Equation 3.41), being of less magnitude than the 
positive value for ω at time ti (designated omega0). Consequently, the wall 
will remain in rotation during the entire time-step DT. At the increment in 
time lhsDT after time ti, a portion of the negative deceleration area reduces  

                                                                 
1 Note the assumption of a linear variation in angular acceleration α over the time-step DT in Figure 

3.12.  
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Figure 3.12. Two possible outcomes for the case of a negative angular acceleration at time ti 
and a positive angular acceleration at time ti+1. 

the value of rotational velocity ω from the positive value of magnitude 
omega0 at time ti to a smaller magnitude value at time [ti plus lhsDT], as 
shown in this figure. The rotational velocity ω at time [ti plus lhsDT] is 

 ( )= + • •
1

0 0
2

rel mid omega lhsDT alpha +0 0  3.42 

The change in rotation from time ti to time [ti plus lhsDT] is equal to the 
labeled positive area between the quadratic ω curve and the time line. At 
time [ti plus lhsDT] the wall rotation increases in magnitude from theta0 
to relTmid. 

 
( ) ( )= + • + • • +

2

0 0 2
6

lhsDTrelTmid theta lhsDT omega alpha0 0  3.43 

The wall continues in motion, with positive angular velocity ω and with 
additional permanent rotation θ after time [ti plus lhsDT] when the 
angular acceleration of the wall is positive. At time [ti plus lhsDT] the 
magnitude of wall rotational velocity ω begins to increase in magnitude as 
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a result of the positive angular reacceleration of the wall. The positive 
(labeled) triangular area between the time line and the linear angular 
acceleration α line, shown in the top Case 1 figure, equals the change in ω 
and for the wall, consequently, the value for ω at time ti+1 (labeled omega1 
in the Case 1 middle figure) is 

 ( )= + • • +
1

1 0 0 1
2

omega rel mid rhsDT alpha  3.44 

The change in wall rotation from time [ti plus lhsDT] to time ti+1 is equal to 
the integral of the positive rotational velocity of the middle ω-figure. The 
permanent wall rotation, θ, increases in value from relTmid to theta1, as 
depicted in the bottom figure. 

 
( ) ( )= + • + • • +

2

1 0 2 0
6

rhsDTtheta relTmid rhsDT rel mid alpha1  3.45 

Case 2: This case results when the positive value for ω at time ti is less 
than the magnitude of NegativeArea−α+ (i.e., the negative area between the 
negative portion of the linear acceleration line and the time line over the 
portion of the Figure 3.12 time increment labeled lhsDT). The four right-
hand side figures in Figure 3.12 are used to describe the Case 2 step-by-
step solution scheme. From the top to bottom, one figure describes the 
angular acceleration, α, two figures describe the rotational velocity, ω, and 
one figure describes the permanent wall rotation, θ. 

The top, right-hand side, Case 2 figure depicts the case of a (labeled) 
negative triangular area between the linear angular deceleration α line and 
the time line, being of greater magnitude than the positive value for ω at 
time ti (designated omega0). Consequently, the wall will come to rest 
before time ti+1 is achieved. At an increment in time DTzeroV after time ti, 
a portion of the negative deceleration area reduces the value of rotational 
velocity ω from the positive value of magnitude omega0 at time ti to a 
value of 0 at time [ti plus DTzeroV], as shown in this figure. At time [ti plus 
DTzeroV] the angular acceleration is 

 
⎛ ⎞= •⎜ ⎟
⎝ ⎠

0alpharelAmid DTzeroD
lhsDT

 3.46 
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where DTzeroD is the time increment shown in Figure 3.12. The 
Figure 3.12 negative α area below time increment DTzeroV is 

 ( )α− + = • • +
1

0
2

AreaTrapezoid DTzeroV alpha relAmid  3.47 

The Figure 3.12 negative α area below time increment DTzeroD is 

 ( )α− + = • •
1

0
2

AreaTriangle DTzeroD relAmid +  3.48 

Thus, the total Figure 3.12 negative α area below time increment lhsDT is 

 α α α− + − + − += +NegativeArea AreaTrapezoid AreaTriangle  3.49 

The rotational velocity ω at time [ti plus DTzeroV] is  

 α− += +0 0rel mid omega AreaTrapezoid  3.50 

With a value for rel0mid equal to zero, Equation 3.50 becomes 

 α− += +0 0omega AreaTrapezoid  3.51 

Expanding by adding the term AreaTriangle-α+ to both sides, Equation 3.51 
becomes 

 α α α− + − + − += + +0AreaTriangle omega AreaTrapezoid AreaTriangle  3.52 

Which by introducing Equation 3.49, becomes 

 α α− + − += +0AreaTriangle omega NegativeArea  3.53 

Introducing Equations 3.48 and 3.46 and solving for DTzeroD, 
Equation 3.53 becomes 

 ( )α− +
⎛ ⎞= • • +⎜ ⎟
⎝ ⎠

2 0
0

lhsDTDTzeroD omega NegativeArea
alpha

 3.54 

Recognizing the time increment lhsDT is equivalent to 
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 = +lhsDT DTzeroV DTzeroD  3.55 

and by introducing Equation 3.55 and 3.47 into Equation 3.54 and solving 
for DTzeroV, 

 ( )α− +
⎛ ⎞= − • • +⎜ ⎟
⎝ ⎠

2 0
0

lhsDTDTzeroV lhsDT omega NegativeArea
alpha

 3.56 

The change in rotation from time ti to time [ti plus DTzeroV] is equal to 
the labeled positive area between the quadratic ω curve and the time line. 
At time [ti plus DTzeroV] the wall rotation increases in magnitude from 
theta0 to relTmid. The rotational velocity ω at time [ti plus DTzeroV], 
expressed in terms of DTzeroV, is 

 ( )= + • • +
1

0 0 0
2

rel mid omega DTzeroV alpha relAmid  3.57 

with the angular acceleration at time [ti plus DTzeroV] equal to 

 
−⎛ ⎞= + •⎜ ⎟

⎝ ⎠
1 0

0
alpha alpharelAmid alpha DTzeroV

DT
 3.58 

The change in rotation from time ti to time [ti plus DTzeroV] is equal to 
the labeled positive area between the quadratic ω curve and the time line. 
At time [ti plus DTzeroV] the wall rotation increases in magnitude from 
theta0 to relTmid. 

 ( ) ( )

= + •

+ • • +
2

0 0

2 0
6

relTmid theta DTzeroV omega

DTzeroV alpha relAmid
 3.59 

The wall remains at rest with zero angular velocity, ω, and with no 
additional permanent rotation, θ, from time [ti plus DTzeroV] until time [ti 
plus lhsDT] when the angular acceleration of the wall begins (again). At 
time [ti plus lhsDT] the wall begins to develop further permanent rotation 
about its toe as a result of the positive angular reacceleration of the wall. 
The positive (labeled) triangular area between the time line and the linear 
angular deceleration α line, shown in the right-hand side of the top figure, 
equals the change in ω and with the wall at rest , consequently, the value 
for ω at time ti+1 (labeled omega1 in the lower ω figure) is 
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 ( )= • • +
1

1 0
2

omega rhsDT alpha1  3.60 

The change in wall rotation from time [ti plus lhsDT] to time ti+1 is equal to 
the integral of the positive rotational velocity, as depicted in the middle 
two, right-hand side ω-figures. The top ω figure being a computational 
figure, and the bottom ω figure being the ω curve-shift figure that properly 
accounts for zero wall rotational velocity over time increment DTzeroD, 
with an insert detailed, curve-shift figure for ω shown of this 
computational ω figure in Figure 3.12. The permanent wall rotation, θ, 
increases in value from relTmid to theta1, as depicted in the bottom figure. 

 
( ) ( )= + • + • • +

2

1 0 2 0
6

rhsDTtheta relTmid rhsDT alpha1  3.61 

3.8.4 Negative angular accelerations α0 and α1 at times ti and ti+1 

Next consider a wall in motion (i.e., with a positive value for ω) at time ti 
but with the Figure 3.13 case of a negative value for α computed using 
Equation 3.26 at time-steps ti and ti+1.1 The first step is to determine if the 
wall, which is in motion at time ti , comes to rest during the time-step DT. 

The negative area between the negative portion of the linear acceleration 
line and the time line over the Figure 3.13 time increment DT is 

 (α− − = • • +
1

0 1
2

NegativeArea DT alpha alpha )

                                                                

 3.62 

There are two possible outcomes for the Figure 3.13 step-by-step 
numerical solution for ω and of θ at time ti+1, depending upon the 
magnitude of omega0 relative to the magnitude of Equation 3.62 
NegativeArea−α− . These possible scenarios are depicted by two columns of 
figures in Figure 3.13, labeled as Case 1 and Case 2 figure groups. 

 
1 Again, note the assumption of a linear variation in angular acceleration α over the time-step DT shown 

in Figure 3.13.  
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Figure 3.13. Two possible outcomes for the case of negative angular accelerations at times ti 
and ti+1. 

Case 1: This case results when the positive value for ω at time ti is greater 
than the magnitude of NegativeArea−α− (i.e., the negative area between the 
negative portion of the linear acceleration line and the time line over the 
Figure 3.13 time-step DT). The three left-hand side figures in Figure 3.13 
are used to describe the Case 1 step-by-step solution scheme: The top 
figure describes the angular acceleration, α, the middle figure describes 
the rotational velocity, ω, and the lower figure describes the permanent 
wall rotation, θ. 
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The top Case 1 figure depicts the case of a (labeled) negative area between 
the linear angular deceleration, α, line and the time line (i.e., 
NegativeArea−α− by Equation 3.62), being of less magnitude than the 
positive value for ω at time ti (designated omega0). Consequently, the wall 
will remain in rotation during the entire time-step DT. At the time-step DT 
after time ti , the negative deceleration area reduces the value of rotational 
velocity, ω, from the positive value of magnitude omega0 at time ti to a 
smaller magnitude value at time [ti plus DT], as shown in this figure. The 
rotational velocity, ω, at time [ti plus DT] is 
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 (= + • • +
1

1 0 0
2

omega omega DT alpha alpha )1  3.63 

The change in rotation from time ti to time [ti plus DT] is equal to the 
labeled positive area between the quadratic ω curve and the time line. At 
time [ti plus DT] the wall rotation increases in magnitude from theta0 to 
theta1. 

 
( ) ( )= + • + • • +

2

1 0 0 2 0
6

DTtheta theta DT omega alpha alpha1  3.64 

Case 2: This case results when the positive value for ω at time ti is less 
than the magnitude of NegativeArea−α− (i.e., the negative area between the 
negative portion of the linear acceleration line and the time line over the 
portion of the Figure 3.13 time increment labeled lhsDT). The four right-
hand side figures in Figure 3.13 are used to describe the Case 2 step-by-
step solution scheme. From the top to bottom, one figure describes the 
angular acceleration, α, two figures describe the rotational velocity, ω, and 
one figure describes the permanent wall rotation, θ. 

The top, right-hand side, Case 2 figure depicts the case of a (labeled) 
negative area between the linear angular deceleration α line and the time 
line (i.e., NegativeArea−α− by Equation 3.62), being of greater magnitude 
than the positive value for ω at time ti (designated omega0). Consequently, 
the wall will come to rest before time ti+1 is achieved. At an increment in 
time DTzeroV after time ti, a portion of the negative deceleration area 
reduces the value of rotational velocity, ω, from the positive value of 
magnitude omega0 at time ti to a value of 0 at time [ti plus DTzeroV], as 
shown in this figure. At time [ti plus DTzeroV] the angular acceleration is 

 
−⎛ ⎞= + •⎜ ⎟

⎝ ⎠
1 0

0
alpha alpharelAmid alpha DTzeroV

DT
 3.65 

where DTzeroV is the time increment shown in Figure 3.13. The 
Figure 3.13 negative α area below time increment DTzeroV is 

 ( )α− − = • • +
1

0
2

AreaTrapezoid DTzeroV alpha relAmid  3.66 

Introducing Equations 3.65, Equation 3.66 becomes 
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 α− −

⎧ ⎫• • +⎪ ⎪⎪ ⎪= ⎨ ⎬−⎡ ⎤⎛ ⎞⎪ ⎪• + •⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

1
0

2 2
1 0

0

DTzeroVDTzeroV alpha
AreaTrapezoid

alpha alphaalpha DTzeroV
DT

 3.67 

This simplifies to 

 

( )
α− − = • +

−⎛ ⎞•⎜ ⎟
⎝ ⎠

2

0
2

1 0

DTzeroVAreaTrapezoid DTzeroV alpha

alpha alpha
DT

 3.68 

The change in rotation from time ti to time [ti plus DTzeroV] is equal to 
the labeled positive area between the quadratic ω curve and the time line. 
At time [ti plus DTzeroV] the wall rotation increases in magnitude from 
theta0 to relTmid. The rotational velocity ω at time [ti plus DTzeroV] is 

 α− −= +0 0rel mid omega AreaTrapezoid  3.69 

With a value for rel0mid equal to zero, Equation 3.69 becomes 

 
( )−⎡ ⎤⎛ ⎞= • •⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

+ • +

21 1 0
0

2
0 0

alpha alpha DTzeroV
DT

alpha DTzeroV omega
 3.70 

This quadratic equation has a general solution of 

 

( ) −
− ± −⎡ ⎤⎛ ⎞• • •⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦=

−⎡ ⎤⎛ ⎞• •⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

20 4
0 1 1 0

0
2
1 1 0

2
2

alpha
alpha alpha alpha omega

DTDTzeroV
alpha alpha

DT

 3.71 

Even though this solution provides for two possible values for DTzeroV, 
only the positive value is assigned to DTzeroV in CorpsWallRotate. 

The change in rotation from time ti to time [ti plus DTzeroV] is equal to 
the labeled positive area between the quadratic ω curve and the time line. 
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At time [ti plus DTzeroV] the wall rotation increases in magnitude from 
theta0 to relTmid. 

 ( ) ( )

= + •

+ • • +
2

0 0

2 0
6

relTmid theta DTzeroV omega

DTzeroV alpha relAmid
 bis 3.59 

The wall remains at rest with zero angular velocity ω and with no 
additional permanent rotation θ from time [ti plus DTzeroV] until time [ti 
plus DT]. Consequently, at time ti+1 the permanent wall rotation θ is 
constant, as depicted in the bottom figure. 

 =1theta relTmid  3.72 

with the value for relTmid given by Equation 3.59. 

3.8.5 Positive angular acceleration α0 at time ti and negative angular 
acceleration α1 at ti+1 

Next consider a wall in motion (i.e., with a positive value for ω) at time ti 
but with the Figure 3.14 case of a positive value for α computed using 
Equation 3.26 at time-step ti and negative value for α computed using 
Equation 3.26 at the next time-step of ti+1.1 The first step is to determine 
the time instant [ti plus lhsDT] at which the angular acceleration α is equal 
to zero, as labeled in the figure. By linear interpolation, this time 
increment lhsDT is 

 
⎛ ⎞= •⎜ −⎝ ⎠

0
1 0
DTlhsDT alpha

alpha alpha ⎟  bis 3.40 

The positive area between the positive portion of the linear acceleration 
line and the time line over the Figure 3.14 time increment lhsDT is 

 ( )α+ − = • • +
1

0 0
2

PositiveArea lhsDT alpha  3.73 

The Figure 3.14 time increment rhsDT is given by 

                                                                 
1 Again, observe the assumption of a linear variation in angular acceleration α over the time-step DT 

shown in Figure 3.14.  
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 = −rhsDT DT lhsDT  3.74 

The negative area between the negative portion of the linear acceleration 
line and the time line over the Figure 3.14 time increment rhsDT is 

 ( )α+ − = • • +
1

0 1
2

NegativeArea rhsDT alpha  3.75 

There are two possible outcomes for the Figure 3.14 step-by-step 
numerical solution for ω and of θ at time ti+1 , depending upon the 
magnitude of omega0 relative to the magnitude of the sum of the 
PositiveArea+α− plus the NegativeArea+α− . These possible scenarios are 
depicted by two columns of figures in Figure 3.14, labeled as Case 1 and 
Case 2 figure groups. 

Case 1: This case results if (a) the NegativeArea+α− exceeds PositiveArea+α− 
but the positive value for ω at time ti is greater than the magnitude of the 
negative sum of PositiveArea+α− plus NegativeArea+α− , or (b) the 
NegativeArea+α− is less than PositiveArea+α− , consequently the positive 
value for ω0 at time ti will increase to a larger value of ω1 at time ti+1 (with 
an increase equal to the positive sum of PositiveArea+α− plus 
NegativeArea+α− ). The three left-hand side figures in Figure 3.14 are used 
to describe the Case 1 step-by-step solution scheme: The top figure 
describes the angular acceleration, α, the middle figure describes the 
rotational velocity, ω, and the lower figure describes the permanent wall 
rotation, θ. 

The top Case 1 figure depicts the case of a wall remaining in rotation 
during the entire time-step DT because either (a) the NegativeArea+α− 
exceeds PositiveArea+α− but the positive value for ω at time ti is greater 
than the magnitude of the sum of PositiveArea+α− plus NegativeArea+α− , or 
because (b) the NegativeArea+α− is less than PositiveArea+α− . At the 
increment in time lhsDT after time ti, the positive acceleration area 
increases the value of rotational velocity, ω, from the positive value of 
magnitude omega0 at time ti to a larger magnitude value at time [ti plus  
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Figure 3.14. Two possible outcomes for the case of a positive angular acceleration at time ti 
and a negative angular acceleration at time ti+1. 

lhsDT], as shown in this figure. The rotational velocity, ω, at time [ti plus 
lhsDT] is 

 ( )= + • •
1

0 0
2

rel mid omega lhsDT alpha +0 0  bis 3.42 

The change in rotation from time ti to time [ti plus lhsDT] is equal to the 
labeled positive area between the quadratic ω curve and the time line. At 
time [ti plus lhsDT] the wall rotation increases in magnitude from theta0 
to relTmid. 

 ( ) ( )

= + •

+ • • +
2

0 0

2 0 0
6

relTmid theta lhsDT omega

lhsDT alpha
 bis 3.43 

The wall continues in motion, with positive angular velocity, ω, and with 
additional permanent rotation, θ, after time [ti plus lhsDT] when the 
angular acceleration of the wall is positive. At time [ti plus lhsDT] the 
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magnitude of wall rotational velocity, ω, begins to decrease in magnitude
as a result of the angular deceleration of the wall. The negative (labeled) 
triangular area between the time line and the linear angular deceleratio
line, shown in the top Case 1 figure, equals the change in ω and for the 
wall. Consequently, the v

 

n α 

alue for ω at time ti+1 (labeled omega1 in the 
Case 1 middle figure) is 

 ( )= + • • +
1

1 0 0 1
2

omega rel mid rhsDT alpha  bis 3.44 

 

reases in value from relTmid to theta1, as 
depicted in the bottom figure. 

The change in wall rotation from time [ti plus lhsDT] to time ti+1 is equal to
the integral of the positive rotational velocity of the middle ω-figure. The 
permanent wall rotation, θ, inc

( ) ( )= + • + • • +
2

1 0 2 0
6

rhsDTtheta relTmid rhsDT rel mid alpha  1 bis 3.45 

tional velocity, ω, and 
one figure describes the permanent wall rotation, θ. 

ation α 

on 

ga0). Consequently, the wall will come to rest before time 
ti+1 is achieved. 

 
m omega0 to rel0mid. The rotational velocity ω at time [ti plus lhsDT] 

is 

Case 2: This case results when the NegativeArea+α− exceeds 
PositiveArea+α− and the positive value for ω at time ti is less than the 
magnitude of the sum of PositiveArea+α− plus NegativeArea+α− . The four 
right-hand side figures in Figure 3.14 are used to describe the Case 2 step-
by-step solution scheme. From the top to bottom, one figure describes the 
angular acceleration, α, two figures describe the rota

The top, right-hand side, Case 2 figure depicts the case of the sum of a 
(labeled) positive triangular area between the linear angular deceler
line and the time line (i.e., PositiveArea+α− by Equation 3.73) plus a 
(labeled) negative triangular area between the linear angular decelerati
α line and the time line (i.e., NegativeArea+α− by Equation 3.75), being 
negative and of greater magnitude than the positive value for ω at time ti 
(designated ome

At time [ti plus lhsDT] the wall’s rotational velocity increases in magnitude
fro
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 ( )= + • • +
1

0 0 0 0rel mid omega lhsDT alpha  
2

bis 3.42 

n rotation from time ti to time [ti plus lhsDT] is equal to the 
labeled positive area between the quadratic ω curve and the time line. At 
time [ti plus lhsDT] the wall rotation increases in magnitude from theta0 
o relDmid. 

with the angular acceleration at time [ ti plus lhsDT] equal to zero. 

The change i

t

 
( ) ( )= + • + • • +

2

0 0 2 0 0
6

lhsDTrelDmid theta lhsDT omega alpha  

At an increment in time [lhsDT+DTmid] after time ti, a portion of the 
negative deceleration area reduces the value of rot

3.76 

ational velocity ω from 
the positive value of magnitude rel0mid at time [ti plus lhsDT] to a value 

i plus (lhsDT+DTmid)], as shown in this figure. At time [t
] the angular acceleration is 

of 0 at time [t i 
plus (lhsDT+DTmid)

 ⎛ ⎞= •⎜ ⎟
⎝

1alpharelAend DTmid
rhsDT

 3.77
⎠

 

ent shown in Figure 3.14. The Figure 3.14 
α area below time increment DTmid is 

where DTmid is the time increm
negative 

 ( )α+ − = • • +
1

0AreaTriangle DTmid relAend  
2

3.78 

α area below time increment DTzeroV is The Figure 3.14 negative 

 ( )α+ − = • • +
1

1AreaTrapezoid DTzeroV relAend alpha  3.79
2

 

Thus, the total Figure 3.14 negative α area below time increment rhsDT is 

α α α+ − + − + −= +NegativeArea AreaTrapezoid AreaTriangle   3.80 

ith the rotational velocity ω at time [ti plus (lhsDT+DTmid)] equal to 
zero, 
W
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 α+ −= +0 0rel mid AreaTriangle  3.81 

By introducing Equations 3.42, 3.73, 3.77, and 3.78, and solving for 
DTmid, Equation 3.81 becomes 

 ( )α+ −
⎛ ⎞= − • • +⎜ ⎟
⎝ ⎠1alpha

2 0
rhsDTDTmid omega PositiveArea  3.82 

i plus (lhsDT+DTmid)] the wall comes to rest with At time [t

( ) ( )= + • + • • +
2

0 2 0 
6

relTend relDmid DTmid rel mid relAen

The wall remains at rest with zero angular velocity, ω, and w

DTmid d  3.83 

ith no 
additional permanent rotation, θ, from time [ti plus (lhsDT+DTmid)] until 
ime ti+1. The permanent wall rotation, θ, at this time ti+1 is t

 =1theta relTend  3.84 

3.8.6 Starting the C W Rotate analysis and the initiation of wall rotation 

 
 ti equal to 0 and with i =1). Consequently, α, ω, and  θ are 

equal to zero as an initial boundary condition at the first time-step (i.e., 

 
e 

 

e increment t2, the system is in motion during this first 
time-step DT. This means that the correct value for α was computed using 

t 

orps all

during a DT time-step 

Start of the step-by-step time-history analysis: The numerical 
formulation used in the step-by-step time-history analysis by 
CorpsWallRotate assumes that the wall is at rest at the start of the analysis
(i.e., at time

with i = 1). 

Initiation of wall rotation during the first DT time-step: At the end of the
first DT time-step, at time increment t2 (i.e., ti+1 and with i = 1 so th
subscript i + 1 becomes 2), a trial angular acceleration value is computed
by CorpsWallRotate using Equation 3.26. If a positive value for α is 
computed at tim

Equation 3.26. 

However, if a negative value for α is computed and the system has been a
rest and with zero angular acceleration at time t1 = 0 (i.e., ti and for i = 1), 
the system is at rest at time t2. This means that the correct value for α is 
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zero at time t2 and not the negative value computed using Equation 3.
Stating this another way and referring to Equation 3.26, a negative value 
for α results when negative moments due to the clockwise stabilizing 
forces acting about the toe of the wall are greater than the moments due
the counterclockwise overturning (i.e., destabilizing) forces acting about 

26. 

 to 

the toe. Consequently a fictitious, negative value results from Equation 
 

 
during 

p 
e ti, i.e., 

Equation 3.26 at time ti+1 . The numerical procedure outlined in 
tation of ω and  θ at time ti+1 for this case. 

i in 
rical 

ration of the wall is sufficiently large during time-
step DT. The applicable numerical procedures are labeled as Case 2 in 

 at 

1 

e increment DTzeroV 
after time ti. The wall remains at rest and with zero rotational velocity over 

r α at 

3.26 and the correct value for α is zero at time t2 (or more generally, ti+1).

Initiation of wall rotation during a DT time-step: A wall is at rest at the 
beginning of any DT time-step (designated time ti in Figures 3. 10 through 
3.14) when ω and  θ are equal to zero. At all DT time-steps other that the
first time-step, the values at time ti for α, ω, and  θ were computed 
the previous time-step and then assigned as known values for this next 
time-step. The step-by-step numerical procedure implemented in 
CorpsWallRotate allows for wall rotation to initiate during any DT time-ste
during earthquake shaking. This will occur for a wall at rest at tim
the start of the time-step, when a positive value is computed for α using 

Figure 3.11 allows for the compu

3.8.7 Cessation of wall rotation 

A wall is in motion at the start of any DT time-step (designated time t
Figures 3.10 through 3.14) when ω is nonzero. The step-by-step nume
procedure implemented in CorpsWallRotate allows for wall rotation to 
terminate during any DT time-step during earthquake shaking. This 
occurs when the decele

Figures 3.13 and 3.14. 

In the case of wall rotation decelerating and with negative values for α
times ti and ti+1 during time-step DT, the rotational velocity, ω, at time ti+

(designated omega1) and the wall rotation, θ, at time ti+1 (designated 
theta1) are made using the Case 2 approach outlined in Figure 3.13. The 
value for α at time ti+1 (designated alpha1) is made using Equation 3.26. 
Note the rotational velocity reduces to zero at a tim

time increment DTzeroD, as shown in this figure. 

In the case of wall rotation decelerating and with a positive value fo
time ti and a negative value for α at time ti+1 during time-step DT, the 
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rotational velocity, ω, at time ti+1 (designated omega1) and the wall 
rotation, θ, at time ti+1 (designated theta1) are made using the Case 2 
approach outlined in Figure 3.14. The value for α at time ti+1 (design
alpha1) is made using Equation 3.26. Note the rotational velocity redu
to zero at a time increment [lhsDT

ated 
ces 

 + DTmid] after time ti. The wall 
remains at rest and with zero rotational velocity over time increment 

again at a later point in time, as 
described in the subsection 3.8.6 paragraph entitled “initiation of wall 

is model of a wall retaining a partially 
submerged backfill and rotating about its toe and buttressed by a 
reinfo

sion 
 of this 

f 

sures 
ail 

hree 

ted for in 
 

 acting on the structural wedge in this figure (and shown acting in a 
                                                                

DTzeroV, as shown in this figure. 

Note that wall rotation can begin 

rotation during a DT time-step.” 

3.9 New rotational analys

rced concrete slab 

The formulation for a rock-founded wall retaining a partially submerged 
backfill and for the case of a pool in front of the retaining wall is 
summarized in this subsection. The formulation presented is an exten
of the moist backfill formulation discussed in the previous sections
chapter. Water pressures are assumed to act along three faces of the 
structural wedge denoted as the toe, base, and the heel regions of 
Figure 3.15. Forces acting on the toe are due to the presence of a pool o
water in front of the wall. A leaking vertical joint is assumed between the 
base slab and the structural wedge with water pressures above the toe 
controlled by the presence of the pool. The computation of water pres
acting on this partially submerged structural wedge is discussed in det
in Appendix D.1 The Figure 3.15 distributions of water pressures are 
converted into equivalent resultant forces, expressed in global x- and 
y-coordinates, and their points of application along each of the t
regions. These resultant water pressure forces are used in an effective 
stress based stability analysis of the structural wedge. Dynamic 
considerations for the pool during earthquake shaking are accoun
the analysis using hydrodynamic water pressures computed using the
Westergaard (1931) procedure of analysis (see Appendix D). The 
hydrodynamic water pressure resultant force, Pwd (Equation D.5), is 
shown

 
1 In the initial CorpsWallRotate version, no excess pore water pressures due to earthquake-induced shear 

strains within the soil regions are included in the current CorpsWallRotate formulation (i.e., the excess 
pore water pressure ratio ru is equal to zero). Refer to Ebeling and Morrision (1992) for a complete 
description and discussion of ru. 
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direction consistent with the direction of positive horizontal acceleration, 
+ah). 

Figure 3.15. Control points, water pressures, and corresponding resultant forces acting 
normal to faces of the three regions of a structural wedge rotating about its toe—effe

stress analysis. 

In the case of rotation about the toe, contact between the base of the 
structural wedge and the foundation is lost sometime during earthquak
shaking. Recall that a simplistic rigid base assumption is made in this 
formulation for rock-founded earth retaining structures. Due to the 
possible formation of a gap sometime during earthquake shaking, the 
Figure 3.15 pore water pressure distribution is used along the base
that this distribution differs from the steady-state pore water pressures 
resulting from a structural wedge in full contact with the rock foundation, 
shown in Figure D.1. The exact pore water distribution within the 
structure-to-foundation gap is a complex problem and a subject for s
of-the-art research. In CorpsWallRotate, it is recognized that the Figure 3.1
(or, equivalently, Figure D.4) pore water pressure distribution along the 
base of the structural wedge makes the simplistic assumption of the 
hydrostatic pore water pr

ctive 

e 

. Note 

tate-
5 

essure at the heel of the wall extends along the 
entire base of the structural wedge. It is based on the assumption that a 

e 

 3.15 are superimposed on the free-body diagram of forces acting on 

gap opens early on during earthquake shaking during rotation about th
toe of the retaining wall. 

The resultant water pressure forces Utoe, Ubase, Uheel, and Pwd shown in 
Figure

Heel
Toe

Toe
region

Base region

Heel
region HwHPool
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T2T3
T4
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H2

HPool_base

pore water pressure

Utoe-y

ΔXUtoe

PWPB1

PWPB2PWPB1 = PWPB2
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hy-Uheel
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+ah = kh * g
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the Figure 3.5 structural wedge, resulting in the Figure 3.16 free-body 
diagram. Recall Presist is the force provided by the reinforced concrete (toe) 
slab. 

Figure 3.16. Inertia forces and resultant force vectors acting on a rigid block model of a 
(inclined base) cantilever wall retaining a partially submerged backfill with r

toe of the wall during horizontal and vertical shaking of the inclined rigid b
otation about the 
ase—effective 

 retaining 
wall subject to pure rotation about its toe, the rotating (i.e., overturning) 
moment equals the stabilizing (i.e., restoring) moment. The summation of 
moments about point 0 of the Figure 3.16 forces acting on a rigid body 
with results in the following modified form of Equation 3.8, 

stress analysis. 

3.9.1 Threshold value of acceleration corresponding to incipient lift-off of 
the base of the wall in rotation—partially submerged backfill 

At the onset of lift-off of the (inclined) base of the Figure 3.16

( ) ( ) ( ) [ ]
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( )δ
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•
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N a ual ote that  is a very small number at the onset of lift-off nd is set eq
to zero as its limiting value when deriving this relationship. The 

 is 

 

 θ&&

component of the threshold acceleration occurring at lift-off of the base
designated as 

( ) ( )− − − −
= •CG CGthreshold rotation h threshold rotation h

a k  g bis 3.9 

value 

ix A), 
CorpsWallRotate solves Equation 3.85 using a trial-and-error numerical 

each 

In CorpsWallRotate output data files the Equation 3.85 moments acting 
about the point of rotation (set equal to toe position of the toe in this 
initial version of CorpsWallRotate) of the structural wedge are grouped 
Overturning Moments and Restoring Moments, which are defined as 

where (kCG)threshold-rotation-h is a value of horizontal ground acceleration, 
expressed in decimal fraction. Note that the horizontal acceleration 
[(kCG)threshold-rotation-h times g] is a not a user-specified constant. 

For a user-specified constant1 for vertical acceleration [i.e., (aCG)v = 
constant], CorpsWallRotate solves Equation 3.85 by introducing (aCG)threshold-

rotation-h and (kCG)threshold-rotation-h for (aCG)h and (kCG)h. Because of the 
inclusion of acceleration in PAE formulation (refer to Append

approach. The value of horizontal acceleration at incipient lift-off in 
rotation is reported in the WORKrotate.TMP output file generated in 
CorpsWallRotate analysis. This file may be viewed using the visual modeler 
boxes labeled Show Lift-Off Evaluation on the Analysis tab. 

into 

( ) ( ) ( ) [ ]

[ ]
( )

δ

− − −

=

• • Δ + • • Δ + • • + −

+ • + Δ − + • Δ + • Δ +

⎡ ⎤• + • −⎣ ⎦

/0 /0

_ _

cos ( )

( )

0.4

CG CG CG CG AE heel PAE toeh v

heel x heel Uheel toe base y Ubase base x Ubase

wd Pool base Pool Pool base

Overturning Moments
W Wa y a x P y h y
g g

U y Y y U X U Y

P H H H

 3.86 

and 

                                                                 
1 A procedure for determing the value for this constant (for vertical acceleration) is discussed in 

Section 4.10. 
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 ( )δ

− −

=

• + • Δ + • • Δ

+ • Δ + • Δ
Presist /0 /

Restoring Moments

sinresist CG AE heel toe

toe x Utoe toe y Utoe

P h W x P x
U Y U X

 

In a total stress analysis the internal pore water pressure force term

3.87 

s Ubase 
and Uheel are excluded from Equations 3.85 through 3.87 and c′ is set 
equal to Su with φ′ set equal to zero. Additionally, N′ is set equal to N. 

Since the horizontal limiting acceleration is of interest, another option is a 
implified form of Equation 3.85 that may be derived by setting the 

vertical component of acceleration in the incipient lift-off in rotation equal 
to zero, as done by Nadim and Whitman (1984). By making this 
assumption and introducing Equation 3.9, Equation 3.85 becomes 

 
δ• Δ − • • + − −cos ( )toe y Utoe AE heel PAE toeX P y h y
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 3.88 

AE formulation (refer to 
d-error 

e 

 

external forces 
of the weight of the structural wedge, W, the dynamic active earth pressure 
force, PAE, the resisting force, Presist, provided by the reinforced concrete 

 horizontal and vertical components of 
ces T and N′, respectively, acting through 

the toe of the wall as well as the resultant water pressure forces Utoe, Ubase, 

⎢ ⎥
⎡ + • −⎢ ⎣⎣ _0.4 Pool Pool baseH H

/0CG

Because of the inclusion of acceleration in P
Appendix A), CorpsWallRotate solves Equation 3.88 using a trial-an
numerical approach. 

In a total stress analysis the internal pore water pressure force terms Ubas

and Uheel are excluded from Equations 3.85 and 3.88. 

3.9.2 Moments due to external forces acting about the toe of the structural
wedge—partially submerged backfill 

The Figure 3.16 (inclined base) cantilever wall retaining partially 
submerged backfill and with pool, is subjected to the nine 

slab at the toe of the wall, and the
the rigid base-to-wall reaction for

 



ERDC/ITL TR-06-2 111 

Uheel, and Pwd. For the partially submerged backfill with pool in front
wall, the moment due to these external forces about the point 0 at toe of 
the wall (counterclockwise positive) is 

 of the 

( )
( ) [ ]

 [ ]

δ

δ − −

−

− • Δ − • − • • Δ

+ • • + − − • Δ − • Δ

+ • + • −
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W x P h P x

P y h y U X U Y

P H H H( )⎡ ⎤⎣ ⎦se

 

 

AE nd 

In a total stress analysis the internal pore water pressure force terms Ubase 
and Uheel are excluded from Equation 3.89. 

3.9.3 Angular acceleration of the structural wedge wall retaining a partially 
submerged backfill—formulation implemented in CorpsWallRotate 

The relationship defining the angular acceleration of the retaining wall 
structural wedge that is implemented in CorpsWallRotate is derived by 
introducing Equation 3.89 into Equation 3.19. When rotation has 
initiated, the angular acceleration of the structural wedge is 

− −

− − −

− • Δ − • − • • Δ

+ • • + − − • Δ − • Δ

+ • Δ + • Δ + • + Δ −
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U X U Y U Y y

P H H H

M

Since the foundation reaction shear force T and normal force N′ act
through point 0 during rotation, they do not contribute to the moment. At 
each instant in time during earthquake shaking, the horizontal and vertical 
accelerations vary in direction. Thus, the magnitudes of PAE and hP  a
Pwd vary as well. 
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with the mass moment of inertia about the point 0 (the of rotation) given 
by 
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 ( )= + •
2

0 /0CG CG
WI I r
g

 bis 3.16 

Recall α (or, equivalently, ) is the angular acceleration of the structural 
wedge of (total) mass M (=W/g) about point of rotation, point 0. The 

n is implemented in the corresponding 
software CorpsWallRotate and will perform a rotating analysis of each user-

ing Moments 
(Equation 3.87) as well as the angular acceleration α at each time-step ti. 

nt to express Equation 
3.90 as 

θ&&

resulting engineering formulatio

specified retaining wall section. The output files for CorpsWallRotate report 
the Overturning Moments (Equation 3.86) and Restor

Consequently, when viewing computed results using the visual Post-
Processor of CorpsWallRotate, it is more convenie

 
{ }

α
−

=
0

Restoring MomentsOverturningMoments
I

 3.91

In a total stress analysis the internal pore water pressure force terms bas

and Uheel are excluded from Equations 3.90 and 3.91. 

3.9.4 Numerical method for computing the rotational time-history of a 

 

 U e 

rigid 

es are used to represent the 
earthquake demand in a rotational analysis of rigid body structural wedge 

ular 

t. 

3.10 Effective vertical acceleration constant value for the incipient 
lift-off in rotation evaluation process 

t 
 

ld 
horizontal acceleration at incipient lift-off in rotation. This section 

block retaining structure rotating about its toe 

Earthquake acceleration time-histori

(permanent) rotation. A step-by-step solution scheme is followed in order 
to obtain the wall’s rotational velocity, ω, and rotation, θ, in the time 
domain by CorpsWallRotate. An overview of the characteristics of this 
numerical formulation is given in section 3.8. Equation 3.26 for ang
acceleration, α, is replaced by Equation 3.90 in this discussion for the case 
of a wall retaining a partially submerged backfill with a pool in fron

In a rotational analysis (i.e., KEYanalysis = 2 of Group 7, Appendix F) the 
complete, user-specified vertical acceleration (time-history) may be 
requested for use in the time-history analysis. Alternatively, a constan
value for vertical acceleration may be used during the time-history
analysis of permanent wall rotation and/or in the analysis of the thresho
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describes a new procedure for determining an effective, representative 
constant value for vertical acceleration. 

nt, 
k 

res 

ss and 

old-rotation-h times 
g]. 

g 
for 

 

specified horizontal acceleration time-history and the user-provided 
constant value for vertical (Y) acceleration, the value for horizontal 

ion at incipient lift-off in wall rotation, (aCG)threshold-rotation-h is 
computed and a rotating block time-history analysis is performed. The 
software then identifies at which i time increments that incremental 

ge 
eration value for the user-specified vertical acceleration time-

history is computed for all these i time increments using the relationship 

In Section 4.6, a new procedure for determining an approximate, consta
effective value for vertical acceleration in a Newmark (1965) sliding bloc
maximum transmissible acceleration analysis of earth retaining structu
is proposed. This same procedure may also be used to determine the 
effective constant vertical acceleration for the acceleration pulses 
generating wall rotation for the incipient lift-off evaluation proce
computation of the horizontal acceleration value [(kCG)thresh

In an incipient lift-off in wall rotation evaluation analysis of a retainin
structure, CorpsWallRotate allows the user to specify a constant value 
vertical acceleration to be used in the equilibrium Equation 3.85 when
computing (in a trial-and-error numerical procedure) the value for 
horizontal acceleration [(kCG)threshold-rotation-h times g] . This software 
implements the following two new methods to help determine a 
representative value for the constant vertical acceleration: 

Method 1 - average vertical acceleration value: Using the user-

accelerat

rotation, (θr)i, takes place and the total number of incremental time-step 
increments i during which rotation occurs, designated nrotation. The avera
vertical accel

 ( )
( )

−
=

∑
rotationn

v i
i

CG v ave
rotation

a
a

n
 3

The sign for the average vertical acceleration, (av)i, during each select t
increment i for which incremental rotation occurs is maintained in 
calculation. 

.92 

ime 
this 
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A trial-and-error procedure is used to determine the appropriate value for 
the constant vertical acceleration value. The primary author of this report 
usually starts with a constant vertical (Y) acceleration value set equal to 

o 
all 

n 

Method 2 - weighted vertical acceleration value: This approach is a 
 Method 1. Using the user specified horizontal acceleration 

time-history and the user-provided constant value for vertical (Y) 
acceleration, the value for horizontal acceleration at incipient lift-off in 

ents i during which rotation occurs is 
designated nrotation. The total rotation is 

 

zero. An incipient lift-off in wall rotation evaluation analysis is made, 
including a computation made by CorpsWallRotate using Equation 3.92 t
determine a value for (aCG)v-ave. Then a second incipient lift-off in w
rotation evaluation analysis is made in which the constant vertical 
acceleration value is set equal to the previously computed value for 
(aCG)v-ave by the user. This second computation results in an updated value 
for (aCG)v-ave . The iterative process is repeated until the difference betwee
old and new values is minor; usually within four computations. 

variation of

wall rotation, (aCG)threshold-rotation-h, is computed and a rotational time-
history analysis is performed. The software then identifies at which i time 
increments during which incremental rotation, (θr)i, takes place and the 
total number of time increm

( )θ θ= ∑
rotationn

r r i
i

 3.93 

v i ch time increment i of incremental rotations using 

A weighted vertical acceleration value is computed for the user-specified 
vertical acceleration time-history with average vertical acceleration value, 
(a ) , computed for ea
the following relationship 

 ( ) ( ) ( )θ
θ−

⎧ ⎫⎡ ⎤⎪ ⎪= •⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∑
rotationn

r i
CG vv weighted i

i r

a a  3

Again, the sign for the average vertical acceleration, (av)i, during each 
select time increment i of incremental rotations is maintained in this 
calculation. 

A trial-and-error procedure is used to determine the appropriate value for 
the constant vertical acceleration value. The primary author of this repor
usually starts w

.94 

t 
ith a constant vertical (Y) acceleration value set equal to 
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zero. An incipient lift-off in wall rotation and rotational time-history 
analysis is made, including a computation made by CorpsWallRotate
Equations 3.93 and 3.94 to determine a value for (aCG)v-weighted . Then a 
second incipient lift-off in wall rotation analysis is made in which the 
constant vertical (Y) acceleration value is set e

 using 

qual to the previously 
computed value for (aCG)v-weighted by the user. This second computation 
results in an updated value for (aCG)v-weighted . The process is repeated until 
the difference between old and new values is minor; usually within four 
computations. 

Method 2 differs from Method 1 in that the weighting factor applied to 
each of the average vertical acceleration, (av)i, values at the i time 
increments of incremental rotation is assigned according to the relative 
magnitude of incremental rotations occurring at each time increment. 
Method 1 applies a uniform weighting factor. 
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4 New Translational Block Analysis Model 
of a Retaining Structure Buttressed by a 
Reinforced Concrete Slab 

4.1 Introduction 

This chapter describes a new engineering formulation developed for 
computing the permanent translational response to earthquake ground 
motions of toe-restrained, rock-founded retaining walls. The resulting 
engineering formulation is implemented within corresponding PC 
software CorpsWallRotate using a GUI for input of geometry, input of 
material properties, input/verification of earthquake time-history files, 
and visualization of results. (Key aspects of the visual modeler and visual 
post-processor CorpsWallRotate are described in Chapter 5.) 

A key result from the translational (i.e., sliding) block method of analysis 
is the computation of the permanent deformation of a retaining structural 
system due to a user-specified design earthquake event. This design 
earthquake event is represented by an acceleration time-history specified 
within the rock-foundation base. Chapter 1 discussed the numerous 
variations of rigid sliding block methods of seismic analysis as applied to 
slopes, earthen dams, retaining wall systems, and foundations. They all 
have their roots in the methodology outlined in Newmark (1965) and what 
has come to be known as the Newmark sliding block model (Section 1.1.3). 
This chapter discusses the formulation of the translational (rigid) block 
analysis of the Figure 4.1 cantilever retaining structure buttressed by, e.g., 
a concrete slab at its toe, as implemented in CorpsWallRotate for Corps 
retaining walls. The effect of this reinforced concrete slab is represented by 
the user-specified force Presist acting on a vertical section extending 
upwards from the toe of the wall. Strom and Ebeling (2004) present a 
simplified engineering procedure to estimate the magnitude of Presist. 
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Presist

Permanent
displacement

Cantilever
retaining

wall

Toe

Figure 4.1. Permanent, seismically induced displacement of a rock-founded cantilever wall 
retaining moist backfill and with toe restraint, computed using CorpsWallRotate. 

4.2 Contrasting a translational with the rotational analysis of a rigid 
block 

A rotational analysis of permanent deformation of a retaining wall during 
earthquake shaking was discussed in Chapter 3. An important difference 
between the translational (i.e., Newmark sliding) block method of analysis 
for earth retaining structures and the rotational analysis of a retaining 
structure modeled as a rigid block is the acceleration imparted to the rigid 
block. When a rigid block undergoes permanent sliding displacement 
during earthquake shaking, the largest magnitude horizontal acceleration 
felt by the rigid block (and the retaining structure contained within the 
rigid block model) is less than the peak value for ground acceleration, as 
depicted in Figure 1.8. Ebeling and Morrison (1992) designated the value 
for a retaining wall’s maximum transmissible acceleration as N*g. The 
maximum transmissible acceleration, N*g, is sometimes referred to as the 
yield acceleration; it is not the user-defined, horizontal ground (or, 
equivalently, the rigid base) acceleration. Contrast this to the response of a 
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rigid block that undergoes rotation during earthquake shaking; the 
accelerations felt by this rigid block during shaking are those of the ground 
acceleration time-history. This is because continuous contact between the 
rigid block undergoing rotation and the ground (modeled as a rigid base) 
is maintained at the point of rotation (e.g., the toe of the Figure 3.1 
retaining wall) during the entire earthquake shaking process. The 
acceleration imparted to the center of mass of a rotating rigid block is 
discussed in Sections 1.2 and 3.2. 

Does a wall slide or does it rotate during earthquake shaking? 
The first step in determining if the retaining wall will rotate prior to sliding 
during earthquake shaking, or vice versa, is to compute (1) the value of 
acceleration that is needed for lift-off of the wall from its base in rotation 
about the toe of the wall using the procedure outlined in Chapter 3; and 
(2) the limiting acceleration required to reduce the factor of safety against 
sliding to a limiting value of 1.0 (commonly referred to as the maximum 
transmissible acceleration using the procedure outlined in this chapter). 
These two computations are accomplished by the software CorpsWallRotate. 
The second step is to compare these limiting acceleration values. For the 
simplified decoupled analyses outlined in this report, the mode of 
deformation is dictated by the smaller of the two acceleration values. 

4.3 Maximum transmissible acceleration 

In the earthquake-induced translational displacement analysis of a 
retaining wall, the primary variable is the permanent displacement. A 
user-defined (ground) acceleration time-history is applied to the Figure 
4.2 rigid base on which the retaining wall is founded in the idealized 
model. The seismic inertia coefficient (N* in Ebeling and Morrison (1992) 
terminology) that reduces the sliding factor of safety for the driving soil 
wedge and the structural wedge to unity is first determined. The value for 
the maximum transmissible acceleration (i.e., N*g; the yield acceleration 
in Ebeling and Morrison (1992) terminology) is the horizontal acceleration 
imparted to the retaining wall system, consisting of the driving wedge and 
structural wedge (see Figure 1.7), that will nominally exceed the shear 
resistance provided by the foundation along (or immediately below) the 
interface between the base of the retaining structure and the foundation. 
The driving soil wedge (Figure A.1) is represented by the dynamic force 
PAE in the Figure 4.2 free-body diagram of the structural wedge figure 
showing the dynamic forces acting on a rigid block model of the structural 
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wedge with sliding along its base during shaking of the rigid base.1 This 
cantilever wall, which retains moist backfill, is subjected to the five 
external forces of the weight of the structural wedge W, the dynamic active 
earth pressure force PAE , the resisting force Presist provided by the 
reinforced concrete slab at the toe of the wall, and the rigid base-to-wall 
reaction shear and normal forces T and N′, respectively. The procedure 
outlined in Section 3.6 and Appendix A are used to compute the value of 
PAE at each acceleration time-history time-step. The structural wedge and 
driving soil wedges are assumed to act as a single rigid body, as shown in 
Figure 1.7. Thus, inertial forces due to the acceleration values applied at a 
given time-step to the structural and driving wedges impact the magnitude 
of PAE, as outlined in the sweep-search soil wedge solution procedure 
summarized in Appendix A. Consequently, when the value for acceleration 
of the rigid block changes with time-steps, the value of PAE changes as well. 

Presist

+ah = kh * g

+av = kv * g

T
N’

Rigid Base

Retained Soil

ΔyCG/0
hPresist

hPAE

CG

PAE

δ

W

( )hCGag
W

•

( )vCGag
W

•

ε

ΔxCG/0

Δxheel/toe

Lbase

dNbase

Toe; Point 0

Figure 4.2. Inertia forces and resultant force vectors acting on a rigid block model of a 
cantilever wall retaining moist backfill with sliding along its base during horizontal and vertical 

shaking of the inclined rigid base. 

At the onset of sliding of the Figure 4.2 retaining wall, the horizontal 
driving force equals the stabilizing (i.e., restoring) force. The summation 
of the Figure 4.2 horizontal forces acting on the rigid body results in 

                                                                 
1 The inertial forces are applied according to D’Alembert’s principle. The advantage of the inertia-force 

method based on D’Alembert’s principle is that it converts a dynamics problem into an equivalent 
problem in equilibrium. 
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 ( ) ( ) ( ) ( )δ ε• + • = + • + •cos cos ' sinCG AE resisth

W a P P T N
g

ε  4.1 

T is the shear force required for equilibrium of forces acting on the 
structural wedge. At incipient sliding, the shear strength along the base to 
foundation interface becomes fully mobilized (i.e., FSslide = 1.0). Assuming 
a full mobilization of shear resistance along the base (of length Lbase), the 
shear force may be computed utilizing the Mohr-Coulomb failure criteria, 
in an effective stress analysis, as 

 ( )tanbase base baseT c L N′ ′ ′= • + • δ  4.2 

Introducing Equation 4.2, Equation 4.1 becomes 

 
( ) ( )

( ) ( ) ( )

δ

δ ε ε

• + • =

+ • + • • + •⎡ ⎤⎣ ⎦

cos

' ' tan ' cos ' sin

CG AEh

resist base base

W a P
g

P c L N N
 4.3 

Simplifying, Equation 4.3 becomes 

 
( ) ( )

( ) ( ) ( ) ( )

δ

ε δ ε

• + • =

+ • • + • • + ε⎡ ⎤⎣ ⎦

cos

' cos ' tan ' cos sin

CG AEh

resist base base

W a P
g

P c L N
 4.3 

The summation of the Figure 4.2 vertical forces acting on the rigid body 
results in 

 ( ) ( ) ( ) ( )ε ε δ= • − • − + • − •0 ' cos sin sinCG AEv

WN T W a P
g

 4.4 

Introducing Equation 4.2, Equation 4.4 becomes 

 

( ) ( ) ( )

( ) ( )

ε δ ε

δ

= • − • + • •⎡ ⎤⎣ ⎦

− + • − •

0 ' cos ' ' tan ' sin

sin

base base

CG AEv

N c L N
WW a P
g

 4.5 

Simplifying, Equation 4.5 becomes 
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( ) ( ) ( )

( ) ( ) ( )

ε δ

ε δ ε

• • + − • + •
=

− •

' sin sin
'

cos tan ' sin

base CG AEv

base

Wc L W a P
gN  4.6 

Introducing Equation 4.6, Equation 4.3 becomes 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

δ ε

ε δ

ε δ ε

δ ε ε

• + • = + • •

⎧ ⎫• • + − • + •⎪ ⎪⎪ ⎪
⎨ ⎬− •⎪ ⎪
⎪ ⎪⎩ ⎭

• • +⎡ ⎤⎣ ⎦

cos ' cos

' sin sin

cos tan ' sin

tan ' cos sin

CG AE resist baseh

base CG AEv

base

base

W a P P c L
g

Wc L W a P
g

+

 4.7 

Equation 4.7 represents the equilibrium relationship for the (rigid) 
structural wedge when the earthquake accelerations are such that the 
factor of safety against sliding along its base is equal to 1.0. For a factor of 
safety > 1.0 against sliding, the retaining wall does not slide. The rigid 
body CG accelerations are the same as the rigid base accelerations (i.e., 
within the rock foundation). However, the accelerations felt by the rigid 
body (i.e., at its center of gravity, CG) will differ from the rigid base 
accelerations for user-defined rigid base acceleration (time-history) values 
that exceed the value for acceleration that results in a factor of safety 
against sliding equal to 1.0. During sliding, the acceleration felt by the 
rigid body at its center of gravity, CG, is of constant magnitude. 

The component of the threshold acceleration occurring at translation (i.e., 
sliding) along the base is designated as 

 ( ) ( )− − − −
= •CG CGthreshold sliding h threshold sliding ha k g  4.8 

where (kCG)threshold-sliding-h is a value of horizontal ground acceleration, 
expressed in decimal fraction. In Ebeling and Morrison (1992), the 
acceleration (aCG)threshold-sliding-h is referred to as the maximum 
transmissible acceleration (N*g) or as the yield acceleration. Note that the 
horizontal acceleration value [(kCG)threshold-sliding-h times g] is a not a user-
specified constant. Since the horizontal limiting acceleration is of interest, 
one option is to set the vertical component of acceleration occurring at 
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sliding equal to zero, as done by Richards and Elms (1979) and others.1 By 
making this assumption and introducing Equation 4.8, Equation 4.7 
becomes 

( )
( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

ε δ

ε δ δ ε
ε δ ε

− −
=

+ • • − • +

⎧ ⎫• • + + •⎪ ⎪• • + ε⎡ ⎤⎨ ⎬ ⎣ ⎦− •⎪ ⎪⎩ ⎭

' cos cos

' sin sin
tan ' cos sin

cos tan ' sin

CG threshold sliding h

resist base AE

base AE
base

base

k

P c L P

c L W P

W

 4.9 

Because of the inclusion of acceleration in PAE formulation (refer to 
Appendix A) in this equation, CorpsWallRotate solves Equation 4.9 using a 
trial-and-error numerical approach. Note that no safety factor need be 
applied to the weight of the wall/structural wedge nor to its shear strength 
in this calculation. 

The summation of overturning and resisting moments about the toe (i.e., 
point 0) of the Figure 4.2 forces acting on the rigid body results in 

 

( ) ( )
( ) [ ]

( )
δ

δ

• • Δ + • • Δ

+ • • + − + • =

• + • Δ + • • Δ

/0 /0

Presist /0 /

cos ( ) '

sin

CG CG CG CGh v

AE heel PAE toe Nbase

resist CG AE heel toe

W Wa y a x
g g

P y h y N d
P h W x P x

 4.10 

Recall the computation of hPAE as well as the distribution of earth pressure 
forces corresponding to PAE are discussed in Section 3.6 and in 
Appendix C. Solving for the location of the result effective force normal to 
the base, dNbase, Equation 4.10 becomes 

 

( ) ( )
( ) [ ]

( )
δ

δ

⎡ ⎤
− • • Δ − • • Δ⎢ ⎥

⎢ ⎥
⎢ ⎥− • • + −⎢ ⎥
⎢ ⎥+ • + • Δ + • • Δ
⎢ ⎥⎣ ⎦=

/0 /0

Presist /0 /
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sin

'

CG CG CG CGh v

AE heel PAE toe

resist CG AE heel toe
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W Wa y a x
g g

P y h y
P h W x P x

d
N

 4.11 

                                                                 
1 Another option, implemented in CorpsWallRotate, is to assign a constant value to the vertical 

acceleration component. A procedure for determining the value for this constant is discussed in 
Sections 4.5 and 4.6. 
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Because of the inclusion of acceleration in PAE formulation (refer to 
Appendix A) in this equation, CorpsWallRotate solves Equation 4.11 using a 
trial-and-error numerical approach. Introducing the horizontal limiting 
acceleration (i.e., Equation 4.8) in the case of a wall sliding along its base 
and setting the vertical component of acceleration occurring at sliding 
equal to zero, Equation 4.11 simplifies to 

 

( )
( ) [ ]
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δ

δ

− −
− • • Δ⎡ ⎤

⎢ ⎥
− • • + −⎢ ⎥
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sin

'

CG CGthreshold sliding h

AE heel PAE toe

resist CG AE heel toe

Nbase

W k y

P y h y
P h W x P x

d
N

 4.12 

During sliding, the value of PAE is computed using the horizontal 
acceleration value [(kCG)threshold-sliding-h times g], the maximum 
transmissible acceleration (N*g in Ebeling and Morrison (1992) notation). 
Recall that full contact is maintained between the base of the wall and its 
foundation during sliding in this formulation. 

4.4 Time-history of permanent wall displacement 

Earthquake shaking of the rock foundation is represented by time-
histories of acceleration in the translational block formulation 
implemented in CorpsWallRotate.1 Since the ground acceleration varies with 
time, let the horizontal ground acceleration be represented by variable 
fraction A times the constant acceleration of gravity, g, in Figure 1.8. 
Recall that the integral of the acceleration time-history is equal to the 
velocity time-history and the integral of velocity is displacement (i.e., the 
permanent wall displacement in this case). For a “rigid block” (i.e., 
retaining wall structural wedge and driving wedge) subjected to an 
acceleration of value larger than the Figure 1.8 maximum transmissible 
acceleration, labeled N*g in this figure, the rigid block will displace. When 
this occurs over several time-steps, the total permanent displacement of a 
sliding structural wedge relative to the base (i.e., the rock foundation) is 
the sum of the increments of displacement occurring during a number of 
individual pulses of ground motion as shown in this figure. These 
incremental relative displacements are determined as follows: For each 
time the acceleration of the ground, equal to A times g, is greater than the 

                                                                 
1 Baseline-corrected, horizontal and vertical acceleration time-histories are to be used to represent the 

earthquake ground motions in CorpsWallRotate. 
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constant N* times g shown in this figure, relative displacements (between 
the retaining wall mass and the foundation) will initiate. The integral of 
the difference in velocities between the sliding structural wedge and the 
rock foundation velocity is equal to the incremental, relative displacement 
of the sliding structural wedge. 

This section describes the numerical method implemented within 
CorpsWallRotate to compute the translational time-history of a rigid block 
retaining structure during earthquake shaking. It mirrors the numerical 
procedure used to compute the rotational time-history of a rigid block 
rotating about its toe, discussed in Section 3.8. 

4.4.1 Introduction to a step-by-step solution scheme 

Earthquake acceleration time-histories are used to represent the 
earthquake demand in this formulation. They are specified within the rigid 
base of Figure 4.2. It is the experience of the primary author of this report 
that the duration of ground acceleration time-histories used on Corps 
projects is on the order of tens of seconds, and up to about one minute of 
earthquake shaking. The number of time increments (i.e., discrete 
acceleration point values) contained in the acceleration time-history 
corresponds to the number of solutions made in the translational wall 
analysis by CorpsWallRotate. The number of time increments is defined by 
the duration of earthquake shaking and the time increment DT used in 
digitization of the acceleration time-history.1 There is no standard time 
increment DT for the digitization and subsequent processing of 
acceleration time-histories for Corps projects. However, Ebeling, Green, 
and French (1997) observe that a DT equal to 0.02, 0.01, or 0.005 sec is 
the most common. For example, an earthquake acceleration time-history 
with 40 seconds of shaking and a time-step of 0.02 sec will contain 2,000 
discretized acceleration points. If the acceleration time-history was 
processed with a DT equal to 0.01 or 0.005 sec, then the discretized 
acceleration time-histories would contain 4,000 and 8,000 acceleration 
points, respectively. 

A step-by-step solution scheme is followed in order to obtain the wall’s 
permanent translational relative velocity, relV, and displacement, relD, in 
the time domain by CorpsWallRotate. An overview of the characteristics of 

                                                                 
1 Note that CorpsWallRotate requires the time-step DT for the horizontal and vertical acceleration time-

histories used in the same analysis be the same value. 
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this numerical formulation is depicted in Figure 4.3. A key feature of the 
numerical formulation used is the assumption of a linear variation in 
relative acceleration relA over time-step DT, from time ti to time ti+1. 
Values of the user-provided ground acceleration (specified within the rigid 
base model) are compared against the maximum transmissible 
acceleration value [(kCG)threshold-sliding-h times g] at each time-step. (Recall 
the value for maximum transmissible acceleration value [(kCG)threshold-sliding-

h times g] is a constant.) This idealized figure assumes that the wall is 
undergoing positive relative acceleration (i.e., value for acceleration of the 
ground is greater than the value of [(kCG)threshold-sliding-h times g]), positive 
relative velocity, and positive (permanent) displacement at time ti, which 
continues through time ti+1. The relative acceleration values relA0 and 
relA1 are equal to the difference between the horizontal ground 
acceleration value minus the constant value of [(kCG)threshold-sliding-h times g] 
at times ti and ti+1, respectively, and assumed positive at both time-steps. 
(Other cases will be considered later.) The idealized figure also assumes 
that the relative acceleration increases in magnitude over this time-step 
DT, as depicted in this figure. The relative velocity is computed by 
integrating the relative acceleration during each segment of wall 
translation. 

  4.13 = ∫
0

when 0
t

relV relA dt relV >

or 

  4.14 = <0 when Equation 4.13 gives 0relV relV

So for a linear variation in relative acceleration over time-step DT, the 
relative velocity, relV, is a quadratic relationship. Note that CorpsWallRotate 
assumes that the wall cannot slide back into the retained soil, which is 
expressed by Equation 4.14. Similarly, with the permanent relative 
displacement of the wall being the integration of the relative velocity, the 
relative displacement of the wall is a cubic relationship listed in Figure 4.3. 
The permanent relative displacement of the wall is the integration of the 
relative velocity 

  4.15 = ∫
0

t

relD relV dt
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This series of computations using relative accelerations and 
Equations 4.13 through 4.15 are repeated for each sequence of wall 
translations that occurs for the duration of earthquake shaking. The 
experience of the primary author of this report is that when the 
acceleration time-histories used as input to CorpsWallRotate are based on 
previously recorded earthquake events (a typical scenario), the permanent 
displacement occurs during several, separate pulses occurring throughout 
the duration of shaking. 

In Figure 4.3, the value for relative acceleration relA, relative velocity relV, 
and (permanent wall) relative displacement relD at any point in time Δt 
after ti and before time ti+1 are given by the linear, quadratic, and cubic 
relationships contained on the right-hand side of these three figures (with 
Δt less than or equal to DT). 

Recall that during sliding the acceleration felt by the wall equals the 
maximum transmissible acceleration. Thus, the sliding (rigid) block model 
effectively isolates the sliding block from the shaking (rigid) base below. 

4.4.2 Positive relative accelerations relA0 and relA1 at times ti and ti+1 

Expanding on the details of the computations for the numerical 
formulation depicted in Figure 4.3, the computation of the relative 
acceleration, relA, relative velocity, relV, and relative displacement, relD, 
at time ti+1 are made as follows: Values for relA, relV, relD, at time ti are 
known from the previous computation step in the step-by-step solution 
scheme. The value for relA at time ti+1 (designated relA1 in the figure) is 
computed as the difference between horizontal ground acceleration minus 
the constant value of [(kCG)threshold-sliding-h times g]. Referring to Figure 4.4, 
the relative velocity at time ti+1 (designated relV1) is computed from the 
value for relative velocity at time ti (designated relV0) plus the positive 
area under the linear relative acceleration relationship over the time-step 
DT, designated Areaa in this figure. By the trapezoidal rule, relV1 at time 
ti+1 is 

 (= + • +1 0 0
2

DTrelV relV relA relA )1  4.16 

with the values for relV0 and relA0 now known values that were computed 
in the previous solution step. Note the wall is in motion at time ti , as 
reflected by a positive value for relative velocity (designated relV0 in 
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Figure 4.3. Complete equations for relative motions over time increment DT based on linearly 
varying acceleration. 

Figure 4.4). Similarly, the permanent relative wall displacement at time ti+1 
(designated relD1) is computed from the value for relative displacement at 
time ti (designated relD0) plus the positive area under the quadratic 
relative velocity relationship over the time-step DT, designated Areav in 
this figure. For this linear acceleration method, relD1 at time ti+1 is 

 (= + • + • • +
2

1 0 0 2 0
6

DTrelD relD DT relV relA relA )1  4.17 

with the value for relD0 being a known value that was computed in the 
previous solution step. The value for relative velocity relV and (permanent 
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wall) displacement relD at time ti+1 are also described in terms of the area 
relationships contained in Figure 4.4. In this manner a step-by-step 
solution scheme is followed throughout the entire time-history of 
earthquake shaking in order to obtain the wall velocity, relV, and relative 
displacement, relD, at each increment in time in the Figure 4.4 case of 
positive values for relA at times ti and ti+1. 

Figure 4.4. Relative velocity and displacements at the end of time increment DT based on 
linearly varying relative acceleration. 

In summary, Figure 4.4 outlines a numerical procedure to obtain values 
for relative velocity and for relative displacement at time ti+1 in situations 
for which values of relative acceleration relA at times ti and ti+1 are both 
positive. However, there are three other situations that can arise during 
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the step-by-step solution: (a) the case of a negative value for relA at time ti 
and a positive value for relA at time ti+1; (b) the case of wall decelerating 
over the entire time-step DT for which the values of relA are negative at 
both times ti and ti+1; and (c) the case of a positive value for relA at time ti 
and a negative value for relA at time ti+1. In all four cases, the assumption 
of linear relative acceleration over time-step DT is made and the basic 
concept of integrating positive areas above and/or negative areas below 
the time line of relative acceleration, relA, to obtain the change in relative 
velocity, relV, and then, in turn, the integration of positive and/or negative 
areas above and/or below the time line of relV to obtain the change in 
relative displacement, relD, is used to determine the values for relV and 
relD, respectively, at time ti+1. These three additional step-by-step 
solutions are discussed next. Note the frequent use of the trapezoidal rule 
for relV and the linear acceleration method for relD in the solution 
processes to be described. 

4.4.3 Positive relative acceleration relA0 at time ti and negative relative 
acceleration relA1 at ti+1 

Next consider a wall in motion (i.e., with a positive value for relV) at time ti 
but with the Figure 4.5 case of a negative value for relA0 computed at 
time-step ti and positive value for relA1 computed at the next time-step of 
ti+1.1 The first step is to determine the time instant [ti plus lhsDT] at which 
the relative acceleration relA is equal to zero, as labeled in the figure. By 
linear interpolation, this time increment lhsDT is 

 ⎛ ⎞= •⎜ −⎝ ⎠
0

1 0
DTlhsDT relA

relA relA ⎟  4.18 

The negative area between the negative portion of the linear acceleration 
line and the time line over the Figure 4.5 time increment lhsDT is 

 (− + )= • • +
1

0 0
2ANegativeArea lhsDT relA  4.19 

Recall that the wall is in motion at time ti when relative velocity 
(designated relV0 in the figure) is positive. There are two possible 
outcomes for the Figure 4.5 step-by-step numerical solutions for values of 
relV and of relD at time ti+1 , depending upon the magnitude of relV0 
                                                                 
1 Note the assumption of a linear variation in relative acceleration over the time-step DT in Figure 4.5.  
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relative to the magnitude of NegativeArea−Α+. These possible scenarios are 
depicted by two columns of figures in Figure 4.5, labeled as the Case 1 and 
Case 2 figure groups. 

Figure 4.5. Two possible outcomes for the case of a negative relative acceleration at time ti 
and a positive relative acceleration at time ti+1. 

Case 1: This case results when the positive value for relV at time ti is 
greater than the magnitude of NegativeArea−Α+ (i.e., the negative area 
between the negative portion of the linear acceleration line and the time 
line over the portion of the Figure 4.5 time increment labeled lhsDT). The 
three left-hand side figures in Figure 4.5 are used to describe the Case 1 
step-by-step solution scheme: The top figure describes the relative 
acceleration, relA, the middle figure describes the relative velocity, relV, 
and the lower figure describes the (permanent) relative wall displacement, 
relD. 

The top Case 1 figure depicts the case of a (labeled) negative triangular 
area between the linear relative deceleration relA line and the time line 
(i.e., NegativeArea−Α+ by Equation 4.19), being of less magnitude than the 
positive value for relative velocity at time ti (designated relV0). 
Consequently, the wall will remain in displacement (i.e., sliding) during 
the entire time-step DT. At the increment in time lhsDT after time ti, a 
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portion of the negative deceleration area reduces the value of relative 
velocity from the positive value of magnitude relV0 at time ti to a smaller 
magnitude value at time [ti plus lhsDT], as shown in this figure. The 
relative velocity at time [ti plus lhsDT] is 

 ( )= + • • +
1

0
2

relVmid relV lhsDT relA0 0  4.20 

The change in relative displacement from time ti to time [ti plus lhsDT] is 
equal to the labeled positive area between the quadratic relative velocity 
curve and the time line. At time [ti plus lhsDT] the relative wall 
displacement increases in magnitude from relD0 to relDmid. 

 
( ) (= + • + • • +

2

0 0 2
6

lhsDTrelDmid relD lhsDT relV relA )0 0  4.21 

The wall continues in motion, with positive relative velocity and with 
additional permanent deformation after time [ti plus lhsDT] when the 
relative acceleration of the wall is positive. At time [ti plus lhsDT] the 
magnitude of the wall’s relative velocity begins to increase as a result of the 
positive relative acceleration of the wall. The positive (labeled) triangular 
area between the time line and the linear acceleration line, shown in the 
top Case 1 figure, equals the change in relative velocity and for the wall, 
consequently, the value for relative velocity at time ti+1 (labeled relV1 in the 
Case 1 middle figure) is 

 (= + • • +
1

1
2

relV relVmid rhsDT relA )0 1  4.22 

The change in wall displacement from time [ti plus lhsDT] to time ti+1 is 
equal to the integral of the positive relative velocity of the middle relV 
figure. The permanent wall displacement increases in value from relDmid 
to relD1, as depicted in the bottom figure. 

 
( ) (= + • + • • +

2

1 2
6

rhsDTrelD relDmid rhsDT relVmid relA )0 1  4.23 

Case 2: This case results when the positive value for relative velocity at 
time ti is less than the magnitude of NegativeArea−Α+ (i.e., the negative area 
between the negative portion of the linear acceleration line and the time 
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line over the portion of the Figure 4.5 time increment labeled lhsDT). The 
four right-hand side figures in Figure 4.5 are used to describe the Case 2 
step-by-step solution scheme. From the top to bottom, one figure 
describes the relative acceleration, two figures describe the relative 
velocity, and one figure describes the permanent relative wall 
displacement. 

The top, right-hand side, Case 2 figure depicts the case of a (labeled) 
negative triangular area between the linear relative deceleration line and 
the time line, being of greater magnitude than the positive value for 
relative velocity at time ti (designated relV0). Consequently, the wall will 
come to rest before time ti+1 is achieved. At an increment in time DTzeroV 
after time ti, a portion of the negative deceleration area reduces the value 
of relative velocity from the positive value of magnitude relV0 at time ti to 
a value of 0 at time [ti plus DTzeroV], as shown in this figure. At time [ti 
plus DTzeroV] the relative acceleration is 

 ⎛ ⎞= •⎜
⎝ ⎠

0relArelAmid DTzeroD
lhsDT ⎟  4.24 

where DTzeroD is the time increment shown in Figure 4.5. Τhe Figure 4.5 
negative (relative) deceleration area below time increment DTzeroV is 

 (− + = • • +
1

0
2AAreaTrapezoid DTzeroV relA relAmid )  4.25 

The Figure 4.5 negative relative deceleration area below time increment 
DTzeroD is 

 (− + )= • •
1

0
2AAreaTriangle DTzeroD relAmid +  4.26 

Thus, the total Figure 4.5 negative relative deceleration area below time 
increment lhsDT is 

 − + − + − += +A ANegativeArea AreaTrapezoid AreaTriangle A  4.27 

The relative velocity at time [ti plus DTzeroV] is  

 − += +0 ArelVmid relV AreaTrapezoid  4.28 
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With a value for relVmid equal to zero, Equation 4.28 becomes 

 − += +0 0 ArelV AreaTrapezoid  4.29 

Expanding by adding the term AreaTriangle-A+ to both sides, 
Equation 4.29 becomes 

 − + − + − += + +0A A AAreaTriangle relV AreaTrapezoid AreaTriangle  4.30 

Which by introducing Equation 4.27, becomes 

 − + − += +0A AAreaTriangle relV NegativeArea  4.31 

Introducing Equations 4.26 and 4.24 and solving for DTzeroD, 
Equation 4.31 becomes 

 ( )α− +
⎛ ⎞= • • +⎜ ⎟
⎝ ⎠

2 0
0

lhsDTDTzeroD relV NegativeArea
relA

 4.32 

Recognizing the time increment lhsDT is equivalent to 

 = +lhsDT DTzeroV DTzeroD  4.33 

and by introducing Equations 4.33 and 4.25 into Equation 4.32 and 
solving for DTzeroV, 

 ( )− +
⎛ ⎞= − • • +⎜ ⎟
⎝ ⎠

2 0
0 A

lhsDTDTzeroV lhsDT relV NegativeArea
relA

 4.34 

The change in relative displacement from time ti to time [ ti plus DTzeroV] 
is equal to the labeled positive area between the quadratic relative velocity 
curve and the time line. At time [ti plus DTzeroV] the wall displacement 
increases in magnitude from relD0 to relDmid. The relative velocity at 
time [ti plus DTzeroV], expressed in terms of DTzeroV, is 

 (= + • • +
1

0 0
2

relVmid relV DTzeroV relA relAmid)  4.35 

with the relative acceleration at time [ti plus DTzeroV] equal to 
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−⎛ ⎞= + •⎜ ⎟

⎝ ⎠
1 0

0
relA relArelAmid relA DTzeroV

DT
 4.36 

The change in relative displacement from time ti to time [ti plus DTzeroV] 
is equal to the labeled positive area between the quadratic relative velocity 
curve and the time line. At time [ti plus DTzeroV] the wall displacement 
increases in magnitude from relD0 to relDmid. 

( ) ( )= + • + • • +
2

0 0 2 0
6

DTzeroVrelDmid relD DTzeroV relV relA relAmid  4.37 

The wall remains at rest with zero relative velocity and with no additional 
permanent relative displacement from time [ti plus DTzeroV] until time [ti 
plus lhsDT] when the relative acceleration of the wall begins (again). At 
time [ti plus lhsDT] the wall begins to develop further permanent displace-
ment as a result of the positive relative reacceleration of the wall. The posi-
tive (labeled) triangular area between the time line and the linear relative 
acceleration line, shown in the right-hand side of the top figure, equals the 
change in relative velocity; and with the wall at rest, consequently, the 
value for relative velocity at time ti+1 (labeled relV1 in the lower relative 
velocity figure) is 

 (= • • +
1

1 0
2

relV rhsDT relA )1  4.38 

The change in wall displacement from time [ti plus lhsDT] to time ti+1 is 
equal to the integral of the positive relative velocity, as depicted in the 
middle two, right-hand side relV figures. The top relV figure being a com-
putational figure, and the bottom relV figure being the relV curve-shift 
figure that properly accounts for zero wall relative velocity over time incre-
ment DTzeroD, with an insert detailed, curve-shift figure for relV shown of 
this computational relV figure in Figure 4.5. The permanent relative wall 
displacement increases in value from relDmid to relD1, as depicted in the 
bottom figure. 

 
( ) (= + • + • • +

2

1 0 2
6

rhsDTrelD relDmid rhsDT relA )0 1  4.39 
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4.4.4 Negative relative accelerations relA0 and relA1 at times ti and ti+1 

Next consider a wall in motion (i.e., with a positive value for relative 
velocity) at time ti but with the Figure 4.6 case of a negative values for 
relative acceleration computed at time-steps ti and ti+1.1 The first step is to 
determine if the wall, which is in motion at time ti, comes to rest during 
the time-step DT. 

The negative area between the negative portion of the linear acceleration 
line and the time line over the Figure 4.6 time increment DT is 

 ( 10
2
1 relArelADTeaNegativeAr A +••=−− )

                                                                

 4.40 

There are two possible outcomes for the Figure 4.6 step-by-step numerical 
solution for relative velocity and relative displacement at time ti+1, 
depending upon the magnitude of relV0 relative to the magnitude of 
Equation 4.40 NegativeArea−Α− . These possible scenarios are depicted by 
two columns of figures in Figure 4.6, labeled as Case 1 and Case 2 figure 
groups. 

Case 1: This case results when the positive value for relative velocity at 
time ti is greater than the magnitude of NegativeArea−Α− (i.e., the negative 
area between the negative portion of the linear acceleration line and the 
time line over the Figure 4.6 time-step DT). The three left-hand side 
figures in Figure 4.6 are used to describe the Case 1 step-by-step solution 
scheme: The top figure describes the relative acceleration, the middle 
figure describes the relative velocity, and the lower figure describes the 
permanent relative wall displacement. 

 
1 Again, note the assumption of a linear variation in relative acceleration over the time-step DT shown in 

Figure 4.6.  
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Figure 4.6. Two possible outcomes for the case of negative relative accelerations at times ti 
and ti+1. 

The top Case 1 figure depicts the case of a (labeled) negative area between 
the linear relative deceleration line and the time line (i.e., NegativeArea−Α− 
by Equation 4.40), being of less magnitude than the positive value for 
relative velocity at time ti (designated relV0). Consequently, the wall will 
remain in motion during the entire time-step DT. At the time-step DT 
after time ti, the negative deceleration area reduces the value of relative 
velocity from the positive value of magnitude relV0 at time ti to a smaller 
magnitude value at time [ti plus DT], as shown in this figure. The relative 
velocity at time [ti plus DT] is 

 (= + • • +
1

1 0 0
2

relV relV DT relA relV )1  4.41 

The change in relative displacement from time ti to time [ti plus DT] is 
equal to the labeled positive area between the quadratic relative velocity 
curve and the time line. At time [ti plus DT] the wall displacement 
increases in magnitude from relD0 to relD1. 
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( ) (= + • + • • +

2

1 0 0 2 0
6

DTrelD relD DT relV relA relA )1  4.42 

Case 2: This case results when the positive value for relative velocity at 
time ti is less than the magnitude of NegativeArea−Α− (i.e., the negative area 
between the negative portion of the linear acceleration line and the time 
line over the portion of the Figure 4.6 time increment labeled lhsDT). The 
four right-hand side figures in Figure 4.6 are used to describe the Case 2 
step-by-step solution scheme. From the top to bottom, one figure 
describes the relative acceleration, two figures describe the relative 
velocity, and one figure describes the permanent relative wall 
displacement. 

The top, right-hand side, Case 2 figure depicts the case of a (labeled) 
negative area between the linear relative deceleration line and the time 
line (i.e., NegativeArea−Α− by Equation 4.40), being of greater magnitude 
than the positive value for relative velocity at time ti (designated relV0). 
Consequently, the wall will come to rest before time ti+1 is achieved. At an 
increment in time DTzeroV after time ti, a portion of the negative 
deceleration area reduces the value of relative velocity from the positive 
value of magnitude relV0 at time ti to a value of 0 at time [ti plus 
DTzeroV], as shown in this figure. At time [ti plus DTzeroV] the relative 
acceleration is 

 
−⎛ ⎞= + •⎜

⎝ ⎠
1 0

0
relA relArelAmid relA DTzeroV

DT ⎟  4.43 

where DTzeroV is the time increment shown in Figure 4.6. Τhe Figure 4.6 
negative relative deceleration area below time increment DTzeroV is 

 (− − = • • +
1

0
2AAreaTrapezoid DTzeroV relA relAmid)  4.44 

Introducing Equations 4.43, Equation 4.44 becomes 

− −

⎧ ⎫• • +⎪ ⎪⎪ ⎪= ⎨ ⎬−⎡ ⎤⎛ ⎞⎪ ⎪• + •⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

1
0

2
1 0

0
2

A

DTzeroV relA
AreaTrapezoid

DTzeroV relA relArelA DTzeroV
DT

 4.45 
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This simplifies to 

( )
− −

−⎛ ⎞= • + •⎜
⎝ ⎠

2 1 0
0

2A
DTzeroV relA relAAreaTrapezoid DTzeroV relA

DT ⎟  4.46 

The change in rotation from time ti to time [ti plus DTzeroV] is equal to 
the labeled positive area between the quadratic relative velocity curve and 
the time line. At time [ti plus DTzeroV] the wall displacement increases in 
magnitude from relD0 to relDmid. The relative velocity at time [ti plus 
DTzeroV] is 

 − −= +0 ArelVmid relV AreaTrapezoid  4.47 

With a value for relVmid equal to zero, Equation 4.47 becomes 

 ( )−⎡ ⎤⎛ ⎞= • • + • +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
21 1 0

0 0
2

relA relA DTzeroV relA DTzeroV relV
DT

0  4.48 

This quadratic equation has a general solution of 

 

( ) −⎡ ⎤⎛ ⎞− ± − • • •⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦=
−⎡ ⎤⎛ ⎞• •⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

2 1 1 0
0 0 4

2
1 1 0

2
2

relA relArelA relA relV
DTDTzeroV

relA relA
DT

0
 4.49 

Even though this solution provides for two possible values for DTzeroV, 
only the positive value is assigned to DTzeroV in CorpsWallRotate. 

The change in displacement from time ti to time [ti plus DTzeroV] is equal 
to the labeled positive area between the quadratic relative velocity curve 
and the time line. At time [ti plus DTzeroV] the relative wall displacement 
increases in magnitude from relD0 to relDTmid. 

( ) ( )= + • + • • +
2

0 0 2 0
6

DTzeroVrelDmid relD DTzeroV relV relA relAmid  bis 4.37 

The wall remains at rest with zero relative velocity and with no additional 
permanent displacement from time [ti plus DTzeroV] until time [ti plus 
DT]. Consequently, at time ti+1 the permanent relative wall displacement is 
constant, as depicted in the bottom figure. 
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 =1relD relDmid  4.50 

with the value for relDmid given by Equation 4.37. 

4.4.5 Positive relative acceleration relA0 at time ti and negative relative 
acceleration relA1 at ti+1 

Next consider a wall in motion (i.e., with a positive value for relative 
velocity) at time ti but with the Figure 4.7 case of a positive value for relative 
acceleration at time-step ti and negative value for relative acceleration at the 
next time-step of ti+1.1 The first step is to determine the time instant [ti plus 
lhsDT] at which the relative acceleration is equal to zero, as labeled in the 
figure. By linear interpolation, this time increment lhsDT is 

 ⎛ ⎞= •⎜ ⎟−⎝ ⎠
0

1 0
DTlhsDT relA

relA relA
 bis 4.18 

The positive area between the positive portion of the linear acceleration 
line and the time line over the Figure 4.7 time increment lhsDT is 

 (+ − )= • • +
1

0 0
2APositiveArea lhsDT relA  4.51 

The Figure 4.7 time increment rhsDT is given by 

 = −rhsDT DT lhsDT  4.52 

The negative area between the negative portion of the linear acceleration 
line and the time line over the Figure 4.7 time increment rhsDT is 

 (+ − = • • +
1

0
2ANegativeArea rhsDT relA )1

                                                                

 4.53 

There are two possible outcomes for the Figure 4.7 step-by-step numerical 
solution for relative velocity and relative displacement at time ti+1, 
depending upon the magnitude of relV0 relative to the magnitude of the 
sum of the PositiveArea+Α− plus the NegativeArea+Α−. These possible 

 
1 Again, observe the assumption of a linear variation in relative acceleration over the time-step DT shown 

in Figure 4.7.  
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scenarios are depicted by two columns of figures in Figure 4.7, labeled as 
Case 1 and Case 2 figure groups. 

Figure 4.7. Two possible outcomes for the case of a positive relative acceleration at time ti 
and a negative relative acceleration at time ti+1. 

Case 1: This case results if (a) the NegativeArea+Α− exceeds 
PositiveArea+Α− but the positive value for relative velocity at time ti is 
greater than the magnitude of the negative sum of PositiveArea+Α− plus 
NegativeArea+Α− , or (b) the NegativeArea+Α− is less than PositiveArea+Α− , 
consequently the positive value for relV0 at time ti will increase to a larger 
value of relV1 at time ti+1 (with an increase equal to the positive sum of 
PositiveArea+Α− plus NegativeArea+Α− ). The three left-hand side figures in 
Figure 4.7 are used to describe the Case 1 step-by-step solution scheme: 
The top figure describes the relative acceleration, the middle figure 
describes the relative velocity, and the lower figure describes the 
permanent relative wall displacement. 

The top Case 1 figure depicts the case of a wall sliding during the entire 
time-step DT because either (a) the NegativeArea+Α− exceeds 
PositiveArea+Α− but the positive value for relative velocity at time ti is 
greater than the magnitude of the sum of PositiveArea+Α− plus 
NegativeArea+Α− , or because (b) the NegativeArea+Α− is less than 
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PositiveArea+Α− . At the increment in time lhsDT after time ti, the positive 
acceleration area increases the value of relative velocity from the positive 
value of magnitude relV0 at time ti to a larger magnitude value at time [ti 
plus lhsDT], as shown in this figure. The relative velocity at time [ti plus 
lhsDT] is 

 ( )= + • • +
1

0
2

relVmid relV lhsDT relA0 0  bis 4.20 

The change in displacement from time ti to time [ti plus lhsDT] is equal to 
the labeled positive area between the quadratic relative velocity curve and 
the time line. At time [ti plus lhsDT] the wall displacement increases in 
magnitude from relD0 to relDmid. 

 
( ) (= + • + • • +

2

0 0 2
6

lhsDTrelDmid relD lhsDT relV relA )0 0  bis 4.21 

The wall continues in motion, with positive relative velocity and with 
additional permanent relative displacement after time [ti plus lhsDT] 
when the relative acceleration of the wall is positive. At time [ti plus lhsDT] 
the magnitude of wall relative velocity begins to decrease in magnitude as 
a result of the relative deceleration of the wall. The negative (labeled) 
triangular area between the time line and the linear relative deceleration 
line, shown in the top Case 1 figure, equals the change in relative velocity 
for the wall. Consequently, the value for relative velocity at time ti+1 

(labeled relV1 in the Case 1 middle figure) is 

 (= + • • +
1

1
2

relV relVmid rhsDT relA )0 1  bis 4.22 

The change in wall displacement from time [ti plus lhsDT] to time ti+1 is 
equal to the integral of the positive relative velocity of the middle relV-
figure. The permanent relative wall displacement increases in value from 
relDmid to relD1, as depicted in the bottom figure. 

 
( ) ( )= + • + • • +

2

1 2
6

rhsDTrelD relDmid rhsDT relVmid relA0 1  bis 4.23 

Case 2: This case results when the NegativeArea+Α− exceeds 
PositiveArea+Α− and the positive value for relative velocity at time ti is less 
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than the magnitude of the sum of PositiveArea+Α− plus NegativeArea+Α− . 
The four right-hand side figures in Figure 4.7 are used to describe the Case 
2 step-by-step solution scheme. From the top to bottom, one figure 
describes the relative acceleration, two figures describe the relative 
velocity, and one figure describes the permanent relative wall 
displacement. 

The top, right-hand side, Case 2 figure depicts the case of the sum of a 
(labeled) positive triangular area between the linear relative deceleration 
line and the time line (i.e., PositiveArea+Α− by Equation 4.51) plus a 
(labeled) negative triangular area between the linear relative deceleration 
line and the time line (i.e., NegativeArea+Α− by Equation 4.53), being 
negative and of greater magnitude than the positive value for relative 
velocity at time ti (designated relV0). Consequently, the wall will come to 
rest before time ti+1 is achieved. 

At time [ti plus lhsDT] the wall’s relative velocity increases in magnitude 
from relV0 to relVmid. The relative velocity at time [ti plus lhsDT] is 

 ( )= + • • +
1

0
2

relVmid relV lhsDT relA0 0  bis 4.20 

with the relative acceleration at time [ti plus lhsDT] equal to zero. 

The change in displacement from time ti to time [ti plus lhsDT] is equal to 
the labeled positive area between the quadratic relative velocity curve and 
the time line. At time [ti plus lhsDT] the wall displacement increases in 
magnitude from relD0 to relDmid. 

 
( ) (= + • + • • +

2

0 0 2
6

lhsDTrelDmid relD lhsDT relV relA )0 0  4.54 

At an increment in time [lhsDT+DTmid] after time ti, a portion of the 
negative deceleration area reduces the value of relative velocity from the 
positive value of magnitude relVmid at time [ti plus lhsDT] to a value of 0 
at time [ti plus (lhsDT+DTmid)], as shown in this figure. At time [ti plus 
(lhsDT+DTmid)] the relative acceleration is 

 ⎛ ⎞= •⎜
⎝ ⎠

1relArelAend DTmid
rhsDT ⎟  4.55 
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where DTmid is the time increment shown in Figure 4.7. The Figure 4.7 
negative relative acceleration area below time increment DTmid is 

 (+ − = • • +
1

0
2AAreaTriangle DTmid relAend)  4.56 

Τhe Figure 4.7 negative relative acceleration area below time increment 
DTzeroV is 

 (+ − = • • +
1

1
2AAreaTrapezoid DTzeroV relAend relA )  4.57 

Thus, the total Figure 4.7 negative relative acceleration area below time 
increment rhsDT is 

 + − + − + −= +A ANegativeArea AreaTrapezoid AreaTriangle A  4.58 

With the relative velocity at time [ti plus (lhsDT+DTmid)] equal to zero, 

 + −= +0 ArelVmid AreaTriangle  4.59 

By introducing Equations 4.20, 4.51, 4.55 and 4.56, and solving for 
DTmid, Equation 4.59 becomes 

 ( )+ −
⎛ ⎞= − • • +⎜ ⎟
⎝ ⎠

2 0
1 A

rhsDTDTmid relV PositiveArea
relA

 4.60 

At time [ti plus (lhsDT+DTmid)] the relative wall displacement comes to 
rest with 

 
( ) ( )= + • + • • +

2

2 0
6

DTmidrelDend relDmid DTmid relVmid relAend  4.61 

The wall remains at rest with zero relative velocity and with no additional 
permanent relative displacement from time [ti plus (lhsDT+DTmid)] until 
time ti+1. The permanent relative wall displacement at this time ti+1 is 

 =1relD relDend  4.62 
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4.4.6 Starting the CorpsWallRotate analysis and the initiation of wall 
translation during a DT time-step 

Start of the step-by-step time-history analysis: The numerical 
formulation used in the step-by-step time-history analysis by 
CorpsWallRotate assumes that the wall is at rest at the start of the analysis 
(i.e., at time ti equal to 0 and with i =1). Consequently, relative 
acceleration, relative velocity, and relative displacement are equal to zero 
as an initial boundary condition at the first time-step (i.e., with i = 1). 
Recall the relative acceleration at time ti is equal to the difference between 
the horizontal ground acceleration value at time ti minus the constant 
value of [(kCG)threshold-sliding-h times g]. 

Initiation of wall displacement during the first DT time-step: At the end 
of the first DT time-step, at time increment t2 (i.e., ti+1 and with i = 1 so the 
subscript i + 1 becomes 2), a relative acceleration value is computed by 
CorpsWallRotate. If a positive value for relative acceleration is computed at 
time increment t2 then the system is in motion (i.e., sliding) during this 
first time-step DT. 

However, if a negative value for relative acceleration is computed and the 
system has been at rest and with zero relative acceleration at time t1 = 0 
(i.e., ti and for i = 1) then the system is at rest at time t2. This means that 
the correct value for relative acceleration is zero at time t2. 

Initiation of wall displacement during a DT time-step: A wall is at rest at 
the beginning of any DT time-step (designated time ti in Figures 4.3 
through 4.7) when relative velocity and relative displacement are equal to 
zero. At all DT time-steps other that the first time-step, the values at time 
ti for relative acceleration, relative velocity, and relative displacement were 
computed during the previous time-step and then assigned as known 
values for this next time-step. The step-by-step numerical procedure 
implemented in CorpsWallRotate allows for wall displacement to initiate 
during any DT time-step during earthquake shaking. This will occur for a 
wall at rest at time ti, i.e., the start of the time-step, when a positive value 
is computed for relative acceleration at time ti+1. The numerical procedure 
outlined in Figure 4.4 allows for the computation of relative velocity and 
relative displacement at time ti+1 for this case. 
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4.4.7 Cessation of wall translation 

A wall is in motion at the start of any DT time-step (designated time ti in 
Figures 4.3 through 4.7) when relative velocity (i.e., relV) is nonzero. The 
step-by-step numerical procedure implemented in CorpsWallRotate allows 
for wall translation (i.e., sliding) to terminate during any DT time-step 
during earthquake shaking. This occurs when the deceleration of the wall 
is sufficiently large during time-step DT. The applicable numerical 
procedures are labeled as Case 2 in Figures 4.6 and 4.7. 

In the case of wall translation decelerating and with negative values for 
relative acceleration at times ti and ti+1 during time-step DT, the relative 
velocity at time ti+1 (designated relV1) and the relative wall displacement at 
time ti+1 (designated relD1) are made using the Case 2 approach outlined 
in Figure 4.6. Note the relative velocity reduces to zero at a time increment 
DTzeroV after time ti. The wall remains at rest and with zero relative 
velocity over time increment DTzeroD, as shown in this figure. 

In the case of wall translation decelerating and with a positive value for 
relative acceleration at time ti and a negative value for relative acceleration 
at time ti+1 during time-step DT, the relative velocity at time ti+1 
(designated relV1) and the relative wall displacement at time ti+1 
(designated relD1) are made using the Case 2 approach outlined in Figure 
4.7. Note the relative velocity reduces to zero at a time increment [lhsDT + 
DTmid] after time ti. The wall remains at rest and with zero relative 
velocity over time increment DTzeroV, as shown in this figure. 

Note that wall translation can begin again at a later point in time, as 
described in the subsection 4.4.6 paragraph entitled “initiation of wall 
rotation during a DT time-step.” 

4.5 New translational analysis model of a wall retaining a partially 
submerged backfill and buttressed by a reinforced concrete slab 

4.5.1 Introduction 

The formulation for a rock-founded wall retaining a partially submerged 
backfill and for the case of a pool in front of the retaining wall is 
summarized in this subsection. The formulation presented is an extension 
of the moist backfill formulation discussed in the previous sections of this 
chapter. Water pressures are assumed to act along three faces of the 
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structural wedge denoted as the toe, base, and the heel regions of Figure 
4.8. Forces acting on the toe are due to the presence of a pool of water in 
front of the wall. A leaking vertical joint is assumed between the base slab 
and the structural wedge with water pressures above the toe controlled by 
the presence of the pool. The computation of water pressures acting on 
this partially submerged structural wedge is discussed in detail in 
Appendix D.1 The Figure 4.8 distributions of water pressures are 
converted into equivalent resultant forces, expressed in global x- and y-
coordinates, and their points of application along each of the three 
regions. These resultant water pressure forces are used in an effectiv
stress-based stability analysis of the structural wedge. Dynamic 
considerations for the pool during earthquake shaking are accounted for
the analysis using hydrodynamic water pressures computed using the 
Westergaard (1931) procedure of analysis (see Appendix D). The 
hydrodynamic water pressure resultant force Pwd (Equation D.5) is shown 
acting on the structural wedge in this figure (and shown acting in a 
direction consistent with the direction of 

e 

 in 

positive horizontal acceleration, 
+ah). 

                                                                 
1 In the initial CorpsWallRotate version, no excess pore water pressures due to earthquake-induced shear 

strains within the soil regions are included in the current CorpsWallRotate formulation (i.e., the excess 
pore water pressure ratio ru is equal to zero). Refer to Ebeling and Morrision (1992) for a complete 
description and discussion of ru. 
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Figure 4.8. Control points, water pressures, and corresponding resultant forces acting normal 
to faces of the three regions of a structural wedge sliding along its base—effective stress 

analysis. 

In the case of a wall sliding along its base, contact between the base of the 
structural wedge and the foundation is maintained during earthquake 
shaking. Recall that a simplistic rigid base assumption is made in this 
formulation for rock-founded earth retaining structures. There is no 
formation of a gap sometime during earthquake shaking. Note that the 
Figure 4.8 water pressure distribution is the steady-state pore water 
pressures resulting from a structural wedge in full contact with the rock 
foundation, shown in Figure D.1. 

The resultant water pressure forces Utoe, Ubase, Uheel, and Pwd shown in 
Figure 4.8 are superimposed on the free-body diagram of forces acting on 
the Figure 4.2 structural wedge, resulting in the Figure 4.9 free-body 
diagram. Recall Presist is the force provided by the reinforced concrete (toe) 
slab. 
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Δxheel/toe

ΔxCG/0

Figure 4.9. Inertia forces and resultant force vectors acting on a rigid block model of a 
(inclined base) cantilever wall retaining a partially submerged backfill with sliding along the 

base of the wall during earthquake shaking of the inclined rigid base—effective stress 
analysis. 

4.5.2 Threshold value of acceleration corresponding to incipient lift-off of 

At the onset of sliding of the Figure 4.9 retaining wall, the horizontal 
driving force equals the stabilizing (i.e., restoring) force. The summation 

f the Figure 4.9 horizontal forces acting on the rigid body results in 

the base of the wall in rotation—partially submerged backfill 
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T is the shear force required for equilibrium of forces acting on the 
structural wedge (i.e., FSslide = 1.0). At incipient sliding, the shear strength 
along the base to foundation interface becomes fully mobilized. Assuming 
a full mobilization of shear resistance along the base (of length Lbase), the 
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shear force may be computed utilizing the Mohr-Coulomb failure criteria, 
in an effective stress analysis, as 

 ( )δ= • + •' ' tanbase base baseT c L N  ' bis 4.2 

The summation of the Figure 4.9 vertical forces acting on the rigid body 
results in 

( ) ( ) ( ) ( )ε ε δ − −= • − • − + • − • + −0 ' cos sin sinCG AE base y toe yv

WN T W a P U
g

U  4.64 

Introducing Equation 4.2 for T, Equation 4.64 becomes 
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gN  4.

Introducing Equations 4.2 and 4.65 and collecting variables, 
Equation 4.63 becomes 

65 
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st sliding along its base is equal to 1.0. For a factor of 
safety > 1.0 against sliding, the retaining wall does not slide. The rigid 

.e., 
gid 

s 
that exceed the value for acceleration that results in a factor of safety 

( )δ ε ε

⎪ ⎪⎩ ⎭
• • +⎡ ⎤⎣ ⎦tan ' cos sinbase

Equation 4.66 represents the equilibrium relationship for the (rigid) 
structural wedge when the earthquake accelerations are such that the 
factor of safety again

W

ε+ • • + + +' cosresist base

g
P c L

body CG accelerations are the same as the rigid base accelerations (i
within the rock foundation). However, the accelerations felt by the ri
body (i.e., at its center of gravity, CG) will differ from the rigid base 
accelerations for user-defined rigid base acceleration (time-history) value
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against sliding equal to 1.0. During sliding, the acceleration felt by the 
rigid body at its center of gravity is of constant magnitude. 

The component of the threshold acceleration occurring at translation (i.e., 
sliding) along the base is designated as 

 ( ) ( )− − − −
= •CG CGthreshold sliding h threshold sliding ha k g  bis 4.8 

where (kCG)threshold-sliding-h is a value of horizontal ground acceleration, 

 the yield acceleration. Note that the 
horizontal acceleration value [(kCG)threshold-sliding-h times g] is a not a user-
pecified constant. 

For a user-specified constant1 for vertical acceleration [i.e., (aCG)v = 
tant], CorpsWallRotate solves Equation 4.66 by introducing (aCG) 

threshold-sliding-h and (kCG) threshold-sliding-h for (aCG)h and (kCG)h. Because of the 
inclusion of acceleration in PAE formulation (refer to Appendix A) in this 
equation, CorpsWallRotate solves Equation 4.66 using a trial-and-error 

weight of the wall/structural wedge nor to its shear strength in this 
calculation. The value of maximum transmissible (horizontal) acceleration 
at incipient sliding is reported in the WORKslide.TMP output file 
generated in each CorpsWallRotate analysis. This file may be viewed using 

alysis 
tab. 

n CorpsWallRotate output data files, the Equation 4.66 ho
acting on the structural wedge are grouped into driving forces and 
resisting forces, which are defined as 

expressed in decimal fraction. In Ebeling and Morrision (1992), the 
acceleration (aCG)threshold-sliding-h is referred to as the maximum 
transmissible acceleration (N*g) or as

s

cons

numerical approach. Note that no safety factor need be applied to the 

the Visual Modeler boxes labeled Show Sliding Evaluation on the An

I rizontal forces 

 ( ) ( )δ −= • + • + +cosCG AE heel x wdh

WDriving Forces a P U P
g

 4.67 

and 

                                                                 
1 A procedure for determining the value for this constant (for vertical acceleration) is discussed in 

Section 4.6. 
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Introducing Equation 4.65, the resisting forces is also expressed as 

 

=

( )
{ } ( ) ( )

ε − −

( )δ ε ε

+ • • + + +

• • +⎡ ⎤⎣ ⎦' tan ' cos sinaseN

Resisting Forces

' cosresist base toe x base x

b

P c L U U  4.69 

In a total stress analysis, the internal pore water pressure force terms Ubase 

qual to N in 
Equations 4.63 through 4.69. 

ion is a 
simplified form of Equation 4.66 that may be derived by setting the 
vertical component of acceleration occurring at sliding equal to zero, as 
done by Richards and Elms (1979) and others. By making this assumption 
and introducing Equation 4.8, Equation 4.66 becomes 

and Uheel are excluded from Equations 4.66 through 4.69 and c′ is set 
equal to Su with φ′ set equal to zero. Additionally, N′ is set e

Since the horizontal limiting acceleration is of interest, another opt

( )

( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

ε δ

ε δ
ε δ ε
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− −

− − −

− −
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cos sin
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k

P c L U U P U P

c L W P U U

W

 4.70 

Because of the inclusion of acceleration in PAE formulation (refer to 
Appendix A) in this equation, CorpsWallRotate solves Equation 4.70 using a 
trial-and-error numerical approach. 

In a total stress analysis, the internal pore water pressure force terms Ubase 
and Uheel are excluded from Equations 4.63 through 4.70. 

δ

⎪ ⎪⎩ ⎭
• ⎡⎣tan '

base

base
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The summation of overturning and resisting moments about the toe (i.e., 
point 0) of the Figure 4.9 forces acting on the rigid body results in 

( ) ( ) ( ) [ ]

( )
( )

δ

− −

• • Δ + • • Δ + • • + −

+ • + • + Δ − + • Δ +⎡ ⎤⎣ ⎦
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W Wa y a x P y h y
g g
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P h W x P ( )δ
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U Y U X
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Solving for the location of the result effective force normal to the base, 
dNbase, Equation 4.10 becomes 

( ) ( )− • • Δ − • • Δ/0CG CG CGh v

W Wa y a x
g g
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 4.72 

Because of the inclusion of acceleration in PAE formulation (refer to 
Appendix A) in this equation, CorpsWallRotate solves Equation 4.72 using a 
trial-and-error numerical approach. Introducing the horizontal limiting 

its base 
 sliding 

⎡ ⎤
⎢
⎢

acceleration (i.e., Equation 4.8) in the case of a wall sliding along 
and setting the vertical component of acceleration occurring at
equal to zero, Equation 4.72 can be simplified to 
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G)threshold-sliding-h times g], the maximum 
transmissible acceleration (N*g in Ebeling and Morrison (1992) notation). 

 Ubase 

 of a 

ent) translation. A step-by-step solution scheme is followed 
in order to obtain the wall’s relative velocity and relative displacement in 

 

4.6 Vertical acceleration in the new translational analysis model of a 
wall retaining a partially submerged backfill and buttressed by a 
reinfo

iding block 
ck 

 

During sliding, the value of PAE is computed using the horizontal 
acceleration value [(kC

Recall that full contact is maintained between the base of the wall and its 
foundation during sliding in this formulation. 

In a total stress analysis, the internal pore water pressure force terms
and Uheel are excluded from Equations 4.71 through 4.73. 

4.5.3 Numerical method for computing the translational time-history
rigid block retaining structure 

Earthquake acceleration time-histories are used to represent the 
earthquake demand in a displacement analysis of rigid body structural 
wedge (perman

the time domain by CorpsWallRotate. An overview of the characteristics of
this numerical formulation is given in section 4.4. 

rced concrete slab 

Vertical accelerations can be included in the Newmark (1965) sl
analysis of earth retaining structures. However, several sliding blo
formulations, e.g., Richards and Elms (1979) and others, set the vertical 
component of acceleration occurring at sliding equal to zero in their 
formulations. Whitman and Liao (1985, pages 30 and 74) observe that the
vertical earthquake ground motion component is generally not considered 
to be of as much significance as the horizontal component and has 
generally been ignored in sliding block analyses. From their study of the 
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effect of vertical accelerations using 14 earthquake records on wall 
displacements (summarized in Section 6.5 of their report), they conclude 
that incorporating vertical ground accelerations causes greater residua
displacement. 

Current Corps projects often involve the development of horizontal and 
vertical acceleration time-histories for use in the design of various pro
features. One of the Corps projects leading to the development of 
CorpsWallRotate is sited in a high seismic region on the West coast and
situated in close proximity to an active fault that dominates the ground 
motion hazard. Initial assessments of the Maximum Cred

l 

ject 

 

ible Earthquake 
design events led to the development of horizontal and vertical 

 
cceleration time-histories. This 

can easily be accomplished by selecting the option to invert a time-history 
 vertical 

nor 

the 

n 

 4.2, 
resulting in infinite relative displacements. Consequently, a vertical 

 or 

 

is 

In a Newmark sliding block analysis of a retaining structure, 
CorpsWallRotate allows the user to specify a constant value for vertical 

acceleration time-histories with positive/negative peak values of 
1.2g/-1.02g and 0.83g/-1.2g, respectively. Normally the polarity of ground 
motions is not retained in their development so that in a sliding block 
analysis four combinations of horizontal and vertical ground motions are 
investigated, with two due to the reverse in sign for the horizontal and two
due to the reverse in sign for the vertical a

in the CorpsWallRotate Visual Modeler in the horizontal and/or
earthquake time-history tabs. For the case of a “dry” site (i.e., no pool 
water table within the retained soil), with cohesionless soils, interface 
friction δ between the driving and structural wedges equal to zero, 
computed value for the effective normal force acting along the base of a 
structural wedge would be less than or equal to zero according to Equatio
4.6 or Equation 4.65. The shear force resistance along the base of the 
structural wedge would be less than or equal to zero by Equation

acceleration time-history with magnitudes (at time-steps) approaching
exceeding 1g cannot be used in the current formulation. 

In an attempt to answer questions regarding the impact of a vertical 
acceleration time-history of significant amplitude on seismic response, as
is the case for the Corps project discussed in the previous paragraph, an 
alternative method to incorporate the effects of vertical accelerations in a 
Newmark (1965) sliding block analysis is proposed. This new approach 
incorporated in CorpsWallRotate program. 
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acceleration to be used (a) in the equilibrium Equation 4.7 or 4.66 when 
nd-error numerical procedure) th

maximum horizontal transmissible acceleration, (aCG)threshold-sliding-h , and 
(b) during the entire horizontal sliding block time-history analysis. This 

Method 1 - average vertical acceleration value: Using the user-

the 

e 

 

computing (in a trial-a e value of 

software implements the following two new methods for determining an 
approximate, constant, effective value for vertical acceleration: 

specified horizontal acceleration time-history and the user-provided 
constant value for vertical acceleration, the value for maximum horizontal 
transmissible acceleration, (aCG)threshold-sliding-h, is computed and a sliding 
block time-history analysis is performed. The software then identifies at 
which i time increments that incremental sliding (dr)i takes place and 
total number of incremental time-step increments i during which sliding 
occurs, designated nslide. The average vertical acceleration value for th
user-specified vertical acceleration time-history is computed for all these i 
time increments using the relationship 

( )
( )

−CG v ave
sliden

The sign for the average vertical acceleration, (av)i, during each sel
increment i for which incremental sliding occurs is maintained in this 
calculation. 

A trial-and-error procedure is used to determine the appropriate value fo
the constant vertical acceleration value. The primary author of this rep
usually starts with a constan

=
∑

slide

v i
i

a
a  4.74 

ect time 

r 
ort 

t vertical (Y) acceleration value set equal to 
zero. A Newmark sliding block analysis is made, including a computation 

orpsWallRotate using Equation 4.74 to determine a value for 
(aCG)v-ave . Then a second Newmark sliding block analysis is made in which 
the constant vertical acceleration value is set equal to the previously 

 

Method 2 - weighted vertical acceleration value: This approach is a 
variation of Method 1. Using the user-specified horizontal acceleration 

n

made by C

computed value for (aCG)v-ave by the user. This second computation results
in an updated value for (aCG)v-ave . The iterative process is repeated until 
the difference between old and new values is minor, usually within four 
computations. 
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time-history and the user-provided constant value for vertical (Y) 
cceleration, the value for maximum horizontal trans

(aCG)threshold-sliding-h, is computed and a sliding block time-history analysis is 

slide

 

, 

a missible acceleration, 

performed. The software then identifies at which i time increments during 
which incremental sliding (dr)i takes place and the total number of time 
increments i during which sliding occurs is designated n . The total 
horizontal displacement is 

 ( )= ∑
sliden

r r i
i

d d  4.75

A weighted vertical acceleration value is computed for the user-specified 
vertical acceleration time-history with average vertical acceleration value
(av)i, computed for each time increment i of incremental displacements 
using the following relationship 

 ( ) ( ) ( )
−

⎧ ⎫⎡ ⎤⎪ ⎪= •⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

weighted i
i rd

 in this 

opriate value for 
the constant vertical acceleration value. The primary author of this report 
usually starts with a constant vertical (Y) acceleration value set equal to 
zero. A Newmark sliding block analysis is made, including a computation 
made by CorpsWallRotate using Equations 4.75 and 4.76 to determine a 
value for (aCG)v-weighted . Then a second Newmark sliding block analysis is 
made in which the constant vertical (Y) acceleration value is set equal to 
the previously computed value for (aCG)v-weighted by the user. This second 
computation results in an updated value for (aCG)v-weighted . The process is 
repeated until the difference between old and new values is minor, usually 
within four computations. 

Method 2 differs from Method 1 in that the weighting factor applied to 
each of the average vertical acceleration, (av)i, values at the i time 
increments of incremental sliding is assigned according to the relative 
magnitude of incremental displacements occurring at each time 
increment. Method 1 applies a uniform weighting factor. 

∑
sliden

r i
CG vv

d
a a  4.76 

Again, the sign for the average vertical acceleration, (av)i, during each 
select time increment i of incremental displacements is maintained
calculation. 

A trial-and-error procedure is used to determine the appr
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5 The Visual Modeler and Visual Post-
Processor — CorpsWallRotate 

5.1 Introduction 

This chapter discusses the Visual Modeler, how to perform a 
CorpsWallRotate analysis, and how to interpret the results using the Visual 
Post-Processor. It also provides guidance for using the CorpsWallRotate 
software package. The software package is referred to by its abbreviated 
name, CWRotate, throughout this chapter. 

5.2 Visual modeler and visual post-processor 

5.2.1 Introduction to the visual modeling environment 

CWRotate is a program for performing rotational or translational time-
history analysis of a variety of wall structures during earthquake loading. 
This chapter is intended to give the user an understanding of how the 
CWRotate program is to be used to its greatest potential. To that end it 
also tries to imbue the user with an understanding of the work-flow in 
creating and executing a CWRotate analysis. 

Input data for the CWRotate program falls into six different groups, and 
the user-interface reflects those groupings using tabs. The input groupings 
are: 

• Horizontal earthquake time-history data 
• Vertical earthquake time-history data 
• Structural geometry 
• Structural wedge information 
• Driving wedge information 
• Analysis specific data 

There is one other tab, a “splash” tab that shows a typical example of the 
type of problem handled by the CWRotate program; this is labeled as the 
Introduction tab. Above the Introduction tab shown in Figure 5.1 is a drop 
down menu entitled “File.” Activating this menu allows the user to open an 
existing, user-created, ***.CWR file that replenishes the contents of all 
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tabs. Also on the Analysis tab are the controls to run an analysis and post-
processing options. 

Introduction Tab: The first tab, labeled Introduction, shows the 
structural wedge, idealized as a rigid body, and the forces acting on it 
(Figure 5.1). The rock-founded cantilever retaining wall is buttressed at its 
toe by, e.g., an invert spillway slab (not shown). The rotation of the 
structural wedge about its toe is assumed to occur during earthquake 
shaking. 

Forces Shown on the Introduction Tab: PAE is the dynamic active 
earth pressure force due to the driving, moist soil wedge (not shown) or 
the partially submerged soil wedge (when a water table is present in the 
retained soil). Inertial effects due to earthquake shaking are incorporated 
in PAE. W is the weight of the structural wedge, including both the weight 
of the (cantilever) retaining wall as well as the weight of the soil contained 
with this idealized structural wedge. W times kh and W times kv are the 
horizontal and vertical inertial forces, respectively, acting on the structural 
wedge during earthquake shaking. The reactions of the rock foundation on 
the structural wedge are represented through the horizontal and vertical 
forces T and N′, respectively. Presist is the force provided to the toe of the 
(cantilever) retaining wall by the invert spillway slab (not shown) during 
earthquake shaking. 

5.2.2 Earthquake time-history input 

Both horizontal and vertical time-history input follow the same input 
pattern. First an appropriate, base-line corrected acceleration time-history 
data file is selected for the Corps project by the user. Given the non-
standardized nature of earthquake time-history data files, certain 
attributes need to be specified to correctly read the input (ASCII) data file. 
These attributes are entered in the Format section of the Earthquake 
Time-history (EQTH) tabs – Horizontal and Vertical. This is an 
exceptionally powerful tool for handling any format EQTH files. Figure 5.2 
shows the Horizontal Earthquake Time-History tab. 

To read in an appropriate EQTH data file, the user must first specify a file 
to be read in. The user can type a specific filename or select a file using the 
Find button that exists on the Earthquake Time-History tabs. 
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Figure 5.1. The Introduction tab features and idealized structural wedge diagram. 

When a file has been selected, a format must be built. All specifications for 
reading a file are grouped in a frame labeled EQTH Format. To know 
what information to enter for reading the file, it will be beneficial to be 
able to peruse the file to find each section of data. 
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The first data in each EQTH file are a number of header lines. These are of 
no concern to the CWRotate program, so entering how many header lines 
there are allows the program to skip those lines. Also of no concern to the 
program CWRotate are line numbers in the input. In order to ignore them, 
the user must specify whether these line numbers exist, and if they do, 
which side of the data are they on. 

It is more important to know how many data samples are on each line. 
Entering the Number of Values/Line keeps the program from entering 
blank samples or ignoring samples. The value entered for Time-step 
should be the amount of time that occurs between samples, establishing 
the sampling frequency and the total time for the earthquake data. 

Since CWRotate works from the beginning of an earthquake, it is to be 
assumed that the first sample, time-step 0, will be of value 0.0 in whatever 
units are to be chosen. If the EQTH file does not have this zero point, it 
will have to be added. This can be done using the combo box provided. 

In the same manner, the units in which the data were recorded can be 
specified. NOTE: The vertical EQTH file uses the same units as the 
Horizontal EQTH file. EQTH units must be consistent. 

Finally, there is a combo box that shows several options for a data format. 
These formats are displayed as if they were in a FORTRAN FORMAT 
statement. These are especially important in areas where data text may 
run together. 

After an EQTH format has been built for a particular file, the user can read 
in the Earthquake Time-history. When the button has been pressed, the 
actual values of the maximum and minimum values for that file are 
displayed in the Data Limits sub-frame of the EQTH Format frame. A 
plot of the input data also is displayed at the bottom of the tab. The Edit 
EQTH Data frame is also enabled. 

The Edit EQTH Data frame is a tool that allows the user to scale the 
EQTH data to values more appropriate for modeling the problem at hand. 
There is a combo box that allows the user to invert the user-specified 
earthquake acceleration time-history values, which is valuable for 
determining how the direction of peak values influences the computed 
results. 
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There are also two possible ways of scaling the input data, either by setting 
an absolute scale value to multiply the samples by or by setting an absolute 
maximum value for the positive peak value and scaling the other samples 
to match. To choose the scale method, click the radio button beside that 
option. Then type in the value desired. 

When this is done the inactive choice will be updated with the related 
value. Also, the scaled minimum and maximum values will be displayed, 
and the data plot at the bottom of the form will reflect the changes. 

If the user desires a hardcopy of the scaled data in the same format as at 
the bottom of the tab, there is a button labeled Print Plot. 

Vertical acceleration time-histories are handled in a similar fashion as the 
horizontal acceleration time-histories. 

5.2.3 Structural geometry input 

For simplification of the geometric modeling and engineering analysis 
required to configure the structural wedge for analysis, it is assumed that 
the structural geometry of any structure designed by this program will be 
described in axis-aligned right-triangular and rectangular regions. Using 
this idea, a structural region template was created (see the lower image in 
Figure 5.3) that allows the user to specify regions as widths and heights for 
an accurate representation of the wall. There are a total of ten different 
regions that may be used. Each region is placed in relation to the other 
regions, and most regions can be represented as zero width and/or height, 
effectively removing them from the structure. The result of this modeling 
technique is the possibility to model almost any standard Corps retaining 
wall cross section. 

The diagrams in Figures 5.4 and 5.5 illustrate how the sections can be used 
to create different wall cross sections. Figure 5.4 displays each of the ten 
sections as well as their widths and heights. Each section is either 
rectangular or right triangular, and can therefore be defined by specifying 
the width and height of each of the sections that, when assembled 
together, form the structural wedge. Three material regions of concrete, 
moist soil, and saturated soil are allowed. The concrete material regions 
are assigned to material region numbers 1, 2, 6, 7, and 10. Moist soil 
material regions are assigned numbers 4, 5, and 9, while saturated soil 
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material regions are assigned numbers 3 and 8. Values for the three 
material unit weights are specified by the user as part of the input data. 

Figure 5.2. A strong earthquake time-history ground motion shown in the Earthquake tab. 
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Figure 5.3. Dynamic forces acting on the free-body section of the structural wedge and its 
material regions. 
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Figure 5.4. Examples of width and height definition for each of the ten structural wedge 
material regions. 

Figure 5.5 shows examples of how different walls may be configured using 
the ten sections. Entering a width or height of zero enables sections to be 
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entirely ignored for a structural wedge. For example, in the first diagram, 
region 6 is not used and therefore its width (or height) is set to zero as user 
input. 
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a. Moist backfill (Continued) 
Figure 5.5. Examples of structural wedge material regions (Sheet 1 of 4). 

When region 10 is specified, as in the case of some of the hypothetical wall 
geometries shown in Figure 5.5, the user is allowed to input the height of 
the region but not its width. The width of region 10 is dictated by the 
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geometry (specifically, the width) of region 1, as shown in these figures. 
When this region is present, the user specifies its height. 
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a. Moist backfill (Continued). 
Figure 5.5. (Sheet 2 of 4). 
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a. Moist backfill (Concluded). 
Figure 5.5. (Sheet 3 of 4). 

Figure 5.5b shows the configurations possible if a water table is specified 
in the retained soil. Regions 3 and 8 are created when a table within the 
retained soil is higher than the concrete structure above the heel point. 
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b. Partially submerged backfill. 
Figure 5.5. (Sheet 4 of 4). 

The Figure 5.6 Geometry input tab is designed around this template 
scheme and provides a visual confirmation for the user. At the upper left of 
the tab, there is a region template that shows all of the regions that can be 
used in CWRotate. Each region is color-coded to show which of the three 
materials it belongs to. The currently selected region (chosen in the 
Region Information box) is highlighted to show the user which 
geometry is being changed. 
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At the upper right of the tab is a drawing of the geometry as created by the 
user. Three data points are also displayed for the structure (although 
overlapping points may hide others). The toe point is the lower leftmost 
point of the wall and it is displayed in purple. All geometry is placed 
relative to this toe location. Its coordinate is entered in the Toe Position 
box, using the units specified in the Units of Length combo box. Since 
all data are relative to this point, changing the toe position will not change 
the input geometry plot. 

Another point displayed on the input geometry plot is the rotation point. 
In this initial version of CorpsWallRotate, the rotation point will be specified 
by default to be the same as the toe point and will hide the toe point dot in 
the input geometry plot. The rotation point, displayed in red, is the point 
at the base, coincident with the toe of the wall. It is the point about which 
the structural wedge will rotate. Note that the rotation point is restricted 
to the toe point in the Rotation Point data box display. The boxes for the 
coordinate entries are gray, signifying a fixed value that the user may 
not change. 

The last point that is displayed on the input geometry plot is the center of 
gravity for the structural wedge, displayed in light green. The center of 
gravity is computed for the user, based on the geometry for the model and 
the material unit weights for each region of the geometry. The actual 
absolute coordinates of the center of gravity are displayed in the Center 
of Gravity box. Because it is a computed value, its (coordinate) entry 
boxes are gray to designate that the user need not perform this tedious 
calculation. 

There are four unit weights for the model. These unit weights are for 
concrete, moist soil, saturated soil, and water. They are user-specified 
input in the Unit Weights data box, using the units displayed in the title 
for the box. 

The input geometry is input using the Region Information box. The 
user can select a region to edit, which will be highlighted in the region 
template plot, and then specify a width and height for that region. Any 
other affected regions are adjusted to fit the new region and the results are 
displayed in the input geometry window. 
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Another way to change the geometry of the model is to specify the 
Backfill Water Table Height. The water table height specifies the 
separation point between moist and saturated soil, in the input geometry 
(and in the driving wedge, discussed later). The water table height is 
specified relative to the heel of the model, defined as the lower rightmost 
point, possibly below the toe. 

On the pool side, the water must be taken into account for rotation or 
sliding, too. The Pool Base height is set by the top of the buttressing, 
reinforced concrete toe slab, and is measured (vertically) from the toe. The 
Pool Height is also measured relative to the toe. These two heights define 
the total height of the pool for hydrodynamic water pressure calculations 
(see Appendix D). 

The last bit of input data to be entered on the input geometry tab is a force 
representing the buttressing action of the reinforce concrete slab acting on 
the vertical face extending upwards from the toe of the wall. This is a user-
specified force which acts horizontally at a user-specified height above the 
toe of the retaining wall. (Refer to Strom and Ebeling (2004) for a method 
to determine the magnitude of this force.) The relative height and 
magnitude are specified in the Resisting Force box, using the units in 
the title of the box. Its height is measured relative to the toe. 

From the Geometry tab, a button click can let the user view the water 
pressures for the structural geometry, relative to the water heights 
(Figures 5.7 and 5.8). (Refer to Appendix D for a complete description of 
the assumptions made for water pressures in this initial version.) Another 
tab shows the computed data for the structural wedge (Figure 5.9). Tables 
showing the current input and computed values (center of gravity, 
moment about the rotation point, etc.) can be viewed, saved to a file, or 
printed. It is also possible to print a plot of the input data from this 
window. 
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Figure 5.6. The input Geometry tab in action. 
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Figure 5.7. Boundary water pressure diagram — full contact along the base of the retaining 
wall with its foundation in a sliding block analysis. 

5.2.4 Structural wedge data 

To simplify the computation of forces upon a wall, the model of the 
retaining system was split into two wedges: The structural wedge contains 
the retaining wall geometry, and the driving wedge to the right of the 
structure that “pushes” against the structural wedge. 

From the Structural Wedge data tab, it is possible to enter the 
engineering material properties for the structural wedge. Soil strength can 
be entered using parameters associated with either the Effective Stress 
or Total Stress method of analysis, with either choice determining what 
is input. Consideration of seismically induced permanent deformations is 
part of the material property specification process. These data input tabs 
for the structural wedge are shown in Figures 5.10 and 5.11, respectively. 

If Effective Stress method of analysis is chosen, then the effective angle 
of internal friction and the effective cohesion need to be entered for both 
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the foundation soil and the soil-to-concrete interface at the base of the 
retaining wall. 

Figure 5.8. Boundary water pressure diagram — loss of contact (i.e., development of a gap) 
along the base of the retaining wall with its foundation in a rotational analysis. 

If Total Stress is chosen then the undrained shear strength is required 
for both foundation soil and the soil-to-concrete interface. The tab changes 
reflect the different input. Note that in a total stress analysis the friction 
angle (PHI) box does not accept user input and its value is internally set 
equal to zero by CWRotate. 
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Figure 5.9. Summary of the user-defined geometry and computed weight, mass and moments 
of inertia for the structural wedge as defined in the Geometry tab. 
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Figure 5.10. Defining the material properties using the Structural Wedge tab for an effective 
stress analysis. 
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Figure 5.11. Defining the material properties using the Structural Wedge tab for a total 
stress analysis. 
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5.2.5 Driving wedge data 

Modeled after the input to the PC-based program EQWedge (developed by 
the primary author of this report), the driving wedge data allow the input 
of engineering data for determining the force imposed by the driving 
wedge on the structural wedge. The sweep-search wedge formulation is 
used to compute this force, as discussed in Appendix A. Some structural 
wedge geometry data are also displayed on this tab as a reminder for the 
user. 

Once again, the method for determining the soil strength determines the 
data that are input for the driving wedge soil properties. If Effective 
Stress is chosen then the effective angle of internal friction and the 
effective cohesion need to be entered for the retained soil of the driving 
wedge (Figure 5.12). (The effective angle of interface friction is also 
specified.) Otherwise, if Total Stress is chosen then only the undrained 
shear strength is required for the retained soil of the driving wedge (Figure 
5.13). The tab changes to reflect the different input. All other inputs for 
this tab stay the same. 

The value entered for Delta is the effective angle of interface friction 
between the driving wedge and the structural geometry. This interface is 
the imaginary vertical section that extends upwards from the heel of the 
wall and delineates the driving wedge from the structural wedge. 

The height of the vertical section is determined from the structural wedge 
geometry. It is provided to give the user knowledge of the length of the 
vertical interface between the structural wedge geometry and the driving 
wedge. 

The height to level backfill and backfill slope entries define the shape of 
the driving wedge. It is assumed that the retained soil geometry is as high 
as or higher than the structural wedge geometry, as defined by the height 
to level backfill. If the retained soil is higher than the structural geometry, 
then a slope must be specified for the backfill, until it reaches the level 
backfill limit. 

The next three values shown are the moist unit weight, the saturated unit 
weight, and the hydrostatic water table. These values were all entered in 
the structural wedge Geometry tab, and are provided here as a reminder. 
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The next value, ru, is the excess pore water pressure ratio due to 
earthquake shaking in an effective stress analysis. It is disabled in this 
program (at this time). However, provisions are made to add this option to 
CWRotate in the future. 

The final value for entry is the minimum angle for the slip plane. Using a 
sweep-search method of analysis, CWRotate will evaluate all potential slip 
planes in 1-degree increments, between the user-provided Min. angle for 
slip plane value (in degrees) and 89 degrees, from horizontal. If a 
maximum thrust force is not found (refer to insert figure to Figure A.1) 
then the driving wedge defined by the user-provided minimum angle for 
slip plane is used to compute the thrust force acting on the structural 
wedge. A low value for this angle is typically specified by the primary 
author of this report (e.g., on the order of 5 degrees or so) unless there are 
geometrical constraints. 
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Figure 5.12. Defining the material parameter for the Driving Wedge tab — effective stress 
method of analysis. 
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Figure 5.13. Defining the material properties for the Driving Wedge tab — total stress method 
of analysis. 
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5.2.6 Analysis results and visual post-processor 

The Figure 5.14 Analysis tab is broken into three sections: Input 
Parameters, Run CWRotate Analyzer, View Output. The Input 
Parameters section allows the user to enter last-minute analysis options. 
The Run CWRotate Analyzer section is a button to execute the program. 
The View Output section contains options for viewing the many outputs of 
the CWRotate Analysis, including an option to view the total rotation 
and/or slide of the structure. 

Immediately prior to execution of CWRotate it is a good idea to create a 
restart file containing all the input information. This is accomplished by 
using the file drop down menu and the save option. The file created has a 
“CWR” extension. This file may be read in by CWRotate using this same 
file drop down menu and populate the data contained within all tabs at a 
later point in time. 

After the Run CWRotate Analyzer button is activated, a CWRotate.IN 
ASCII data input file, described in Appendix F, is created by the Visual 
Modeler and the FORTRAN engineering program is executed. This 
FORTRAN engineering program creates the output and plot data files that 
are used in the Figure 5.14 Visual Output frame of the Analysis tab. 
Appendix G lists and summarizes the contents of these output and plot 
data files. 
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Figure 5.14. The Analysis tab. 

In the Input Parameters frame allows for the user to select/specify the 
following four pieces of information: 

1. Vertical Time-History Usage combo box: 
• Determine representative constant value 
• Evaluate with representative constant value 
• Evaluate with current time-history 
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2. Constant Y Acceleration data box. 
o box: 

alysis 
4. Output Units combo box. 

 
uring shaking when sub-

jected to the Corps Project Design Earthquake: 

st 

d 

-

 

ff 

n 

ined by using the results based on a sliding 
block evaluation process. 

 

3. Analysis Type comb
• Sliding Analysis 
• Rotating Analysis 
• Sliding and Rotating An

Input Parameters selection is best described by the following staged seis-
mic evaluation approach: The first step in the process is to determine if the
user-specified retaining wall will slide or rotate d

1. Select a Sliding Analysis Type and select Vertical Time-history 
Usage: Determine a representative constant value for the vertical 
time-history (which will be a trial-and-error, iterative process). In the fir
iteration specify a Constant Y Acceleration set equal to zero. Select 
Run CWRotate Analyzer and view the results to determine the average 
and the weight vertical acceleration during sliding (definitions given in 
Section 4.6), as reported by the Show Sliding Evaluation button (or, 
equivalently, in the WORKslide.TMP ACSII output file). Perform a secon
CWRotate analysis using an updated Constant Y Acceleration value 
based on this vertical acceleration information. Repeat the analysis until 
conversion is achieved. Read the updated value for the maximum trans
missible acceleration and the updated value for the incipient lift-off in 
rotation acceleration as reported by the Show Lift-Off Evaluation 
button (or, equivalently, in the WORKrotate.TMP ACSII output file). Note
that both analyses are using the same Constant Y Acceleration values 
in their respective computations. The smaller of the two horizontal accel-
eration constants dictates if the wall will slide or rotate for the given wall 
geometry, soil shear strengths, and ground motions. If the values for the 
maximum transmissible acceleration and the value for the incipient lift-o
in rotation acceleration are close, it may be worthwhile to perform a sec-
ond series of rotating block analyses to determine a more accurate value 
for the Constant Y Acceleration that is consistent with the acceleratio
pulses generating wall rotation for the lift-off evaluation process, rather 
than using the value determ

 
2. In order to determine a value for the Constant Y Acceleration that is

consistent with the acceleration pulses generating wall rotation for the 
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lift-off evaluation process, select a Rotating Analysis Type and select 
Vertical Time-history Usage: Determine a representative con-
stant value for the vertical time-history (which will be a trial-and-error,
iterative process). In the first iteration specify a Constant Y Accelera-
tion (set equal to zero or the value determined from the final sliding blo
analysis discussed in the previous paragraph). Select Run CWRotate 
Analyzer and view the results to determine the average and the weight 
vertical acceleration during sliding (definitions given in Section 4.6), as 
reported by the Show Lift-Off Evaluation button (or, equivalently, in
the WORKrotate.TMP ACSII output file). Perform a second CWRotate 
analysis using an updated Constant Y Acceleration value based on the
vertical acceleration information. Repeat the analysis until conversion is 
achieved. Read the updated value for the incipient lift-off in rotation accel-
eration as reported by the Show Lift-Off Evaluation button (or, equiva-
lently, in the WORKrotate.TMP ACSII output file). The smaller of the tw
horizontal acceleration constants, the maximum transmissible accelera-
tion value and the value for the incipient lift-off in rotation acceleration, 
dictates if the wall will slide or ro

 

ck 

 

 

o 

tate for the given wall geometry, soil shear 
strengths, and ground motions. 

 

 
id-

 

n the structural wedge are reported in this same data 
output box and file. 

ted in 

                                                                

If the wall will slide before it will rotate, then for the sliding block analysis
using the final Constant Y Acceleration value (determined during the 
sliding pulses1), continue viewing the results of the Newmark time-history
analysis using the as reported in the figure(s) activated by the Plot Sl
ing Time-History button. Show Sliding Evaluation button (or, 
equivalently, in the WORKslide.TMP ACSII output file) also reports the
value for the cumulative (permanent) horizontal relative wall displace-
ment. Forces acting o

If the wall rotates before it slides, then another CWRotate analysis is 
required. Select a Rotating Analysis Type and select Evaluate with 
current time-history for the Vertical Time-history Usage. View the 
results of the rotating structural wedge time-history analysis as repor
the figure, is activated by the Plot Rotating Time-history button. 
Show Lift-Off Evaluation button (or, equivalently, in the 
WORKrotate.TMP ACSII output file) also reports the cumulative 

 
1 Based on Input Parameter selection for the Analysis tab of a Sliding Analysis Type and Vertical Time-

History Usage: Determine a representative constant value or with Evaluate with representative 
constant value. 

 



ERDC/ITL TR-06-2 185 

(permanent) wall rotation. Moments and Forces acting on the structural 
wedge are reported in other output button activated files (refer to Appen-
dix G for a description of output file contents). 

ect 

o-
 

 time-history analysis (but not both complete 
time-history analyses). 

ples discussed in the following two subsections demonstrate 
this process. 

t a dry soil site — No reinforced 
concrete slab buttress at the wall’s toe 

 

t is 

-

e 
me-

 polarity of ground motions was not retained during their 
development. 

If the user were to select a Sliding and Rotating Analysis Type, sel
Evaluate with a representative constant value for the Vertical 
Time-history Usage and specify a Constant Y Acceleration value, 
and Run CWRotate Analyzer. During the CWRotate analysis, the pr
gram would automatically determine if the wall will slide or rotate and
perform the appropriate

The two exam

5.2.7 Example 1 — Earth retaining wall a

In this first example consider the case of the seismic stability evaluation of
the Figure 5.15 reinforced concrete earth retaining structure. No buttress-
ing toe slab exists in this evaluation. This 22-ft high earth retaining struc-
ture retains moist cohesionless soil, dense sand, and is founded on rock. 
During construction, a thin layer of dense sand was used to level the top of 
rock before pouring the base of the reinforced concrete retaining wall. I
assumed that this Corps project is sited in a high seismic region on the 
West coast and situated in close proximity to an active fault that domi
nates the ground motion hazard. The projects horizontal and vertical 
strong ground motion component time-histories were provided (by th
District) and possess scaled horizontal and vertical acceleration ti
histories with positive/negative peak values of 0.96g/-0.82g and 
0.68g/-0.96g, respectively. Both acceleration time-histories are baseline 
corrected. The
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24’

+ah = kh * g

+av = kv * g

Retained soil
Dense sand

γmoist = 125 pcf
c’ = 0

φ’Peak = 39 deg
φ’Residual = 35 deg

Rock foundation
c’ = 2400 psf
φ’ = 32 deg

Heel
Toe

14’

1.5’3’ 8’
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10 deg

Reinforced concrete
retaining wall
γc = 150 pcf

2’
2’

18’

Dense sand
c’ = 0

φ’Peak = 38 deg
φ’Residual = 34 deg

Figure 5.15. Rock-founded earth retaining wall for Example 1. 

Figure 5.16 shows the input Geometry tab data for this problem. Material 
region numbers 1, 2, 4, 6, and 10 are used to define the geometry of the 
structural wedge. Note a resisting force at the toe of the wall is set equal to 
zero since a reinforced concrete buttress slab is not present. 

A minimum angle for slip plane of 3 degrees from horizontal is specified in 
the Driving Wedge tab (not shown). Additionally, residual shear 
strength parameter values of φ’ = 35 degrees and φ’ = 34 degrees are 
specified for the retained soil and the cohesionless soil immediately in 
contact with the base of the structural wedge, respectively. 
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Figure 5.16. Data contained within the input Geometry tab for Example 1. 

The first step in the CWRotate analysis is to determine if the Figure 5.15 
retaining wall will slide or rotate during shaking when subjected to the 
District’s Project Evaluation Earthquake. Select a Sliding Analysis Type 
and select Determine a representative constant value for the Verti-
cal Time-history Usage (which will be a trial-and-error, iterative proc-
ess). Table 5.1 summarizes the computed results from this two-iteration 
process. In the first iteration, a Constant Y Acceleration is set equal to 
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zero. The program is executed via select Run CWRotate Analyzer but-
ton and the results used to determine the average and the weighted verti-
cal acceleration during sliding (definitions given in Section 4.6), are 
viewed by the Show Sliding Evaluation button (or, equivalently, in the 
WORKslide.TMP ACSII output file). Based on the computed average and 
weighted vertical acceleration values, a second CWRotate analysis is con-
ducted using a Constant Y Acceleration set equal to 0.01g. Figure 5.17 
shows the Analysis tab input and settings for this computation. This sec-
ond iteration/Newmark sliding block computation is made with Constant 
Y Acceleration set equal to a constant 0.01 g. Conversion is achieved in 
this computation as demonstrated in the tabulated values. The bottom fig-
ure in Figure 5.18 shows the magnitude of vertical acceleration for each 
time-step during which sliding occurs (specifically, the average accelera-
tion during each time increment of sliding) for this second Newmark slid-
ing block analysis (activated by the Plot Effective Vertical Acc. button). 
The Table 5.1 average and weighted vertical acceleration values are com-
puted using the Section 4.6 Equations 4.74 and 4.76, respectively. Note 
that even though the peak positive/negative vertical accelerations are 
0.68g/-0.96g, respectively, for the time-history figure second from the top 
in Figure 5.18, these peak values are not concurrent with the times of slid-
ing. The vertical accelerations that occur during sliding are far lower in 
magnitude and are labeled effective vertical accelerations (that occur dur-
ing sliding) in this bottom figure. In this manner, a vertical acceleration 
time-history possessing peak positive/negative vertical accelerations of 
0.68g/-0.96g, respectively, becomes a constant Y acceleration of (positive) 
0.01g for the sliding analysis. 

The computed value for the (horizontal) maximum transmissible 
acceleration is equal to 0.34 g (reported by the Show Sliding 
Evaluation button or, equivalently, in the WORKslide.TMP ASCII output 
file). For the incipient lift-off in rotation the computed horizontal 
acceleration is computed to be 0.37g (reported by the Show Lift-Off 
Evaluation button or, equivalently, in the WORKrotate.TMP ASCII 
output file). These computations are also made with a Constant Y 
Acceleration of 0.01g. (It is reasoned that those horizontal acceleration 
pulses during which sliding occurs will also dominate the pulses during 
which rotation will occur.) Since the maximum transmissible acceleration 
is the smaller of the two horizontal acceleration constants, the wall will 
slide during earthquake shaking (for the given wall geometry, soil shear 
strengths, and ground motions used in this particular analysis). 
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A separate analysis to determine a value for the Constant Y 
Acceleration that is consistent with the acceleration pulses generating 
wall rotation for the lift-off evaluation process was also conducted.1 After 
iteration, the computed results were the same as for the sliding block 
based analyses; a Constant Y Acceleration value of 0.01g with the 
horizontal acceleration for incipient lift-off in rotation computed to be 
0.37g (reported by the Show Lift-Off Evaluation button or, 
equivalently, in the WORKrotate.TMP ASCII output file). 

Table 5.1. Assessment of constant Y acceleration, the effective vertical acceleration for 
Example 1. 

Iteration 
No. 

User Specified 
Acceleration 
(kCG)v*g 

Average Vertical 
Acceleration 
(kCG)v-ave*g 

Weighted Vertical 
Acceleration 
(kCG)v-weighted*g 

Maximum 
Transmissible 
Acceleration 

1 0 0.0124g 0.0121g 0.35g 

2 0.01g 0.0128g 0.0136g 0.34g 

 

                                                                 
1 Based on Input Parameter selection for the Analysis tab of a Rotating Analysis Type and Vertical Time-

history Usage: Determine a representative constant value. 
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Figure 5.17. The final Analysis tab for Example 1. 
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Figure 5.18. Time-history of the evaluation of the effective vertical acceleration. 

Since the Figure 5.15 retaining wall will slide before it will rotate, then 
continue viewing the results for the Newmark time-history permanent 
deformation analysis results, which for this problem is shown in 
Figure 5.19. This figure is seen by activating the Plot Sliding Time-
history button on the Analysis tab. (Note that the Show Sliding 
Evaluation button (or, equivalently, in the WORKslide.TMP ASCII 
output file) also reports the value for the cumulative (permanent) 
horizontal relative wall displacement.) The upper figure is a plot of the 
horizontal acceleration time-history and the red line designates the 
maximum transmissible acceleration value of 0.34g. Wall displacements 
start to occur the first time the acceleration trace plots above this red line. 
Observe that permanent wall translation starts at about 10 seconds after 
initial shaking and concludes by about 17 seconds out of a total of 
35 seconds of ground shaking. The cumulative permanent displacement is 
about 9 inches, which occurs over about six significant relative (wall) 
velocity and displacement pulses (refer to the second and third figure 
down from the top, respectively). During sliding the maximum inertial 
force imparted to the structural wedge and to the driving soil wedge (and 
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to PAE) is due to a horizontal acceleration of 0.34g , the value for the 
maximum transmissible acceleration (with a constant vertical acceleration 
of 0.01g). Forces acting on the structural wedge are reported by the Show 
Sliding Evaluation button (or, equivalently, in the WORKslide.TMP 
ASCII output file). By allowing the retaining wall to slide, the retaining 
wall structural wedge and soil wedge are not subjected to inertia forces due 
to the higher accelerations values, i.e., up to 0.96g of horizontal 
acceleration. Thus, allowing the wall to slide during earthquake shaking 
provides for lower design forces than would otherwise occur should 
translational wall movements have been constrained. 

Figure 5.19. Newmark sliding block time-history results for Example 1. 

Selected output for the driving soil wedge forces and pressures acting on 
the structural wedge during sliding are as follows: 
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For a dense sand, the Table 1.1 guidelines indicate that for a 22-ft-high 
section, active earth pressures may be used in the analysis if wall 
movements exceed ¼ in. (=0.001 times 22 ft times 12 in./ft). With 
predicted wall movements on the order of 9 inches, the use of active earth 
pressures in the dynamic time-history permanent displacement 
calculations is deemed appropriate. 

Since the polarity of ground motions was not retained in their 
development, this analysis would be repeated three more times with the 
user reversing the polarity of the horizontal and vertical input ground 
motions to determine the most critical results. 

Using the forces provided in the output file1, the user is advised to 
determine if the bearing capacity of the foundation is adequate. 

5.2.8 Example 2 — Earth retaining wall at a dry soil site — 1-foot thick 
reinforced concrete slab buttress at the wall’s toe 

Consider the case of the Figure 5.15 earth retaining structure buttressed by 
a 1-ft-thick reinforced concrete slab as shown in Figure 5.20. As was the 

                                                                 
1 Appendix G summarizes the contents of the output files. 
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case in Example 1, the 22-ft-high earth retaining structure retains moist 
cohesionless soil, a dense sand, and is founded on rock. During 
construction, a thin layer of dense sand was used to level the top of rock 
before pouring the base of the reinforced concrete retaining wall. It is 
assumed that this Corps project is sited in a high seismic region on the 
West coast and situated in close proximity to an active fault that 
dominates the ground motion hazard. The same pair of ground motions 
are used in both examples: The projects horizontal and vertical strong 
ground motion component time-histories were provided (by the District) 
and possess scaled horizontal and vertical acceleration time-histories with 
positive/negative peak values of 0.96g/-0.82g and 0.68g/-0.96g, 
respectively. Both acceleration time-histories are baseline corrected. The 
polarity of ground motions was not retained during their development. 

24’

+ah = kh * g

+av = kv * g

Retained soil
Dense sand

γmoist = 125 pcf
c’ = 0

φ’Peak = 39 deg
φ’Residual = 35 deg

Rock foundation
c’ = 2400 psf
φ’ = 32 deg

Heel
Toe

14’

1.5’3’ 8’

1’
Reinforced concrete

slab

22’

10 deg

Reinforced concrete
retaining wall
γc = 150 pcf

2’
2’

18’

Dense sand
c’ = 0

φ’Peak = 38 deg
φ’Residual = 34 deg

Figure 5.20. Rock-founded earth retaining wall buttressed at the toe of the wall by a 1-ft-thick 
reinforced concrete slab for Example 2. 

Figure 5.21 shows the input Geometry tab data for this problem. Material 
region numbers 1, 2, 4, 6, and 10 are used to define the geometry of the 
structural wedge. Note that a 120 kip per ft run of wall resisting force is 
specified at the toe of the wall and acts at height of 1.5 ft above the toe. Its 
magnitude is determined using the procedure outlined in Strom and 
Ebeling (2004). 
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A minimum angle for slip plane of 3 degrees from horizontal is specified in 
the Driving Wedge tab (not shown). Additionally, residual shear 
strength parameter values of φ’ = 35 degrees and φ’ = 34 degrees are 
specified for the retained soil and the cohesionless soil immediately in 
contact with the base of the structural wedge, respectively. 

Figure 5.21. The input Geometry tab for Example 2. 
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The first step in the CWRotate analysis is to determine if the Figure 5.20 
retaining wall will slide or rotate during shaking when subjected to the 
District’s Project Evaluation Earthquake. Select a Sliding Analysis Type 
and select Determine a representative constant value for the 
Vertical Time-history Usage (which will be a trial-and-error, iterative 
process). Table 5.2 summarizes the computed results from this three-
iteration process. In the first iteration, the value for Constant Y 
Acceleration is set equal to zero. The program is executed via the Run 
CWRotate Analyzer button and the results are used to determine the 
average and the weighted vertical acceleration during sliding (definitions 
given in Section 4.6). These results are observed by activating the Show 
Sliding Evaluation button (or, equivalently, in the WORKslide.TMP 
ASCII output file). Based on the computed average and weighted vertical 
acceleration values, a second CWRotate analysis is conducted. This second 
computation is made using a Constant Y acceleration set equal to 
0.15g. The second iteration is followed by a third iteration. Figure 5.22 
shows the Analysis tab input and settings for this third computation. This 
third iteration/Newmark sliding block computation with Constant Y 
Acceleration set equal to a constant 0.13 g provides reasonable 
convergence, as demonstrated in the tabulated values. The Table 5.2 
average and weighted vertical acceleration values are computed using the 
Section 4.6 Equations 4.74 and 4.76, respectively. Recall the peak 
positive/negative vertical accelerations are 0.68g/-0.96g, respectively, for 
the vertical acceleration time-history. The vertical accelerations that occur 
during sliding are far lower in magnitude as reflected by in the plot used to 
compute the effective vertical acceleration that occurs during sliding (the 
plot is activating the Plot Effective Vertical Acc button). In this 
manner, a vertical acceleration time-history possessing peak 
positive/negative vertical accelerations of 0.68g/-0.96g, respectively, 
becomes a constant Y acceleration of (positive) 0.13g. It is referred to as 
the effective vertical acceleration during sliding and is a constant. 

Table 5.2. Assessment of constant Y acceleration, the effective vertical acceleration for 
Example 2 — Sliding Evaluation. 

Iteration 
No. 

User-Specified 
Acceleration 
(kCG)v*g 

Average Vertical 
Acceleration 
(kCG)v-ave*g 

Weighted Vertical 
Acceleration 
(kCG)v-weighted*g 

Maximum 
Transmissible 
Acceleration 

1 0 0.0835g 0.187g 0.804g 

2 0.15g 0.0361g 0.1097g 0.71g 

3 0.13g 0.042g 0.1216g 0.72g 
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The computed value for the (horizontal) maximum transmissible 
acceleration is equal to 0.72 g (reported by the Show Sliding 
Evaluation button or, equivalently, in the WORKslide.TMP ASCII output 
file). For the incipient lift-off in rotation the computed horizontal 
acceleration is computed to be 0.522g (reported by the Show Lift-Off 
Evaluation button or, equivalently, in the WORKrotate.TMP ASCII 
output file). These computations are made with a Constant Y 
Acceleration of 0.13g. 

A separate analysis to determine a value for the Constant Y 
Acceleration that is consistent with the acceleration pulses generating 
wall rotation for the lift-off evaluation process was also conducted1. Two 
iterations are required. Figure 5.23 shows the Analysis tab input and 
settings for the second computation. This second iteration of the rotational 
block computation with Constant Y Acceleration set equal to a 
constant 0.05g provides reasonable convergence, as demonstrated in the 
tabulated values of Table 5.3, based on the computed average and 
weighted vertical acceleration values. The horizontal acceleration of 
incipient lift-off in rotation is computed to be 0.552g (reported by the 
Show Lift-Off Evaluation button or, equivalently, in the 
WORKrotate.TMP ASCII output file). Figure 5.23 shows the Analysis tab 
settings for the second iteration. Observe that after the second rotational 
analysis results of 0.552 g, horizontal acceleration of incipient lift-off in 
rotation with a Constant Y Acceleration value of 0.05 g is only slightly 
different from those lift-off of the base results obtained for the sliding 
block-based analysis (0.522 g for a Constant Y Acceleration of 0.13 g). 

Table 5.3. Assessment of constant Y acceleration, the effective vertical acceleration for 
Example 2 — Rotational Evaluation. 

Iteration 
No. 

User-Specified 
Acceleration 
(kCG)v*g 

Average Vertical 
Acceleration 
(kCG)v-ave*g 

Weighted Vertical 
Acceleration 
(kCG)v-weighted*g 

Maximum 
Transmissible 
Acceleration 

1 0.13g 0.0412g 0.0515g 0.522g 

2 0.05g 0.0412g 0.0515g 0.552g 

 

Since the incipient lift-off in rotation acceleration is the smaller of the two 
horizontal acceleration constants, the wall will rotate during earthquake 

                                                                 
1 Based on Input Parameter selection for the Analysis tab of a Rotating Analysis Type and Vertical Time-

history Usage: Determine a representative constant value. 
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shaking (for the given wall geometry, soil shear strengths, and ground 
motions used in this particular analysis). 

Figure 5.22. The third iteration Analysis tab settings for Example 2 — Sliding Evaluation. 
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Figure 5.23. The second iteration Analysis tab settings for Example 2 — 
Rotational Evaluation. 

Since the wall rotates before it slides, a final CWRotate analysis is 
conducted. Select a Rotating Analysis Type and select Evaluate with 
current time-history for the Vertical Time-history Usage as shown 
in Figure 5.24. Note with the Vertical Time-history Usage option of 
current (vertical) time-history being selected for the analysis, the value 
contained in the Constant Y Acceleration box, displaying a value of 
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0.05g (displayed as a value entry in gray rather than black), is not used in 
the permanent wall rotation analysis. View the results of the rotating 
structural wedge time-history analysis as reported in the figure, is 
activated by the Plot Rotating Time-history button. Show Lift-Off 
Evaluation button (or, equivalently, in the WORKrotate.TMP ASCII 
output file) also reports the cumulative (permanent) wall rotation. Figure 
5.25 shows the results of the rotational time-history analysis. Note that the 
total permanent rotation of approximately 29 degrees occurs over five 
rotational pulses. Moments and Forces acting on the structural wedge are 
reported using other output buttons and files (refer to Appendix G for a 
description of output file contents). Figure 5.26 shows the resulting 
position for the rigid block after earthquake shaking ends. 
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Figure 5.24. The rotational Analysis tab settings for final Example 2 — Computation. 
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Figure 5.25. Rotational block time-history results for Example 2. 
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Figure 5.26. Permanent rotation of the rigid block after earthquake shaking ends for 
Example 2. 

Selected output for the driving soil wedge forces and pressures acting on 
the structural wedge at a time of 11.38 seconds that results in maximum 
angular acceleration of the wall during rotation are as follows: 

MAXIMUM Angular Wall Acceleration = 18.7262131106 (rad per sec^2) 
at time = 11.3800 (sec) with 
 Scaled ACCX = 0.9162968000 in g's 
 Scaled ACCY = 0.3122528000 in g's 
Overturning Moment = 3937112.54 ft-lb 
 Interface Overturning Moment = 3937112.54 ft-lb 
 Foundation Overturning Moment = 3937112.54 ft-lb 
Restoring Moment = 361866.15 ft-lb 
 PAE = 333527.87 lbs 
 Slip plane angle from horizontal = 3.00 (deg) 
 Minimum slip plane angle from horizontal = 3.00 (deg) 
 Height of PAE above the Heel = 13.04 ft 
 PAE run number = 1189 
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Normal force to Base = 24909.47 lbs 
Shear force to Base = 16801.65 lbs 

For a dense sand, the Table 1.1 guidelines indicate that for a 22-ft-high 
section, active earth pressures may be used in the analysis if wall 
movements exceed ¼ in. (=0.001 times 22 ft times 12 in./ft). With 
predicted wall rotation on the order of 29 degrees, the use of active earth 
pressures in the dynamic time-history permanent displacement 
calculations is deemed appropriate (calculations not shown). 

Since the polarity of ground motions was not retained in their 
development, this analysis would be repeated three more times with the 
user reversing the polarity of the horizontal and vertical input ground 
motions to determine the most critical results. 

Using the forces provided in the output file1, the user is advised to 
determine if the bearing capacity of the foundation is adequate. 

The difference between the Figure 5.20 retaining wall of Example 2 and 
the Figure 5.15 retaining wall system of Example 1 is the addition of a 1-ft 
thick reinforced concrete slab at the toe of the wall. Due to the buttressing 
effect of the reinforced concrete slab, the wall will now rotate before it 
translates during the user-specified seismic event. This results in higher 
forces acting on the wall. For example, the maximum PAE dynamic earth 
loading for Example 2 is 333,528 lb per ft run of wall while for Example 1 
it is 17,818 lb per ft run of wall. This is because the accelerations felt by 
this rigid block during shaking are those of the ground acceleration time-
history plus the contribution of angular acceleration and angular velocity 
during rotation of the rigid body about its point of rotation, a result of the 
continuous contact between the rigid block and the ground being 
maintained at the point of rotation (refer to Section 3.2). 

                                                                 
1 Appendix G summarizes the contents of the output files. 
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6 Summary, Conclusions, and 
Recommendations 

6.1 Summary and conclusions 

Engineer Manual 1110-2-2502 Retaining and Flood Walls gives engineer-
ing procedures that are currently being used by District Engineers in their 
initial assessment of seismic wall performance of existing earth retaining 
structures and the preliminary sizing of new retaining structures. The 
engineering procedures given in EM 1110-2-2502 for retaining walls make 
extensive use of the simplified pseudo-static procedure of analysis of earth 
retaining structures and expresses wall performance criteria in terms of 
computed factors of safety against sliding and bearing failure, and base 
area in compression. The simplified pseudo-static procedure of analysis 
makes it difficult to interpret the actual wall performance for Corps proj-
ects subjected to “strong” design ground motions because of simplifica-
tions made in the procedure of analysis. In a pseudo-static analysis an 
oversimplification occurs when the engineer is forced to render the com-
plex, horizontal and vertical earthquake acceleration time-history events 
to constant values of accelerations and assume a constant direction for 
each. These constant values are denoted as the pseudo-static acceleration 
coefficients in the horizontal and vertical directions (refer to Section 1.1.1 
of this report). The engineer is also required to assume a constant direc-
tion for each of these components. An acceleration time-history, in actual-
ity, varies both in magnitude and in direction with time. 

The simplified pseudo-static procedure does not allow for interpretation of 
actual wall performance by District Engineers. Intense shaking imparted 
by the OBE and MCE design events makes the interpretation of the 
simplified procedure of analysis even more difficult. The more important 
questions for the wall are whether the wall slides into the spillway basin, 
or rotates into the spillway basin, or even tips over onto its side during the 
earthquake event. The simplified pseudo-static procedure of analysis is not 
capable of answering these questions. The answers depend on the 
magnitude of the pseudo-static coefficient used in the calculations 
compared to the magnitude of the peak values for the acceleration pulses 
as well as the number and duration of these strong shaking acceleration 
pulses in the design earthquake event time-history. When considering 
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both horizontal and vertical accelerations, the resulting wall response is 
further complicated by the time-history of phasing between the pulses of 
horizontal and vertical accelerations. Only the permanent wall sliding 
displacement/wall rotation method of time-history analysis can answer 
these questions. Again, wall displacements will influence the seismic earth 
pressure forces imparted on the wall by the retained soil. 

Formal consideration of the permanent seismic wall displacement in the 
seismic design process for Corps-type retaining structures is given in 
Ebeling and Morrison (1992). The key aspect of the engineering approach 
presented in this Corps document is that simplified procedures for 
computing the seismically-induced earth loads on retaining structures are 
also dependent upon the amount of permanent wall displacement that is 
expected to occur for each specified design earthquake. The Ebeling and 
Morrison simplified engineering procedures for Corps retaining structures 
are geared towards hand calculations. The engineering formulation and 
corresponding user friendly, PC-based software discussed in this report 
extend these simplified procedures. 

This research report describes the engineering formulation developed for 
the permanent rotational response of rock-founded, toe-restrained 
retaining walls to earthquake ground motions. The corresponding PC 
software CorpsWallRotate developed to perform a rotating or sliding analysis 
of each user-specified retaining wall section was discussed. Baseline-
corrected, horizontal and vertical acceleration time-histories are used to 
represent the earthquake ground motions in the formulation implemented 
within CorpsWallRotate. A particular formulation of the permanent sliding 
displacement response of Corps retaining walls for a user-specified 
earthquake acceleration time-history was also described. The engineering 
methodology and software are particularly applicable to rock-founded L-
walls and T-walls (usually referred to as cantilever retaining walls) and 
semi-gravity walls. CorpsWallRotate is applicable to a variety of retaining 
walls buttressed at their toe by a structural feature such as a reinforced 
concrete slab. The presence of the structural feature at the toe of the 
retaining wall may result in a tendency for the earth retaining structure to 
rotate rather than slide during earthquake shaking. Other examples of 
Corps earth retaining structures having this structural feature include 
navigation walls, spillway chute walls, spillway discharge channel walls, 
approach channel walls to outlet works structures, highway and railway 
relocation retaining walls, and floodwall channels. CorpsWallRotate may 
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also be used to predict permanent seismically induced (rotational or 
translational) displacements of retaining walls without toe restraint. 

The engineering methods contained in this report and 
implemented within CorpsWallRotate allow the engineer to 
determine if a given retaining wall has a tendency to rotate or to 
slide for a specified seismic event. This is a new capability for 
the seismic design/evaluation process for Corps retaining 
structures. 

CorpsWallRotate was designed for ease of use in a PC environment and to 
render the complex problem of seismic evaluation/design of retaining 
walls that tend to permanently displace during earthquakes to a more 
straight-forward and rapid engineering process. The computed permanent 
wall rotation and other pertinent information allow for a rapid 
investigation of retaining wall configurations by District Engineers. 

Minimum Wall Displacement: Recall that CorpsWallRotate applies an 
active earth pressure force to the structural wedge in the permanent 
rotation analysis, as is done in most sliding block formulations for 
retaining walls. Table 1.1 lists the approximate magnitudes of movements 
required to reach minimum active earth pressure conditions. Although 
this Clough and Duncan (1969) guidance is for static loading, after careful 
evaluation Ebeling and Morrison (1992, in Section 2.2.2) concluded that 
the Table 1.1 values may also be used as rough guidance for minimum 
retained soil seismic displacement to fully mobilize a soil shear resistance, 
resulting in dynamic active earth pressures. That is, the permanent 
displacements resulting from rotations computed using CorpsWallRotate 
must equal or exceed the Table 1.1 values (given as displacement-
normalized wall heights in this table). If not, then the dynamic earth 
pressures are underestimated in the analysis. 

6.2 Recommendations for future research 

Engineering formulations and software provisions based on sound seismic 
engineering principles are needed for a wide variety of the Corps retaining 
walls that (1) rotate or (2) slide during earthquake shaking and (3) for 
massive concrete retaining walls constrained to rocking. The engineering 
formulation discussed in this report and implemented within 
CorpsWallRotate was developed to address the first two of these three modes 
of retaining wall responses to earthquake shaking. 
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The formulation of complete engineering procedures and corresponding 
software are needed to compute the seismic response of Corps-type earth 
retaining structures that slide or rock in place during earthquake shaking. 
A particular formulation of the permanent sliding displacement response 
of retaining walls for a user-specified earthquake acceleration time-history 
is incorporated in CorpsWallRotate. However, a more versatile, simplified 
sliding block formulation that eliminates the need for an acceleration 
time-history is in the final stages of development by the primary author of 
this report (Ebeling et al. 2007), CorpsWallSLIP. An ERDC research effort is 
needed to develop simplified engineering formulations and corresponding 
GUI-based PC software for analyzing Corps retaining walls that rock in 
place during seismic shaking due to their sizeable mass or due to lower 
levels of ground shaking. Their seismically induced wall movements will 
not be sufficient to fully mobilize the shear resistance within the retained 
soils and the resulting (seismic) earth pressures will be larger than the 
resultant active earth pressure force PAE, whose formulation is given in 
Appendix A and implemented within CorpsWallRotate. 

In addition, the engineering methodology and corresponding software 
CorpsWallRotate were formulated for rock-founded retaining structures. 
Research is needed to extend this formulation to soil-founded Corps 
retaining structures. 

For the initial version of CorpsWallRotate, a simplified assumption is made 
that for steady-state conditions, hydrostatic water pressures exist within 
the heel region of the backfill. This implies that all head loss occurs due to 
flow within the foundation below the base of the structural wedge as 
discussed in Appendix D. Future improvements should include the 
formulation and inclusion of more refined steady-state seepage analyses 
implemented within CorpsWallRotate. 

Most Corps hydraulic structures that act as earth retaining structures 
possess a vertical face in contact with the pool (when present). 
Consequently, hydrodynamic water pressures acting on this front “wet” 
face are approximated in the CorpsWallRotate using the Westergaard (1931) 
procedure (see Apendix D). This procedure needs to be expanded to 
include consideration of hydrodynamic water pressures acting on inclined 
“wetted” structural faces during sliding of the structural wedge. In 
addition, a more rigorous hydrodynamic water pressure formulation that 
accounts for the variation in horizontal acceleration along the “wetted” 
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face of rigid block models of walls that rotate about a point of rotation 
(specified as the toe in this initial CorpsWallRotate version) during 
earthquake shaking needs to be developed and implemented within 
CorpsWallRotate. 

The evaluation of the adequacy of the bearing capacity of the foundation 
for loadings imposed by walls that rotate needs to be evaluated. This is 
currently being done using hand computations by engineers using the 
computed forces provided by CorpsWallRotate. This evaluation needs to be 
formulated and then incorporated within CorpsWallRotate. 

Excess pore water pressures may be generated by earthquake shaking of 
contractive backfill and foundation soils. The procedures outlined in 
Ebeling and Morrison (1992) to account for ru > 0 needs to be 
incorporated within CorpsWallRotate. 
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Appendix A: Computation of the Dynamic 
Active Earth Pressure Forces for a Partially 
Submerged Retained Soil Using the Sweep-
Search Wedge Method 

A.1 Introduction 

This appendix describes the derivation of the dynamic active earth 
pressure force for partially submerged backfills using the sweep-search 
wedge method. The effect of earthquakes is incorporated through the use 
of a constant horizontal acceleration, ah = kh*g, and a constant vertical 
acceleration, av = kv*g, acting on the soil mass comprising the active wedge 
within the backfill, as shown in Figure A.1. 
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Figure A.1. Dynamic active sweep-search wedge analysis (hydrostatic water table). 

The Mohr-Coulomb tanncτ σ= + • φ  relationship is used to define the 

shear strength along a potential slip plane in the sweep-search soil wedge 
formulation derived in this appendix and implemented in CorpsWallRotate. 
For granular soils the cohesion intercept c is usually set equal (with a 
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non-zero φ value) to zero after consideration is given to the anticipated 
level of permanent deformation associated with anticipated permanent 
wall movements and the development of the active earth pressure force, 
PAE. The purpose for including the cohesion intercept in the shear strength 
used to define the sliding wedge formulation given in Section A.2 is to 
derive a set of equations that may be easily adapted to both effective and 
total stress analyses. In a total stress analysis φ is set equal to zero, the 
cohesion intercept, c, is set equal to the undrained shear strength, Su, and 
the internal pore water pressures are ignored. 

In Section A.2 the relationships used in a sweep-search wedge formulation 
used to determine the magnitude of the dynamic active earth pressure 
force, PAE, is derived for an effective stress analysis using Mohr-Coulomb 
shear strength parameters c’ and φ’ for the retained soil.1,2 The earth and 
water pressure forces acting on the trial soil wedge are derived for the case 
of a hydrostatic water table. Any increase in the pore water pressures 

                                                                 
1A key item is the selection of suitable shear strength parameters. In an effective stress analysis, the 

issue of the suitable friction angle is particularly troublesome when the peak friction angle is 
significantly greater than the residual friction angle. In the displacement controlled approach examples 
given in Section 6.2 of Ebeling and Morrison (1992), effective stress-based shear strength parameters 
(i.e., effective cohesion, c’, and effective angle of internal friction, φ’) were used to define the shear 
strength of the dilative granular backfills, with c’ set equal to zero in all cases due to the level of 
deformations anticipated in a sliding block analysis during seismic shaking. In 1992 Ebeling and 
Morrison concluded that it is conservative to use the residual friction angle in a sliding block analysis, 
and this should be the usual practice for displacement-based analysis of granular retained soils. The 
primary author of this report would broaden the concept to the assignment of effective (or total) shear 
strength parameters for the retained soil be consistent with the level of shearing-induced deformations 
encountered for each design earthquake in a rotational analysis and note that active earth pressures 
are used to define the loading imposed on the structural wedge by the driving soil wedge. (Refer to 
Table 1.1 for guidance regarding wall movements required to fully mobilize the shear resistance within 
the retained soil during earthquake shaking.) Therefore, engineers are cautioned to carefully consider 
the reasonableness of including a nonzero value for effective cohesion, c’, in their permanent 
deformation analyses. 

2 CorpsWallRotate performs a permanent displacement analysis of a retaining wall due to earthquake 
shaking. Reversal in the direction of the horizontal component of the time-history of earthquake ground 
shaking occurs many times during the typical tens of seconds of ground motion. Consequently, a 
reversal in direction of the inertial force imparted to the structural wedge and to the soil driving wedge 
occurs many times during the course of the analysis using CorpsWallRotate. In a traditional soil wedge 
formulation for static loading, a crack is typically considered to exist within the upper portion of the soil 
driving wedge for a cohesive soil (with shear strength, Su, specified in a total stress analysis or c’ 
specified in an effective stress analysis) and the planer wedge slip surface is terminated when it 
intersects the “zone of cracking” at a depth, dcrack, below the ground surface (e.g., see Appendix H in 
EM 1110-2-2502). This assumption is not made in the CorpsWallRotate formulation for dynamic loading. 
Instead, it is assumed that in the dynamic wedge formulation, the crack within the “zone of cracking” 
at the top of the retained cohesive soil of the driving wedge will not remain open during earthquake 
shaking due to the inertial load direction reversals during this time-history based CorpsWallRotate 
analysis. So, even for cohesive soils, the Figure A.1 planar slip surface, obtained from the sweep-
search method of analysis used by CorpsWallRotate to obtain a value for the earthquake-induced 
resultant driving force, PAE (acting on the structural wedge), extends uninterrupted within the driving 
soil wedge (in the retained soil) to the ground surface and is not terminated by a vertical crack face to 
the ground surface when it enters the zone of cracking. 
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above their steady state values in response to the shear stains induced 
within the saturated portion of the backfill during earthquake shaking is 
typically reflected in a value of excess pore water pressure ratio, ru > 0, as 
discussed in Ebeling and Morrison (1992). No excess pore water pressures 
are included in the submerged portion of the backfill in this derivation 
(i.e., ru is equal to zero) although provisions are made to add this option to 
CorpsWallRotate in the future. Appendix A in Ebeling and Morrison (1992) 
provides a complete wedge solution derivation that includes excess pore 
water pressures (using ru). 

Section A.3 briefly discusses the computation made by CorpsWallRotate of 
the static active earth pressure force, PA, for partially submerged backfills 
using the sweep-search wedge method. 

Section A.4 summarizes the computations made by CorpsWallRotate of the 
dynamic active earth pressure force, PAE, for a total stress analysis in 
which a value for the shear strength, Su, of the retained soil is specified by 
the user. The dynamic active earth pressure force, PAE, is again computed 
using the sweep-search wedge method. 

Section A.5 summarizes the computations made by CorpsWallRotate of the 
static active earth pressure force, PA, for a total stress analysis in which a 
value for the shear strength, Su, of the retained soil is specified by the user. 
The static active earth pressure force, PA, is again computed using the 
sweep-search wedge method. 

Section A.6 discusses the computation of the weight of a soil wedge with a 
bilinear ground surface. 

For cohesive soils, including c′-φ′ soils, no adhesion force is included along 
the vertical imaginary section extending upwards through the retained soil 
from the heel of the wall that delineates the Figure A.1 driving soil wedge 
from the adjacent structural wedge. 

A.2 Dynamic Active Earth Pressure Force, PAE — Effective Stress 
Analysis 

Figure A.1 represents a free body diagram for the derivation, which 
follows. The base of the wedge is the trial planar slip surface representing 
the active failure plane, which is inclined at angle alpha (α) to the 
horizontal. The top of the Figure A.1 wedge is bounded by a horizontal 
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ground surface and a vertical face along the interface between the driving 
soil wedge and the structural wedge. 

The weight of the soil wedge acts at the center of mass and is computed as 

 21 1
2 tatW Hγ

nα
= • •  A.1 

with γt being the total unit weight for the soil wedge.1,2 

The three forces acting along the planar slip surface are represented by an 
effective normal force, N’, a shear force, T, and the pore water pressure 
force. Assuming a full mobilization of shear resistance along the slip 
surface, the shear force may be computed utilizing the Mohr-Coulomb 
failure criteria as 

 ' tan ' 'T N c Lφ= + •  A.3 

Note that the length of the potential slip plane, L, relates to the height of 
the soil wedge, H, at an angle α from horizontal by 

 
1

sin
L H

α
⎛ ⎞= •⎜
⎝ ⎠

⎟

                                                                

 A.4 

Recall the entire slip plane length, L, is used in the analysis of the driving 
soil wedge for cohesive soils to compute PAE due to the assumption that the 
“zone of cracking” at the top of the retained cohesive soil of the driving soil 
wedge will not remain open during earthquake shaking due to load 
direction reversals during this time-history based CorpsWallRotate analysis.2 

The total pore water pressures acting along the submerged faces of the soil 
wedge are described in terms of the steady state pore water pressure. 

 
1 Using the Figure 4.13 Ebeling and Morrison (1992) relationship, γt for the Figure A.1 soil wedge (with a 

planer slip surface and level backfill) is computed to be 
2 2

1w w
t saturated moist

H H
H H

γ γ
⎡ ⎤⎛ ⎞ ⎛ ⎞= • + − •⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

γ  A.2 

with γmoist the moist unit weight of the soil above the water table and γsaturated the saturated unit weight 
below the water table. An alternative method for determining the value for W based on the geometry of 
the trial soil wedge cross sectional area with regions of moist and saturated unit weights is given in 
Section A.6. 

2 In the case of a soil wedge defined by the Figure 3.7.b bilinear ground surface, the total weight W is 
computed using the relationships given in Section A.6. 
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A.2.1 Calculation of Water Pressure Forces for a Hydrostatic Water Table 

The pore water pressure at the ground water table (Figure A.2) is 

 0top
staticu =  A.5 

For a hydrostatic water table, the pore water pressure distribution is linear 
with depth, and at the bottom of the wedge is computed as 

 = γ •bot
static w wu H  A.6 
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Figure A.2. Equilibrium of horizontal and vertical hydrostatic water pressure forces acting on 
the retained soil wedge. 

A.2.2 Static Water Pressure Forces Acting on the Wedge 

The static pore pressure distribution immediately behind the structural 
wedge is triangular and the resultant force may be calculated as 

 21
2static w wU γ H= •  A.7 

The static pore pressure force acting normal to the planar slip surface (of 
angle α from horizontal) is also triangular and the resultant force may be 
computed as 

 21
2 sistatic w w

lU Hα γ
nα− = • •  A.8 
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A.2.3 Equilibrium of Vertical Forces 

Equilibrium of vertical forces acting on the Figure A.1 soil wedge (with a 
potential slip plane at an angle α from horizontal) results in the 
relationship 

[ ] ( )sin (1 ) sin ' cos cos 0v static shearP W k T N U U− −− • + − − − • − + =α αδ α α α  A.9 

Introducing Equation A.3 into Equation A.9 results in 

 
( ) [ ]

( )
sin 1 ' ' tan ' sin

' cos cos 0
v

static shear

P W k c L N

N U Uα α

δ φ α

α α− −

− • + − − • + •

− • − + =
 A.10 

and solving for the normal effective force, N’, becomes 
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 A.11 

A.2.4 Equilibrium of Forces in the Horizontal Direction 

Equilibrium of horizontal forces acting on the Figure A.1 soil wedge (with a 
potential slip plane at an angle α from horizontal) results in the 
relationship 

 
( )

[ ] ( )
cos ' sin sin

cos 0
static

h static

P N U

T W k U
αδ α α

α
−• − • −

+ − • + =
 A.12 

Substituting Equation A.3 into Equation A.12, and with the horizontal 
components of water pressure forces of equal magnitude and opposite 
direction (refer to Figure A.2), Equation A.12 simplifies to 

 [ ]cos ' sin ' ' tan ' cos 0hP N c L N W kδ α φ α• − • + • + − • =  A.13 

Combining the N’ terms results in 

 ( )cos ' sin tan ' cos ' cos 0hP N W k c Lδ α φ α α• − − • − • + • • =  A.14 
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Multiplying Equation A.11 (for N’) by ( )[ ]sin tan ' cosα φ α− − •  and 

simplifying1 becomes 

( ) ( ) ( ) ( )
( ) ( ) ( )

' tan ' cos sin sin tan ' 1 tan '

' tan ' sin cos tan '
v

static

N P W k

c L U α

φ α α δ α φ α φ

α φ α α α φ−

− − • + = + • − − − −

+ • − • + • −
 A.16 

Substituting Equation A.16 into Equation A.14 gives 
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Combining terms results in 
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 A.18 

Solving for the resultant force, P, which acts at angle δ  for the trial soil 
wedge with a potential slip plane at an angle α from horizontal, 
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 A.19 

where 

 ( ) ( )1 1 tan 'A VCONSTANT W k kα φ= − − + h⎡ ⎤⎣ ⎦  A.20 

and 
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1 Note: ( )

1
sin tan ' cos tan tan 'costan 1cos tan ' sin 1 tan ' tan
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− • −
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 A.15 
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The dynamic active earth pressure force, PAE, is equal to the maximum 
value of P for the trial wedges analyzed and AEα α=  for this critical wedge, 

as shown in Figure A.1. 

In order to assign a location to PAE, the static value for PA is needed (refer 
to Equation 3.24 for the moist backfill, level ground case and to Appendix 
C for all other cases). CorpsWallRotate proceeds with the computation of 
hPAE , the location of the resultant force, PAE , using the value for PA 
computed by procedure discussed in this next section. The computation of 
hPAE by CorpsWallRotate in an effective stress analysis is described in 
Sections C.1 through C.3 of Appendix C. 

A.3 Static Active Earth Pressure Force, PA — Effective Stress Analysis 

The solution for the static active earth pressure force for an effective stress 
analysis of a partially submerged backfill is calculated by using a variation 
of the sweep-search wedge method derived in Section A.2. Hydrostatic 
water pressures are assumed within the submerged portion of the retained 
soil, including within the zone of cracking. The relationships needed are 
developed by setting P equal to PStatic-effective stress , kh and kv equal to zero, 
and L equal to Lnet in Equations A.19 through A.21. The portion of the trial 
wedge planar slip plane that is below the zone of cracking has the length 
Lnet as shown in Figure A.3. Mohr-Coulomb shear strength parameters c’ 
and φ’ are used to characterize the shear strength of the retained soil. In a 
traditional soil wedge formulation for static loading, a crack is typically 
considered to exist within the upper portion of the soil driving wedge for a 
cohesive soil (with a cohesive shear strength c’ specified in an effective 
stress analysis) and the planer wedge slip surface is terminated when it 
intersects the zone of cracking at a depth dcrack below the ground surface 
(e.g., see Appendix H in EM 1110-2-2502). This assumption is made in the 
CorpsWallRotate formulation for static loading (but not when computing PAE 
for dynamic loading as discussed previously). A sweep-search wedge 
method of analysis as idealized in Figure A.3 is used by the CorpsWallRotate 
to determine the value of the active earth pressure force, PA. 
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Figure A.3. Static active sweep-search wedge analysis, effective stress analysis with a 
hydrostatic water table (zone of cracking of depth dcrack). 

For a given trial soil wedge with a potential slip plane at an angle α from 
horizontal, the resultant force PStatic-effective stress , which acts at angle δ  for 
the trail soil wedge, is given by 

 
( )

1

cos sin tan '
2A Static A Static

Static effective stress
CONSTANT CONSTANTP

δ δ α φ
−

−
−−

=
+ • −

 A.22 

where 

 ( )[ ]1 tan 'A StaticCONSTANT W α φ− = −  A.23 

and 
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 A.24 

The weight, W, of the soil wedge for the Figure A.3 bilinear soil surface 
problem (with cracking) is calculated using one of the procedures 
described in Section A.6. The static active earth pressure force, PA, is equal 
to the maximum value of PStatic-effective stress for the trial wedges analyzed and 
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αα =A  for this critical wedge using the (graphical) procedure depicted in 

Figure A.3. 

In preparation for determining the location of resultant for location for PAE 
(to be described in Appendix C) Equation A.22 is recast in the following 
form to distinguish the contribution of the weight and the frictional 
component of the soil wedge resultant force, PStatic-effective stress, from the 
cohesive component: 

 Static effective stress Static weight Static CP P φ− − − P −= −  A.25 

with 
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and 
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 A.27 

Note that the frictional/weight component, Pstatic-φ-weight, of resultant force 
Pstatic-effective stress (Equation A.25) is reduced by the cohesion force 
component, Pstatic-C. The subtraction the force Pstatic-C in Equation A.25 
reflects a resultant force component Pstatic-C for a tensile stress distribution 
component, to be discussed in Appendix C. 

A depth of cracking is considered in an effective stress analysis of PA with 
the assignment of a nonzero value for cohesion (c’). CorpsWallRotate uses a 
trial-and-error procedure to determine the value for dcrack when computing 
PA. In this iterative procedure, (1) an initial value for dcrack is assumed (set 
equal to zero in the first iteration); (2) the trial wedge procedure of 
analysis discussed in this section is performed and a corresponding trial 
value for PA is computed, along with values for its frictional/weight force 
component, Pstatic-φ-weight, and for cohesion force component, Pstatic-C ; (3) a 
new depth of crack is computed based on values for Pstatic-φ-weight and Pstatic-C 
and their corresponding earth pressure distributions that are determined 
using the procedure outlined in Section C.3 for PA ; (4) repeat these steps 
(1) through (3) until convergence in the value for dcrack is achieved. 
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CorpsWallRotate uses the PA value in the computation of hPAE, the location of 
the resultant force PAE as discussed in Appendix C, using the last value for 
PA computed by this trial-and-error procedure. 

A.4 Dynamic Active Earth Pressure Force, PAE — Total Stress Analysis 

In a total stress analysis, the value for the dynamic active earth pressure 
force, PAE, is computed based on a user-specified shear strength, Su, for the 
retained soil. The dynamic active earth pressure force is also computed for 
this situation using the sweep-search wedge method described in Section 
A.2 but with the following two changes; (1) cohesion term c’ is set equal to 
Su, with φ’ and the interface friction angle δ  set to zero, and (2) the pore 
water pressures internal to the soil wedge are set equal to zero. The 
relationships needed are developed from Equations A.19 through A.21. For 
a given trial soil wedge with a potential slip plane at an angle α from 
horizontal, the resultant force PSu is given by 

  A.28 1Su A Su A SuP CONSTANT CONSTANT−= − 2−

where 

 ( ) ( )1 1 tanA Su V hCONSTANT W k kα− = − +⎡ ⎤⎣ ⎦  A.29 

and 

 ( )2 tan sin cosA Su u uCONSTANT S L S Lα α− α= + • • • + • •  A.30 

The dynamic active earth pressure force, PAE, is equal to the maximum 
value of PSu for the trial wedges analyzed and AEα α=  for this critical 

wedge, analogous to the (graphical) procedure depicted in Figure A.1 for 
determining the value of PAE from all values for P. 

Recall the entire slip plane length, L, is used in the analysis of the driving 
soil wedge for cohesive soils to compute PAE due to the assumption that the 
zone of cracking at the top of the retained cohesive soil of the driving soil 
wedge will not remain open during earthquake shaking due to load 
direction reversals during this time-history based CorpsWallRotate analysis. 

In order to assign a location to PAE the static value for PA is needed. 
CorpsWallRotate proceeds with the computation of hPAE , the location of the 
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resultant force PAE , using the value for PA computed by procedure 
discussed in this next section. The computation of hPAE by CorpsWallRotate 
in a total stress analysis is described in Section C.4 of Appendix C. 

A.5 Static Active Earth Pressure Force, PA — Total Stress Analysis 

In a traditional soil wedge formulation for static loading, a crack is 
typically considered to exist within the upper portion of the soil driving 
wedge for a cohesive soil (with a undrained shear strength, Su, specified in 
an total stress analysis) and the planer wedge slip surface is terminated 
when it intersects the zone of cracking at a depth, dcrack, below the ground 
surface (e.g., see Appendix H in EM 1110-2-2502). This assumption is 
made in the CorpsWallRotate formulation for static loading (but not when 
computing PAE for dynamic loading as discussed previously). A sweep-
search wedge method of analysis as idealized in Figure A.4 is used by the 
CorpsWallRotate to determine the value of the active earth pressure force PA. 
The solution for the static active earth pressure force for a total stress 
analysis of a partially submerged backfill is calculated by using a variation 
of the sweep-search wedge method derived in Section A.3. The static active 
earth pressure force is computed for this situation using the sweep-search 
wedge method described in Section A.3 but with the following three 
changes; (1) the term PStatic-effective stress is set equal to Pstatic-total stress, 
(2) cohesion term c’ is set equal to Su, with φ’ and the interface friction 
angleδ set to zero, and (3) the pore water pressures internal to the soil 
wedge are set equal to zero. Hydrostatic water pressures due to the 
presence of water within the cracks in the zone of cracking are considered. 
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Figure A.4. Static active sweep-search wedge analysis, total stress analysis with a hydrostatic 
water table (zone of cracking of depth dcrack). 

The relationships needed are developed from Equations A.22 through 
A.24. For a given trial soil wedge with a potential slip plane at an angle α 
from horizontal, the resultant force PStatic-total stress is given by 

 static total stress Static weight Static SuP P P− − − U= − − Δ  A.31 

 ( )tanStatic weightP W α− = •  A.32 

 ( ) ( ) ( )tan sin cosStatic Su net netP Su L Su Lα α− = • • • + • • α  A.33 

with the difference in water pressure force within the cracks on both sides 
and acting on soil driving wedge is given by 

 crack heel crackU U U−Δ = −  A.34 

The weight, W, of the soil wedge for the Figure A.4 bilinear soil surface 
problem (with cracking) is calculated using one of the procedures 
described in Section A.6. The static active earth pressure force, PA, is equal 
to the maximum value of Pstatic-total stress for the trial wedges analyzed and 

Aα α=  for this critical wedge, using the (graphical) procedure depicted in 

Figure A.4. 
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Equation A.31 distinguishes the contribution of the weight component of 
the soil wedge to Pstatic-total stress from the cohesive component. Note that the 
weight component, Pstatic-weight, of resultant force Pstatic-total stress (Equation 
A.31) is reduced by the cohesion force component, Pstatic-Su. The 
subtraction the force Pstatic-Su in Equation A.31 reflects a resultant force 
component, Pstatic-Su, for a tensile stress distribution component, to be 
discussed in Appendix C. 

A depth of cracking is considered in a total stress analysis of PA with the 
assignment of a nonzero value for cohesion (Su). CorpsWallRotate uses a 
trial-and-error procedure to determine the value for dcrack when computing 
PA. In this iterative procedure, (1) an initial value for dcrack is assumed (set 
equal to zero in the first iteration); (2) the trial wedge procedure of 
analysis discussed in this section is performed and a corresponding trial 
value for PA is computed, along with values for its weight force component, 
Pstatic-weight, and for cohesion force component, Pstatic-Su ; (3) a new depth of 
crack is computed based on values for Pstatic-weight and Pstatic-Su and their 
corresponding earth pressure distributions that are determined using the 
procedure outlined in Section C.4 for PA ; (4) repeat these steps (1) 
through (3) until convergence in the value for dcrack is achieved. 
CorpsWallRotate proceeds with the computation of hPAE, the location of the 
resultant force PAE as discussed in Appendix C, using the last value for PA 
computed by this trial-and-error procedure. 

A.6 Weight Computation of a Soil Wedge with a Bilinear Ground 
Surface 

CorpsWallRotate computes the value for PAE and PA via the Figure 3.7 sweep-
search method. An advantage of the sweep-search method is that it allows 
for the analysis of the more practical case of the bilinear ground surface 
depicted in Figure 3.7.b. The computation of the area of soil wedge above 
and below the water table and total weight, W, are made as follows: 

A.6.1 α greater than αcorner 

For the case of the soil wedge with a potential slip plane at an angle α from 
horizontal being greater than the angle designated αcorner , defining the line 
between the point corresponding to the heel of the wall and the 
intersection of the level backfill and the sloping ground surface point 4 in 
Figure A.5, the total cross-sectional area is 
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 [ ] [ ] [{ }1 2 3 2 3 1 3 1 2

1
2totalArea x y y x y y x y y= • • − + • − + • − ]  A.35 

with (x1, y1), (x2, y2), and (x3,y3) being the vertices of the triangle of the trial 
soil wedge shown in this figure. Point 5 denotes the intersection of the 
hydrostatic water table with the planar trial wedge that extends from point 
1 to point 2. The area of the trial soil wedge below the water table is 
designated AreaW in this figure. 

Hw

HLevel

α

H
αcorner

heel 1

2

3

4

5

6

cornerαα >
x

y

Areatotal

AreaW

Figure A.5. Soil wedge defined by a bilinear ground surface with α greater than αcorner and no 
crack. 

Figure A.6 extends the Figure A.5 case to consider a crack within a 
retained (cohesive) soil. The case shown is for a crack depth that extends 
to below the hydrostatic water table. Note the depth of cracking extends 
from the ground surface to a depth, dcrack, below the sloping ground 
surface as well as below the level portion of the retained soil. Point 7 
denotes the intersection of the depth, dcrack, with the planar trial wedge 
that extends from point 1 to point 2. Points 7, 2, and 8 delineate a 
triangular region of the trial soil wedge that is fully contained within the 
depth of cracking. 
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Figure A.6. Soil wedge defined by a bilinear ground surface with α greater than αcorner and 
crack depth dcrack that extends below the water table. 

The portion of the total cross-sectional area (i.e., Areatotal by Equation 
A.35) entirely contained within the depth of cracking zone is given by 

 [ ] [ ] [{ }7 2 8 2 8 7 8 7 2

1
2crackArea x y y x y y x y y= • • − + • − + • − ]  A.36 

with (x7, y7), (x2, y2) and (x8,y8) being the vertices of the triangle of the trial 
soil wedge identified Figure A.7. Consequently, the total soil wedge area 
less this triangular zone of cracking (Areacrack) is designated as the Areanet 
and is computed to be 

 net total crackArea Area Area= −  A.37 
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Figure A.7. Areanet and Areacrack within the soil wedge defined by a bilinear ground surface with 
α greater than αcorner for a crack depth dcrack that extends below the water table. 

The cross-sectional area of the entire submerged portion of the trial soil 
wedge (with crack) is 

 [ ] [ ] [ ]{ }1 5 6 5 6 1 6 1 5

1
2

AreaW x y y x y y x y y= • • − + • − + • −  A.38 

with (x1, y1), (x5, y5), and (x6,y6) being the vertices of the triangle of the 
submerged portion of the soil wedge, as shown in Figure A.5. The portion 
of the area given by Equation A.38, i.e., the total submerged cross-
sectional area (i.e., AreaW), contained within the depth of cracking is 

 [ ] [ ] [{ }7 5 10 5 10 7 10 7 5

1
2crackAreaW x y y x y y x y y= • • − + • − + • − ]  A.39 

with (x7, y7), (x5, y5), and (x10,y10) being the vertices of the triangle of the 
trial soil wedge identified Figure A.8. The total cross-sectional area of the 
submerged portion of the trial soil wedge (with crack) less the triangular 
zone of cracking below the water table, is designated in Figure A.8 as 
AreaWnet and given by 

 net crackAreaW AreaW AreaW= −  A.40 

Consequently, the net moist cross-sectional area of the trial soil wedge 
above the water table is equal to 
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 moist net net netArea Area AreaW− = −  A.41 

and identified in Figure A.8. 
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Figure A.8. Areamoist-net, AreaWnet, and AreaWcrack within the soil wedge defined by a bilinear 
ground surface with α greater than αcorner and crack depth dcrack that extends below the water 

table. 

The weight of the net submerged portion of the trial soil wedge, Wsaturated, 
is 

 saturated saturated netW AreaWγ= •  A.42 

with the weight of the net moist portion of the soil wedge 

 moist moist moist netW Areaγ −= •  A.43 

The total weight for the net trial soil wedge, considering a depth of crack, 
dcrack, is equal to 

 saturated moistW W W= +  A.44 

This and the other relationships given in this subsection are also valid in 
the case of dcrack equal to zero, i.e., cohesionless soils. 
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A.6.2 αcorner greater than α 

For the case in which the angle αcorner (from horizontal), defining the line 
between the point corresponding to the heel of the wall and point 4 in 
Figure A.9 that designates the intersection of the level backfill and the 
sloping ground surface, is greater than the angle α of soil wedge for the 
potential slip plane, the total cross-sectional area is 

 
[ ] [ ] [ ]
[ ] [ ] [ ]

1 2 4 2 4 1 4 1 2

1 4 3 4 3 1 3 1 4

1
2total

x y y x y y x y y
Area

x y y x y y x y y

• − + • − + • − +⎧ ⎫⎪ ⎪= • ⎨ ⎬
• − + • − + • −⎪ ⎪⎩ ⎭

 A.45 

with (x1, y1), (x2, y2), and (x4,y4), and with (x1, y1), (x4, y4), and (x3,y3) being 
the vertices of the two triangles that form the soil wedge shown in this 
figure. The area of the trial soil wedge below the water table is designated 
AreaW in this figure and is defined by the vertices (x1, y1), (x5, y5), and 
(x6,y6). 
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Figure A.9. Soil wedge defined by a bilinear ground surface with αcorner greater than α. 

A.6.2.1 dcrack > Δ4to9 

Figure A.10 extends the Figure A.9 case to consider a crack within a 
retained (cohesive) soil. Note the depth of cracking extends from the 
ground surface to a depth, dcrack, below the sloping ground surface as well 
as below the level portion of the retained soil. The case shown is for a crack 
depth that intersects the planer trial slip plane (extending from points 1 to 
2) below the sloping ground surface of slope β (versus below the level 
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ground surface region). This intersection point is designated as point 7 in 
this figure, corresponding to the case of dcrack > Δ4to9. Point 9 defines the 
point along the planar trial slip surface (extending from point 1 to point 2) 
that is below point 4. The case shown in Figure A.10 is for point 7 above 
the hydrostatic water table. Points 7, 2, 4, and 8 delineate a region of the 
trial soil wedge that is fully contained within the depth of cracking (i.e., 
Areacrack). 

 

( ) ( ) ( ) ( )

( ) ( ) ( ){ }

4 8 9 7 4 9 8 7

9 2 4 2 4 9 4 9 2

2 2

1
2

crack

x x x x y y y y
Area

x y y x y y x y y

− + − − + −⎡ ⎤ ⎡
= •⎢ ⎥ ⎢

⎣ ⎦ ⎣

• • − + • − + • −

⎤
+⎥

⎦  A.46 

Figure A.10. Soil wedge defined by a bilinear ground surface with αcorner greater than α and 
crack depth, dcrack, that extends below the water table (dcrack > Δ4to9). 

The total soil wedge area less this triangular zone of cracking (Areacrack) is 
designated as the Areanet in Figure A.10 and is computed to be 

 net total crackArea Area Area= −  bis A.37 
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The cross-sectional area of the entire submerged portion of the trial soil 
wedge, designated AreaW, is given by Equation A.38. Figure A.11 extends 
Figure A.10 so as to distinguish the moist net area, designated Areamoist-net, 
from the submerged net area, designated AreaWnet. 

Figure A.11. Areamoist-net, AreaWnet, and AreaWcrack within the soil wedge defined by a bilinear 
ground surface with αcorner greater than α and crack depth, dcrack (dcrack > Δ4to9). 

In the Figures A.9 through A.10 case, the zone of cracking is above the 
hydrostatic water table. Should the crack zone include a region of cracking 
below the water table as is the case for Figure A.8 when y7 is less than Hw, 
the total cross-sectional area of the submerged portion of the trial soil 
wedge (with crack) less the triangular zone of cracking below the water 
table is equal to AreaWnet and is given by 

 net crackAreaW AreaW AreaW= −  bis A.40 

AreaWcrack is given by Equation A.39. Consequently, the net moist cross-
sectional area of the trial soil wedge above the water table is equal to 

 moist net net netArea Area AreaW− = −  bis A.41 
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and identified in Figure A.11. 

The weight of the net submerged portion of the trial soil wedge, Wsaturated, 
is 

 saturated saturated netW AreaWγ= •  bis A.42 

with the weight of the net moist portion of the soil wedge 

 moist moist moist netW Areaγ −= •  bis A.43 

The total weight for the net trial soil wedge, considering a depth of crack, 
dcrack, is equal to 

 saturated moistW W W= +  bis A.44 

This and the other relationships given in this subsection are also valid in 
the case of dcrack equal to zero, i.e., cohesionless soils. 

A.6.2.2 dcrack < Δ4to9 

Figure A.12 extends the Figure A.9 case to consider a crack within a 
retained (cohesive) soil and for a crack depth that intersects the planer 
trial slip plane (extending from points 1 to 2) below the level ground 
surface region of retained soil (versus below the sloping ground surface 
retained soil region). This intersection point is designated as point 7 in this 
figure, corresponding to the case of dcrack < Δ4to9. Point 9 defines the point 
along the planar trial slip surface (extending from point 1 to point 2) that 
is below point 4. The case shown in Figure A.10 is for point 7 above the 
hydrostatic water table. Points 7, 2, and 8 delineate a triangular region of 
the trial soil wedge that is fully contained within the depth of cracking (i.e., 
Areacrack). The portion of the total cross-sectional area (i.e., Areatotal by 
Equation A.45) entirely contained within the depth of cracking zone is 
given by 

 [ ] [ ] [{ }7 2 8 2 8 7 8 7 2

1
2crackArea x y y x y y x y y= • • − + • − + • − ]  bis A.36 
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Figure A.12. Soil wedge defined by a bilinear ground surface with αcorner greater than α and 
crack depth dcrack that extends below the water table (dcrack < Δ4to9). 

The total soil wedge area less this triangular zone of cracking (Areacrack) is 
designated as the Areanet in Figure A.12 and is computed to be 

 net total crackArea Area Area= −  bis A.37 

The cross-sectional area of the entire submerged portion of the trial soil 
wedge, designated AreaW, is given by Equation A.38. Figure A.13 extends 
Figure A.12 so as to distinguish the moist net area, designated Areamoist-net, 
from the submerged net area, designated AreaWnet. 
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Figure A.13. Areamoist-net, AreaWnet, and AreaWcrack within the soil wedge defined by a bilinear 
ground surface with αcorner greater than α and crack depth, dcrack (dcrack < Δ4to9). 

In the Figures A.12 and A.13 case, the portion of the soil wedge contained 
within the zone of cracking (designated Areacrack) is above the hydrostatic 
water table. Should this crack zone include a region of cracking below the 
water table as is the case for Figure A.8 when y7 is less than Hw, the total 
cross-sectional area of the submerged portion of the trial soil wedge (with 
crack) less the triangular zone of cracking below the water table is equal to 
AreaWnet and is given by 

 net crackAreaW AreaW AreaW= −  bis A.40 

AreaWcrack is given by Equation A.39. Consequently, the net moist cross-
sectional area of the trial soil wedge above the water table is equal to 

 moist net net netArea Area AreaW− = −  bis A.41 

and identified in Figure A.11. 
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The weight of the net submerged portion of the trial soil wedge, Wsaturated, 
is 

 saturated saturated netW AreaWγ= •  bis A.42 

with the weight of the net moist portion of the soil wedge 

 moist moist moist netW Areaγ −= •  bis A.43 

The total weight for the net trial soil wedge, considering a depth of crack, 
dcrack, is equal to 

 saturated moistW W W= +  bis A.44 

This and the other relationships given in this subsection are also valid in 
the case of dcrack equal to zero, i.e., cohesionless soils. 
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Appendix B: An Abbreviated Review of 
Dynamics of a Rigid Body 

This appendix provides an abbreviated review of dynamics of a rigid body. 
The reader is cautioned that the notation used herein is not universally 
consistent with the notation used in the main body of this report. 

B.1 Dynamic Equilibrium of a Particle under Planar Motion 

Newton’s second law of motion relates the accelerated motion of a particle 
to the forces acting on it. It expresses in mathematical form, for a particle 
of mass m, the relationship between the displacement of the particle and 
time, 

 rf m a= •  B.1 

where fr is the resultant force acting on the particle that experiences an 
acceleration a that has the same direction as the resultant force fr shown 
in the Figure B.1 free-body diagram. A free-body diagram of the particle 
considers it to be free of its surroundings and shows all forces acting on it1. 
The kinetic diagram is also shown in this figure. Kinetics is the analysis of 
forces which cause the motion of the particle depicted in this figure. Note 
that the measurements of motion are made from an inertial coordinate 
system. That is, one that does not rotate and is either fixed or translates 
with constant velocity. According to rectilinear kinematics (i.e., the study 
of the geometry of motion without consideration of the forces causing the 
motion) for a particle, its acceleration, a, is equal to its change in velocity 
with time, dv/dt, and its velocity, v, is equal to its change in position with 
time, ds/dt, with ds the change in a particle’s position with time. It is 
easily shown mathematically that acceleration, a, is the second derivative 
of the position vector with time, d2s/dt2. Consequently, the equation of 
motion is a differential equation of second order. 

Interpretation of the equation of motion: The equation of motion states 
that the unbalanced force on a rigid body causes it to accelerate. 

                                                                 
1 Bold text symbolizes a vector in this appendix. 
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Figure B.1. Free-body and kinetic diagrams of a particle subjected to external forces f1 and f2. 

The resultant of the externally applied forces f1 and f2, i.e., fr (= Σf ) 
vectorial sum of all external forces, produces the vector m times a whose 
magnitude and direction is represented by the kinetic diagram in Figure 
B.1. A key concept depicted in this figure is the graphical equivalency (in 
both magnitude and direction) of the resultant force fr of the free-body 
diagram and the vector m a of the kinetic diagram. 

Inertial force vector: By rewriting the resultant force vector fr as Σf, 
and transferring the term m times a to the left-hand side, the equation of 
motion of particle mass m is expressed as 

 0f m a− • =∑  B.2 

where the vector m times a is referred to as inertia force vector. The 
concept of the inertia force vector acting on the particle is best understood 
by referring to Figure B.2. If this vector is treated in the same way as the 
“force vector” Σf then the state of “equilibrium” created is referred to as 
dynamic equilibrium. This method for application of the equation of 
motion is referred to as D’Alembert’s principle. The key concept is that 
acceleration component produces an inertia force (i.e., the second term in 
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Equation B.2) in the direction opposite to the acceleration component and 
acts at the center of mass of the particle. 
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force 
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x
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Figure B.2. Inertia force and resultant force vectors for an accelerating particle. 

Interpretation of the inertial force vector: Recall from elementary 
mechanics that the inertia of the particle mass is the resistance of the mass 
to a change in velocity. The change in velocity with respect to time is 
acceleration. Thus, the inertial mass is considered to be a measure of the 
particle’s resistance to acceleration. By D’Alembert’s principle the laws of 
static equilibrium apply to a dynamic system if the inertia forces, as well as 
the actual external forces, are considered as forces acting on the system 
and the vector sum is zero. In a sense, the dynamics problem has been 
reduced to a statics problem at every time t during the particles motion. 
The inertial force is sometimes described as a fictitious force or as an 
imaginary force in this zero vector sum application of D’Alembert’s 
principle to establishing dynamic equilibrium. 
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Lastly, the equation of motion of a particle of mass, m, can also be 
rewritten in vector form in terms of its components along coordinate axes 
x and y, 

 0x xf m a− • =∑  B.3 

 0y yf m a− • =∑  B.4 

where Σfx and Σfy are the resultant force vectors (algebraic sums of the 
components of all external forces along the respective x- and y-axis; 
positive sense for these forces along the respective positive x- and y-axis), 
and the vectors m times ax and m times ay are inertia force vectors 
acting at the center of mass of the particle and in the direction of the 
respective orthogonal axes. (Note that the resultant force vector f is 
equivalent to the vector sum of Σfx and Σfy.) Each of the acceleration 
components in the x- and y-coordinates produces an inertia force in the 
direction opposite to each acceleration component. 

B.2 Dynamic Equilibrium of a Rigid Mass under Planar Motion 

Although Newton’s law of motion is directly applicable only to the motion 
of a single particle of finite mass (but no volume), it is easily extended 
using elementary mechanics to cover the translational motion of rigid 
bodies that are idealized as a collection of particles that remain at fixed 
distances with respect to each other. The planar motion of the mass center, 
G, of the rigid body is expressed as 

 rF M aG= •  B.5 

where Fr is the resultant of all external forces acting on the rigid body of 
mass, M, and aG is the instantaneous linear acceleration of the mass center 
of the rigid body relative to an inertial reference frame and in the direction 
of result force Fr. The result force Fr is equal to the vector sum of all 
external forces, ΣF. The mass center, G, of the rigid body moves (i.e., 
translates) as though the rigid body were a single particle subjected to the 
resultant force Fr as exemplified in the Figure B.3 rigid body subjected to 
the coplanar force vectors F1, F2, and W. The weight of the body, 

, is included on the free body diagram since it represents an 

external force acting on the body. Note that all three force vectors are 
concurrent at mass center point, G. This equation is satisfied at every time 

W M g= •
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t during transient (i.e., time-varying) loading of a rigid body. Note that for 
a rigid body in translation and without rotation, the line of action of the 
resultant force vector Fr passes through the mass center, G. 
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Graphical
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g is the constant of acceleration due to gravity

Figure B.3. Free-body and kinetic diagrams of a rigid body subjected to forces F1, F2, and W. 

Figure B.3 shows a rigid body with an acceleration of magnitude aG. 
Assuming that the (Figure B.3) planar rigid body cross section is an 
idealization of a cross section of a retaining structure, the reaction force 
vector of the foundation acting on the retaining structure is not included. 
The exclusion of this force results in a nonzero resultant force vector Fr 
acting on the rigid body, thus the rigid body is in motion by Equation B.5. 
Inclusion of a foundation-to-retaining structure reaction force R (external 
to the rigid body) as depicted in Figure B.4 results in a rigid body in static 
equilibrium (i.e. a body at rest with a zero resultant force vector Fr acting 
on the rigid body and a zero M times aG vector). Note that the Figure B.4 
rigid body is subjected to the coplanar force vectors F1, F2, W, and R, with 
all four force vectors concurrent at mass center point, G. 
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Figure B.4. Free-body and kinetic diagram of a retaining structure subjected to forces F1, F2, 
W, and R that is in static equilibrium. 

The equation of motion (Equation B.5) of mass center, G (e.g., refer to 
Figure B.3), can also be rewritten in vector form in terms of its 
components along coordinate axes x and y, 

 ( ) 0x G x
F M a− • =∑  B.6 

 ( ) 0y G y
F M a− • =∑  B.7 

where the vectors M times (aG)x and M times (aG)y are referred to as 
inertia force vectors. If each of these vectors is treated in the same way as 
the “resultant force vectors,” ΣFx and ΣFy, then the state of “equilibrium” 
created is referred to as dynamic equilibrium. Note that the resultant force 
vector Fr is equivalent to the vector sum of ΣFx and ΣFy, the algebraic 
sums of the components of all external forces along the respective x- and 
y-axis; positive sense for these forces are in the direction along the 
respective positive x- and y-axis shown in this figure. This method for 
application of the equation of motion is often referred to as D’Alembert’s 
principle. Each of the acceleration components (aG)x and (aG)y (which are 
not shown in Figure B.3 but are the components of vector aG along the x- 
and y-axes) produces inertial forces (i.e., the second term in Equations 
B.3 and B.4) in the direction opposite to these acceleration components 
that act at the center of gravity of the rigid mass. The inertia force vector 
M times aG for the Figure B.3 rigid body subjected to external force 
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vectors F1, F2, and W is depicted in Figure B.5. Note this vector acts in 
the direction opposite to the resultant force vector Fr (and opposite to 
acceleration vector aG). 
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Free-body diagram of a
rigid body

Mass center
at point G MaG

Rigid body
acceleration

of magnitude aG

Fr

F2

W

F1

Inertia force vector

aG

Figure B.5. Inertia force and resultant force vectors for an accelerating rigid body subjected to 
forces F1, F2, and W. 

B.3 Mass of a Rigid Body 

The mass, m, per unit volume at any point within a body is given by 

 m
g
γ

=  B.8 

where at any point within the body γ is the total unit weight per unit 

volume, and g is the constant of acceleration due to gravity (equal to 
32.174 ft/sec2, 386.086 in./sec2, 980.665 m/sec2, or 980.665 gal). 

The total mass, M, of the planar rigid body is defined as 

  B.9 
Area

M m dx dy= ∫∫

Equivalently, this total mass, M, is 

 
WM
g

=  B.10 
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where W is the total weight of the entire rigid body. 

In order to compute the center of mass of a rigid body, it is often 
convenient to discretize the rigid body into regular geometrical and/or 
material regions (e.g., see Figure B.6), each with a constant material unit 
weight and thus a constant mass per unit volume. The mass for each 
region i, im , is 

 i
Area i

m m dx dy= ∫∫  B.11 

and for regular geometry, its region mass center (denoted as xi and yi) is 
easily computed. 

For a rigid body comprised of regions of different masses, the center of 
mass (point G) of the rigid body is computed by 

 
i i

i

m x
x

m
•

= ∑
∑

 B.12 

and 

 
i

i

m y
y

m
i•

= ∑
∑

 B.13 

where im∑  is equal to the sum of masses of each of the discretized 

regions, which is also the total rigid body mass M, and xi and yi are the 
individual coordinate centers of each mass region i. 
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Figure B.6. Example discretization of a rigid body into regular geometrical and material 
regions. 

B.4 Equation of Rotational Motion of a Rigid Mass 

If a rigid body is acted on by external forces and the resultant force vector 
does not pass through the mass center of the rigid body, the body may 
rotate as well as translate. A body subjected to general plane motion 
undergoes a combination of translation and rotation. In the special case of 
the translational component of motion along a straight path, then the body 
travels along a cycloidal path under the combined translational and 
rotational motions. Considering the rotational component separately, 
rotation is produced by a moment equal to the resultant force Fr about the 
body’s mass center, G, or, equivalently, the sum of moments of each 
external force about mass center, G. When the rigid body rotates about an 
axis through mass center, G, perpendicular to the x-y plane (and denoted 
as the z-axis), any point in the body travels along a circular path. The 
equation of motion governs the translational aspect of the kinetic problem. 
The rotational aspects of the kinetic problem are governed by the equation 

 G GI αΜ = •∑  B.14 

where ΣΜG is the sum of moments of all external forces acting on the rigid 
body with respect to the an axis through mass center, G, perpendicular to 
the x-y plane (and denoted as the z-axis), IG is the mass moment of inertia 
of the body with respect to an axis through G, and α is the angular 
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acceleration.1 Note that positive sense for moment(s) agrees with the 
assumed sense of the angular acceleration α. 

The angular acceleration vector α is positive for counter-clockwise angular 
acceleration about the z-axis. Similarly, the vector ΣΜG is defined as being 
positive for counter-clockwise moments of external forces about the z-axis 
according to the right-hand rule. Recall that the x, y, and z axes are 
orthogonal. The vector for a positive resultant moment ΣΜG points out of 
the drawing, along the positive z-axis. 

Consider the Figure B.7 rigid body subjected to force vectors F1, F2, and 
W. Note that two of the three coplanar force vectors are not concurrent at 
mass center point, G, as they were in Figure B.3. The resultant force vector 
Fr is shown in Figure B.7; recall that the resultant force vector Fr is the 
vector sum of the all external forces as shown in the force polygon. 
Because the resultant force vector is nonzero, the body of mass, M, 
translates at an acceleration, aG, according to Equation B.5 (or, 
equivalently, Equations B.6 and B.7). Additionally, because force vectors 
F1 and F2 do not act along a line that projects through the center of mass, 
the rigid body is also subject to a resultant moment vector ΣMG (the sum 
of moments of all forces about mass center point, G), of magnitude 

 1 1 2GM F h F h2= • + •∑  B.17 

where h1 and h2 are the perpendicular distances between the lines of action 
of vectors F1 and F2, respectively, and parallel lines that pass through 
mass center, G, as shown in Figure B.7. The action of the vector ΣMG on 
the rigid body results in the angular rotation of the body. An alternate, 

                                                                 
1 For a body undergoing planar motion, the mass moment of inertia IG is the integral of the “second 

moment” about the z-axis and passing through point G of all the elements of mass dm which compose 
the body. 

 B.15 

The “moment arm” r is the perpendicular distance from the z-axis to the arbitrary element dm. In 
planar kinetics, the axis chosen for analysis passes through the body’s mass center, G, and is always 
perpendicular to the plane of motion. With x and y being the distance from dm to mass center, G, (as 

measured along the x- and y-axes, respectively) and substituting 

2
G

m

I r dm= ∫

( )2 2 2r x y= + , Equation B.15 

becomes 

( )2 2
G

m

I x y d= +∫ m  B.16 

The mass moment of inertia, IG, is a measure of the resistance of a rigid body to the angular 
acceleration α in the same manner as mass is a measure of the rigid body’s resistance to the 
acceleration, aG. 
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equivalent expression for the resultant moment vector ΣMG is given in 
terms of the resultant force vector Fr as 

 G rM F d= •∑  B.18 

where d is the perpendicular distance between the line of action of vector 
Fr and a parallel line passing through mass center, G, as shown in Figure 
B.7. The angular acceleration of the Figure B.7 rigid body about mass 
center point, G, is given by Equation B.14. This equation is satisfied at 
every time t during transient (i.e., time-varying) loading of a rigid body. 
The mass center, G, of the rigid body moves (i.e., translates and rotates) as 
though the rigid body were a single particle subjected to the resultant force 
Fr acting at lever arm d from mass center. 

Resultant force vector Fr
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of the
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Figure B.7. Free-body and kinetic diagrams of a rigid body subjected to the forces F1, F2, and 
W. F1 and F2 are eccentric to mass center, G. 

According to planar kinematics of a rigid body, its angular acceleration α is 
equal to its change in angular velocity with time, dω/dt, and its angular 
velocity, ω, is equal to its change in angular displacement with time, 
dθ/dt, with dθ representing the change in angular position with time.1 

                                                                 
1 Planar kinematics of a rigid body is the study of the geometry of motion without consideration of the 

forces causing the motion. 

 



ERDC/ITL TR-06-2 251 

It is easily shown mathematically that angular acceleration, α, is the 
second derivative of the angular position with time, d2θ/dt2. 

It is useful to keep in mind that the two vectors M times aG and IG times 
α are not the same as a force and a moment of a force, respectively. 
Rather, they are the result of external forces acting on the rigid body. 

Equation B.14 can also be rewritten in vector form as 

 0G GI αΜ − • =∑  B.19 

where the vector IG times α is considered as the moment that acts counter 
to sum of moments of all external forces acting on the rigid body ΣΜG 
about the center of mass, G, resulting in a vector sum of zero 
(D’Alembert’s principle). The inertia force vector M times aG and the 
inertia vector IG times α for the Figure B.7 rigid body subjected to 
external force vectors F1, F2, and W are depicted in Figure B.8. Observe 
in this figure that these two inertial vectors act in the direction opposite to 
the resultant force vector, Fr, (and opposite to acceleration vector, aG) and 
opposite to sum of moments of all external forces about the center of mass, 
G, ΣΜG, (and opposite to the angular acceleration vector α), respectively. 
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Figure B.8. Inertia force and resultant force vectors for a rigid body subjected to the forces F1 

and F2, eccentric to mass center, G, and subjected to force W. 

 



ERDC/ITL TR-06-2 252 

B.5 Equations of Motion: Rotation about a Fixed Axis 

Consider the Figure B.7 (or B.8) rigid body of mass center, G, shown in 
Figure B.9, which is now constrained to rotate in the x-y plane about a 
fixed axis perpendicular to the page and passing through a pin at point O. 
The angular velocity, ω, and angular acceleration, α, are caused by the 
external force and couple moment system acting on the body. Because the 
body’s center of mass, G, moves in a circular path about point O, the 
acceleration of this point is represented by its tangential and normal 
components.1 The tangential component of acceleration has a magnitude 

 /t Ga r Oα= •  B.26 

and must act in a direction which is consistent with the body’s angular 
acceleration, α. The magnitude of the normal component of acceleration is 

 2
/na rω= • G O

                                                                

 B.27 

This component is always directed from the center of mass point, G, to 
point O, regardless of the direction of ω, as shown in Figure B.10. 

 
1 The tangential velocity v vector of mass center, G, along its Figure B.9 circular path about point O is the 

cross product of ω and rG/O 

/G Ov rω= ×  B.20 

Recall that the angular velocity, ω, is the time rate of change in angular position and equals d
dt

θ . 

Given that t
dva dt=  and 

2

/
n

G O

va r= , and with /G Ov rω= •  and d
dt

ωα = , the magnitude of 

tangential acceleration becomes 

/t Ga r Oα= •  B.21 

and the magnitude of normal acceleration becomes 
2

/n Ga rω= • O  B.22 

Like velocity, the acceleration of mass center point, G, may be expressed in terms of vector cross 
product. Taking the time derivates of the vector Equation B.20 results in 

( )/ /G O G Oa r rα ω ω= × + × ×  B.23 

Which is equivalent to 
 B.24 

Performing the vector cross products results in the following two acceleration vector components 
 B.25 

Note an is directed from point G towards point O, hence the negative sign. Additionally, at and an are 
perpendicular to one another. Refer to pages 294-295 in Hibbler (2001) for additional details 
regarding the cross products of the vectors discussed in this footnote and the direction of the resulting 
vector by the right-hand rule. 

t na a a= +

2
/G Oa rα ω= × − • r
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Figure B.9. Free-body diagram of a rigid body subjected to the forces F1, F2, and W which is 
attached to a pin at point O. (Pin reaction force at point O not shown.) 

Figure B.10. Tangential and normal acceleration vectors of mass center point, G, for the free-
body diagram of a rigid body subjected to the forces F1, F2, and W which is attached to a pin 

at point O. (Pin reaction force at point O not shown.) 

The free-body and kinetic diagrams for the body are shown in Figure B.11. 
The two components, m times at and m times an, shown on the kinetic 
diagram, are associated with the tangential and normal acceleration 
components of the body’s mass center, G. These vectors act in the same 
direction as the acceleration components of the body’s mass center. The IG 
times α vector in the kinetic diagram acts in the same direction as α. The 
equations of motion which apply to the rigid body are 
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 2
/n nF M a M rω= • = • •∑ G O  B.28 

 /t tF M a M rα= • = • •∑ G O  B.29 

 G GI αΜ = •∑  B.14 bis 

The resultant force vector Fr, shown in the Figure B.11 force polygon 
(middle diagram), is the vector resultant of the forces F1, F2, W, and 
reaction force FO (acting at pin 0). The left-hand sides of Equations B.28 
and B.29 define the magnitude of the resultant force vector Fr with its 
vector components oriented along the normal and tangential axes defined 

by the Figure B.11 vectors an and rG/O, respectively.1 

Figure B.11. Free-body and kinetic diagrams of a rigid body subjected to the forces F1, F2, W, 
and reaction force FO acting at pin 0. (Resultant vector Fr not shown in the free-body diagram, 

the left-hand side diagram.) 

In the case of Figure B.11 planar motion about a fixed axis of rotation (i.e., 
axis z, perpendicular to the x-y plane) that does not pass through mass 
point, G, Equation B.14 is replaced by 

                                                                 
1 The magnitude of vector Fr is given by 

( ) ( )2 2

r nF F F= +∑ ∑ t  B.30 
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 O OI αΜ = •∑  B.31 

where ΣΜO (not shown in Figure B.11) is now the sum of moments of all 
external forces (four forces in the case of Figure B.11; F1, F2, W, and 
reaction force FO) acting on the rigid body with respect to this fixed axis of 
rotation through point O and IO is the mass moment of inertia of the body 
with respect to point O. The resulting moment ΣΜO is equal to the 
moments of forces F1, F2, and W about point O, which are eccentric to the 
pin. Since reaction force FO acts at pin 0, it does not contribute to this 
resultant moment. Summing moments due to these three forces about pin 
O, with counterclockwise moments positive, the magnitude of the 
resultant moment vector ΣMO (the sum of moments of all forces about 
point O) is 

 1 1 2 2' 'OM F h F h W xW= − • + • − •∑  B.32 

where h’1, h’2, and xW are the perpendicular distances between the lines of 
action of vectors F1, F2, and W, respectively, and parallel lines that pass 
through pin O, as shown in Figure B.11. The action of the vector ΣMO (not 
shown) acting about pin O on the rigid body results in the angular rotation 
of the body and is graphically equivalent to the Figure B.11 vector IG 
times α shown in the kinetic diagram (the right-hand side diagram). 

The two mass moments of inertia IG and IO are related by the parallel axis 
theorem, 

  B.33 2
/O G G OI I M r= + •

where M is the mass of the rigid body and rG/O is the perpendicular 
distance between the parallel z-axes (perpendicular to the x-y plane) 
passing through points G and O. It is used to transfer the mass moment of 
inertia, IG, from a set of three orthogonal planes passing through the 
body’s mass center, G, to a corresponding set of orthogonal planes passing 
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through some other point O.1 For applications, one should remember that 
“IOα” accounts for the “moment” of both M times at and IG times α about 
point O. An alternate, equivalent expression for IO is 

 ( )2 2
O G O to G O to GI I M x y= + • +  B.37 

B.6 Planar Kinematics of a Rigid Body: Noncentroidal Rotation about 
a Fixed Axis 

Planar kinematics of a rigid body is the study of the geometry of motion 
without consideration of the forces causing the motion. The rigid body 
shown in Figure B.9 is an example of a body undergoing noncentroidal 
rotation. The rigid body’s mass center, G, travels along a circular path of 
radius rG/O centered at the point 0 in this figure, where the axis of rotation 
intersects the plane of reference. 

Angular displacement: The change in the angular position of the of the 
Figure B.9 radius vector from point 0 to G, which can be measured as a 
differential dθ and is a vector quantity, is called the angular displacement. 
Since motion is always about a fixed axis (whose origin is point 0) the 
direction of vector dθ is always along the axis. Specifically, the direction is 
determined by the right-hand rule. In Figure B.9 both θ and dθ are 
directed counterclockwise. Thus the directional sense of ω is outward from 
the Figure B.9 drawing. 

Angular Velocity: The angular velocity vector, ω, is the time rate of change 
in angular position 

 
d
dt
θω =  B.38 

                                                                 
1 Introducing Equation B.33 into the relationship 

O OI αΜ = •∑  bis B.31 

results in  

( )2
/O G G OI M r αΜ = + • •∑  B.34 

Expanding terms, Equation B.32 becomes 

( )/ /O G G O G OI M r rα αΜ = • + • • •∑  B.35 

and by introducing Equation B.26, simplifies to 
 B.36 /O G G O tI M rαΜ = • + • •∑ a
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and is often measured in radians/sec. Its direction is always along the axis 
of rotation, i.e., in the same direction as dθ. When indicating the angular 
motion of the Figure B.9 rigid body we arbitrarily chose counterclockwise 
rotations as positive; the directional sense of ω is outward from the 
Figure B.9 drawing. 

Angular Acceleration: The angular acceleration, α, measures the time rate 
of change of the angular velocity 

 
d
dt
ωα =  B.39 

or, equivalently, 

 
2

2

d
dt

θα =  B.40 

The line of action of α is the same as that for ω. However, its sense of 
direction depends on whether ω is decreasing or increasing. Note that if ω 
is decreasing, then α is the angular deceleration and it has a sense of 
direction opposite to ω. 

The similarity between the differential relations for angular motion and for 
rectilinear motion of a particle (i.e., v = ds/dt; a = dv/dt) should be 
apparent. 

B.7 Planar Kinetics of a Rigid Body 

A rigid body undergoing general plane motion undergoes a combination of 
translation and rotation. Returning to the Figure B.7 (discussed in Section 
B.5), this rigid body of mass M is subjected to the external forces F1, F2, 
and W contained in the plane of the rigid body. (Note that no 
displacement and/or rotational constraints are placed on this body.) The 
motion of the rigid body is completely defined by the resultant of the 
external forces and moment of these forces about its mass center, 

 ( )x x
F M a= • G∑  B.41 

 ( )y G y
F M a= •∑  B.42 
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 G GM I α= •∑  bis B.14 

Equations B.41 and B.42 describe the magnitude of the x- and y-
components of the resultant force Fr (refer to Equation B.30) which may 
also be expressed as 

 rF M aG= •  bis B.5 

where the vectors Fr and aG are shown in Figure B.7. 

Considering the rotational component separately, rotation is produced by 
a moment equal to the Figure B.7 resultant force vector Fr about the 
body’s mass center, G, or equivalently, the sum of moments of each 
external force about mass center, G (as discussed in the Section B.4). Note 
that if the resultant of external forces acting on the Figure B.7 rigid body 
had passed through the mass center, G, it would be constrained to move in 
translation with zero angular acceleration. In this case the resultant force 
Fr acting on the Figure B.7 rigid body does not pass through the mass 
center, resulting in an angular rotation about point G. 

Considering the rotational component separately for the Figure B.7 rigid 
body, rotation is produced by the sum of moments of each external force 
about the body’s mass center, G, resulting in this case with centroidal 
rotation. However, if the motion of the body is constrained to rotate about 
a fixed axis which does not pass through its mass center, noncentroidal 
rotation results. A rigid body subjected to this constraint was discussed in 
Sections B.5 and B.6 and shown in Figures B.9, B.10, and B.11. 
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Appendix C: An Approach for Computing the 
Dynamic Active Earth Pressure Distribution 
for a Partially Submerged Retained Soil 

This appendix provides an approach for computing the dynamic active 
earth pressure distribution equivalent to the pseudo-static force PAE and 
its corresponding point of application. The computation of the resultant 
location of PAE and a corresponding pressure distribution for a granular 
backfill is discussed in Section C.1 in which Mohr-Coulomb effective stress 
shear strength parameter φ’ (with c’ set equal to zero) is used to 
characterize the shear strength of the retained soil. Wall movements 
sufficient to fully mobilize the shear strength of the backfill are assumed in 
the formulation, thus allowing for the use of active earth pressures. A 
hydrostatic water table is assumed in this formulation. Section C.2 
discusses the computation of the resultant location of the static PA force 
component of PAE and a corresponding pressure distribution for a granular 
backfill with a non-level backfill surface. 

Section C.3 discusses the computation of the resultant location of PAE and 
a corresponding pressure distribution for a backfill in which Mohr-
Coulomb effective stress shear strength parameter φ’ and c’ are nonzero. 
Section C.4 discusses the computation of the resultant location of PAE and 
a corresponding pressure distribution for a backfill in which Mohr-
Coulomb total stress shear strength parameter c is set equal to the 
undrained shear strength, Su, and φ is set equal to zero. 

C.1 Earth Pressure Distribution for the Dynamic Active Earth Pressure 
Force, PAE, of a Partially Submerged, Cohesionless, Level Backfill — 
Effective Stress Analysis with c’ Equal to Zero 

In Section 3.5 of Chapter 3, an approach to convert the resultant active 
earth pressure force, PAE (calculated using the approach outlined in 
Appendix A), into an equivalent pressure diagram for a wall retaining 
moist granular backfill was outlined. Key to this approach is the 
construction and use of pressure distributions for each of the two force 
components of PAE, 

 AE A AP P P E= + Δ  bis 3.23 
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The procedure was outlined in Figure 3.9 for a granular, moist backfill 
with a level ground surface. This figure demonstrates that the resulting 
total pressure distribution acting on the structural wedge is the sum of the 
triangular distribution of static active earth pressures plus the trapezoidal 
stress distribution consistent with ΔPAE. For this moist backfill condition, 
the static pressures are consistent with PA for the c’=0, moist granular 
backfill (with no water table), the equivalent resultant force for the static 
active earth pressure distribution acts at a height of H/3 and the 
equivalent resultant force for the incremental dynamic earth pressure 
distribution acts at a height equal to 0.6 times H. For partially submerged 
backfills, Equation 3.24 and Ebeling and Morrison (1992) describe an 
extension of this procedure to the case of a level, granular backfill with a 
partially submerged backfill containing a hydrostatic water table. This 
procedure is outlined below using a four-step computational process: 

Step 1: Convert the static active earth pressure force, PA, into an 
equivalent active earth pressure diagram 

The active earth pressure coefficient, KA, is first computed using the 
relationship 

 
'

0

A
A H

vertical

PK
dhσ

=

∫
 C.1 

with PA computed by the sweep-search method in CorpsWallRotate (refer to 
Section A.3) and the denominator equal to the integral of the vertical 
effective stress (i.e., the effective overburden pressure distribution). For 
level backfill with a hydrostatic water table of height Hw above the heel of 
the wall (and no surcharge), the denominator of Equation C.1 is computed 
using the simplified relationship 

 ( ) ( )

( ) ( )

'

0

2

2

1
2

1
2

H

vertical

moist w moist w w

saturated w w

dh

H H H H H

H

σ

γ γ

γ γ

=

⎧ ⎫• • − + • − •⎡ ⎤⎣ ⎦⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪+ • − •
⎪ ⎪⎩ ⎭

∫

 C.2 

with 
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 γmoist = moist unit weight of the retained soil (above the water table) 

 γsaturated = saturated unit weight of the retained soil (below the water table) 

 H = height of the imaginary section as measured vertically from the heel of the 

wall to the horizontal ground surface (and equal to the height of the 

imaginary section taken at the interface of the driving soil wedge with the 

structural wedge) 

 (H-Hw) = thickness of the backfill above the hydrostatic water table 

Note that the height term Hw in Equation C.2 is used to denote the 
thickness of the submerged backfill above the heel of the wall. 

The static active earth pressure σA, acting at an effective interface friction 
angle of δ to the normal of the vertical imaginary section, is computed at 
any depth, d, below the ground surface as  

 ( ) ( )withA A moist wK d d H Hσ γ= • • ≤ −  C.3.a 

above the water table, and 

 
( ) ( ) ( ){ }

( )
A A moist w saturated w w

w

K H H d H H

with d H H

σ γ γ γ= • • − + − • − −⎡ ⎤⎣ ⎦
> −

 C.3.b 

below the hydrostatic water table, as shown in Figure C.1. 
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Figure C.1. Static active earth pressure σA distribution acting at an effective interface friction 
angle of δ to the normal of the vertical imaginary section through the heel of the wall — 

effective stress analysis. 

The area under the Figure C.1 active earth pressure diagram is equal to PA. 

The hPA location of the equivalent resultant force (PA) for the Figure C.1 
earth pressure distribution is computed in a two-step process: First, the 
active earth pressure distribution is converted into an equivalent set of 
Figure C.2 forces F1, F2, F3, and F4 

 
( )1

1
3 6

top PA mid PA

w

F
H H

σ σ− −⎡ ⎤= • +⎢ ⎥− ⎣ ⎦
 C.4 

 
( )2

1
6 3

top PA mid PA

w

F
H H

σ σ− −⎡ ⎤= • +⎢ ⎥− ⎣ ⎦
 C.5 

 3

1
3 6

mid PA bot PA

w

F
H

σ σ− −⎡ ⎤= • +⎢ ⎥⎣ ⎦
 C.6 

 4

1
6 3

mid PA bot PA

w

F
H

σ σ− −⎡ ⎤= • +⎢ ⎥⎣ ⎦
 C.7 
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Secondly, from the moment equilibrium relationship for the horizontal 
components of the four forces about the heel, 

 ( ) ( ){ } ( )
4

1 2 3 4
1

cos 0 cosi PA w
i

F h F H F F H Fδ δ
=

⎧ ⎫• • = • + + • + • •⎨ ⎬
⎩ ⎭
∑  C.8 

the hPA location of the equivalent resultant active earth pressure force PA is 
computed using 

 
( ) ( )1 2 3 4

4
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∑
 C.9 

Note that 

 
4

1
i

i

F P
=

A=∑  C.10 

with PA being the value computed by the sweep-search trial wedge solution 
discussed in Section A.3. 

Observe in Figure C.2 that the location of the resultant force PA for a level, 
granular (c’=0) backfill with a partially submerged backfill containing a 
hydrostatic water table is above the H/3 height for a moist backfill (with 
no water table). 

Step 2: Create an incremental dynamic force component pressure diagram 

The incremental dynamic force component ΔPAE is next converted into an 
equivalent earth pressure diagram. Using the relationship 

 AE AEP P PAΔ = −  C.11 

and with values for PAE and PA provided by the dynamic and static sweep-
search solutions made by CorpsWallRotate using the procedures outlined in 
Appendix A. The Ebeling and Morrison (1992) simplified procedure 
assumes a trapezoidal distribution for the corresponding incremental 
stress distribution, acting at an effective interface friction angle of δ to the 
normal of the vertical imaginary section, as shown in Figure C.3. The 
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resulting force corresponding to the area under the pressure distribution is 
equal to ΔPAE and acts at a height to 0.6 times H. 

( ) ( )[ ]wwsaturatedwmoistAPAbot HHHK •−+−••=− γγγσ

0=−PAtopσ

δ
heel

H

Hw

d
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( )[ ]wmoistAPAmid HHK −••=− γσ

δ
heel

=

F1

F2

F3

F4

Figure C.2. The static active earth pressure distribution and its equivalent set of forces — 
effective stress analysis. 

Step 3: Create the dynamic active earth pressure diagram 

The dynamic active earth pressure diagram is created by adding the earth 
pressure diagrams created in steps 1 and 2. The resulting force 
corresponds to the area under the combined pressure distribution and is 
equal to PAE (recall PAE = PA + ΔPAE). Its point of application above the heel 
of the wall is given by 

 
( ) ( )0.6A PA AE

PAE
AE

P h P H
h

P
• + Δ • •

=  C.12 

Step 4: Compete the pressure diagram by adding in the pore water 
pressure distribution. 

In this effective stress analysis, pore water pressures will be added to the 
Figure C1 PA and Figure C3 ΔPAE component earth pressure distributions 
in order to obtain a total diagram of pressures acting on the structural  
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Figure C.3. The dynamic earth pressure distribution corresponding to the incremental 
dynamic force component ΔPAE , acting at an effective interface friction angle of δ to the 
normal of the vertical imaginary section through the heel of the wall (after Ebeling and 

Morrison (1992)). 

wedge (and not to be confused with a total stress analysis). Pore water 
pressures act normal to the imaginary vertical section through the heel of 
the wall in this effective stress characterization of earth pressures acting 
on the structural wedge. For a hydrostatic water table, the pore water 
pressure at depth, d, below the ground surface is given by 

 ( )0 with wu d H H= ≤ −  C.13.a 

above the water table, and 

 ( ) ( )withw wu d H H d H Hγ= • − − > −⎡ ⎤⎣ ⎦ w  C.13.b 

below the hydrostatic water table, as shown in Figure C.5. 
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Figure C.5. Hydrostatic pore water pressure distribution acting normal of the vertical 
imaginary section through the heel of the wall. 

Thus, a total diagram of pressures acting on the structural wedge consists 
of the Figure C1 PA distribution, plus the Figure C3 ΔPAE distribution, plus 
the Figure C.5 pore water pressure distribution. 

C.2 Earth Pressure Distribution for the Static Active Earth Pressure 
Force, PA, component of PAE of a Cohesionless, Backfill with a Sloping 
or a Bilinear Ground Surface — Effective Stress Analysis with c’ Equal 
to Zero 

The previous section describes an approach to convert the resultant active 
earth pressure force, PAE, (calculated using the approach outlined in 
Appendix A) into an equivalent pressure diagram for a wall retaining 
moist granular backfill with c’ equal to zero. This procedure starts with the 
computation of an equivalent static active earth pressure force PA and an 
equivalent active earth pressure diagram for a level backfill ground 
surface. This section expands on the Section C.1 procedure for determining 
the distribution and resultant location of PA for a sloping and a bilinear 
ground surface backfill following a procedure outlined in ETL 1110-2-322. 
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C.2.1 The Basic Procedure to Compute the Active Effective Stress 
Distribution Corresponding to PA for a Moist Retained Soil with a Sloping 
Ground Surface 

The procedure to calculate the active earth pressure distribution for 
resultant static force PA due to the geometry of the backfill is outlined 
using the information contained within Figure C.6 for a moist, granular 
frictional (φ’ > 0 and c’ = 0) retained soil with a constant slope for the 
ground surface. The sweep-search wedge procedure described in Section 
A.3 is used to first compute the value for PA as well as the orientation of 
the planar slip surface, αA, for the critical soil wedge that originates at 
point 1. The equation to compute the active earth pressure (designated as 
σA) at key points is given in this figure and is equal to the active earth 
pressure coefficient, KA, times the vertical effective stress at depth z in the 
moist retained soil. The key feature for this formulation is that at a given 
point along the vertical imaginary section through the heel of the 
structural wedge (and labeled in this figure), the effective vertical stress 
(designated as σv-z in the brackets) is computed using a depth z, the depth 
below the ground surface as shown in this figure. A computation of σv-z 
and, subsequently, σA are made in this figure for point 1 (at the heel). Note 
that depth z, designated as z1 for point 1, is determined by extending the 
critical, planar slip plane from point 1 until it intersects the ground 
surface. This same procedure is followed to compute a different value for z, 
σv-z and for σA at any other point of interest along the imaginary vertical 
section of height H. To determine the value for the active earth pressure 
coefficient, KA, the value for the force PA from the sweep-search method of 
analysis is divided by the integral of the σv-z distribution along the 
imaginary vertical section of height H (refer to the KA equation given in 
this figure). For the case of a moist granular retained soil with a constant 
surface slope, the equation for σv-z and σA at key points and for KA are 
straight-forward and given in this figure. 
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Figure C.6. The active earth pressure distribution corresponding to the incremental static 
force component PA, acting at an effective interface friction angle of δ to the normal of the 
vertical imaginary section through the heel of the wall — moist retained soil with φ’>0 and 

c’=0. 

The procedure outlined in Step 1 in Section C.1 that converts the σA 
distribution into equivalent forces (see Figure C.2) is used to compute the 
resultant location hPA of PA for use in Equation C.12 for the resultant 
location hPAE of PAE. The procedure outlined in Step 2 and Step 3 in 
Section C.1 are used to compute the incremental dynamic force component 
ΔPAE and its corresponding equivalent earth pressure diagram. 

C.2.2 The Basic Procedure to Compute the Active Effective Stress 
Distribution Corresponding to PA for a Partially Submerged Retained Soil 
with a Sloping Ground Surface 

This section expands upon the procedure outlined in Section C.2.1 by 
including the case of a partially submerged granular backfill (with a 
hydrostatic water table). The procedure to calculate the active earth 
pressure distribution for resultant static force PA due to the geometry of 
the backfill is outlined using the information contained within Figure C.7 
for a granular frictional (φ’ > 0 and c’ = 0) retained soil with the critical 
planar wedge slip plane that passes through point 1 (with αA > αcorner) and 
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intersects the sloping portion of the ground surface. The sweep-search 
wedge procedure described in Section A.3 is used to first compute the 
value for PA as well as the orientation of the planar slip surface, αA, for the 
critical soil wedge that originates at point 1. The equation to compute the 
active earth pressure (designated as σA ) at the key points identified in this 
figure as 1, 6, and 3, is equal to the active earth pressure coefficient, KA, 
times the vertical effective stress at depth z in the retained soil. The key 
feature for this formulation is that at a given point along the vertical 
imaginary section through the heel of the structural wedge (identified in 
this figure as points 1, 6, and 3), the effective vertical stress (designated as 
σ’v-z in the brackets) is computed using a depth z, the depth below the 
ground surface as shown in this figure. A computation of σ’v-z and, 
subsequently, σA are made in this figure for point 1 (at the heel). Note that 
depth z, designated as z1 for point 1, is determined by extending the 
critical, planar slip plane from point 1 until it intersects the ground surface 
(at point 2). This same procedure is followed to compute the value for z, 
σ'v-z, and σA at the other key point 6 (and point 3) along the imaginary 
vertical section of height H. A plane oriented at αA from horizontal is 
projected from the point of interest, e.g., point 6, up through the retained 
soil until it intersects the sloping ground surface. σ’v-z6 is computed using 
the resulting vertical height z6 of this planar surface, as shown in this 
figure. Moist unit weights above the water table and buoyant unit weights 
below the water table (assuming a hydrostatic water table in the retained 
soil) are used to compute the vertical effective stress σ’v-z. To determine 
the value for the active earth pressure coefficient, KA, the value for the 
force PA from the sweep-search method of analysis is divided by the 
integral of the σ’v-z distribution along the imaginary vertical section of 
height H (refer to the equation given in this figure). [σ’v-z is contained 
within the brackets of the σA relationships in this figure.] For the case of a 
granular retained soil with a constant surface slope, the equation for σ’v-z 
and σA at key points and for KA are straight-forward and given in this 
figure. 
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Figure C.7. The active earth pressure distribution corresponding to the incremental static 
force component PA, acting at an effective interface friction angle of δ to the normal of the 

vertical imaginary section through the heel of the wall — partially submerged backfill with φ’>0 
and c’=0. 

The procedure outlined in Step 1 in Section C.1 that converts the σA 
distribution into equivalent forces (as generalized in Figure C.8) is used to 
compute the resultant location hPA of PA for use in Equation C.12 for the 
resultant location hPAE of PAE. The procedures outlined in Step 2 and 
Step 3 in Section C.1 are used to compute the incremental dynamic force 
component, ΔPAE, and its corresponding equivalent earth pressure 
diagram. 
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Figure C.8. Conversion of a linear stress distribution into an equivalent set of forces. 

C.2.3 The Basic Procedure to Compute the Active Effective Stress 
Distribution Corresponding to PA for a Partially Submerged Retained Soil 
with a Bilinear Ground Surface 

This section expands upon the procedure outlined in Section C.2.2 in the 
case of a partially submerged granular backfill. The procedure to calculate 
the active earth pressure distribution for resultant static force PA due to 
the geometry of the backfill is outlined using the information contained 
within Figure C.9 for a granular, frictional (φ’ > 0 and c’ = 0) retained soil 
for which the critical planar wedge slip plane that passes through point 1 
(with αcorner > αA) and intersects the horizontal portion of the bilinear 
ground surface. The sweep-search wedge procedure described in Section 
A.3 is used to first compute the value for PA as well as the orientation of 
the planar slip surface, αA, for the critical soil wedge that originates at 
point 1. The equation to compute the active earth pressures (designated as 
σA) at the Figure C.9 key points 1, 12, 6, and 3 is equal to the active earth 
pressure coefficient, KA, times the vertical effective stress at depth z in the 
moist retained soil. The key feature for this formulation is that at a given 
point along the vertical imaginary section through the heel of the 
structural wedge (identified in this figure as points 1, 12, 6, and 3), the 
effective vertical stress (designated as σ’v-z in the brackets) is computed 
using a depth z, the depth below the ground surface as shown in this 
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figure. A computation of σ’v-z and, subsequently, σA are made in this figure 
for point 1 (at the heel). Note that depth z, designated as z1 for point 1, is 
determined by extending the critical, planar slip plane from point 1 until it 
intersects the horizontal ground surface. This same procedure is followed 
to compute the value for z, σ’v-z, and σA at the other key points 12, 6, and 3 
along the imaginary vertical section of height H. A plane oriented at αA 
from horizontal is projected from the point of interest (e.g., point 6) up 
through the retained soil until it intersects the sloping ground surface. σ’v-

z6 is computed using the resulting vertical height z6 of this planar surface, 
as shown in this figure. The computations outlined in Figure C.9 differ 
from the Figure C.7 computations because the deepest soil wedge slip 
plane (originating at point 1) intersects the horizontal rather than the 
sloping portion of the ground surface. Thus an additional key point 12 is 
needed to define the σA distribution. Moist unit weights above the water 
table and buoyant unit weights below the water table (assuming a 
hydrostatic water table in the retained soil) are used to compute the 
vertical effective stress σ’v-z. To determine the value for the active earth 
pressure coefficient, KA, the value for the force PA from the sweep-search 
method of analysis is divided by the integral of the σ’v-z distribution along 
the imaginary vertical section of height H (refer to the equation given in 
this figure). [σ’v-z is contained within the brackets of the σA relationships 
given in this figure.] For the case of a granular retained soil with a bilinear 
ground surface, the equation for σ’v-z and σA at key points and for KA are 
straight-forward and given in this figure. 
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Figure C.9. The active earth pressure distribution corresponding to the incremental static 
force component PA , acting at an effective interface friction angle of δ to the normal of the 

vertical imaginary section through the heel of the wall for a bilinear ground surface — partially 
submerged backfill with φ’>0 and c’=0. 

The procedure outlined in Step 1 in Section C.1 that converts the σA 
distribution into equivalent forces (see Figure C.8) is used to compute the 
resultant location hPA of PA for use in Equation C.12 for the resultant 
location hPAE of PAE. The procedures outlined in Step 2 and Step 3 in 
Section C.1 are used to compute the incremental dynamic force component 
ΔPAE and its corresponding equivalent earth pressure diagram. 

C.3 Earth Pressure Distribution for the Dynamic Active Earth Pressure 
Force, PAE, for a Backfill with Mohr-Coulomb Shear Strength 
Parameters c’ and φ’ — Effective Stress Analysis 

This section discusses the computation of the resultant location of PAE and 
a corresponding pressure distribution for a backfill in which Mohr-
Coulomb effective stress shear strength parameter φ’ and c’ are both 
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nonzero.1 PAE is equal to the sum of PA plus ΔPAE by Equation 3.23. The 
same four-step computational process outlined in Section C.1 is used to 
determine the earth pressure distribution and resultant location for PAE for 
a backfill with nonzero c’ and φ’ effective stress based Mohr-Coulomb 
shear strength parameters assigned to the backfill: 

Step 1: Convert the static active earth pressure force, PA, into an equivalent 
active earth pressure diagram. 

Equation A.25 of the sweep-search wedge solution method described in 
Section A.3 demonstrates that PA is made up of two forces, (1) a frictional 
and weight force component and (2) a cohesive force component. The 
frictional/weight resultant force component is reduced by the cohesion 
force component. The subtraction of the cohesion force component in 
Equation A.25 reflects a cohesion force component for a tensile stress 
distribution component of the resulting (effective) active earth pressure σA 
distribution of stresses with depth, 

 'A A weight v zK φ SIGcσ σ− − −= • −  C.14 

The component of (effective) active earth pressure distribution due to 
cohesion is designated as SIGc in this report and is of constant magnitude 
with depth. SIGc is computed by 

 A CPSIGc
H

−=  C.15 

                                                                 
1 A key item is the selection of suitable shear strength parameters. In an effective stress analysis, the 

issue of the suitable friction angle is particularly troublesome when the peak friction angle is 
significantly greater than the residual friction angle. In the displacement controlled approach examples 
given in Section 6.2 of Ebeling and Morrison (1992), effective stress based shear strength parameters 
(i.e., effective cohesion c’ and effective angle of internal friction φ’) were used to define the shear 
strength of the dilative granular backfills, with c’ set equal to zero in all cases due to the level of 
deformations anticipated in a sliding block analysis during seismic shaking. In 1992 Ebeling and 
Morrison concluded that it is conservative to use the residual friction angle in a sliding block analysis, 
and this should be the usual practice for displacement based analysis of granular retained soils. The 
primary author of this report would broaden the concept to the assignment of effective (or total) shear 
strength parameters for the retained soil be consistent with the level of shearing-induced deformations 
encountered for each design earthquake in a rotational analysis and note that active earth pressures 
are used to define the loading imposed on the structural wedge by the driving soil wedge. (Refer to 
Table 1.1 for guidance regarding wall movements required to fully mobilize the shear resistance within 
the retained soil during earthquake shaking.) Therefore, engineers are cautioned to carefully consider 
the reasonableness of including a nonzero value for effective cohesion c’ in their permanent 
deformation and permanent rotation analyses. 
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with PA-C corresponding to the cohesion component of PA computed using 
Equation A.25 in the sweep-search wedge method of analysis with a 
critical wedge oriented at angle αA. The active earth pressure coefficient, 
KA-φ-weight, is computed using 
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with PA-φ-weight corresponding to the frictional/weight component of PA 
computed using Equation A.25 in the sweep-search wedge method of 
analysis. The effective vertical stress σ'v-z is computed using a depth z, the 
depth below the ground surface using the procedure outlined in the 
Section C.2. In a moist backfill (i.e., with no water table) the depth to zero 
stress (i.e., depth of cracking) is computed as 
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 C.17 

The effective vertical stress at the deepest point in the crack in moist soil 
(and above a water table) is computed equal to 

 'v z dcrack moist dcrackzσ γ− − = •  C.18 

which, for a plane at angle αA (from horizontal) intersecting the sloping 
ground becomes 

 
( )

( ) ( )
tan

tan tandcrack crackz d α
α β

⎡ ⎤
= • ⎢ ⎥−⎣ ⎦

 C.19 

and σA-dcrack is equal to zero at the crack tip 

 0 'A dcrack A weight v z dcrackK φ SIGcσ σ− − − − −= = • −  C.20 

In the case of a crack extending below a hydrostatic water table within a 
retained soil, the effective vertical stress at the deepest point in the crack 
in Equation C.20 is computed using 
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 11' (v z dcrack moist toWT saturated w WTtocrackz ) zσ γ γ γ− − = • + − •  C.21 

with z11toWT and ZWTtocrack dimensions as shown in Figures C.10.a and 
C.10.b. In retained soils with a hydrostatic water table an iterative 
approach, using Equations C.20 and C.21, is used by CorpsWallRotate to 
determine the value of dcrack. 
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Figure C.10.a Graphical definition of z11toWT and zWTtocrack in the effective vertical stress 
σ’v-z-dcrack computation with x11 < x4. 

For the partially submerged retained soil case of Figure C.10.a, the depth 
to crack, dcrack, extends below the hydrostatic water table, and point 11 is 
located on the slope of the retained soil’s ground surface (as indicated by 
x11 < x4). Equations C.19 through C.21are used in a trial-and-error 
procedure to compute the value of dcrack (and ydcrack). The following 
relationships, based on the Figure C.10.a geometry, are also used in the 
solution process, 

 ( )11 / tandcrackx z α=  C.22 

 11toWT dcrack WTtocrackz z z= −  C.23 

with 

 6WTtocrack dcrackz y y= −  C.24 

For 
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 6 wy H=  C.25 

the variable zWTtocrack is also expressed as 

 ( )WTtocrack crack wz d H H= − −  C.26 

Note that for y3 equal to H, 

 crack cracky H d= −  C.27 
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Figure C.10.b Graphical definition of z11toWT and zWTtocrack in the effective vertical stress 
σ’v-z-dcrack computation with x11 > x4. 

For the partially submerged retained soil case of Figure C.10.b, the depth 
to crack, dcrack, also extends below the hydrostatic water table but with 
point 11 located on the level ground surface of the retained soil (as 
indicated by x11 > x4). The Equation C.19 relationship between zdcrack and 
dcrack is not applicable. The following equation is substituted, 

  C.28 ( ) 11 4withdcrack Level crackz H H d x= − + > x

or, equivalently, 

 ( ) ( )12 11 4 11 4tan withdcrackz z x x x xα= + − • >  C.29 
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Equations C.20 and C.21 are used in a trial-and-error procedure to 
compute the value of dcrack (and ydcrack). The following relationships, based 
on the Figure C.10.b geometry, are also used in the solution process, 

 ( )11 / tandcrackx z α=  bis C.22 

 ( )12 4 tanz x α= •  C.30 

 11toWT dcrack WTtocrackz z z= −  bis C.23 

with 

 6WTtocrack dcrackz y y= −  bis C.24 

substituting 

 6 wy H=  bis C.25 

and for y3 equal to H, 

 dcrack cracky H d= −  bis C.27 

Recognizing that z11toWT is a constant, equal to the difference between HLevel 
and Hw (in the case of x11 > x4), the variable zWTtocrack is also expressed as 

 ( )WTtocrack dcrack Level wz z H H= − −  bis C.26 

Another useful geometrical Figure C.10.b relationships is 
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 C.31 

CorpsWallRotate performs a permanent displacement analysis of a retaining 
wall due to earthquake shaking. Reversal in the direction of the horizontal 
component of the time-history of earthquake ground shaking occurs many 
times during the typical tens of seconds of ground motion. Consequently, a 
reversal in direction of the inertial force imparted to the structural wedge 
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and to the soil driving wedge occurs many times during the course of the 
analysis using CorpsWallRotate. In a traditional soil wedge formulation for 
static loading, a crack is typically considered to exist within the upper 
regime of the soil driving wedge for a cohesive soil and the planer wedge 
slip surface is terminated when it intersects the zone of cracking at a depth 
dcrack below the ground surface (e.g., see Appendix H in EM 1110-2-2502). 
This assumption is not made the CorpsWallRotate formulation for dynamic 
loading. Instead, it is assumed that in the dynamic wedge formulation, the 
crack within the zone of cracking at the top of the retained cohesive soil of 
the driving wedge will not remain open during earthquake shaking due to 
the inertial load direction reversals. So even for cohesive soils, the Figure 
A.1 planar slip surface obtained from the sweep-search method of analysis 
used by CorpsWallRotate to obtain a value for the earthquake-induced 
resultant driving force PAE (acting on the structural wedge), extends 
uninterrupted within the driving soil wedge (in the retained soil) to the 
ground surface and is not terminated by a vertical crack face to the ground 
surface when it enters the zone of cracking. Since PA is used solely to 
determine the value for hPAE, the resultant location for PAE with the 
procedure outlined in this appendix, a continuous planar slip surface is 
also assumed in PA computations. A sweep-search wedge formulation is 
used to compute PA. Equation C.17 for crack depth, dcrack, in moist backfill 
and Equation C.20 in partially submerged backfill are used solely to 
establish the static earth pressure diagram component of PAE pressures 
along the imaginary vertical section passing through the heel of the wall, 
consistent with the Equation 3.23 formulation. This assumption is made 
for the earth pressure distribution corresponding to PA with consideration 
of dcrack because the permanent displacement of the structural wedge is 
away form the backfill, and it is likely that at this vertical section a vertical 
crack may occur. Thus, dcrack is accounted for in the hPAE computation 
using Equation C.12. The static tensile σA stresses along the driving soil 
wedge-to-structural wedge interface (i.e., located along the vertical 
imaginary section extending through the heel) are neglected over the 
depth of cracking due to the presence of the crack by CorpsWallRotate. 

Step 2: Create an incremental dynamic force component pressure diagram.  

The incremental dynamic force component, ΔPAE, is next converted into an 
equivalent earth pressure diagram using the relationship 

 AE AEP P PAΔ = −  bis C.11 
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and with values for PAE and PA provided by the dynamic and static sweep-
search solutions made by CorpsWallRotate using the procedures outlined in 
Appendix A (Sections A.4 and A.5). The Ebeling and Morrison (1992) 
simplified procedure assumes a trapezoidal distribution for the 
corresponding incremental stress distribution with an interface friction 
angle of δ = 0  to the normal of the vertical imaginary section in a total 
stress analysis (refer to Figure C.3). The resulting force corresponding to 
the area under the pressure distribution is equal to ΔPAE and acts at a 
height to 0.6 times H. 

Step 3: Create the dynamic active earth pressure diagram. 

The dynamic active earth pressure diagram is created by adding the earth 
pressure diagrams created in Steps 1 and 2. The resulting force 
corresponds to the area under the combined pressure distribution and is 
equal to PAE (recall PAE = PA + ΔPAE). Its point of application above the heel 
of the wall is given by 

 
( ) ( )0.6A PA AE

PAE
AE

P h P H
h

P
• + Δ • •

=  bis C.12 

In the special case of cohesive soils, the CorpsWallRotate analysis disregards 
the tensile stresses when defining the static active earth pressures and the 
corresponding resulting static active earth pressure force to be applied to 
the structural wedge, as well as when computing hPA for this modified 
stress distribution. A trapezoidal earth pressure distribution is still used to 
define ΔPAE. 

Step 4: Compete the pressure diagram by adding in the pore water pressure 
distribution. 

Refer to discussion in Step 4 of Section C.1. 

C.3.1 The Basic Procedure to Compute the Active Effective Stress 
Distribution Corresponding to PA for a Partially Submerged Retained Soil 
with a Sloping Ground Surface 

The procedure outlined in Section C.2.2 is expanded to consider the case 
of a partially submerged backfill with nonzero effective cohesion and 
friction shear strength parameters (i.e., c’ > 0 and φ’ > 0). The procedure 
to calculate the active earth pressure distribution for resultant static force 
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PA due to the geometry of the backfill is outlined using the information 
contained within Figure C.11 for which the critical planar wedge slip plane 
that passes through point 1 (with αA> αcorner) intersects the sloping portion 
of the bilinear ground surface. The sweep-search wedge procedure 
described in Section A.3 is used to first compute the value for PA as well as 
the orientation of the planar slip surface, αA, for the critical soil wedge that 
originates at point 1. The equation to compute the active earth pressures 
(designated as σA ) at the Figure C.11 key points designated as 1, 6, dcrack, 
and 3 is, by Equation C.14, equal to the active earth pressure coefficient, 
KA-φ-weight, times the vertical effective stress at depth z in the retained soil 
minus SIGc. The key feature for this formulation is that at a given point 
along the vertical imaginary section through the heel of the structural 
wedge (identified in this figure as points 1, 6, dcrack, and 3), the effective 
vertical stress (designated as σ’v-z in the brackets and for a hydrostatic 
water table) is computed using a depth z, the depth below the ground 
surface as shown in this figure. A computation of σ’v-z and, subsequently, 
σA are made in this figure for point 1 (at the heel). Note that depth z, 
designated as z1 for point 1, is determined by extending the critical, planar 
slip plane from point 1 until it intersects the sloping ground surface. This 
same procedure is followed to compute the value for z, σ’v-z, and σA at the 
other key points 6, dcrack, and 3 along the imaginary vertical section of 
height H. A plane oriented at αA from horizontal is projected from the 
point of interest (e.g., point dcrack) up through the retained soil until it 
intersects the sloping ground surface. σ’v-z-dcrack is computed using the 
resulting vertical height, zdcrack, of this planar surface, as shown in this 
figure. The computations outlined in Figure C.11 differ from the Figure C.7 
computations because the of the depth of cracking. Thus an additional key 
point, dcrack, is needed to define the σA distribution. Moist unit weights 
above the water table and buoyant unit weights below the water table 
(assuming a hydrostatic water table in the retained soil) are used to 
compute the vertical effective stress σ’v-z. To determine the value for the 
active earth pressure coefficient, KA-φ-weight, the value for the force 
component PA-φ-weight from the sweep-search method of analysis is divided 
by the integral of the σ’v-z distribution along the imaginary vertical section 
of height H (refer to the equation given in this figure). [σ’v-z is contained 
within the brackets of the σA relationships given in this figure.] For the 
Figure C.11 case of a granular retained soil with a constant surface slope 
(as far as this effective vertical stress computational procedure is 
concerned), the equation for σ’v-z and σA at key points and for KA-φ-weight are 
straight-forward and given in this figure. 
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Figure C.11. The active earth pressure distribution corresponding to the incremental static 
force component, PA , acting at an effective interface friction angle of δ to the normal of the 

vertical imaginary section through the heel of the wall for a bilinear ground surface — partially 
submerged backfill with φ’>0 and c’>0. 

The procedure outlined in Step 1 in Section C.1 that converts the σA 
distribution into equivalent forces (see Figure C.8) is used to compute the 
resultant location hPA of PA for use in Equation C.12 for the resultant 
location hPAE of PAE. The procedures outlined in Step 2 and Step 3 in 
Section C.1 are used to compute the incremental dynamic force 
component, ΔPAE, and its corresponding equivalent earth pressure 
diagram. 

C.3.2 The Basic Procedure to Compute the Active Effective Stress 
Distribution Corresponding to PA for a Partially Submerged Retained Soil 
with a Bilinear Ground Surface 

The procedure outlined in Section C.2.3 is expanded to consider the Figure 
C.12 geometry of a partially submerged backfill with nonzero effective 
cohesion and friction shear strength parameters (i.e., c’ > 0 and φ’ > 0). 
The procedure to calculate the active earth pressure distribution for 
resultant static force PA due to the geometry of the backfill is outlined 
using the information contained within Figure C.12 for which the critical 
planar wedge slip plane that passes through point 1 (with αA> αcorner), 
intersecting the level portion of the bilinear ground surface. The sweep-
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search wedge procedure described in Section A.3 is used to first compute 
the value for PA as well as the orientation of the planar slip surface, αA, for 
the critical soil wedge that originates at point 1. The equation to compute 
the active earth pressures (designated as σA ) at the Figure C.12 key points 
designated as 1, 12, 6, dcrack, and 3 is, by Equation C.14, equal to the active 
earth pressure coefficient, KA-φ-weight, times the vertical effective stress at 
depth z in the retained soil minus SIGc. The key feature for this 
formulation is that at a given point along the vertical imaginary section 
through the heel of the structural wedge (identified in this figure as points 
1, 12, 6, dcrack, and 3), the effective vertical stress (designated as σ’v-z in the 
brackets and for a hydrostatic water table) is computed using a depth z, 
the depth below the ground surface as shown in this figure. A computation 
of σ’v-z and, subsequently, σA are made in this figure for point 1 (at the 
heel). Note that depth z, designated as z1 for point 1, is determined by 
extending the critical, planar slip plane from point 1 until it intersects the 
horizontal ground surface. This same procedure is followed to compute the 
value for z, σ’v-z, and σA at the other key points 12, 6, dcrack, and 3 along the 
imaginary vertical section of height H. A plane oriented at αA from 
horizontal is projected from the point of interest (e.g., point dcrack) up 
through the retained soil until it intersects the sloping ground surface. 
σ’v-z-dcrack is computed using the resulting vertical height zdcrack of this 
planar surface, as shown in this figure. The computations outlined in 
Figure C.12 differ from the Figure C.9 computations because of the depth 
of cracking. Thus an additional key point, dcrack, is needed to define the σA 
distribution. Moist unit weights above the water table and buoyant unit 
weights below the water table (assuming a hydrostatic water table in the 
retained soil) are used to compute the vertical effective stress σ’v-z. To 
determine the value for the active earth pressure coefficient, KA-φ-weight, the 
value for the force component PA-φ-weight from the sweep-search method of 
analysis is divided by the integral of the σ’v-z distribution along the 
imaginary vertical section of height H (refer to the equation given in this 
figure). [σ’v-z is contained within the brackets of the σA relationships given 
in this figure.] For the case of the Figure C.12 retained soil with a constant 
surface slope (as far as this effective vertical stress computational 
procedure is concerned), the equation for σ’v-z and σA at key points and for 
KA-φ-weight are straight-forward and given in this figure. 
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Figure C.12 The active earth pressure distribution corresponding to the incremental static 
force component, PA, acting at an effective interface friction angle of δ to the normal of the 

vertical imaginary section through the heel of the wall for a bilinear ground surface — partially 
submerged backfill with φ’>0 and c’>0. 

The procedure outlined in Step 1 in Section C.1 that converts the σA 
distribution into equivalent forces (see Figure C.8) is used to compute the 
resultant location hPA of PA for use in Equation C.12 for the resultant 
location hPAE of PAE. The procedures outlined in Step 2 and Step 3 in 
Section C.1 are used to compute the incremental dynamic force component 
ΔPAE and its corresponding equivalent earth pressure diagram. 

C.4 Earth Pressure Distribution for the Dynamic Active Earth Pressure 
Force, PAE, for a Backfill with Mohr-Coulomb Shear Strength Parameters, 
Su — Total Stress Analysis 

This section discusses the computation of the resultant location of PAE and 
a corresponding pressure distribution for a backfill in which Mohr-
Coulomb total stress (undrained) shear strength parameter, Su, is 
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nonzero.1 PAE is equal to the sum of PA plus ΔPAE by Equation 3.23. The 
first three steps of the computational process outlined in Section C.1 are 
used to determine the earth pressure distribution and resultant location 
for PAE for a backfill with nonzero Su total stress shear strength parameter 
assigned to the backfill: 

Step 1: Convert the static active earth pressure force, PA, into an equivalent 
active earth pressure diagram. 

Equation A.31 of the (total stress) sweep-search wedge solution method 
described in Section A.5 demonstrates that PA is made up of two forces, (1) 
a force component due to the weight of the soil (driving) wedge and (2) a 
cohesive force component. The resultant force component due to the 
weight of the soil wedge is reduced by the cohesion force component. The 
subtraction of the cohesion force component in Equation A.31 reflects a 
cohesion force component for a tensile stress distribution component of 
the resulting (effective) active earth pressure σA distribution of stresses 
with depth, 

 A A weight v z SuK SIGσ σ− −= • −  C.32 

The component of (total) active earth pressure distribution due to 
cohesion is designated as SIGSu in this report and is of constant magnitude 
with depth. SIGSu is computed by 

 A Su
Su

PSIG
H
−=  C.33 

with PA-Su corresponding to the cohesion component of PA computed using 
Equation A.31 in the sweep-search wedge method of analysis with a critical 
wedge oriented at angle αA. The active earth pressure coefficient, KA-weight, 
is computed using 

                                                                 
1 A key item is the selection of suitable shear strength parameters. The assignment of total (or effective) 

shear strength parameter(s) for the retained soil to be consistent with the level of shearing-induced 
deformations encountered for each design earthquake in a rotational analysis and note that active 
earth pressures are used to define the loading imposed on the structural wedge by the driving soil 
wedge. (Refer to Table 1.1 for guidance regarding wall movements required to fully mobilize the shear 
resistance within the retained soil during earthquake shaking.) 
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with PA-weight corresponding to the weight component of PA computed using 
Equation A.31 in the sweep-search wedge method of analysis. The total 
vertical stress σv-z is computed using a depth z, the depth below the ground 
surface using the procedure similar to that outlined in the Section C.2. In a 
moist backfill (i.e., with no water table) the depth to zero stress (i.e., depth 
of cracking) is computed as 
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The total vertical stress at the deepest point in the crack in moist soil (and 
above a water table) is computed equal to 

 v z dcrack moist dcrackzσ γ− − = •  C.36 

which, for a slip plane intersecting the sloping ground is 

 
( )

( ) ( )
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tan tandcrack crackz d α
α β

⎡ ⎤
= • ⎢ ⎥−⎣ ⎦

 bis C.19 

and σA-dcrack is equal to zero at the crack tip 

 0A dcrack A weight v z dcrack SuK SIGσ σ− − − −= = • −  C.37 

In the case of a crack extending below a hydrostatic water table within a 
retained soil, the total vertical stress at the deepest point in the crack in 
Equation C.37, is computed using 

 11v z dcrack moist toWT saturated WTtocrackz zσ γ γ− − = • + •  C.38 

with z11toWT and ZWTtocrack dimensions are the same as were shown in 
Figures C.10.a and C.10.b for the effective stress based analysis. In 
retained soils with a hydrostatic water table an iterative approach, using 
Equations C.37 and C.38, is used by CorpsWallRotate to determine the value 
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of dcrack. Note that pore water pressure internal to the soil wedge is not 
included in the Equation C.38 total vertical stress computation. 

CorpsWallRotate performs a permanent displacement analysis of a retaining 
wall due to earthquake shaking. Reversal in the direction of the horizontal 
component of the time-history of earthquake ground shaking occurs many 
times during the typical tens of seconds of ground motion. Consequently, a 
reversal in direction of the inertial force imparted to the structural wedge 
and to the soil driving wedge occurs many times during the course of the 
analysis using CorpsWallRotate. In a traditional soil wedge formulation for 
static loading, a crack is typically considered to exist within the upper 
regime of the soil driving wedge for a cohesive soil and the planer wedge 
slip surface is terminated when it intersects the zone of cracking at a 
depth, dcrack, below the ground surface (e.g., see Appendix H in EM 1110-2-
2502). This assumption is not made the CorpsWallRotate formulation for 
dynamic loading. Instead, it is assumed that in the dynamic wedge 
formulation, the crack within the zone of cracking at the top of the 
retained cohesive soil of the driving wedge will not remain open during 
earthquake shaking due to the inertial load direction reversals. So even 
for cohesive soils, the Figure A.1 planar slip surface obtained from the 
sweep-search method of analysis used by CorpsWallRotate to obtain a value 
for the earthquake induced resultant driving force PAE (acting on the 
structural wedge) extends uninterrupted within the driving soil wedge (in 
the retained soil) to the ground surface and is not terminated by a vertical 
crack face to the ground surface when it enters the zone of cracking. Since 
PA is used solely to determine the value for hPAE, the resultant location for 
PAE with the procedure outlined in this appendix, a continuous planar slip 
surface is also assumed in PA computations. A sweep-search wedge 
formulation is used to compute PA. Equation C.35 for crack depth dcrack in 
moist backfill and Equation C.37 in partially submerged backfill are used 
solely to establish the static earth pressure diagram component of PAE 
pressures along the imaginary vertical section passing through the heel of 
the wall, consistent with the Equation 3.23 formulation. This assumption 
is made for the earth pressure distribution corresponding to PA with 
consideration of dcrack because the permanent displacement of the 
structural wedge is away form the backfill, and it is likely that at this 
vertical section a vertical crack may occur. Thus, dcrack is accounted for in 
the hPAE computation using Equation C.12. The static tensile σA stresses 
along the driving soil wedge-to-structural wedge interface (i.e., located 
along the vertical imaginary section extending through the heel) are 
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neglected over the depth of cracking due to the presence of the crack by 
CorpsWallRotate. 

Step 2: Create an incremental dynamic force component pressure diagram. 

The incremental dynamic force component, ΔPAE, is next converted into an 
equivalent earth pressure diagram using the relationship 

 AE AEP P PAΔ = −  bis C.11 

and with values for PAE and PA provided by the dynamic and static sweep-
search solutions made by CorpsWallRotate using the procedures outlined in 
Appendix A (Sections A.4 and A.5). The Ebeling and Morrison (1992) 
simplified procedure assumes a trapezoidal distribution for the 
corresponding incremental stress distribution with an interface friction 
angle of δ = 0  to the normal of the vertical imaginary section in a total 
stress analysis (refer to Figure C.3). The resulting force corresponding to 
the area under the pressure distribution is equal to ΔPAE and acts at a 
height to 0.6 times H. 

In the case of a Figure A.4 water filled crack, ΔPAE is given by 

 AE AE AP P P UΔ = − − Δ  C.39 

with values for PAE and PA provided by the dynamic and static sweep-
search solutions made by CorpsWallRotate using the procedures outlined in 
Appendix A (Sections A.4 and A.5). PA is set equal to Pstatic-total stress 
(Equation A.31) for the critical slip plane (i.e., at angle α = αA) ΔU 
(Equation A.34) is the difference in water pressure force within the cracks 
on both sides of the Figure A.4 driving soil wedge. Recall that in a total 
stress analysis, internal pore water pressures are not applied along the 
imaginary vertical sections and slip plane defining the driving soil wedge. 
However, should a crack extend to below the water table, the boundary 
water pressures and their resultant forces are included along the 
imaginary vertical sections in the free-body diagram for the static soil 
wedge, as depicted in Figure A.4, and in the computation of PA. Further, it 
is assumed that in the dynamic wedge formulation used to compute PAE, 
the crack within the zone of cracking at the top of the retained cohesive 
soil of the driving wedge will not remain open during earthquake shaking 
due to the inertial load direction reversals during this time-history based 
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analysis. So, no crack depth is included in the CorpsWallRotate analysis of 
the dynamic resultant force, PAE, for cohesive soils. 

Step 3: Create the dynamic active earth pressure diagram. 

The dynamic active earth pressure diagram is created by adding the earth 
pressure diagrams created in Steps 1 and 2. The resulting force 
corresponds to the area under the combined pressure distribution and is 
equal to PAE (recall PAE = PA + ΔPAE). Its point of application above the heel 
of the wall is given by 

 
( ) ( )0.6A PA AE

PAE
AE

P h P H
h

P
• + Δ • •

=  bis C.12 

In the case of a Figure A.4 water filled crack, the point of application of PAE 
is 

 
( ) ( )0.6A PA U AE

PAE
AE

P h U h P H
h

P
Δ• + Δ • + Δ • •

=  C.40 

with PA set equal to Pstatic-total stress ( Equation A.31) for the critical slip plane 
(i.e., at angle α = αA); ΔU is (Equation A.34) the difference in water 
pressure force within the cracks on both sides of the Figure A.4 driving soil 
wedge, and hPA and hΔU are the resultant locations of these respective 
forces. 

In the special case of cohesive soils, the CorpsWallRotate analysis disregards 
the tensile stresses when defining the static active earth pressures and the 
corresponding resulting static active earth pressure force to be applied to 
the structural wedge, as well as when computing hPA for this modified 
stress distribution. A trapezoidal earth pressure distribution is still used to 
define ΔPAE. 

C.4.1 The Basic Procedure to Compute the Active Total Stress Distribution 
Corresponding to PA for a Partially Submerged Retained Soil with a Sloping 
Ground Surface 

The procedure outlined in this subsection considers the case of a partially 
submerged backfill in which Mohr-Coulomb total stress (undrained) shear 
strength parameter, Su, is nonzero (i.e., a nonzero cohesion). The 
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procedure to calculate the active earth pressure distribution for resultant 
static force, PA, due to the geometry of the backfill is outlined using the 
information contained within Figure C.13 for which the critical planar 
wedge slip plane that passes through point 1 (with αA> αcorner) intersects 
the sloping portion of the bilinear ground surface. The sweep-search 
wedge procedure described in Section A.5 is used to first compute the 
value for PA as well as the orientation of the planar slip surface, αA, for the 
critical soil wedge that originates at point 1. The equation to compute the 
active earth pressures (designated as σA ) at the Figure C.13 key points 
designated as 1, 6, dcrack, and 3 is, by Equation C.32, equal to the active 
earth pressure coefficient, KA-weight, times the vertical total stress at depth z 
in the retained soil minus SIGSu. The key feature for this formulation is 
that at a given point along the vertical imaginary section through the heel 
of the structural wedge (identified in this figure as points 1, 6, dcrack, and 
3), the total vertical stress (designated as σv-z in the brackets) is computed 
using a depth z, the depth below the ground surface as shown in this 
figure. A computation of σv-z and, subsequently, σA are made in this figure 
for point 1 (at the heel). Note that depth z, designated as z1 for point 1, is 
determined by extending the critical, planar slip plane from point 1 until it 
intersects the sloping ground surface. This same procedure is followed to 
compute the value for z, σv-z, and σA at the other key points 6, dcrack, and 3 
along the imaginary vertical section of height H. A plane oriented at αA 
from horizontal is projected from the point of interest (e.g., point dcrack) up 
through the retained soil until it intersects the sloping ground surface. σv-z-

dcrack is computed using the resulting vertical height zdcrack of this planar 
surface, as shown in this figure. Moist unit weights above the water table 
and submerged unit weights below the water table are used to compute the 
vertical total stress σv-z. To determine the value for the active earth 
pressure coefficient, KA-weight, the value for the force component PA-weight 
from the sweep-search method of analysis is divided by the integral of the 
σv-z distribution along the imaginary vertical section of height H (refer to 
the equation given in this figure). [σv-z is contained within the brackets of 
the σA relationships given in this figure.] For the Figure C.13 case of a 
retained soil with a constant surface slope (as far as this total vertical 
stress computational procedure is concerned), the equation for σv-z and σA 
at key points and for KA-weight are straight-forward and given in this figure. 
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Figure C.13. The active earth pressure distribution corresponding to the incremental static 
force component, PA, acting at an interface friction angle of δ =0 to the normal of the vertical 

imaginary section through the heel of the wall for a bilinear ground surface – partially 
submerged backfill with Su>0. 

The same procedure outlined in Step 1 in Section C.1 that converts the σA 
distribution into equivalent forces (see Figure C.8) is used to compute the 
resultant location hPA of PA for use in Equation C.12 for the resultant 
location hPAE of PAE. The procedures outlined in Step 2 and Step 3 in 
Section C.4 are used to compute the incremental dynamic force 
component, ΔPAE, and its corresponding equivalent earth pressure 
diagram. 

C.4.2 The Basic Procedure to Compute the Active Total Stress Distribution 
Corresponding to PA for a Partially Submerged Retained Soil with a Bilinear 
Ground Surface 

The procedure used to calculate the active earth pressure distribution for 
resultant static force PA due to the geometry of the backfill is outlined 
using the information contained within Figure C.14 for which the critical 
planar wedge slip plane that passes through point 1 (with αA> αcorner), 
intersecting the level portion of the bilinear ground surface. It considers 
the case of a partially submerged backfill in which Mohr-Coulomb total 
stress (undrained) shear strength parameter, Su, is nonzero (i.e., a nonzero 
cohesion). The sweep-search wedge procedure described in Section A.5 is 
used to first compute the value for PA as well as the orientation of the 
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planar slip surface, αA, for the critical soil wedge that originates at point 1. 
The equation to compute the active earth pressures (designated as σA ) at 
the Figure C.14 key points designated as 1, 12, 6, dcrack, and 3 is, by 
Equation C.32, equal to the active earth pressure coefficient, KA-weight, 
times the vertical total stress at depth z in the retained soil minus SIGSu. 
The key feature for this formulation is that at a given point along the 
vertical imaginary section through the heel of the structural wedge 
(identified in this figure as points 1, 12, 6, dcrack, and 3), the total vertical 
stress (designated as σv-z in the brackets) is computed using a depth z, the 
depth below the ground surface as shown in this figure. A computation of 
σv-z and, subsequently, σA are made in this figure for point 1 (at the heel). 
Note that depth z, designated as z1 for point 1, is determined by extending 
the critical, planar slip plane from point 1 until it intersects the horizontal 
ground surface. This same procedure is followed to compute the value for 
z, σv-z, and σA at the other key points 12, 6, dcrack, and 3 along the imaginary 
vertical section of height H. A plane oriented at αA from horizontal is 
projected from the point of interest (e.g., point dcrack) up through the 
retained soil until it intersects the sloping ground surface. σv-z-dcrack is 
computed using the resulting vertical height, zdcrack, of this planar surface, 
as shown in this figure. Moist unit weights above the water table and 
submerged unit weights below the water table are used to compute the 
vertical total stress σv-z. To determine the value for the active earth 
pressure coefficient, KA-weight, the value for the force component, PA-weight, 
from the sweep-search method of analysis is divided by the integral of the 
σv-z distribution along the imaginary vertical section of height H (refer to 
the equation given in this figure). [σv-z is contained within the brackets of 
the σA relationships given in this figure.] For the case of the Figure C.14 
retained soil with a constant surface slope (as far as this total vertical 
stress computational procedure is concerned), the equation for σv-z and σA 
at key points and for KA-weight are straight-forward and given in this figure. 
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Figure C.14. The active earth pressure distribution corresponding to the incremental static 
force component, PA, acting at an effective interface friction angle of δ =0 to the normal of the 
vertical imaginary section through the heel of the wall for a bilinear ground surface — partially 

submerged backfill with Su>0. 

The same procedure outlined in Step 1 in Section C.1 that converts the σA 
distribution into equivalent forces (see Figure C.8) is used to compute the 
resultant location hPA of PA for use in Equation C.12 for the resultant 
location hPAE of PAE. The procedures outlined in Step 2 and Step 3 in 
Section C.4 are used to compute the incremental dynamic force 
component, ΔPAE, and its corresponding equivalent earth pressure 
diagram. 
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Appendix D: Water Pressures Acting on a 
Partially Submerged Structural Wedge 

An earth retaining structure under investigation using CorpsWallRotate may 
retain a partially submerged backfill and may have a pool of water present 
in front of the structure. This appendix summarizes the computation of 
water pressures acting on a partially submerged structural wedge. 
Dynamic considerations for the pool during earthquake shaking are 
accounted for in the analysis using hydrodynamic water pressures 
computed using the Westergaard (1931) procedure of analysis. 

D.1 Steady-State Water Pressures Acting on the Structural Wedge 

Effective Stress Analysis: In an effective stress based stability 
analysis, knowledge of the water pressures acting on the structural wedge 
is required. Figure D.1 shows key points and water pressures acting 
normal to the faces of the structural wedge that retains a partially 
submerged backfill and has a pool of water in front of the structure. 
Accounting for water pressures is an essential feature of an effective 
stress-based stability analysis. 

Heel
Toe

Toe
region

Base region

Heel
region HwHPool

T1

T2T3
T4

B1
B2

H1

H2

HPool_base

pore water pressure

hydrostatic 
water pressure

Figure D.1. Control points and steady-state water pressures acting normal to faces within the 
three regions of a structural wedge in full contact with the foundation — effective stress 

analysis. 
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Full contact between the base of the structural wedge and the foundation 
is assumed in Figure D.1. This is the situation for the sliding block method 
of analysis. 

In CorpsWallRotate the faces of the structural wedge are divided into three 
regions: the toe region, the base region, and the heel region. Coordinates 
of key points defining these three regions are provided as input. These 
points are specified in a counterclockwise fashion progressing around the 
wetted perimeter of the structural wedge, as discussed in data input group 
5 of Appendix F. For the structural wedge shown in Figure D.1, four points 
(designated points T1, T2, T3, and T4) define the wetted toe face, two 
points define the wetted base face (designated points B1 and B2), and two 
points define the wetted heel face (designated points T1 and T2). For the 
initial version of CorpsWallRotate, a simplified assumption is made that that 
for steady-state conditions, hydrostatic water pressures exist within the 
heel region of the backfill. This implies that all head loss occurs due to flow 
within the foundation below the base of the structural wedge.1 Thus, the 
pore water pressure at point H1 (also labeled as point B2) is equal to γw 
times Hw. Hydrostatic water pressures are also assumed within the pool at 
the toe region of the structural wedge. Consequently, the pore water 
pressure at point T4 (also labeled as point B1) is equal to γw times HPool. At 
points T2 and T3, the boundary water pressure is equal to γw times the 
depth to the point as measured from pool elevation. A linear variation in 
boundary water pressures is assumed along the base region, from point B1 
to point B2. In this fashion, the steady-state boundary water pressures are 
assigned to the Figure D.1 idealized structural wedge. 

CorpsWallRotate converts the Figure D.1 boundary water pressures into 
equivalent forces and points of application using the procedure outlined in 
Figure D.2 for the base region. The base region is defined by the two points 
B1 and B2. The pore water pressure at point B1 is designated uB1, and the 
pore water pressure at point B2 is designated uB2. A linear variation in 
pore water pressure exists between these two points and acts normal to 
this linear face. The pressure distribution acting normal to this linear face 
is then converted to equivalent forces (e.g., forces FB1 and FB2 at points B1 
and B2, respectively) using the equations given in this figure. This same 
approach is used to compute equivalent point forces along each linear 
segment used to define all faces within the other two regions. Each region 

                                                                 
1 Future improvements to CorpsWallRotate will include other steady-state seepage conditions. 
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is reduced to linear segments of face geometry of constant or linear 
variation in pore water pressure with distance (e.g., three line segments 
are used to define the toe region while one line segment is used to define 
the heel region). 
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Figure D.2. Distribution of pore water pressures and its equivalent set of forces. 

Also shown in Figure D.2 is a method for determining an equivalent 
resultant force, designated Fbase, and its point of application dFbase (as 
measured from the toe) and its point of application. An expanded variation 
on this procedure is used by CorpsWallRotate to compute the point of 
application of resultant force acting on each of the three regions identified 
in Figure D.1. 

Global x- and y-coordinate forces are needed for the stability analysis of 
the structural wedge. They are computed for the equivalent point forces 
for each linear segment (defined by each adjacent pair of points) within 
each of the three regions. By specifying the Figure D.1 points in a 
counterclockwise fashion around the wetted perimeter of the structural 
wedge, the equivalent point forces acting normal to the wetted perimeter 
face (refer to Figure D.2) may be converted into x- and y- global 
coordinates using the procedure shown in Figure D.3. In this 
generalization, four hypothetical loaded faces, with each face defined by 
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extending point I to point J, are shown. The face loaded by water pressure 
for each hypothetical line segment is identified in this figure. The 
procedure to convert a normal force, for example, at each point J into its x- 
and y- global force components is outlined using the equations given in 
this figure. Key to using the equations given in this figure is to determine 
for a given I-to-J line segment which quadrant this line segment falls into. 
For the toe region, the three line segments shown in Figure D.1 fall within 
quadrants IV and II. The single line segment defining the base region falls 
within quadrant IV and the line segment defining the heel region falls 
within quadrant I, along the positive Y axis. 
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Figure D.3. Conversion of equivalent point forces at point J into global x- and y- coordinate 
forces. 

In the case of rotation about the toe, contact between the base of the 
structural wedge and the foundation is lost sometime during earthquake 
shaking. Recall that a simplistic rigid base assumption is made in this 
formulation for rock-founded retaining structures. Due to the possible 
formation of a gap sometime during earthquake shaking, pore water 
pressures along the base may differ from those shown in Figure D.1. (No 
excess pore water pressures due to earthquake-induced shear strains 
within the soils are included in the current CorpsWallRotate formulation.) 
The exact pore water distribution within the structure-to-foundation gap is 
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a complex problem and a subject for state-of-the-art research. In 
CorpsWallRotate, a simplistic assumption of the hydrostatic pore water 
pressure at the heel of the wall is extended to along the entire base of the 
structure, as shown in Figure D.4. This assumes that a gap opens early on 
during earthquake shaking during rotation about the toe of the retaining 
wall. 

Heel
Toe

Toe
region

Base region

Heel
region HwHPool

T1

T2T3
T4

B1
B2

H1

H2

HPool_base

pore water pressure

hydrostatic 
water pressure

PWPB1

PWPB2PWPB1 = PWPB2

Point of rotation

Figure D.4. Control points and water pressures acting normal to faces within the three regions 
of a structural wedge rotating about its toe — effective stress analysis. 

Total Stress Analysis: In a total stress-based stability analysis, 
boundary water pressures are specified along the toe region only of the 
structural wedge. Knowledge of the internal (with respect to the soil and 
rock foundation) pore water pressures acting along/within the base region 
and the heel region of the structural wedge is not required in a total stress 
analysis. 

Water pressure forces acting on the structural wedge are reported in the 
Workslide.TMP output file and the WORKrotate.TMP output file 
generated in each CorpsWallRotate analysis. These files may be viewed using 
the visual modeler boxes labeled Show Sliding Evaluation and Show 
Lift-Off Evaluation on the Analysis tab, respectively. 

D.2 The Westergaard Procedure for Computing Hydrodynamic Water 
Pressures 

Most Corps hydraulic structures that act as earth retaining structures 
possess a vertical face in contact with the pool (when present). The 
Westergaard procedure is used by CorpsWallRotate for computing the 
magnitude of the hydrodynamic water pressures along the idealized rigid 
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walls during earthquake shaking. The solution developed by Westergaard 
(1931) is for the case of a semi-infinite long water reservoir retained by a 
concrete dam with a vertical face and subjected to a horizontal earthquake 
motion. The fundamental period of the concrete dam is assumed to be 
much smaller than the fundamental period of the earthquake so that the 
acceleration for the massive structure is approximated as the acceleration 
of the earthquake motion along the rigid base. This allows the problem of a 
very stiff concrete dam to be simplified to the case of a rigid vertical face 
moving at the same horizontal acceleration as the base horizontal 
acceleration. Using the equations of elasticity of a solid to describe the 
propagation of sounds in liquids (waves propagate without shear 
distortions) and with the water considered to compressible, a solution to 
the equation of motion of the water was developed for a harmonic motion 
applied along the base of the reservoir. This solution ignores the effects of 
surface waves and is valid only when the period of the harmonic excitation 
is greater than the fundamental natural period of the reservoir (Chopra 
1967). The fundamental period for the reservoir, Tw, is equal to 

 
4 p

w

H
T

C
•

=  D.1 

Where the velocity of sound in water, C, is given by 

 
KC
ρ

=  D.2 

And the mass density of water, ρ, is given by 

 w

g
γρ =  D.3 

With the bulk modulus of elasticity of water, K, equal to 4.32 x 10 lb/ft , 
the unit weight for water, γw, equal to 62.4 lb/ft 3  and the acceleration due 
to gravity, g, equal to 32.17 ft/sec , C is equal to 4,720 ft/sec. For example, 
with a depth of pool of water, Hp, equal to 25 ft, Tw is equal to 0.02 second 
(47 Hz) by Equation D.1. 

7 2

2

The resulting relationship for hydrodynamic pressure on the face of the 
dam is a function of the horizontal seismic coefficient, kh (expressed as a 
decimal fraction of acceleration of gravity, g), the depth of water, Yw, the 
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total depth of the pool of water, Hp, the fundamental period of the 
earthquake, and the compressibility of the water, K. The hydrodynamic 
pressure is opposite in phase to the base application and for positive base 
accelerations the hydrodynamic pressure is a tensile. Westergaard (1931) 
proposed the following approximate solution for the hydrodynamic water 
pressure distribution: a parabolic dynamic pressure distribution, pwd, 
described by the relationship 

 
7
8wd h w w pp k yγ H= • • • •  D.4 

The resultant dynamic water pressure force, Pwd, is equal to 

 ( )27
12wd h w pP k Hγ= • • •  D.5 

acting at an elevation equal to 0.4 Hp above the base of the pool as shown 
in Figure D.5. This dynamic force does not include the hydrostatic water 

pressure force acting along the face of the dam (refer to Figure D.5). 

Figure D.5. Hydrostatic and Westergaard hydrodynamic water pressures acting along vertical 
wall during earthquakes. 
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acting counter to the direction of the hydrostatic water pressure force, 
Upool. This occurs in the case of the vector configuration for base 
acceleration(s) as shown in Figure D.5 (i.e., base acceleration(s) directed 
away from the body of the pool and towards the body of the dam). 

In a maximum transmissible acceleration evaluation and during sliding in 
a Newmark sliding block time-history analysis of permanent 
displacement, the horizontal acceleration used to compute Pwd is a 
constant and equal to the value computed by Equation D.5 with kh in this 
equation set equal to the maximum transmissible acceleration coefficient. 
Hp in Equation D.5 is set equal to the difference between the surface and 
the base height of the pool (i.e., HPool – HPool_base) in CorpsWallRotate. The 
initial version of CorpsWallRotate implements the Westergaard 
hydrodynamic water pressure force Equation D.5 approximation in both 
the sliding and rotating block analysis. For a rigid block approximation 
and for the Corps hydraulic retaining structures with a vertical “wet” face 
(pool-side), the Westergaard procedure is considered a reasonable 
assumption by the primary author of this report. However, it is recognized 
that this assumption and approach is less accurate for the rotating block 
analysis than for the sliding block analysis because of the variation in 
horizontal accelerations along the wetted face of the structural wedge, as 
may be inferred by reference to the dependence of the horizontal 
acceleration on not only the ground acceleration as well as the angular 
acceleration, rotational velocity and position of the point of interest as 
noted in Equation 3.6 for Figure 3.3. In this initial version of 
CorpsWallRotate, only the ground acceleration is used to compute Pwd using 
Equation D.5.1 In a structural wedge analysis of incipient lift-off in 
rotation, the horizontal acceleration used to compute Pwd at incipient lift-
off is another constant (of different value from the maximum 
transmissible acceleration value). Consequently, the value for Pwd is also a 
constant for the lift-off calculation. During a rotational time-history 
analysis, the magnitude of horizontal acceleration used to compute Pwd 
varies with time during rotation. So Pwd also varies in magnitude and 
direction with time in a rotational analysis in CorpsWallRotate. 

                                                                 
1 Future improvements in CorpsWallRotate will include the development of a more complete hydrodynamic 

water pressure force formulation that accounts for the variation in acceleration along the “wetted” face 
of the Corps hydraulic earth retaining structure during rotation by considering angular acceleration, 
rotational velocity, and position of all points along the wetted face. 
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Appendix E: Mass Moment of Inertia 
Computation 

This appendix outlines the mass moment of inertia computation for the 
structural wedge. Figure E.1 depicts the dynamic forces acting on the 
structural wedge as well as the ten material regions used to define this 
structural wedge that contains the retaining wall. 

Each of the ten Figure E.2 material regions are labeled by a material region 
number and are either rectangular or triangular in shape. The user 
specifies the width and height of each of the ten material regions to define 
the geometry of the structural wedge. In the following two sections, the 
mass moments of inertia of a rectangle and a triangle are first derived. The 
mass moment of inertia of the entire structural wedge is then assembled 
from each of the ten material regions using one of these basic 
formulations. 

Figure E.2 defines the reference points on each of the ten material regions. 
This point defines the left-most point on each material region. For 
rectangles and triangles with vertical left-hand sides, it is always the 
lower-most, left point. It is used to determine the position of each material 
region within CorpsWallRotate. 

E.1 Mass Moment of Inertia of a Rectangle 

For a Figure E.3 rectangle of width b and height h, the cross-sectional area 
is 

 rectangleArea b h= •  E.1 

and with a mass of rectangle of 

 rectangle
rectangle

Area
M

g
γ •

=  E.2 

Note that the mass per unit volume is given by 

 m
g
γ

=  bis. B.8 
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Figure E.1. Dynamic forces acting on the structural wedge and its material regions. 
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Figure E.3. Rectangle of width b and height h. 

The x- and y- axes mass moments of inertia of the rectangle about the 
rectangle’s center of gravity, CG, are 

 ( )3
x CG rectangle
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⎛ ⎞
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and 

 ( )3
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⎝ ⎠
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Let the distance between the center of gravity of the rectangle to an 
arbitrary point P be equal to Δx and Δy. 

The x- and y- axes mass moments of inertia of the rectangle about point 0 
are 

 ( )2rectangle
x CG rectanglex P

Area
I I y

g
γ

− − −

•⎛ ⎞
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⎝ ⎠
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 ( )2rectangle
y CG rectangley P
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E.2 Mass Moment of Inertia of a Triangle 

For a Figure E.4 triangle of base width b and height h, the cross-sectional 
area is 

 
1
2triangleArea b h= • •  E.7 

and with a mass of triangle of 
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Figure E.4. Triangle of base width b and height h. 

The x- and y- axes mass moments of inertia of the triangle about its center 
of gravity, CG, are 

 ( )3
x CG triangle

1
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and 
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 ( )3
y CG triangle
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Let the distance between the center of gravity of the triangle to an 
arbitrary point P be equal to Δx and Δy. 

The x- and y- axes mass moments of inertia of the triangle about point 0 
are 

 ( )2
x CG triangle

triangle
x P
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 ( )2triangle
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E.3 Mass Moment of Inertia of the Structural Wedge 

The center of gravity of the structural wedge is computed in 
CorpsWallRotate following the procedure described in Section B.3. The mass 
moment of inertia about this center of gravity is computed using either 
Equations E.5 and E.6 for a rectangle or Equations E.11 and E.12 for a 
triangle, for each of the ten material regions and with point P assigned to 
the coordinate of the center of gravity of the structural wedge. The mass 
moment of inertia about the center of rotation of the structural wedge, 
point 0 in Figure E.1, is computed using Equation 3.16. 
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Appendix F: Listing and Description of 
CorpsWallRotate ASCII Input Data File 
(file name: CWROTATE.IN) 

This appendix lists and describes the contents of the ASCII input data file 
to the FORTRAN engineering computer program portion of 
CorpsWallRotate. This data file, always designated as CWROTATE.IN, is 
created by the graphical user interface (GUI), the visual modeler portion of 
CorpsWallRotate. 

First line/First column – Designate this data input is for a 
CorpsWallRotate analysis 

Type a capital R in the first column of the first line. 

The ASCII input data to CorpsWallRotate are provided in eight groups of 
data. They are as follows: 

Group 1 – Global Geometry of the Structural Wedge that Contains the 
Retaining Wall 

XTOE, YTOE X and Y coordinates of the toe of the wall. 
XROTATE, 
YROTATE 

X and Y coordinates of the point of rotation. 

XHEEL, YHEEL X and Y coordinates of the heel of the wall. 
Gweight, Gmass, 
Gconstant 

Weight and mass of the structural wedge. 
The value for Gconstant identifies the units of 
length, density, force, and pressure being used 
according to the table below. 

GXCG, GYCG X and Y coordinates of the center of gravity. 
GIXmassptO, 
GIYmassptO, 
GjmassptO 

X-mass moment of inertia about the point of 
rotation, Y-mass moment of inertia about the 
point of rotation, and the mass moment of inertia 
about the point of rotation. 
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Value for 
Gconstant 

Units of 
Length 

Units of Soil and Concrete 
Densities 

Units of 
Force 

Units of 
Pressure 

32.174 feet lb/ft3 lb lb/ft2 

386.086 inches lb/in3 lb lb/in2 

9.80665 meters kN/m3 kN kN/m2 (=kPa) 

980.665 centimeters kN/cm3 kN kN/cm2 

9806.65 millimeters kN/mm3 kN kN/mm2 

 

Group 2 – Base of Structural Wedge 

PHIi, Ci, PHIf, Cf, ISTRENGTHsw 

Ci and PHIi are the Mohr-Coulomb shear strength parameters for the base 
of wall-to-foundation interface. 

Cf and PHIf are the Mohr-Coulomb shear strength parameters for the 
foundation. 

and 

ISTRENGTHsw = 1 Strength definition below the structural wedge – 
Effective Stress 

ISTRENGTHsw = 2 Strength definition below the structural wedge – Total 
Stress 

Note: 

In a Total Stress Analysis PHI is set equal to zero, and C is set equal to the 
value for the undrained shear strength, Su, for the base of wall-to-
foundation interface and the foundation, respectively. Internal pore water 
pressures are not considered explicitly in total stress analyses, but the 
effects of the pore pressures in the undrained tests are reflected in the 
undrained shear strength value, as discussed in Duncan and Buchignani 
(1975). Consequently, uplift pressures acting normal to the foundation 
interface are not included in the free-body force diagram of the structural 
wedge in a total stress analysis by CorpsWallRotate. 

Group 3 – Resisting Force Normal to a Vertical Plane Extending up Through 
the Toe of the Structural Wedge 

XRESIST, YRESIST, FXRESIST X and Y coordinates of the resisting 
horizontal force, and the value of the horizontal force in consistent units. 
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Group 4 – Driving Wedge in the Retained Soil 

PHI, C, DELTA 
H, HLEVEL, BETA 
GAMAMOIST, GAMASAT 
SLIPMIN 
ISTRENGTHdw 

C and PHI are the Mohr-Coulomb shear strength parameters for the 
retained soil (i.e., the backfill), and DELTA is the interface friction along 
the vertical plane extending up thorough the heel of the structural wedge. 

GAMAMOIST is the moist unit weight of the retained soil and GAMASAT 
is the saturated unit weight in consistent units (force/length3). 

H is the height of the vertical plane extending up from the heel of the 
structural wedge to the ground surface (H ≤  HLEVEL). 

BETA is the slope of the ground surface of the retained soil in degrees 
(BETA = 0 if HLEVEL = H). 

HLEVEL is the height to level retained soil as measured from the heel of 
the wall/structural wedge (HLEVEL  H). ≥

Note: For the infinite slope problem, input a large value for HLEVEL such 
that the critical, planer slip surface computed within the retained soil does 
not intersect the fictitious (imaginary) level retained soil ground surface. 

SLIPMIN is the shallowest planar slip surface that a potential slip surface 
can achieve in the retained soil. SLIPMIN is measured from horizontal and 
specified in degrees (a value between 1 and 89 degrees). 

with 

ISTRENGTHdw = 1 Soil Strength definition within retained soil – 
Effective Stress 

ISTRENGTHdw = 2 Soil Strength definition within retained soil – Total 
Stress 

Note: 

In a Total Stress Analysis PHI is set equal to zero and C is set equal to the 
value for the undrained shear strength, Su, of the retained soil (i.e., the 
backfill). Internal pore water pressures are not considered explicitly in 
total stress analyses, but the effects of the pore pressures in the undrained 
tests are reflected in the undrained shear strength value, as discussed in 
Duncan and Buchignani (1975). Consequently, pore water pressures acting 
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normal to the potential slip plane within the retained soil are not included 
in the free-body force diagram of the soil wedge in a total stress analysis by 
CorpsWallRotate. 

Group 5 – Water Table Height in the Retained Soil and Pool Height, with 
Input in Four Parts 

Part 1: GAMAW 
HW, HPool, HPool_base 

with 

GAMAW is the unit weight of water in consistent units (units of 
force/length3). 

HW is the height of water table in the retained soil (i.e., the backfill) as 
measured from the heel of the wall of the structural wedge. 

HPool is the height of pool in front of the wall as measured from the toe of 
the wall of the structural wedge. 

and 

HPool_base is the height to the base of the pool as measured from the toe 
of the wall of the structural wedge (HPool_base ≤  HPool). 

Note: 

For no water table in the retained soil (i.e., a “dry” backfill), HW is set 
equal to zero. 

For no pool in front of the wall, HPool and HPool_base are equivalent and 
set equal to zero. 

Data provided in subsequent three parts define points along each of the 
three wetted perimeter regions of the structural wedge. The first point 
specified is at the intersection of the pool with the exposed face of the wall. 
All subsequent points are specified in a counterclockwise fashion 
progressing around the wetted perimeter of the structural wedge (of toe 
region to base region to heel region). 

Special case; “dry” site: In the case of a “dry” site, HW, HPool, and 
HPool_base are all set to zero. Skip Parts 2, 3 and 4 input. 

Skip Part 2 input if HPool = 0. 
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Part 2: nWetToePTS 
X_Wet_Toei, Y_Wet_Toei (i=1 to nWetToePTS) 

with 

nWetToePTS is the total number of points defining the exposed wetted 
perimeter face of the wall and progressing from the pool of water to the toe 
of the wall, including the point defining the intersection of the base of the 
pool and the wetted wall face. 

X_Wet_Toei, Y_Wet_Toei are the coordinates of the exposed wetted 
perimeter face of the wall and progressing from the pool of water to the toe 
of the wall. 

Note: The coordinates of the point defined by the intersection of the 
exposed wetted perimeter and the base of the pool are to be included in 
the nWetToePTS points. 

Part 3: nWetBasePTS 
X_Wet_Basei, Y_Wet_Basei (i=1 to nWetBasePTS) 

with 

nWetBasePTS is the total number of points defining the wetted perimeter 
face of the base of  structure-to-foundation interface and progressing 
from the toe to the heel of the wall. 

X_Wet_Basei, Y_Wet_Basei are the coordinates of the exposed wetted 
perimeter face of the base  of structure-to-foundation interface and 
progressing from the toe to the heel of the wall of the structural wedge. 

Note: nWetBasePTS is set equal to 2 and the coordinates of the toe and the 
heel of the wall are provided as input. 

Skip Part 4 input if HW = 0. 

Part 4: nWetHeelPTS 
X_Wet_Heeli, Y_Wet_Heeli (i=1 to nWetHeelPTS) 

with 

nWetHeelPTS is the total number of points defining the wetted perimeter 
face of the structural wedge to soil driving wedge interface, progressing 
along a vertical imaginary section extending upwards from the Heel of the 
wall to the surface of the water table in the retained soil. 

X_Wet_Heeli, Y_Wet_Heeli are the coordinates of the wetted perimeter 
face of the structural wedge to soil driving wedge interface, progressing 
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along a vertical imaginary section extending upwards from the heel of the 
wall to the surface of the water table in the retained soil. 

Note: nWetHeelPTS is set equal to 2 and the coordinates of a line defined 
by two points, (1) the heel of the wall and (2) the point defined by the 
intersection of a vertical line extending from the heel to the surface of the 
water table. 

Group 6 – Acceleration Time-Histories with Input in Two Parts 

Part 1: NOACC, DT, GACC, XSCALE, YSCALE, KEYACCY 

with 

NOACC is the total number of acceleration time-history values. 

DT is the time-step in seconds. 

GACC is the constant of acceleration due to gravity as given in the table 
below. 

XSCALE is the scale factor applied to the horizontal acceleration time-
history (negative value to invert time-history). 

YSCALE is the scale factor applied to the vertical acceleration time-history 
(negative value to invert time-history). 

and 

KEYACCY is set to 0 in the case of horizontal and vertical acceleration 
time-histories. 

or 

KEYACCY is set to 1 in the case of a horizontal acceleration time history 
and a constant vertical acceleration value. (When KEYACCY = 1, KEYkv 
must be set equal to 3 in Group 6 Analysis control data.) 

Value for GACC Units 

32.174 ft/sec2 

386.086 in/sec2 

9.80665 m/sec2 

980.665 cm/sec2 

9806.65 mm/sec2 

1.0 G 

980.665 gal 
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Part 2: In the case of KEYACCY = 0, input 
T(i=1 to NOACC), ACCX(I=1 to NOACC), ACCY(I=1 to NOACC) 

or 

In the case of KEYACCY = 1, input 
T(i=1 to NOACC), ACCX(I=1 to NOACC) 

Note: 

1. Horizontal and vertical inertial forces act in the direction opposite to the 
direction of the horizontal and vertical accelerations. 

2. All time-histories are required to have zero acceleration value(s) for T(1) = 
0.0 in the data input file. 

3. Values for the horizontal accelerations used in CorpsWallRotate are equal to 
ACCX(I) times XSCALE times GACC. 

4. Values for the vertical accelerations used in CorpsWallRotate are equal to 
ACCY(I) times YSCALE times GACC. 

Group 7 – Analysis Controls 

KEYkv, constACCY, KEYanalysis 

with 

KEYkv = 1 Use the vertical acceleration time-history ACCY(I=1 to NOACC) 
to determine a representative constant value for the vertical acceleration 
during those time-steps when the structural wedge slides. This requires an 
iterative process involving sequential executions of CorpsWallRotate , during 
which an updated value for the constant constACCY is specified. 

Note: 

1. KEYanalysis (see input below) must be set equal to 1 in this case and value 
for constACCY (see input below) is required. 

2. Recommendation: For the first evaluation, the value for constACCY is 
usually set equal to zero. 

3. Recommendation: For the second evaluation, the value for constACCY 
may be set to the average value for the vertical acceleration computed 
during those time-steps when the structural wedge slides (reported in the 
CorpsWallRotate output), determined from the output from the first KEYkv 
= 1 analysis. 

4. The KEYanalysis =1 analysis is repeated using updated constACCY values 
until the change in constACCY value and the vertical acceleration 
computed during those time-steps when the structural wedge slides is 
sufficiently small. 

 



ERDC/ITL TR-06-2 315 

KEYkv = 2 Evaluation using the current vertical acceleration time-history 
ACCY(I=1 to NOACC). 

Note: KEYanalysis (see input below) must be set equal to 2 in this case. 

KEYkv = 3 Evaluation using a constant value for the vertical acceleration 
constACCY (see below). 

Note: 

1. KEYkv must be set equal to 3 when KEYACCY = 1 (in Group 6 data). 
2. KEYanalysis (see below) can be set equal to 1, 2, or 3 in this case. 

with 

constACCY = Constant value for the vertical acceleration. This can be an 
average vertical acceleration during sliding or during rotation. Specified in 
the same units as the acceleration time-histories of Group 6 (Units 
consistent with the value of GACC). 

Note: Value for constACCY is used to compute the value for the horizontal 
yield acceleration in a siding analysis (designated as cofkhslide in the 
output file WORKslide.TMP) or to compute the value for the horizontal 
acceleration for which there is incipient lift-off of the structural wedge 
from its foundation in rotation (designated as cofkhrotate in the output 
file WORKrotate.TMP). 

and 

KEYanalysis = 1 Sliding analysis of the structural wedge. 

KEYanalysis = 2 Rotating analysis of the structural wedge. 

KEYanalysis = 3 Conduct either a sliding or rotating rigid block analysis of 
the Structural Wedge using a constant value for the vertical acceleration 
(KEYkv must be set equal to 3). A sliding analysis is conducted when the 
value of the horizontal maximum transmissible acceleration, cofkhslide, is 
less than the value of the horizontal acceleration for which there is 
incipient lift-off of the structural wedge from its foundation in rotation, 
cofkhrotate; otherwise a rotating block analysis is conducted. 

Group 8 – Units for Output of Acceleration, Velocity, and Displacement 
Time-Histories 

DISPACC The value for DISPACC identifies the units of the scaled 
acceleration, computed velocity, and computed displacements according 
to the table below. 
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Value for DISPACC Units of Acceleration Units of Velocity Units of Displacement 

32.174 ft/sec2 ft/sec ft 

386.086 in/sec2 in/sec in. 

9.80665 m/sec2 m/sec m 

980.665 cm/sec2 cm/sec cm 

9806.65 mm/sec2 mm/sec mm 
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Appendix G: Listing of CorpsWallRotate ASCII 
Output Files 

This appendix lists the CorpsWallRotate ASCII Output Files. Table G.1 lists 
the output box labels and corresponding (tape) files for the visual modeler 
Analysis tab and briefly describes the contents. 

Table G.1. Output data files used by output boxes in the visual modeler Analysis tab. 

Visual Modeler 
Output Box 
Label Name of Tape Description 

Show Log of 
CWRotate 
Execution 

CWROTATE.RUN Summary of execution steps and limited results. 

Show Input Echo 
of CWRotate 
Execution 

CWROTATE.OUT Echo of key input variables assigned by the visual 
modeler. 

Plot AccX PLOTaccX.TMP Scaled horizontal acceleration time-history. 

Show AccX WORKaccX.TMP Show data file of scaled horizontal acceleration 
time-history. 

Plot AccY PLOTaccY.TMP Scaled vertical acceleration time-history. 

Show AccY WORKaccY.TMP Show data file of scaled vertical acceleration time-
history. 

Plot AccYX PLOTaccYX.TMP Scaled X- and Y- time-histories and ratio of a 
scaled-ACCY divided by scaled-ACCX. 

Show AccYX WORKaccYX.TMP Show data file of scaled X- and Y- time-histories and 
ratio of a scaled-ACCY divided by scaled-ACCX. 

Show Sliding 
Evaluation 

WORKslide.TMP Iteration results for Maximum Transmissible 
Acceleration; yield acceleration (horizontal) for 
structural wedge slide limit state. Boundary water 
pressures to the structural wedge, when present, 
are listed in this file. When water is present, the 
resultant water pressure forces acting on the 
structural wedge are reported in this file. 

Show Lift-Off 
Acceleration 

WORKrotate.TMP Iteration results for Maximum Acceleration resulting 
in lift-off of the structural wedge from its foundation 
with rotation about its toe. Boundary water 
pressures to the structural wedge, when present, 
are listed in this file. When water is present, the 
resultant water pressure forces acting on the 
structural wedge are reported in this file. 

Plot PA File PLOTpa.TMP Sweep-search wedge results of α versus P and the 
resulting static active earth pressure force PA. A 
single sweep-search wedge solution is contained in 
this file using SMF = 1.0. 
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Visual Modeler 
Output Box 
Label Name of Tape Description 

Show PA File WORKpa.TMP Sweep-search wedge results of α versus P and the 
resulting static active earth pressure force, PA. A 
single sweep-search wedge solution is contained in 
this file, calculated using SMF = 1.0. 

Plot PO File PLOTpo.TMP Sweep-search wedge results of α versus P and the 
resulting approximation for the static at-rest earth 
pressure force Po. A single sweep-search wedge 
solution is contained in this file, calculated using 
SMF = 1/1.5=0.67. The value for Po is not used in 
the sliding nor rotational rigid block calculations of 
the initial version of CWRotate. 

Show PO File WORKpo.TMP Sweep-search wedge results of α versus P and the 
resulting approximation for the static at-rest earth 
pressure force Po. A single sweep-search wedge 
solution is contained in this file, calculated using 
SMF = 1/1.5=0.67. The value for Po is not used in 
the sliding nor rotational rigid block calculations of 
the initial version of CWRotate. 

Plot PAE File PLOTpae.TMP Sweep-search wedge results of α versus P and the 
resulting dynamic active earth pressure force, PAE. 
This file contains results from multiple analyses. 
When a rotational rigid block time-history analysis 
is conducted, this file can become quite large. Drop 
down menu options can be used to plot user 
selected PAE plot numbers. PAE run numbers are 
identified in various output files. 

Show PAE File WORKpae.TMP Sweep-search wedge results of α versus P and the 
resulting dynamic active earth pressure force, PAE. 
This file contains results from multiple analyses. 
When a rotational rigid block time-history analysis 
is conducted this file can become quite large. Drop 
down menu options can be used to view user 
selected PAE analyses. PAE run numbers are 
identified in other output files. 

Plot Sliding 
Time-history 

PLOTslideTH.TMP Time-history of sliding block analysis. 

Show Sliding 
Time-history 

PLOTslideTH.TMP Show data file of time-history of sliding block 
analysis. 

Plot Rotating 
Time-history 

PLOTrotatTH.TMP Time-history of rotating block analysis. 

Show Rotating 
Time-history 

PLOTrotatTH.TMP Show data file of time-history of rotating block 
analysis. 

Show Moments 
about the 
Rotation Point 

WORKrotatTH1.TMP Time-histories of overM, restoreM, PAE, ALPHAr1 

Show Rotational 
Values 

WORKrotatTH2.TMP Time-histories of ALPHAr1, OMEGAr1, THETAr1, 
totTHETAr1 
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Visual Modeler 
Output Box 
Label Name of Tape Description 

Show Forces 
acting on the 
Structural 
Wedge in 
Rotation 

WORKrotatTH3.TMP Time-histories of overM, restoreM, Pae, Hpae, 
Nbase, Tultbase 

Plot Effective 
Vertical Acc. 

PLOTKEYkv1TH.TMP Time-history of effective vertical acceleration during 
sliding or rotation analysis with KEYkv = 1 

Show Effective 
Vertical Acc. 

PLOTKEYkv1TH.TMP Show data file of time-history of effective vertical 
acceleration during sliding or rotation analysis with 
KEYkv = 1 

 

A second table, Table G.2 lists other tape files generated in each 
CorpsWallRotate analysis and briefly describes the contents. 

Table G.2. Output data files used by output boxes in the visual modeler Analysis tab. 

Name of Tape Description 

_ Print to screen a summary of execution steps and limited results. Same 
information as is contained in CWROTATE.RUN. 

OUTPUTpa.TMP Summary of forces acting on each wedge in a sweep search wedge 
analysis of α versus PA (static active earth pressure force). A single 
sweep-search wedge solution is contained in this file. 

OUTPUTpo.TMP Summary of forces acting on each wedge in a sweep search wedge 
analysis of α versus Po (static at-rest earth pressure force). A single 
sweep-search wedge solution is contained in this file. 

OUTPUTpae.TMP Summary of forces acting on each wedge in a sweep-search wedge 
analysis of α versus PAE (pseudo-static active earth pressure force). This 
file contains results from multiple analyses. When a rotational rigid block 
time-history analysis is conducted, this file can become quite large. 
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Appendix H: Earth Pressure Distribution and 
Depth of Cracking in a Cohesive Retained 
Soil — Static Active Earth Pressures 

This appendix summarizes for static loading the results of sweep-search 
analyses of two types of cohesive soils, the first being an effective stress 
analysis with Mohr-Coulomb effective stress shear strength parameters c’ 
and φ’ used to characterize the shear strength of the retained soil and the 
second case for a backfill in which Mohr-Coulomb total stress shear 
strength parameter c is set equal to the undrained shear strength, Su, and 
with φ set equal to zero. The objective of this appendix is to demonstrate 
the trial-and-error procedure used to determine the depth of cracking in a 
cohesive soil as well as the resulting static active earth pressure 
distribution that is applied to the structural wedge in a CorpsWallRotate 
analysis. 

Background: The sole purpose of a PA computation in a CorpsWallRotate 
analysis is to determine the value for hPAE , the resultant location for PAE . 
The procedure used is outlined in Appendix C. The approach used can also 
be interpreted in terms of an equivalent earth pressure distribution 
applied to the structural wedge by the driving soil wedge in a 
CorpsWallRotate analysis that is made up of two components, the earth 
pressure distribution due to the static active earth pressures and a 
trapezoidal earth pressure distribution due to the incremental dynamic 
force component ΔPAE (with ΔPAE = PAE - PA). The methodologies 
discussed in Appendix A are used by CorpsWallRotate to first determine the 
resultant earth pressure forces, PA and PAE, and then the methodologies 
discussed in Appendix C are used to compute the resulting earth pressure 
distributions for PA and ΔPAE, respectively. In order to compute values of 
PAE and PA by the dynamic and static sweep-search solutions of trial soil 
wedges, a depth of cracking needs to be specified in each sweep-search 
analysis made by CorpsWallRotate of a cohesive soil. Initial sweep-search 
soil wedge solutions are always made assuming a zero depth of crack. This 
is sufficient for the PAE computation, as discussed previously. However, an 
iterative procedure is used to determine the value for the depth of cracking 
in the analysis of PA in cohesive soils and the corresponding earth pressure 
distribution (which includes both compression as well as tensile stresses). 
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After the resulting static earth pressure force, PA, computation is 
completed, a resulting earth pressure distribution is constructed and new 
depth of cracking for static loading is determined. CorpsWallRotate then 
proceeds with second sweep-search trial wedge analysis of the retained 
soil for a new value for PA corresponding to this new, nonzero crack depth 
value. A new static earth pressure distribution and new crack depth are 
determined. The process is repeated until the depth of cracking used in the 
sweep-search trial wedge analysis and the depth of cracking determined 
from the static active earth pressure distribution are nearly the same 
value. This iterative procedure is demonstrated for two examples in this 
appendix. 

In the special case of cohesive soils, the CorpsWallRotate analysis disregards 
the tensile stresses when defining the static active earth pressures and the 
corresponding resulting static active earth pressure force to be applied to 
the structural wedge, as well as when computing the resulting force 
location, hPA, of this modified stress distribution. A trapezoidal earth 
pressure distribution is used to define ΔPAE for cohesive as well as 
cohesionless soils. 

H.1 Example No. 1: Effective Stress Analysis of a Cohesive Soil 

Consider the case of the Figure H.1 20-ft high, moist, cohesive, retained 
soil with c’ = 200 psf, φ’ = 10 degrees, δ = 0 degrees, and γmoist = 110 psf. 
The first step in the CorpsWallRotate analysis of this static earth pressure 
problem is a sweep search trial wedge analysis starting with assumption 
that the depth of cracking is equal to zero. This results in a computed PA 
value equal to 8,105.9 per ft run of wall using the method outlined in 
Section A.3 of Appendix A for a planar slip surface with αA computed to be 
50 degrees from horizontal. The second step is to compute the 
corresponding earth pressure distribution and depth of cracking using the 
procedure outlined in Section C.3 of Appendix C. This active earth 
pressure distribution resulted in a depth of cracking equal to 4.767 ft. 
Ignoring the tensile stresses within the depth of cracking, as is done by 
CorpsWallRotate, the resultant net force, PAstaticPOSa, corresponding to the 
computed triangular compressive earth pressure stress distribution, is 
equal to 8,985.9 lb per ft run of wall with a point of application at 5.078 ft 
at the end of this first iteration. These results are consistent with the 
results given in Example 6-4 of Bowles (1968). Since the depth of cracking 
from the active earth pressure distribution (i.e., 4.767 ft) is so different 
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from the value assumed in the sweep search trial wedge solution for PA 
(i.e., 0 ft), additional analyses are required. 
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Figure H.1. Sweep-search trial wedge analysis of a cohesive retained soil and the 
corresponding active earth pressure distribution — effective stress analysis. 

The second sweep-search trial wedge analysis starts with an assumption of 
4.767 ft for the depth of cracking, as indicated in Table H.1. A total of four 
iterations are required to converge on a depth of cracking in which the 
depth of crack used in the sweep-search soil wedge analysis results is 
consistent with the depth of cracking resulting from the active stress 
distribution. In the final iteration (i.e., number 4), the net active force 
corresponding to the compressive stress distribution starting 3.973 ft 
below top of wall is equal to 9,549.7 lb per ft run of wall. Note that the 
sweep-search active soil wedge solution for αA equal to 50 degrees is 
computed to be equal to 8,962.9 lb per ft run of wall. These two values 
differ because PA is computed by the sweep-search (active) wedge solution 
and includes the contribution of tensile stresses due to cohesion in the 
retained soil (e.g., refer to Equation A.27). 
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Table H.1. Iterative results from the static sweep-search wedge analysis of a cohesive soil — 
effective stress. 

Iteration 
No. 

Depth of Crack 
Used in Sweep-
Search Soil 
Wedge Analysis 
(ft) 

αA 

(deg) 

PAstaticMAXa 
(lb per ft of 
run wall) 

σ'A-top 

(psf) 
σ'A-bot 

(psf) 

PAstaticPOSa 

(lb per ft of 
run wall) 

HPAstatica 

(ft) 

Depth of Crack 
Resulting from 
Active Stress 
Distribution 
(ft) 

1 0 50 8105.9 -369.2 1,179.80 8,985.9 5.078 4.767 
2 4.767 50 8985.9 -281.2 1,179.80 9,527.1 5.384 3.849 
3 3.849 50 8953.3 -298.1 1,193.40 9,549.2 5.334 3.998 
4 3.998 50 8962.9 -295.4 1,191.70 9,549.7 5.342 3.973 

 

H.2 Example No. 2: Total Stress Analysis of a Cohesive Soil 

Consider the case of the Figure H.2 20-ft high, moist, cohesive, retained 
soil with Su = 600 psf (with φ = 0 degrees), δ = 0 degrees, and γmoist = 130 
psf. The first step in the CorpsWallRotate analysis of this static earth 
pressure problem is a sweep-search trial wedge analysis starting with 
assumption that the depth of cracking is equal to zero. This results in a 
computed PA value equal to 2,000 per ft run of wall using the method 
outlined in Section A.5 of Appendix A for a planar slip surface with αA 
computed to be 45 degrees from horizontal. The second step is to compute 
the corresponding earth pressure distribution and depth of cracking using 
the procedure outlined in Section C.4 of Appendix C. This active earth 
pressure distribution resulted in a depth of cracking equal to 9.231 ft. 
Ignoring the tensile stresses within the depth of cracking, as is done by 
CorpsWallRotate, the resultant net force, PAstaticPOSa, corresponding to the 
computed triangular compressive earth pressure stress distribution, is 
equal to 7,538.5 lb per ft run of wall with a point of application at 3.59 ft at 
the end of this first iteration. 
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Figure H.2. Sweep-search trial wedge analysis of a cohesive retained soil and the 
corresponding active earth pressure distribution — total stress analysis. 

These CorpsWallRotate analysis results are consistent with the results for a 
Rankine active earth pressure distribution, for which the horizontal stress 
at any depth is given by 

 2a A moistK depth cσ γ= • • − • • AK  H.1 

with 

 2tan 45
2AK φ⎛ ⎞= −⎜

⎝ ⎠
⎟  H.2 

Solving Equation H.1 for the depth of zero active horizontal earth pressure, 
results in a depth of cracking of 

 
2 A

crack
A moist

c K
d

K γ
• •

=
•

 H.3 

With φ equal to zero and c set equal to Su in this problem, Equations H.1 
and H.3 simplify to 

 2a moist depth Suσ γ= • − •  H.4 
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and 

 
2 u

crack
moist

Sd
γ

•
=  H.5 

With Su equal to 600 psf and γmoist = 130 psf, the horizontal active earth 
pressure at the ground surface and at a 20-ft depth are computed to be 
-1,200 psf and 1,400 psf, respectively, by Equation H.4. Additionally, the 
depth of cracking is computed to be 9.231ft below the ground surface. 
These results are consistent with those from the first iteration of the 
CorpsWallRotate analysis, summarized in Table H.2. Since the depth of 
cracking from the active earth pressure distribution (i.e., 9.231 ft) is so 
much greater than the value assumed in the sweep-search trial wedge 
solution for PA (i.e., 0 ft), additional analyses are required. 

Table H.2. Iterative results from the static sweep-search wedge analysis of a cohesive soil — 
total stress. 

Iteration 
No. 

Depth of Crack 
Used in Sweep 
Search Soil 
Wedge Analysis 
(ft) 

αA 

(deg) 

PAstaticMAXa 
(lb per ft of 
run wall) 

σA-top 

(psf) 
σA-bot 

(psf) 

PAstaticPOSa 

(lb per ft of 
run wall) 

HPAstatica 

(ft) 

Depth of Crack 
Resulting from 
Active Stress 
Distribution 
(ft) 

1 0 45 2000.0 -1200.0 1,400.0 7,538.5 3.590 9.231 

2 9.231 45 7538.5 -646.2 1,400.0 9,578.9 4.561 6.316 

3 6.316 45 6986.1 -821.1 1,519.7 9,866.1 4.328 7.015 

4 7.015 45 7219.4 -779.1 1,501.0 9,881.4 4.389 6.834 

5 6.834 45 7165.0 -790.0 1,506.5 9,882.5 4.373 6.880 

 

The second sweep-search trial wedge analysis starts with an assumption of 
9.231 ft for the depth of cracking, as indicated in Table H.2. A total of five 
iterations are required to converge on a depth of cracking in which the 
depth of crack used in the sweep search soil wedge analysis results is 
consistent with the depth of cracking resulting from the active stress 
distribution. In the final iteration (i.e., number 5), the net active force 
corresponding to the compressive stress distribution starting 4.373 ft 
below top of wall is equal to 9,882.5 lb per ft run of wall. Note that the 
sweep search active soil wedge solution for αA equal to 45 degrees is 
computed to be equal to 7,165 lb per ft run of wall. These two values differ 
because PA is computed by the sweep search (active) wedge solution and 
includes the contribution of tensile stresses due to cohesion in the retained 
soil (e.g., refer to Equation A.31). 
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