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Abstract: This research report describes the engineering formulation and
corresponding software developed for the rotational response of rock-founded,
toe-restrained Corps retaining walls to earthquake ground motions. The PC
software CorpsWanRotate (sometimes referred to as CWRotate) was developed to
perform an analysis of permanent wall rotation for each proposed retaining wall
section to a user-specified earthquake acceleration time-history. A particular
formulation of the permanent sliding (i.e., translational) displacement response
of retaining walls is also described. The resulting engineering methodology and
corresponding software are applicable to a variety of retaining walls that are
buttressed at their toes by a structural feature (e.g., navigation walls retaining
earth, spillway chute walls, spillway discharge channel walls, approach channel
walls to outlet works structures, highway and railway relocation retaining walls,
and floodwall channels). CorpsWanRotate is particularly applicable to L-walls and
T-walls (cantilever retaining walls) and may also be used to predict permanent,
seismically induced displacements on retaining walls with or without a toe
restraint.

Formal consideration of the permanent seismic wall displacement in the seismic
design process for Corps-type retaining structures is given in Ebeling and
Morrison (1992). The key aspect of the engineering approach presented in this
1992 document is that simplified procedures for computing the seismically
induced earth loads on Corps retaining structures are also dependent upon the
amount of permanent wall displacement expected to occur for each specified
design earthquake. The Ebeling and Morrison simplified engineering procedures
for Corps retaining structures, including waterfront retaining structures, are
geared towards hand calculations. The engineering formulation and
corresponding PC software CorpsWanRotate discussed in this report extend
simplified procedures to walls that rotate or slide during earthquake shaking and
make possible the use of acceleration time-histories in the Corps’ design/analysis
process when time-histories are made available on Corps projects. The
engineering methods contained in this report and implemented within
CorpsWanRotate allow the engineer to rapidly determine if a given retaining wall
system has a tendency to rotate or to slide for a specified seismic event.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to
be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.
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Considerations for Assigning Shear Strength Parameters

A key item in the permanent deformation and permanent rotation analysis of a Corps
earth retaining structure using the PC-based software, CorpsWanRotate, described in
this report, is the selection of suitable shear strength parameters. In an effective stress
analysis, the issue of the suitable friction angle is particularly troublesome when the
peak friction angle is significantly greater than the residual friction angle. In the
displacement controlled approach examples given in Section 6.2 of Ebeling and
Morrison (1992), effective stress based shear strength parameters (i.e., effective
cohesion ¢’ and effective angle of internal friction ¢’) were used to define the shear
strength of the dilative granular backfills, with ¢’ set equal to zero in all cases due to
the level of deformations anticipated in a sliding block analysis during seismic
shaking. In 1992 Ebeling and Morrison concluded that it is conservative to use the
residual friction angle in a sliding block analysis, and this should be the usual practice
for displacement based analysis of granular retained soils. The primary author of this
report would broaden the concept to the assignment of effective (i.e., ¢’ and ¢’) or total
(i.e., undrained S.) shear strength parameters for the retained soil to be consistent
with the level of shearing-induced deformations encountered for each design
earthquake in a rotational analysis and note that active earth pressures are used to
define the loading imposed on the structural wedge by the driving soil wedge. (Refer to
Table 1.1 in this report for guidance regarding wall movements required to fully
mobilize the shear resistance within the retained soil during earthquake shaking.) In
an effective stress analysis, engineers are cautioned to carefully consider the
reasonableness of including a nonzero value for effective cohesion ¢’ in their
permanent deformation and permanent rotation analyses.
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Assumption Made for the Soil Driving Wedge in a Cohesive Soil

CorpsWanRotate performs a permanent displacement analysis of a retaining wall due to
earthquake shaking. Reversal in the direction of the horizontal component of the time-
history of earthquake ground shaking occurs many times during the typical tens of
seconds of ground motion. Consequently, a reversal in direction of the inertial force
imparted to the structural wedge and to the soil driving wedge occurs many times
during the course of the analysis using CorpsWanRotate. In a traditional soil wedge
formulation for static loading, a crack is typically considered to exist within the upper
portion of the soil driving wedge for a cohesive soil (with shear strength, S, specified
in a total stress analysis or ¢’ specified in an effective stress analysis) and the planer
wedge slip surface is terminated when it intersects the zone of cracking at a depth,
dcrack, below the ground surface (e.g., see Appendix H in EM 1110-2-2502). This
assumption is not made in the CorpsWanRotate formulation for dynamic loading.
Instead, it is assumed that in the dynamic wedge formulation, the crack within the
zone of cracking at the top of the retained cohesive soil of the driving wedge will not
remain open during earthquake shaking due to the inertial load direction reversals
during this time-history based CorpsWanRotate analysis. So, even for cohesive soils the
planar slip surface, obtained from the sweep-search method of analysis of the driving
wedge used by CorpsWanRotate to obtain a value for the earthquake induced resultant
driving force Pag (acting on the structural wedge), extends uninterrupted within the
driving soil wedge (in the retained soil) to the ground surface and is not terminated by
a vertical crack face to the ground surface when it enters the zone of cracking.

In order to assign a location to Pag, the static value for active earth pressure force, Pa,
is needed (refer to Equation 3.24 for the level ground, moist backfill case and to
Appendix C for all other cases). CorpsWanRotate proceeds with the computation of hpag,
the location of the resultant force Pag, using the value for P computed by procedure
discussed in Appendix A. The computation of hpar by CorpsWanRotate is described in
Appendix C.

In a traditional soil wedge formulation for static loading, a crack is typically considered
to exist within the upper portion of the soil driving wedge for a cohesive soil and the
planer wedge slip surface is terminated when it intersects the zone of cracking at a
depth, derack, below the ground surface (e.g., see Appendix H in EM 1110-2-2502). This
assumption is made in the CorpsWanRotate formulation for static loading force Pa (but
not when computing Pag for dynamic loading). A sweep-search wedge method of
analysis as discussed in Appendix A is used by the CorpsWanRotate to determine the
value of the active earth pressure force, Pa.
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Earth pressure distributions and depth of cracking: The earth pressure distribution
applied to the structural wedge by the driving soil wedge in a CorpsWanRotate analysis is
made up of two components, the earth pressure distribution due to the static active
earth pressures and a trapezoidal earth pressure distribution due to the incremental
dynamic force component, APar (with AP,, = P, — P, ). The methodologies discussed

in Appendix A are used by CorpsWanRotate to first determine the resultant earth
pressure forces Pa and Par and then the methodologies discussed in Appendix C are
used to compute the resulting earth pressure distributions for P and APag,
respectively. In order to compute values of Par and P4 by the dynamic and static
sweep-search solutions of trial soil wedges, a depth of cracking needs to be specified in
each sweep-search analysis made by CorpsWanRotate of a cohesive soil. Initial sweep-
search soil wedge solutions are always made assuming a zero depth of crack. This is
deemed sufficient for all Pag computations, as discussed previously. However, an
iterative procedure is used to determine the value for the depth of cracking in the
analysis of P in cohesive soils and the corresponding earth pressure distribution
(which includes both compression as well as tensile stresses). After the resulting static
earth pressure force, P4, computation is completed, a resulting earth pressure
distribution is constructed and new depth of cracking for static loading is determined.
CorpsWanRotate then proceeds with second sweep-search trial wedge analysis of the
retained soil for a new value for Pa corresponding to this new, nonzero crack depth
value. A new static earth pressure distribution and a third value for crack depth is then
determined. The process is repeated until the depth of cracking used in the sweep-
search trial wedge analysis and the depth of cracking determined from the static active
earth pressure distribution are nearly the same value.

In the special case of cohesive soils, the CorpsWanRotate analysis disregards the tensile
stresses when defining the static active earth pressures and the corresponding
resulting static active earth pressure force to be applied to the structural wedge, as well
as when computing the resulting force location hpa of this modified stress distribution.
A trapezoidal earth pressure distribution is used to define APag for cohesive as well as
cohesionless soils.




ERDC/ITL TR-06-2

1.1

Introduction to Rotational or Sliding
Response of Toe-Restrained Retaining
Walls to Earthquake Ground Motions

Introduction

Engineering formulations and software provisions based on sound seismic
engineering principles are needed for a wide variety of the Corps retaining
walls that (1) rotate or (2) slide (i.e., translate) during earthquake shaking
and (3) for massive concrete retaining walls constrained to rocking. The
engineering formulation discussed in this report was developed to address
the first two of these three modes of retaining wall responses to
earthquake shaking.

This research report describes the engineering formulation developed for
the permanent rotational response of rock-founded, toe-restrained
retaining walls to earthquake ground motions as idealized in Figure 1.1.
The corresponding PC software, CorpsWanRotate, developed to perform a
rotating or sliding analysis of each user-specified retaining wall section is
also discussed. Baseline-corrected, horizontal and vertical acceleration
time-histories are used to represent the earthquake ground motions in this
formulation. They are user input to CorpsWanRotate. A particular
formulation of the permanent sliding displacement response of retaining
walls (Figure 1.2) for a user-specified earthquake acceleration time-history
is also described. (Note that a more versatile, simplified sliding block
formulation that eliminates the need for an acceleration time-history,
CorpsWanSLIP, has also been developed and is discussed in Ebeling et al.
(2007).) The engineering methodology and software are particularly
applicable to rock-founded L-walls and T-walls (usually referred to as
cantilever retaining walls) and semi-gravity walls. Figure 1.3 shows an
example of retaining walls that border a spillway channel in which the
base slab will act as a strut during a seismic event. CorpsWanRotate is
applicable to a variety of retaining walls buttressed at their toe by a
structural feature such as a reinforced concrete slab. The presence of the
structural feature at the toe of the retaining wall may result in a tendency
for the earth retaining structure to rotate rather than slide during
earthquake shaking. Other examples of Corps earth retaining structures
having this structural feature include navigation walls, spillway chute
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walls, spillway discharge channel walls, approach channel walls to outlet
works structures, highway and railway relocation retaining walls, and
floodwall channels. CorpsWanRotate may also be used to predict permanent
seismically induced (rotational or translational) displacements of retaining
walls with or without toe restraint.

\\\\\.\\ ANNNNNNNNN ANNN

Figure 1.1. Rotational response of a cantilever retaining wall with a permanent earthquake-
induced rotation, ©Or.

There are three categories of analytical approaches used to perform a

seismic stability analysis. They are listed in order of sophistication and
complexity:

o Pseudo-static methods with a preselected seismic coefficient
e Sliding block methods

e Stress-deformation methods
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Figure 1.2. Translational response of a cantilever retaining wall with a permanent earthquake-
induced sliding displacement, As.

Each category will be subsequently discussed. Because sliding block
methods are the focus of this report, this category will be discussed last.
The sliding block method of analysis serves as a basis for introducing the
analysis of permanent wall rotation due to seismic loading.
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Figure 1.3. Rock-founded cantilever retaining wall bordering a spillway channel.

1.1.1 Pseudo-static methods with a preselected seismic coefficient

Pseudo-static methods with a preselected seismic coefficient in the
horizontal and in the vertical direction often require bold assumptions
about the manner in which the earthquake shaking is represented and the
simplifications made for their use in stability computations. Essentially,
pseudo-static methods are force-equilibrium methods of analysis
expressing the safety and stability of an earth retaining structure to
dynamic earth forces in terms of (1) the factor of safety against sliding
along the base of the wall, (2) the ability of the wall to resist the earth
forces acting to overturn the wall, and (3) the factor of safety against a
bearing capacity failure or crushing of the concrete or rock at the toe in the
case of a rock foundation. An example using 1992 Corps criteria (now
outdated) is discussed in Section 6.2 of Chapter 6 in Ebeling and Morrison
(1992). Pseudo-static methods with horizontal and vertical preselected
seismic coefficients represent earthquake loading as static forces. In these
types of computations, the earthquake “demand” is represented by (1) a
horizontal seismic coefficient and (2) a vertical seismic coefficient
(sometimes specified as zero) acting at mass centers. Values for these
coefficients (typical symbols are ki and ky) are dimensionless numbers
that, when multiplied times the weight of some body, give a pseudo-static
inertia force for use in analysis or design. The horizontal and vertical
inertia forces are applied to the mass center of the body as shown in
Figure 1.4. The coefficients ki and ky are, in effect, decimal fractions of the
acceleration of gravity (g). For some analyses, it is appropriate to use
acceleration values of kng and kvg smaller than the horizontal and vertical
peak accelerations, respectively, anticipated during the design earthquake
event. It is important to recognize that this category of method of analysis
does not provide quantative information regarding seismically-induced
displacements.
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Figure 1.4. Gravity retaining wall and driving soil wedge treated as a rigid body.

For retaining walls in which the permanent relative motion of the
retaining structure and retained soil (i.e., the backfill) are sufficient to fully
mobilize the shear strength in the soil, soil wedge solutions in which a
wedge of soil bounded by the structural wedge and by an assumed failure
plane within the retained soil are considered to move as a rigid body and
with the same horizontal acceleration (Figure 1.4). Table 1.1 lists the
approximate magnitudes of movements required to reach minimum active
earth pressure conditions. Although this Clough and Duncan guidance is
for static loading, after careful evaluation Ebeling and Morrison (1992, in
Section 2.2.2) concluded that the Table 1.1 values may also be used as
rough guidance for minimum retained soil seismic displacement to fully
mobilize a soil’s shear resistance, resulting in dynamic active earth
pressures.
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Table 1.1. Approximate magnitudes of movements required to reach minimum active earth
pressure conditions (after Clough and Duncan (1991))

Values of Y/Ha
Type of Retained Soil Active
Dense Sand 0.001
Medium-Loose Sand 0.002
Loose Sand 0.004

aY = movement of top of wall required to reach minimum active pressure, by tilting
or lateral translation.

H = height of wall.

A commonly cited expression for the forces the driving soil wedge exerts
on the structural wedge was first proposed by Okabe (1924, 1926) and
Mononobe and Matsuo (1929). A form of their expression for Pag in use
today (see Chapter 4 in Ebeling and Morrison (1992)) is given in

Figure 1.5. Their formulation is referred to as Mononobe-Okabe with Pag
expressed in terms of an active earth pressure coefficient, Kag, with the
subscript A designating active and the subscript E designating earthquake.
The Mononobe-Okabe formulation is an extension of Coulomb’s theory of
static active earth pressures with a horizontal seismic coefficient and a
vertical seismic coefficient acting at the center of a Coulomb’s “driving”
soil wedge mass of a moist retained soil (i.e., with no water table), as
shown in this figure. Equation 36 in Chapter 4 of Ebeling and Morrison
(1992) gives the Mononobe-Okabe relationship for Kag. The general wedge
solution resulting in this same value for Pag as can be calculated by the
Mononobe-Okabe relationship is given in Appendix A of Ebeling and
Morrison (1992). For retaining wall problems analyzed using the
simplified wedge method, EM 1110-2-2100 in Section 5-5, part (3)b
provides guidance on assumptions regarding the magnitude of the seismic
coefficient ky that may be used as a fraction of peak ground acceleration.
Guidance is also given regarding the magnitude of the seismic coefficient,
ky, expressed as a fraction of the value for kn. Minimum ky, values are cited
in Table G-1, Section G-4 of Appendix G, part (a) in EM 1110-2-2100,
according to the seismic zone in which the project resides.

Because seismically induced deformations are not an explicit part of this
computational process and given that pseudo-static methods represent
earthquake loads by static forces, the results are difficult to interpret. This
is because displacement is more closely related to assessment of the
seismic performance for a retaining structure than are factors of safety.
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(1) Mononobe-Okabe relationship: or

Pae = Kng * % *In (1 -k, ) H? (2) Sweep search a,
wedge method of analysis
to compute P,

Kae by equation 36 in Ebeling and Morrison (1992)
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Figure 1.5. Simplified “driving” wedge method of analysis and the Mononobe-Okabe active
earth pressure force relationship.

1.1.2 Stress-deformation methods

Stress-deformation methods are specialized applications of finite element
or finite difference programs for the dynamic analysis of earth retaining
structures to seismic loading using numerical techniques to account for
the nonlinear engineering properties of soils. The problem being analyzed
is often referred to as a soil-structure interaction (SSI) problem.
Acceleration time-histories are typically used to represent the earthquake
ground motions in this type of formulation. The general procedure of
stress-deformation dynamic analysis is straightforward and follows the
usual engineering approach: (1) define the problem, (2) idealize the
physical system, (3) set up the equations of motion for the dynamic
problem, (4) characterize the dynamic engineering properties of the
(structure, soil, and/or rock) materials as per the constitutive material
model(s) being used, (5) solve the equations of motion, and (6) evaluate
the results. Steps (1), (2), (4), and (6) are handled by the engineer while
steps (3) and (5) are dealt with by the engineering software. A partial
listing of computer-based codes for dynamic analysis of soil systems is
given in Appendix D of Ebeling and Morrison (1992). Use of this type of
advanced engineering software requires specialized knowledge in the
fields of geotechnical and structural engineering dynamics as well as in
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numerical methods. Two computer programs, FLUSH and FLAC, will
briefly be discussed to give the reader a sense of what is involved with the
application of computationally complex numerical codes in a complete
soil-structure interaction dynamic analysis and the numerous input and
modeling considerations required.

1.1.2.1 FLUSH

The ASCE Standard 4-86 (1986) states that SSI denotes the phenomenon
of coupling between a structure and its supporting soil or rock medium
during earthquake shaking. The resulting dynamic soil pressures are a
result of the degree of interactions that occur between the structure and
the soil. This response is dependent on (1) the characteristics of the
ground motion, (2) the retained and foundation soils (or rock), and (3) the
structure itself. One method of analysis for SSI is referred to as the direct
method and treats the structure and the surrounding retained soil and
foundation medium in a single analysis step. FLUSH is a classic example
of this category of software which uses the finite element method in this
dynamic analysis (Lysmer, Udaka, Tsai, and Seed 1975).

Two-dimensional (2-D) cross sections of the retaining structure and
portions of the retained soil and foundation are typically modeled in the
FLUSH analysis. Nonlinear soil behavior is treated through equivalent
linearization of the shear stiffness of each soil element with the effective
shear strains that develop during earthquake shaking for the user-
specified earthquake acceleration time-history. Material damping is
assigned to each soil (and/or rock) element and to each structural element
comprising the mesh. Material damping is strain-compatible for each soil,
rock, and structural material type. FLUSH solves the equation of motion in
the frequency domain. The acceleration time-history is introduced through
the base nodes of the mesh; fictitious (artificial) boundary conditions allow
for the introduction of vertically propagating shear waves resulting in
horizontal motion of the nodes of the mesh during earthquake shaking and
for vertically propagating compression waves that allow for the vertical
motion of the nodes. Lateral boundaries, referred to as transmitting
boundaries, are imposed on the 2-D mesh to allow for energy absorbing
boundary conditions to be specified. Because it is essentially a wave
propagation problem being solved, great care is exercised by the seismic
engineer to size the mesh so that moderate to high wave frequencies are
not artificially excluded in the dynamic numerical analysis. Sizing of the
2-D mesh as it pertains to the height of the elements and with regard to
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the maximum shear wave frequency vertically transmitted by the elements
first involves the analysis of representative 1-D soil columns.

To assess the maximum frequency that may be transmitted by a user-
proposed 2-D finite element mesh in a FLUSH analysis, representative
imaginary sections within the 2-D model problem are first analyzed by the
vertical shear wave propagation program SHAKE (Schnabel, Lysmer, and
Seed 1972) and by a 1-D finite element column using FLUSH. Strain-
compatible shear stiffness results from the SHAKE analyses are used to
determine the maximum height of the soil elements for the maximum
frequency of the vertically propagating shear wave needed to be
transmitted in the FLUSH (2-D) analysis. A 1-D soil column is then
constructed using finite elements and analyzed using FLUSH to verify that
the required vertically propagating shear wave frequencies are being
transmitted by the FLUSH mesh. The wavelength associated with the
highest frequency transmitted by the mesh is related to the heights of the
elements and to the strain-compatible shear wave velocities via the strain-
compatible shear stiffness of each of the elements. Recall that FLUSH
accounts for nonlinear response of soils during earthquake shaking
through adjustments of the soil shear stiffness and material damping
parameters as a function of shear strain that develop in each element of
the finite element mesh. Note that the results of this assessment are
dependent on the characteristics of the acceleration time-history used in
the analysis.

FLUSH output obtained via the extraction mode includes time-histories of
the dynamic stresses within each element and dynamic displacements at
each node in the finite element model. Time-histories of nodal point forces
may also be obtained using specialized software. The computed dynamic
stresses are then superimposed on the static stresses so as to attain the
total stresses. Static stresses are typically obtained from a SOILSTRUCT
finite element analysis (Ebeling, Peters, and Clough 1992).

In a static analysis using SOILSTRUCT, the nonlinear stress-strain
behavior of soils is accounted for in an incremental, equivalent linear
method of analysis in which the sequential excavation (if any), followed by
sequential construction of the structure and incremental placement of
retained soil, is made. Examples of this application to Corps structures for
static loading(s) are given in Clough and Duncan (1969), Ebeling et al.
(1993), Ebeling and Mosher (1996), Ebeling, Peters, and Mosher (1997),
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Ebeling and Wahl (1997), and Ebeling, Pace, and Morrison (1997). The
mesh used in the FLUSH dynamic analysis will be the basis for the mesh
used in the SOILSTRUCT static analysis, for the convenience of combining
results.

1.1.2.2 FLAC

The Corps recently completed its first research application of FLAC to the
seismic analysis of a cantilever retaining wall (Green and Ebeling 2002).
FLAC is a commercially available, 2-D, explicit finite difference program
written primarily for geotechnical applications. The basic formulation of
FLAC is plane-strain. Dynamic analyses can be performed with FLAC
using the optional dynamic calculation module, wherein user-specified
acceleration, velocity, or stress time-histories can be input as an exterior
boundary condition or as an interior excitation. FLAC allows for energy
absorbing boundary conditions to be specified, which limits the numerical
reflection of seismic waves at the model perimeter. The nonlinear
constitutive models (10 are built-in), in conjunction with the explicit
solution scheme, in FLAC give stable solutions to unstable physical
processes, such as sliding or overturning of a retaining wall. FLAC solves
the full dynamic equations of motion, even for essentially static systems,
which enables accurate modeling of unstable processes, e.g., retaining wall
failures.

FLAC, like FLUSH, has restrictions associated with the wavelength
associated with the highest frequency transmitted within the grid. A
procedure similar to that used to design the FLUSH mesh and involving 1-
D soil column analyses, via SHAKE, is used to lay out the FLAC grid for
the dynamic retaining wall problem analyzed and for the specified
acceleration time-history. Section 3.3.4 of Green and Ebeling (2002)
discusses the dimensions of the finite difference grid and the maximum
frequency that can pass through without numerical distortion.

A disadvantage of FLAC is the long computational times, particularly when
modeling stiff materials, which have large physical wave speeds. The size
of the time-step depends on the dimension of the elements, the wave
speed of the material, and the type of damping specified (i.e., mass
proportional or stiffness proportional), where stiffness proportional to
include Rayleigh damping, requires a much smaller time-step. The critical
time-step for numerical stability and accuracy considerations is
automatically computed by FLAC, based on these factors listed. For those
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readers unfamiliar with the concept of critical time-step for numerical
stability and accuracy considerations in a seismic time-history engineering
analysis procedure, please refer to Ebeling (1992, Part V), or to Ebeling,
Green, and French (1997). The Lagrangian formulation in FLAC updates
the grid coordinates each time-step, thus allowing large cumulative
deformations to be modeled. This is in contrast to Eularian formulation in
which the material moves and deforms relative to a fixed grid, and is
therefore limited to small deformation analyses.

1.1.2.3 FLUSH versus FLAC

The advantages of FLUSH are that it has considerably faster run times
than FLAC and has been applied to a number of dynamic SSI problems.
FLUSH is now freely downloadable from the Internet. The major
disadvantage of FLUSH is that it does not allow for permanent
displacement of the wall (although strain softening associated with
earthquake-induced soil or rock deformations is accounted for in the
analysis). A disadvantage of FLAC is that the earthquake engineering
community and the Corps are just now developing modeling procedures
for the application of FLAC to dynamic SSI problems, learning how to
perform the analyses and interpret the computed results.

1.1.3 Sliding block methods

Sliding block methods of analysis of earth retaining structures can be
viewed as a compromise between the simplistic pseudo-static methods
with a preselected seismic coefficient and the computationally complex
stress-deformation methods of analysis (e.g., via FLUSH, FLAC, etc.).
Sliding block methods of analysis calculate a permanent deformation of a
retaining structural system due to a user-specified design earthquake
event.

The numerous variations of rigid sliding block methods of seismic analysis
as applied to slopes, earthen dams, retaining wall systems, and
foundations have their roots in the methodology outlined in Newmark
(1965) and what has come to be known as the Newmark sliding block
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model.* This problem was first studied in detail by Newmark (1965) using
the sliding block on a sloping plane analogy. Procedural refinements were
contributed by Franklin and Chang (1977), Wong (1982), Whitman and
Liao (1985), Ambraseys and Menu (1988), and others. Makdisi and Seed
(1978) and Idriss (1985, Figure 47), proposed relationships based on a
modification to the Newmark permanent displacement procedure to allow
for the dynamic response of embankments.

1.1.3.1 Concepts of Newmark’s sliding (rigid) block method of analysis

Franklin and Chang (19777) and Hynes-Griffin and Franklin (1984)
illustrate key concepts of a Newmark sliding block analysis using a
potential sliding mass within an embankment under earthquake loading.
The problem engineering idealization is shown in Figure 1.6. The

Figure 1.6.a potential sliding mass is in a condition of incipient sliding
with full mobilization of the shear resistance for the soil along the slip
plane shown in this figure. The corresponding sliding factor of safety is
equal to unity. This condition results from the acceleration of the earthen
mass into the embankment (i.e., to the left) and away from the cut. W is
the weight of the sliding mass. The force N times W in this figure is the
inertia force required to reduce the sliding factor of safety to unity. By
D’Alembert’s principle, the inertia force, N times W, is applied
pseudostatically to the soil mass in a direction opposite to acceleration of
the mass, N times g, with N being a decimal fraction of the acceleration of
gravity, g (the universal gravitational constant). The acceleration of the
soil mass contained within the slip plane shown in Figure 1.6.a is limited
to an acceleration value of N times g because the shear stress required for
equilibrium along the slip plane can never be less than the shear strength
of the soil. To state this in another way, the sliding factor of safety can
never be less than 1.0. So if the earthquake-induced ground acceleration
should increase to a value greater than the value N times g, the Figure 1.6.a
mass above this slip plane would move downhill relative to the
embankment. During this permanent slope displacement, the “sliding”

1 An interesting footnote in seismic engineering history is given in Whitman (2000): Dr. Robert Whitman,
Professor Emeritus of MIT, in 1953 performed a calculation of the permanent displacement of a slope
as a result of earthquake-induced ground motions using a sliding block concept for a consulting job
that Professor Donald Taylor (of MIT) had with the U.S. Army Corps of Engineers. Professor Newmark
was part of the same consulting panel and sent word back to Dr. Whitman that he found this approach
to be interesting, and that if he (Whitman) did not pursue it, he (Newmark) would. Dr. Whitman did not,
and Professor Newmark did. Professor Newmark’s research culminated in his now classic 1965
Geotechnique paper on this topic, the fifth Rankine lecture.
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mass would only feel the acceleration value N times g and not the ground

acceleration values.
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Figure 1.6. Elements of the Newmark (rigid) sliding block method of analysis (from Hynes-
Griffin and Franklin 1984).
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Figure 1.6.b shows the force polygon for the “sliding” soil mass. The
inclination angle 0 of the inertia force may be found as the angle that is
most critical, that is, the angle that minimizes N. Franklin and Chang
(1977) and Hynes-Griffin and Franklin (1984) state that the angle 0 is
typically set equal to zero in seismic slope stability analyses. The angle 3 is
the direction of the resultant force, S, of the distributed shear stresses
along the interface and is determined during the course of the slope
stability analyses to determine the value of N that results in a sliding factor
of safety of 1.0 for the slope’s sliding mass. The force P is the resultant of
the normal forces. The Figure 1.6.b force polygon for the slope mass is
applied to an “idealized” sliding rigid block model on a plane inclined at an
angle B to horizontal in Figure 1.6.c. This idealization is the basis for the
designation as the Newmark’s sliding (rigid) block method of analysis,
representing the sliding mass of the embankment.

Figure 1.6.d is an idealization of the limiting force versus displacement
relationships applied to this problem. The resistance to sliding is assumed
to be rigid-plastic, as shown in this figure. This resistance to sliding is
unsymmetrical because the block can slide downhill more easily than
uphill. It is the usual practice to assume that uphill sliding never occurs,
i.e., a worst-case assumption, and results in the greatest permanent
displacement (downhill).

Figure 1.6.e shows a time-history plot of the velocity of the embankment
during earthquake shaking. Not shown is the corresponding
(ground/embankment) acceleration time-history for this particular
earthquake event. (Earthquake shaking is usually represented by an
acceleration time-history. Since the ground acceleration varies with time,
let ground acceleration be represented by variable fraction A times the
constant acceleration of gravity, g. Recall that the integral of the
acceleration time-history is equal to the Figure 1.6.e velocity time-history.)
For an embankment that suffers a slope failure from seismic ground
motions, the total permanent displacement of a sliding mass relative to the
base is the sum of the increments of displacement occurring during a
number of individual pulses of ground motion. These incremental relative
displacements are determined as follows. For each time the acceleration of
the embankment, equal to A times g, is greater than the constant N times
g, relative displacements (between the slope mass and the embankment)
will initiate. There are four of these incremental, permanent displacement
pulses occurring in Figure 1.6.e. During slope displacements, the sliding
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mass will move at a slower velocity than will the embankment (designated
the ground velocity in this figure). The integral of the difference in
velocities between the sliding mass and the embankment velocity is equal
to the incremental, relative displacement of the sliding mass. The total
permanent downhill displacement is the sum of the four incremental
displacement cycles depicted in this figure. Note that incremental sliding
of the slope terminates when the velocities of the embankment and of the
sliding mass converge to the same value.

Summary: The idealized engineering problem depicted in Figure 1.6
describes the essential features of the Newmark sliding (rigid) block
method of analysis as first applied to slopes: (1) There is a level of
earthquake shaking as characterized in terms of a value of acceleration
designated N times g, which fully mobilizes the shear resistance along a
sliding plane of a potential sliding mass, corresponding to a factor of safety
against sliding of 1.0 for that mass. (2) For a given embankment (or
equivalently, ground) acceleration time-history in which accelerations
exceed the value of N times g, incremental permanent displacements will
occur. (3) The magnitude of the incremental displacements may be
numerically quantified using the procedure outlined in Figure 1.6.e. (4)
Total permanent displacement is equal to the sum of the incremental
displacement pulses. Although this procedure has been applied to other
types of structures, the essential features of the Newmark (rigid) sliding
block method of analysis remain the same.

1.1.3.2 Sliding block method of analysis applied to retaining structures

A variation proposed on the Newmark sliding block method of analysis for
earth retaining structures is the displacement controlled approach
(Section 6.3 in Ebeling and Morrison (1992)). It incorporates retaining
wall movements explicitly in the stability analysis of earth retaining
structures. This methodology is applied as either (1) the displacement
controlled design of a new retaining wall or as (2) an analysis of
earthquake-induced displacements of an existing retaining wall.

The displacement controlled design of retaining wall: In this
approach the retaining wall geometry is the primary variable. It is, in
effect, a procedure for choosing a seismic coefficient based upon explicit
choice of an allowable permanent displacement. Once the seismic
coefficient is selected, the usual stability analysis against sliding is
performed, including the use of the Mononobe-Okabe equations (or,
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alternatively, a sweep-search, soil wedge solution). The wall is
proportioned to resist the applied earth and inertial force loadings. No
safety factor is required to be applied to the required weight of wall
evaluated by this approach; the appropriate level of safety is incorporated
into the step used to calculate the horizontal seismic coefficient. This
procedure of analysis represents an improved alternative to the
conventional equilibrium method of analysis that expresses the stability of
a rigid wall (of prescribed geometry and material properties) in terms of a
pseudo-static method with a preselected seismic coefficient and
preselected factor of safety against sliding along its base, discussed in
Section 1.1.1. Section 6.3.1 in Ebeling and Morrison (1992) outlines the
computational steps in the (seismic) displacement controlled design of a
retaining wall.

The analysis of earthquake-induced displacements of a
retaining wall: The retaining wall geometry and material properties are
typically first established for the usual, unusual, and extreme load cases
with nonseismic loadings. In the subsequent seismic analysis of the
retaining wall using the earthquake-induced displacement approach, the
primary variable is the permanent displacement. The seismic inertia
coefficient N* that reduces the sliding factor of safety for the driving soil
wedge and the structural wedge to unity is first determined. (Ebeling and
Morrison (1992) designated the value for a retaining wall’s maximum
transmissible acceleration as N*g.) Figure 1.7 shows the driving soil wedge
and structural wedge treated as a single rigid block in this approach. The
resulting permanent seismic displacement of the retaining wall is
subsequently determined for the earthquake specified by the design
engineer. Section 6.3.2 in Ebeling and Morrison (1992) outlines the
computational steps in the analysis of earthquake-induced displacements
of a retaining wall (with specified geometry and material properties).

The analytical procedure that was developed by Richards and Elms (1979)
recognizes that for some limiting value of horizontal acceleration,
identified as N*g in Figure 1.7, the horizontal inertia force acting on a
retaining wall with no toe fill will nominally exceed the shear resistance
provided by the foundation along the interface between the base of the
wall and the foundation. This implies that although the soil base (i.e., the
foundation to the wall) may be accelerating horizontally at values greater
than N*g, the wall will be sliding along the base under the action of the
horizontal inertial force that corresponds to the horizontal acceleration,
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Figure 1.7. Gravity retaining wall and failure wedge treated as a sliding block (after Whitman
1990).

N*g. This results in movement of the soil base relative to the movement of
the wall and vice versa. The relative movement commences at the point in
time designated as point a in the first time-history shown in Figure 1.8 and
continues until the (absolute) velocity of the base is equal to the (absolute)
velocity of the wall, designated as time point b in the second time-history
of this same figure. The (absolute) velocity of the soil base is equal to the
integral over time of the soil acceleration, and the (absolute) velocity of the
wall between time points a and b is equal to the integral of the wall
acceleration, which is a constant N*g. The relative velocity of the wall, v,
shown in the third time-history is equal to the integral of the difference
between the base acceleration and the constant wall acceleration, N*g,
between time points a and b, as shown in Figure 1.8. The relative
displacement of the wall is the fourth time-history and equal to the
integral of the relative velocity of the wall, which occurs between the two
points in time labeled a and b in Figure 1.8. Note that at time point b when
the wall is stopping its first increment of relative movement, the
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acceleration is less than N*g as shown in the first time-history. This
observation demonstrates that the relative velocity of the wall (shown in
the third time-history) controls the cessation of the seismically induced
incremental wall movement. Additional incremental relative
displacements occur for the wall between the two later points in time
labeled c and d in Figure 1.8 with the residual relative wall displacements,
dr, equal to the cumulative relative displacements computed during the
entire time of earthquake shaking (labeled as point d in the fourth time-
history). Lastly, N*g is referred to as either the maximum transmissible
acceleration or the yield acceleration.
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Figure 1.8. Incremental failure by base sliding (adapted from Richards and Elms 1979).

Ebeling and Morrison (1992) observe that the approach has been
reasonably well validated for the case of walls retaining granular, moist
backfills (i.e., no water table). A key item is the selection of suitable shear
strength parameters. In an effective stress analysis, the issue of the
suitable friction angle is particularly troublesome when the peak friction
angle is significantly greater than the residual friction angle. In the
displacement controlled approach examples given in Section 6.2 of
Ebeling and Morrison (1992), effective stress based shear strength
parameters (i.e., effective cohesion ¢’ and effective angle of internal
friction ¢”) were used to define the shear strength of the dilative granular
backfills, with ¢’ set equal to zero in all cases because of the level of
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deformations anticipated in a sliding block analysis during seismic
shaking. In 1992 Ebeling and Morrison concluded that it is conservative to
use the residual friction angle in a sliding block analysis, and this should
be the usual practice for displacement-based analysis of granular retained
soils. For this report the primary author would broaden the concept to the
assignment of effective (or total) shear strength parameters for the
retained soil to be consistent with the level of shearing-induced
deformations encountered for each design earthquake in a rotational
analysis and note that active earth pressures are used to define the loading
imposed on the structural wedge by the driving soil wedge. (Refer to

Table 1.1 for guidance regarding wall movements required to fully mobilize
the shear resistance within the retained soil during earthquake shaking.)

CorpsWanRotate has the ability to perform a sliding analysis of a user-
specified retaining wall section such as the rock-founded retaining wall
shown in Figure 1.9. This retaining wall is an idealization of the Figure 1.3
cantilever retaining wall problem. Besides the overall wall and retained
soil geometry and material properties, the engineer provides as input
baseline-corrected, horizontal and vertical acceleration time-histories that
are used to represent the earthquake ground motions. CorpsWanRotate
represents the effect of the invert spillway slab on the toe of the cantilever
wall through a user-specified, limiting resisting force, Presist. The
magnitude of the Presist may be estimated using the simplified procedure
developed by Strom and Ebeling (2004). Details regarding the sliding
block method of analysis formulated in CorpsWanRotate are given in
Chapter 4 of this report.

In most sliding block formulations, including that used in CorpsWanRotate,
an active earth pressure force is applied to the structural wedge in the
permanent displacement analysis. Table 1.1 lists the approximate
magnitudes of movements required to reach minimum active earth
pressure conditions. Although this Clough and Duncan guidance is for
static loading, after careful evaluation Ebeling and Morrison (1992, in
Section 2.2.2) concluded that the Table 1.1 values may also be used as
rough guidance for minimum retained soil seismic displacement to fully
mobilize a soil’s shear resistance, resulting in dynamic active earth
pressures. That is, the permanent displacements computed using
CorpsWanRotate must equal or exceed the Table 1.1 values (given as
displacement-normalized wall heights in this table). If not, then the
dynamic earth pressures are underestimated in the analysis.
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Figure 1.9. Permanent, seismically induced displacement of a rock-founded cantilever wall
retaining moist backfill and with toe restraint, computed using CorpsWaiRotate.

Rotational analysis of a retaining structure modeled as a rigid
block—eXxisting methodologies

The permanent displacement of retaining structures is not restricted to
walls that slide along their base as a result of inertial forces imparted
during earthquake shaking. For some retaining wall system configurations
and material properties, permanent displacements may instead result
from the rotation of a retaining wall about a point along its wall-to-
foundation interface. The limited research in this topic has focused on
methodologies that calculate the permanent displacement caused by
seismically induced rotation of a retaining wall modeled as a rigid block.
Published analytical methods include those of Nadim and Whitman
(1984), Siddharthan et al. (1992), Richards et al. (1996), Steedman and
Zeng (1996), and Zeng and Steedman (2000). Figure 1.10 shows the
Steedman and Zeng (1996) or, equivalently, the Zeng and Steedman
(2000), rotating block methodology for computing permanent rotation
and thus displacements of a gravity retaining wall using a horizontal
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acceleration time-history to represent earthquake shaking. Key
formulation features include a gravity retaining wall modeled as a rigid
block; the gravity wall rotating about its toe and on a rigid foundation; a
gravity wall retaining moist backfill; and sufficient wall movements away
from the retained soil such that the shear strength of the soil is fully
mobilized, resulting in the active earth pressure force, Pag. All these
formulations use the Mononobe-Okabe relationship to compute the value
of Pag, which is expressed in terms of an active earth pressure coefficient,
Kag. Vertical ground accelerations are ignored, for simplicity in their
formulation. Note that with the point of rotation assigned to the toe of the
gravity wall, the resultant foundation-to-wall reaction forces, Fs and N, act
through this point as well.

A rotation 6 about the toe of the Figure 1.10 wall is developed once a wall-
specific threshold acceleration is exceeded during earthquake shaking
represented by a ground acceleration, aground.! During rotation, the angular
acceleration of the mass center (labeled point c) of rigid body is a. (Recall
that mass is equal to the weight W divided by the acceleration of gravity g.)
The x- and y-axis accelerations of (rigid) mass center point ¢ during
rotation are labeled (ac)x and (ac)y in this figure. This results in the
accumulation of permanent wall rotation with time during further
(horizontal) acceleration of the rigid base. When ground acceleration
drops below the threshold acceleration for rotation for the wall, restoring
forces and moments will act to slow the speed of angular rotation down,
thus reducing the rate of increase of the tilt angle about the toe. Wall
rotation ceases when the angular rotational velocity (of the mass center
about point o) returns to zero. Additional increments of wall rotation A6
occur each time a (horizontal) ground acceleration pulse exceeds the
threshold acceleration for rotation for the wall in the same manner that
permanent sliding displacements accumulate for a Newmark rigid sliding
block model.

1 The reader is cautioned that the notation given in this section is the same as that used by Steedman
and Zang (1996) and is not universally consistent with the notation adopted by the authors of this
report for the new formulation that is discussed in Chapter 3 and implemented in CorpsWaiRotate.
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Figure 1.10. Forces and accelerations of a rigid block model of a gravity retaining wall with
rotation during horizontal shaking of the rigid base (after Zeng and Steedman 2000).

An important difference between the Newmark sliding block method of
analysis for earth retaining structures (i.e., the displacement controlled
approach that is discussed in Section 1.1.3) and the rotational analysis of a
retaining structure modeled as a rigid block is the acceleration imparted to
the rigid block. When a rigid block undergoes permanent sliding
displacement during earthquake shaking, the largest magnitude horizontal
acceleration felt by the rigid block (and the retaining structure contained
within the rigid block) is N*g, which is less than the peak value for ground
acceleration. The maximum transmissible acceleration, N*g, is sometimes
referred to as the yield acceleration; it is not the user-defined, horizontal
ground (or, equivalently, the rigid base) acceleration. For a rigid block that
undergoes rotation during earthquake shaking, the accelerations felt by
this rigid block during shaking are those of the ground acceleration time-
history. This is because continuous contact between the rigid block
undergoing rotation and the ground is maintained at the point of rotation,
i.e., point o, during the entire earthquake shaking process.
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Relative-motion analysis of the rigid body model of the Figure 1.10
retaining wall is used to establish the acceleration of (rigid) mass center
point ¢ by establishing the relationship between the acceleration of point ¢
and the acceleration of point o (the point of rotation at toe of the wall). In
the Zeng and Steedman (2000) Figure 1.10 retaining wall problem, the
(translational) acceleration of point o at the toe of the retaining wall is set
equal to the horizontal acceleration vector of the ground, aground, and is a
known, user-specified quantity. (Note that its value is established by the
user-defined acceleration time-history and changes in magnitude and
possibly direction at each increment in time during earthquake shaking.)
At each instant in time, the acceleration of the center of mass at point c, ac,
in Figure 1.10 is expressed in terms of the (translational) acceleration of
point o, a,, plus the acceleration of point c relative to point o, ac/o,

a, =8, + 38, 1.1

Note that accelerations a. and a, are absolute accelerations of the two
respective points on the rigid body. If the vectors ac and a, are equal in
magnitude and direction, the rigid body undergoes pure translation. In all
other cases, rotation of the rigid body will occur. The acceleration of point
c relative to point o, designated ac/,, may be expressed in terms of normal
and tangential components, respectively, of the acceleration of point ¢
relative to point o,

a0=(ay)  +(ay,) 1.2
c/o c/o tangent c/o normal

Thus, the accelerations felt at the Figure 1.10 mass center c are the sum of
three components:

ac - aground + (ac/o )tangent + (ac/o )normal 13

Figure 1.11 shows these relative acceleration vectors acting at point c. As
the mass center rotates about the toe of the wall, (ac/o)tangent is the
acceleration vector of the rigid mass tangent to the path of rotation of the
center of the rigid mass rotating about this point o,

a ) =axr 1.4
( ¢/o tangent ¢
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in which
a = the angular acceleration of the center of rigid mass, point c,
about the point of rotation, point o
r. = the vector from the point of rotation, point o, to the center of

rigid mass, point c

Note that the direction of vector (ac/o)tangent is consistent with the direction

of vector a.
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Figure 1.11. The acceleration of point c relative to point o expressed in terms of normal and
tangential components.

Additionally, as the mass center rotates about the toe of the wall, the
normal acceleration is defined as

(ac/o)normal :a)x(a)xrc) 1.5

in which o the angular velocity of (rigid) mass center point c about its
point of rotation, point 0. The vector anomal is the time rate of change of
the change in velocity’s direction at point c as it rotates about point o. The
direction of (ac/o)normal is always towards point o, the center of the circular
path of rotation as shown in Figure 1.11.
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Introducing Equations 1.4 and 1.5, Equation 1.3 becomes

a, =8, taxr,—o’r, 1.6

¢~ “ground

From Figures 1.10 and 1.11, the horizontal and vertical acceleration
components of the center of the rigid mass, point c, are

(3.), = youg — A OY, — @ ®X, 1.7

— “ground

and

(ac)y=ozoxc—a)20yC 1.8

Thus for a rigid block that undergoes rotation during earthquake shaking,
the horizontal acceleration of (rigid) mass center point c is a function not
only of the horizontal ground acceleration but it is also a function of the
angular acceleration and the angular velocity during rotation of point ¢
about point o. This differs from the situation of a rigid block that
undergoes permanent sliding displacement during earthquake shaking;
the largest magnitude horizontal acceleration felt by this rigid block is
N*g. Recall that N*g, the maximum transmissible acceleration, is
sometimes referred to as the yield acceleration; it is not the user-defined,
horizontal ground (or, equivalently, rigid base) acceleration. Unlike the
sliding (rigid) block model, which effectively isolates the sliding block from
the shaking base below, the rotating rigid block model continues to
transmit horizontal acceleration through the “pin,” located at the toe of the
wall, into the wall.

For the Steedman and Zeng (1996) (rigid) gravity wall formulation,
vertical ground accelerations are ignored. However, for a rigid block that
undergoes rotation during earthquake shaking, vertical acceleration of
(rigid) mass center point ¢ will occur, but is not a function of the
horizontal ground acceleration: The vertical acceleration of point c is
solely a function of the angular acceleration and the angular velocity
during rotation. The Steedman and Zeng rotational model for the
prediction of permanent displacement has been validated by comparison
with experimental data of a large gravity wall constrained to rock and
subjected to a series of damaging earthquakes in centrifuge testing, as
described in Steedman and Zeng (1996).
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1.3

New rotational analysis model based on a rigid block problem
formulation

An engineering formulation developed for the rotational response of rock-
founded, toe-restrained retaining walls to earthquake ground motions is
given in this report. Rock-founded, cantilever walls retaining moist
backfills of the type shown in Figure 1.3 that are buttressed at their toe by
an invert spillway slab exemplify this category of retaining structure.
(Recall that this new engineering procedure and corresponding software
are not limited to cantilever walls.) The analysis of the earthquake-induced
permanent rotation of the rock-founded retaining wall is idealized in
Figure 1.12. The buttressing effect of e.g. an invert spillway slab is
represented by the user-specified force Presist acting on a vertical section
extending upwards from the toe of the wall; Strom and Ebeling (2004)
present a simplified engineering procedure to estimate the magnitude of
Presist. As in Zeng and Steedman (2000), rotation of a rigid block model of
the structural retaining wall system is assumed in this new formulation to
occur about the toe of the structure (i.e., the rigid block is “pinned” to the
rigid, rock foundation base at its toe). However, this new procedure differs
from the Steedman and Zeng formulation by (1) formal consideration of a
toe-restraint in the analysis (due to the presence of a reinforced concrete
slab against the toe of the wall); (2) the ability of the user to assign a
vertical acceleration time-history in addition to a horizontal acceleration
time-history; (3) consideration of a pool of water in front of the wall, a
submerged foundation and a partially submerged retained soil; and (4) the
implementation of this formulation within corresponding PC software
CorpsWanRotate using a graphical user interface (GUI) for input of
geometry, input of material properties, input/verification of earthquake
time-history files, and visualization of results. In addition, (5) a sweep-
search wedge formulation within the retained soil is used to determine the
value of Pag rather than relying on the Mononobe-Okabe relationship
(cited in the Steedman and Zeng (1996) formulation). Recall that the
Mononobe-Okabe relationship is valid for a retained soil with a constant
surface slope and whose strength is characterized by the Mohr-Coulomb
shear strength parameter ¢ (e.g., refer to Equations 33 through 35 in
Ebeling and Morrison (1992)). The advantage of the sweep-search method
as formulated in this report is that it allows for (a) the analysis of bilinear
ground surfaces for the retained soil and/or (b) the analysis of cohesive
(Sw) soils. Details regarding the rotating block method of analysis
formulated in CorpsWanRotate are given in Chapter 3 of this report.
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CorpsWanRotate applies an active earth pressure force to the structural
wedge in the permanent rotation analysis, as is done in most sliding block
formulations for retaining walls. Table 1.1 lists the approximate
magnitudes of movements required to reach minimum active earth
pressure conditions. Although this Clough and Duncan guidance is for
static loading, after careful evaluation Ebeling and Morrison (1992, in
Section 2.2.2) concluded that the Table 1.1 values may also be used as
rough guidance for minimum retained soil seismic displacement to fully
mobilize a soils shear resistance, resulting in dynamic active earth
pressures. That is, the permanent displacements resulting from rotations
computed using CorpsWanRotate must equal or exceed the Table 1.1 values
(given as displacement-normalized wall heights in this table). If not, then
the dynamic earth pressures are underestimated in the analysis.

Cantilever
retaining
Permanent el
displacement
due to -

rotation : S

Figure 1.12. Permanent, seismically induced displacement due to the rotation about the toe
of a rock-founded cantilever retaining wall and with toe restraint, computed using
CorpsWaIIROtate.
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1.4

Seismic design criteria for Corps retaining structures

Current Corps engineering methodology is to evaluate retaining walls for
usual, unusual, and extreme loadings. Consideration of earthquake
loadings is part of the design process for Corps earth retaining structures.
Engineering Regulation (ER) 1110-2-1806 provides requirements
governing the seismic design and evaluation of structures located at Corps
projects. The engineering procedures outlined in this Corps document are
applicable to the analysis of existing, or the design of new earth retaining
structures. The Corps regulation for earthquake loadings, ER 1110-2-1806,
specifies two project specific earthquakes, the Operational Basis
Earthquake (OBE) and the Maximum Design Earthquake (MDE).

The OBE is an earthquake that can reasonably be expected to occur within
the service life of the project, that is, with a 50-percent probability of
exceedance during the service life. (This corresponds to a return period of
144 years for a project with a service life of 100 years.) The associated
performance requirement is that the project functions with little or no
damage, and without interruption of function. The purpose of the OBE is
to protect against economic losses from damage or loss of service, and
therefore alternative choices of return period for the OBE may be based on
economic considerations. The OBE is determined by a Probabilistic
Seismic Hazard Analysis (PSHA). The OBE is classified as an unusual
event. Retaining walls are expected to remain serviceable and operable
immediately following an OBE event, or immediately following any
earthquake that can reasonably be expected to occur within the service life
of the project.

The MDE is the maximum level of ground motion for which a structure is
designed or evaluated. The associated performance requirement is that the
project performs without catastrophic failure, such as an uncontrolled
release of a reservoir, although severe damage or economic loss may be
tolerated. For critical features, the MDE is the same as the Maximum
Credible Earthquake (MCE). [Section 5(a) and Table B-1 in ER 1110-2-
1806 outlines the assessment of the hazard potential classification of Civil
Works projects and is related to the consequences of project failure.
Critical features are the engineering structures, natural site conditions, or
operating equipment and utilities at high hazard projects whose failure
during earthquake could result, in loss of life.] For all other features, the
MDE shall be selected as a lesser earthquake than the MCE which provides
economical designs meeting appropriate safety standards. The MDE is the
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maximum level of ground motion for which a structure is designed or
evaluated. Although not formally stated in the ER, recent (limited)
application to select, normal Corps (non-critical) structures is to assume
the MDE is an earthquake that has a 10 percent chance of being exceeded
in a 100-year period (or a 950-year return period). The MDE for non-
critical structures is established for each project on an individual basis,
often in consultation with CE-CW (Headquarters). The MDE for normal
structures is determined by PSHA. For critical structures the MDE is the
MCE, which is determined by a deterministic seismic hazard assessment
(DSHA). The MCE is defined as the greatest earthquake that can
reasonably be expected to be generated on a specific source, on the basis of
seismological and geological evidence. Significant damage resulting from
an MDE event can be considered as acceptable provided the damaged
structure can be repaired and put back in service without risk to life.

Factors of safety and safety requirements for retaining walls subject to
seismic loading conditions are provided in EM 1110-2-2100. This
supersedes the stability guidance for retaining walls contained in EM 1110-
2-2502 (but not the engineering procedures, which are based on the
simplified pseudo-static procedure of analysis).

Factors of safety for sliding and flotation, and the safety provisions related
to resultant location and allowable bearing capacity contained in EM 1110-
2-2100 are dependent on:

e Load condition category (usual, unusual, or extreme),
e Site information knowledge (well-defined, ordinary, or limited), and
e Structure importance (normal, or critical).

EM 1110-2-2100 associates each of the three load condition categories to a
range in annual probability (or, equivalently, a range in return period).
Additional “structure specific” information related to load condition
categories and probabilities are contained in Appendix B of

EM 1110-2-2100.

Axial load capacity of spillway invert slabs

Reinforced concrete slabs provide an important contribution to the overall
seismic stability of retaining walls. Figure 1.3 shows for example, an invert
spillway buttressing a cantilever retaining wall that borders a spillway
channel. Key to the seismic performance of this spillway retaining wall is
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the stabilizing force that the channel invert slab exerts at the toe of this
wall. The magnitude of this stabilizing force will depend on the limit state
axial load capacity of this invert slab.

Invert slabs can be founded on earth or rock. Types of construction used
by the Corps include an “independent block plan” and a “continuous
reinforcing plan.” Invert slabs when loaded axially can exhibit either short
column, or long column behavior with the later referring to slabs whose
axial capacity is reduced by second-order deformations (i.e., P o A effects).

Slab capacity in terms of axial load versus moment interaction is
determined based on ultimate strength design principles, which can be
applied to both unreinforced (plain concrete) and reinforced concrete
invert slab sections. Influences from the subgrade reaction, slab dead load,
and axial load eccentricity when considered in a second-order analysis
suggest the axial load capacity can be based on a short column design with
second-order displacements due to P e A effects having little if any effect
on column axial load capacity, according to Strom and Ebeling (2004).

The axial load resistance Presist provided by the Figure 1.3 invert slab is
illustrated in Figure 1.12. Limited investigations, by Strom and Ebeling
(2004), based on the Corps minimum thickness for invert slabs
constructed on rock and earth, and for both continuous reinforcing plans
and independent block plans, indicate the limit state axial load capacity, or
ultimate axial load resistance of the slab (Presist) may be on the order of:

e 120 kips per foot width of slab for a 1.0-foot-thick invert slab on rock.
e 240 kips per foot width of slab for a 2.0-foot-thick invert slab on soil.

The above values are valid for both anchored and unanchored invert slabs,
and for the minimum contraction joint spacings typically found on Corps
projects. However, a site-specific evaluation of the limiting axial resisting
force due to the buttressing effect of the any type of slab on the toe of a
retaining wall is required. Refer to Strom and Ebeling (2004) for a
simplified engineering methodology for the assessment of Presist for all
types of slabs buttressing all types of retaining structures, including the
Figure 1.3 invert spillway slab.
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1.6

Background and research objective

Engineer Manual 1110-2-2502 Retaining and Flood Walls gives
engineering procedures that are currently being used by District Engineers
in their initial assessment of seismic wall performance of existing earth
retaining structures and the (preliminary) sizing of new retaining
structures. The engineering procedures given in EM 1110-2-2502 for
retaining walls make extensive use of the simplified pseudo-static
procedure of analysis of earth retaining structures and expresses wall
performance criteria in terms of computed factors of safety against sliding
and bearing failure, and base area in compression. The simplified pseudo-
static procedure of analysis makes it difficult to interpret the actual wall
performance for Corps projects subjected to “strong” design ground
motions because of simplifications made in the procedure of analysis. In a
pseudo-static analysis an oversimplification occurs when the engineer is
forced to render the complex, horizontal and vertical earthquake
acceleration time-history events to constant values of accelerations and
assume a constant direction for each. These constant values are denoted as
the pseudo-static acceleration coefficients in the horizontal and vertical
directions (refer to Section 1.1.1 of this report). The engineer is also
required to assume a constant direction for each of these components. An
acceleration time-history, in actuality, varies both in magnitude and in
direction with time.

The simplified pseudo-static procedure does not allow for interpretation of
actual wall performance by District Engineers. Intense shaking imparted
by the OBE and MCE design events makes the interpretation of the
simplified procedure of analysis even more difficult. The more important
questions for the wall are whether the wall slides into the spillway basin,
or rotates into the spillway basin, or even tips over onto its side during the
earthquake event. The simplified pseudo-static procedure of analysis is not
capable of answering these questions. The answers depend on the
magnitude of the pseudo-static coefficient used in the calculations
compared to the magnitude of the peak values for the acceleration pulses
as well as the number and duration of these strong shaking acceleration
pulses in the design earthquake event time-history. When considering
both horizontal and vertical accelerations, the resulting wall response is
further complicated by the time-history of phasing between the pulses of
horizontal and vertical accelerations. Only the permanent wall sliding
displacement/wall rotation method of time-history analysis can answer
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these questions. Again, wall displacements will influence the seismic earth
pressure forces imparted on the wall by the retained soil.

Formal consideration of the permanent seismic wall displacement in the
seismic design process for Corps-type retaining structures is given in
Ebeling and Morrison (1992). The key aspect of the engineering approach
presented in this Corps document is that simplified procedures for
computing the seismically induced earth loads on retaining structures are
also dependent upon the amount of permanent wall displacement that is
expected to occur for each specified design earthquake. The Ebeling and
Morrison simplified engineering procedures for Corps retaining structures
are geared towards hand calculations. The engineering formulation and
corresponding PC software CorpsWanRotate discussed in this report extend
these simplified procedures to walls that rotate during earthquake shaking
and make possible the use of acceleration time-histories in the Corps
design/analysis process when time-histories are made available on Corps
projects. CorpsWanRotate may be used to predict permanent seismically
induced rotational or translational displacements of walls retaining
backfill, with or without a toe restraint. It is particularly applicable to rock-
founded L-walls and T-walls (i.e., cantilever retaining walls) which border
spillway channels (Figure 1.3).

The engineering methods contained in this report and implemented within
CorpsWanRotate allow the engineer to determine if a given retaining wall
has a tendency to rotate or to slide for a specified seismic event. This is a
new capability for the seismic design/evaluation process for Corps
retaining structures.

Organization of report

Chapter 2 discusses four existing rotational analysis models of a retaining
wall rotating about a point along its base. All of these engineering
formulations involved retaining walls without toe restraint.

Chapter 3 describes the new engineering formulation for the seismic
analysis of the permanent rotation of a retaining structure modeled as a
rigid block with toe restraint. The numerical method used to compute the
rotation time-history of the rigid block model about its toe is presented.

Chapter 4 describes a new translational block analysis model of a retaining
structure buttressed by a reinforced concrete slab. It is a special variation
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of the engineering formulation for the seismic analysis of the permanent
displacement of a retaining structure modeled as a rigid sliding block but
with a toe restraint. The numerical method used to compute the sliding
displacement time-history of the rigid block model is presented.

Chapter 5 describes key aspects of the visual modeler and visual post-
processor CorpsWanRotate. Specifically, a description of the GUI for input of
geometry, input of material properties, input/verification of earthquake
time-history files, and for visualization of results is presented to make the
user familiar with its operation.

Chapter 6 presents a summary, conclusions, and recommendations for
additional research.

Appendix A presents a derivation of the dynamic active earth pressure
force using the sweep-search wedge method which is implemented in
CorpsWanRotate to calculate Pag.

Appendix B provides an abbreviated review of dynamics of a rigid body.

Appendix C describes an approach used for computing the dynamic active
earth pressure distribution for a partially submerged, retained soil.

Appendix D describes the procedures used to compute the water pressures
acting on the structural wedge, including the computation of
hydrodynamic water pressures due to earthquake shaking of a pool (when
present) in front of the retaining wall. With most Corps hydraulic
structures that act as earth retaining structures possessing a vertical face
in contact with the pool (when present), hydrodynamic water pressures
are approximated in the CorpsWanRotate using the Westergaard (1931)
procedure.

Appendix E outlines the mass moment of inertia computation made by
CorpsWanRotate for the structural wedge.

Appendix F lists and describes the contents of the ASCII input data file to
the FORTRAN engineering computer program portion of CorpsWanRotate.
This data file, always designated as CWROTATE.IN, is created by the GUI,
the visual modeler portion of CorpsWanRotate.
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Appendix G lists the CorpsWanRotate ASCII output files.

Appendix H discusses two example computations of static, active earth
pressure distributions and depth of cracking in cohesive soils.
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2 Existing Rotational Analysis Models of a
Retaining Wall Rotating About a Point
Along its Base

2.1 Introduction

The permanent displacement of retaining structures is not restricted to
walls that slide along their base as a result of inertial forces imparted
during earthquake shaking. For some retaining wall system configurations
and material properties, permanent displacements may instead result
from the rotation of a retaining wall about a point along its wall-to-
foundation interface. The limited research on this general topic has
focused on engineering methodologies that calculate the permanent
displacement due to seismically induced rotation of a retaining wall
modeled as a rigid block. Published analytical methods include those of
Nadim and Whitman (1984), Siddharthan et al. (1992), Fishman and
Richards (1997, 1998), Steedman and Zeng (1996), and Zeng and
Steedman (2000). All four studies involve engineering formulations for
retaining walls without toe restraint. This chapter reviews key aspects of
these existing, simplified formulations used to analyze seismically-induced
permanent displacement due to rotation of a rigid block retaining wall
about a point along its base.!

The reader is cautioned that the notation given in each of the
sections is the same as that used by the developers of each of the
formulations being discussed (as used in their cited papers) and
is not universally consistent with the notation adopted by the
authors of this report for the new formulation that is discussed
in Chapter 3 and implemented in CorpsWanRotate.

During ground shaking, inertial forces are induced on the retaining wall
system. Acceleration time-histories are used to represent ground shaking
in these simplified models of retaining wall systems. The time-varying
inertial forces lead to elastic deformations which can ultimately result in
permanent rotation of the wall or sliding of the wall. In the case of
permanent rotation of a rigid block model of the retaining wall system,

1 Appendix B provides an abbreviated review of dynamics of a rigid body.
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(1) inertial forces vary in magnitude and direction with time, and (2) their
magnitudes are proportional to the value of acceleration at any given
instant in time but act in the direction opposite to acceleration.
Additionally, a rotational acceleration about a point of rotation develops
once the threshold acceleration for lift-off of the base of the wall in
rotation is exceeded, which leads to permanent rotation of the wall relative
to the top-of-foundation. When the ground acceleration drops below this
threshold acceleration value, restoring forces and moments will act to slow
the speed of rotation, reducing the rate of increase of the angle of wall
rotation. An increment of permanent wall rotation occurs during this
interval in time. Additional permanent rotation will be induced during
further cycles of ground acceleration if the threshold acceleration for lift-
off of the base of the wall in rotation is again exceeded. The angle of
permanent wall rotation accumulates with each of these excursion cycles
in a manner similar to the accumulation of permanent sliding
displacement in Newmark’s sliding block method, briefly discussed in
Chapter 1 and discussed in detail in Chapter 4. The primary author of this
report observes that that for a retaining wall system of specified geometry
and material properties (i.e., unit weights and shear strength parameters,
etc.) the threshold values of acceleration corresponding to incipient lift-off
of the base of the wall in rotation (about a specified point of rotation) and
for incipient sliding of the wall are not the same.

2.2 Nadim and Whitman rigid block model of a gravity wall with
earthquake-induced, permanent rotation about a center of rocking
located along the base of the wall

One of the earliest formulations of a rigid block that rotates during
earthquake shaking about a point along its base was developed by Nadim
and Whitman (1984). Figure 2.1 depicts the idealized problem of a
retaining wall that develops incremental, permanent rotations about a
user-specified point of rotation during earthquake shaking. Nadim and
Whitman termed this point as the “center of rocking,” and it is designated
point O in this figure. Note that in this simplified formulation, there is no
incremental rotation into the backfill; all incremental, permanent
rotations that develop are directed away from the backfill. Acceleration
time-histories are used to characterize earthquake shaking of the ground
in this formulation.
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Figure 2.1. Rotating gravity retaining wall (after Nadim and Whitman (1984)).

The sign convention adopted by Nadim and Whitman (1984) for user-
specified horizontal kingg and vertical kyzg ground acceleration time-
histories are shown in the right-hand side of Figure 2.1. Positive horizontal
ground acceleration is directed towards the retained soil and positive
vertical acceleration is directed towards the foundation.! Recall that g is
the universal gravitational constant, while kne and kyg are the respective
time-histories of the horizontal and vertical ground accelerations,
expressed in decimal fraction. Notation with regards to the parameter “k”

({3

is as follows; the first subscript “h” or “v” means “horizontal” or “vertical,”

1 The primary author of this report is of the opinion that this sign convention used is for the convenience
of calculating the thrust force Pae provided by the driving soil wedge and not based on considerations
associated with the structural wedge.
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and the second subscript “g” or “w” means “ground” or “wall.” The
earthquake shaking is represented by user-specified ground acceleration
time-histories in this formulation. The components of wall acceleration are
knw and kyw at the center of rocking. In this figure the notation of knw not
equal to kyg is meant to highlight the fact that the horizontal acceleration
of the wall is not equal to the horizontal acceleration of the ground. It is
assumed that there are no rotational movements of the ground so @ in
this figure is the absolute rotational acceleration as well as the rotational
relative acceleration of the wall.

Incremental, permanent wall rotations can occur during “strong”
earthquake acceleration “pulses” (i.e., sequences in the acceleration time-
history that contain high amplitude acceleration wave forms and usually of
short duration) in which horizontal ground acceleration thrusts are
directed towards the retained soil (i.e., acting in the Figure 2.1 positive kyg
direction). The resulting incremental, permanent wall movements will be
directed away from the retained soil. When these incremental wall
movements occur, they are assumed to be of sufficient magnitude to fully
mobilize the shear resistance in the retained soil. Active earth pressures
are assumed to act on the retained side of the wall during these
incremental wall rotations. In order to satisfy continuity, Nadim and
Whitman (1984) assumed the backfill soil is allowed to move in planes
parallel to the plane of failure as shown in this figure. There are an infinite
number of failure planes, all of which are parallel. The total active thrust
acting on the back of the retaining wall is equal to the sum of the wall-to-
retained soil interface incremental forces of each of the Figure 2.1 soil
slices within the retained soil. The angle that the rupture plane makes with
horizontal o is established in this formulation using the Zarrabi (1979)
relationship for a, which is based on the single, rigid-plastic active wedge
used in the Mononobe-Okabe formulation with a potential failure plane
that goes through the heel of the wall. In order to find the inclination o of
the failure planes, Nadim and Whitman assume that the (resultant) active
thrust from all of the Figure 2.1 soil slices is equivalent to the value of Pag
computed using the Mononobe-Okabe formulation. Nadim (1980)
observes that this assumption is equivalent to using the Mononobe-Okabe
equation with an average kn, and kyp, for the entire rigid-plastic soil mass.

For a specified value of o the resultant active force Pag and its line of
action L (above the heel of the wall) are given by Nadim and Whitman
(1984) as:
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H = height of wall
g = constant of gravitational acceleration
i = backfill slope
o = inclination of failure planes in retained soil
¢ = friction angle of retained soil
¢w = friction angle of wall-backfill interface
vy = unit weight of backfill
6 = rotational acceleration of the wall

When there is no rotational acceleration, the value of Pag would become
identical to Par computed using the Mononobe-Okabe equation (refer to
Figure 1.5), provided that the correct inclination of rupture plane o within
the retained soil is used in Equations 2.1 through 2.4. Rotational
acceleration causes an additional term in the equation for Pag. This term
depends on the assumption made regarding continuity; in order for Pag to
. i, a . . .
remain positive, b must be greater than —6 at each time-step in the time-
3
history response analysis.

Equation 2.2 for the line of action L suggests that when 6 is positive (i.e.,
the wall is rotating away from the retained soil), Pax lies below the lower
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third point. Nadim (1980) notes that this conclusion is contrary to all
previous results obtained by different investigators (also see Section 4.2.2
in Ebeling and Morrison (1992)). Physically, as the wall tilts, each slice of
soil in the backfill experiences a different acceleration. The soil close to the
bottom of the wall is slipping least relative to the ground, hence its
acceleration is largest. The topmost soil is lagging furthest behind the
ground and has the lowest acceleration. Thus, the bottom soils contribute
more to the lateral pressures and cause the resultant force below the lower
third point. Conversely, as soon as the wall decelerates (i.e., when @ is
negative), the situation is reversed. Now the resultant force, Pag, lies well
above the third point. So the point of application of the resultant force Pax
changes, but the results of calculations made by Nadim (1980) indicate
that on average, it falls slightly above the lower third point.

In the Nadim and Whitman (1984) formulation, the center of rocking is
restricted to a point along the base of the wall. Note that they did not
restrict this fixed point of rotation, i.e., the center of rocking in their
vocabulary, to the toe of the wall in their formulation. However, this center
of rocking, about which permanent rotation will occur during earthquake
shaking, was fixed at a user-specified location along the base of the wall for
the duration of each time-history analysis. In subsequent analyses, the
user could then repeat the time-history analysis of permanent wall
rotation for the same acceleration time-history but specifying another
location of the center of rocking along the base of the wall. The center of
rocking location that results in the largest permanent wall rotation is
considered the solution for the problem by Nadim and Whitman. It is
envisioned by the primary author of this report that a center of rocking
location other than at the toe of the wall implys a flexible and somewhat
compliant foundation. A soil foundation would satisfy this
characterization. Nadim and Whitman refer to a soil foundation (versus a
rock foundation) in their formulation discussions.

Figure 2.2.a shows the dynamic forces acting on the Nadim and Whitman
retaining wall. The wall has a weight per unit length of W,, and a mass
moment of inertia per unit length Icc about the wall’s center of gravity, CG.
The friction angle at the base of the wall is ¢» and the wall-to-retained soil
interface friction angle is ¢w. The vertical acceleration of the rigid wall at
the point of rocking (point O), kvwwg, is the same as the vertical acceleration
of the ground, kyg. By definition, only sliding may take place at point O;
the horizontal acceleration of point O, knwg, would be different during
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sliding from the horizontal acceleration of the ground, kngg. The inertial
forces act at the center of gravity of the wall. N and T are the foundation’s
normal and shear reaction forces, respectively. M; is the ultimate moment
resistance of underlying “soil” foundation. The principal author of this
report observes that the foundation reaction moment, M, in conjunction
with the normal force, N, implies an eccentricity of the location of the
foundation’s resultant reaction force N with respect to the user-defined
center of rocking, as shown in Figure 2.2.b.

For “large” kngg horizontal ground acceleration thrusts towards the
retained soil (acting in the Figures 2.1 and 2.2.a positive kyg direction),
incremental wall rotations initiate when a limiting wall acceleration value
for the wall is exceeded. (Recall that the inertial force acts opposite to the
direction of acceleration, away from the retained soil for positive
horizontal acceleration thrusts. Inertia forces have been applied according
to D’Alembert’s principle which permits the problem to be treated as a
static problem.) Thus, large horizontal acceleration thrusts in the direction
of the retained soil will attempt to destabilize the wall, possibly resulting in
incremental wall rotations in the positive 0 direction shown in this figure
(i.e., rotation outward) and corresponding incremental, permanent wall
movements directed away from the retained soil. For a given retaining wall
system configuration and material properties, there is a unique value of
limiting acceleration for sliding and a unique value of limiting acceleration
for lift-off of a wall in rotation about a point along its base. For any given
retaining wall system, the values of these two limiting accelerations are
typically not the same.

Limiting acceleration of a wall — sliding

When ground acceleration thrusts exceed a limiting value of sliding
acceleration the wall will begin to slide. The limiting acceleration of the
wall can be determined from the equilibrium equations of the wall. The
equation of horizontal equilibrium for the Figure 2.2.a wall is

6 B
T=W, (khw —fj +P,. ecos(g,) 2.6
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a. Dynamic forces acting on the retaining wall (after Nadim 1980).
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b. Foundation reaction resultant force N eccentric to the point of rotation by a
distance e.

Figure 2.2. Dynamic forces acting on the retaining wall per the Nadim formulation
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and the equation of vertical equilibrium is

5 g
N:WW[l—kvg+9g1J+PAEosin(¢w) 2.7

Coulomb’s law of friction relates the maximum value of T to N by
Toax =Netan(g,) 2.8
By setting
K = (Ko )i 2.9
the limiting horizontal acceleration value of (knw)siide for (incipient) sliding

is determined by introducing Equations 2.6 and 2.7 into Equation 2.8, and
solving for (Knw)slide,

6 B ) 6 B, P, cos(¢+4,)
k, ) =t o|1-k ! ToFe—— = 2
( hW)shde an(¢b) [ et g j—i_ g W, Cos(¢b) e

Permanent, incremental wall translations initiate when horizontal ground
acceleration, kngg, thrusts towards the retained soil exceed the limiting
horizontal wall acceleration value, (Knw)stide.

Limiting acceleration of a wall—lift-off of its base in rotation

When ground acceleration thrusts exceed a limiting value of acceleration,
the wall will begin to lift off of its foundation, rotating about the center of
rocking (i.e., point O) at the base of the wall. The limiting acceleration of
the wall can be determined from equilibrium equations of the wall. The
moment equilibrium equation about point O is

, 0 B 6 B
ICG¢9+WW(1—ng+ glJBl—Ww[khw— g3JB3

—P,. ocos(¢w)oL+PAE osin(¢w)082 +M =0

Solving for 4,
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Lot is the mass moment of inertia about point O. If the applied moment
from Pag and wall inertia is less than M;, no permanent rotation takes
place and & is zero.

By setting
kI’IW = (khw )tilt 2.14

the limiting horizontal acceleration value of (knw)si: for (incipient) lift-off
of a wall in rotation about point O is determined by introducing

Equation 2.14 into Equation 2.12 and setting the numerator equal to zero.
(Recall wall rotations occur when a nonzero 6 value is achieved.) Thus, a
wall’s value of limiting yield acceleration is

M, +P,; o(B, esin(¢, )—Lecos(4,))+W, o(1-k,)eB,
W, ¢ B,

2.15

(khw )tilt =

Since a key item of interest is the horizontal limiting acceleration, Nadim
and Whitman set kyg equal to 0 in Equation 2.15, resulting in

M, +P,. »(B, esin(g,)—Lecos(g, ))+W, ¢B,
W, B,

(khW )tilt =

2.16

Rotational acceleration of the wall is zero for values of horizontal ground
acceleration less than or equal to (knw):itg. At a time-step t; into the ground
acceleration time-history, when the horizontal ground acceleration value
kngg is equal to or greater than (knw)siig, incremental rotation commences
(i.e., the walls rotational acceleration 6 is nonzero). The time-history of
rotational velocity @ is obtained by numerical integration of the wall’s 4
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time-history. Incremental, permanent wall rotations stop when the value
of 6 returns to zero. No wall rotations into the retained soil are allowed in
the Nadim and Whitman (1984) formulation. The time-history of
incremental, permanent wall rotation € (about point O) is obtained by
numerical integration of the @ time-history. After (1) this first pulse of wall
rotations conclude and (2) should the horizontal ground acceleration
value, kngg, be equal to or greater than (knw):ing at a later time, tj, then a
second pulse of incremental, permanent wall rotations would commence.
Several incremental pulses of permanent wall rotation occur during the
course of a typical earthquake time-history analysis. The total permanent
wall rotation at the end of earthquake shaking is equal to the sum of the
incremental wall rotation pulses.

Nadim and Whitman (1984) observations

(1) Studies performed by Nadim (1980) show that when sliding starts
before tilting [i.e., (knw)stide < (Knw)silt] only sliding movements take place,
but when tilting starts before sliding, usually the wall movement is coupled
tilting and sliding, with tilting movements dominating the displacement
pattern. (2) The location of the critical center of rocking (i.e., point O)
depends on the variation of the ultimate moment capacity of the
foundation soil, M,, and the moment of inertia of the wall with distance at
the base of the wall.

Summary observations regarding the Nadim and Whitman formulation by
other researchers

Along with others, Fishman and Richards (1997) observe that Nadim and
Whitman (1984) employed coupled equations of motion to study the
problem of seismically induced tilting of gravity retaining walls. Based on
the work of Nadim and Whitman (1984), Siddharthan et al. (1990, 1991,
and 1992) developed a method to predict the seismic performance of
retaining walls considering both rotation and translation deformation
modes. Their coupled equations of motion were, in turn, updated and
extended by Fishman and Richards (1997) for the analysis of bridge
abutments with a pin connection at the intersection of the top of wall and
the bridge deck. Key aspects of these two studies are summarized in the
subsequent subsections.



ERDC/ITL TR-06-2 46

2.3 Siddharthan, Ara, Anderson, Gowda, and Norris rigid block model
of a gravity wall with earthquake-induced, coupled permanent rotation
and sliding about a center of rotation located along the base of the
wall

Nadim and Whitman (1984) employed coupled equations of motion to
study the problem of seismically induced tilting of gravity retaining walls.
Based on the work of Nadim and Whitman (1984), Siddharthan et al.
(1990, 1991, and 1992) developed a method to predict the seismic
performance of retaining walls considering both rotation and translation
deformation modes as shown in Figure 2.3.

Displacement }
_— _— ,.,.,.,.,.,., \ B

retained soil

Center of Rotation

O — Original position
O’ — Displaced position

Point O %
oin l_’Xg, (I)
Point O’

Y Foundation Soil
Y, (1)

Figure 2.3. The Siddharthan, Ara, Anderson, Gowda, and Norris simplified rigid block model
for seismically induced wall displacement (after Siddharthan, Ara, and Anderson (1990)).

In the Siddharthan et al. (1990, 1991, and 1992) type of analysis, the
permanent wall translation and rotation about a point along the base,
referred to as the center of rotation, are designated as the primary
unknowns. The center of rotation is selected prior to starting the dynamic
analysis and sliding and rotation of the wall about this point are
computed. From these results, the top-of-wall permanent displacement is
evaluated as a function of time. In subsequent time-history analyses in
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which the location of the center of rotation along the wall’s base is changed
to another position (which is fixed for the duration of each time-history
analysis), a number of top-of-wall permanent displacement values at the
end of shaking are computed and tabulated. The maximum of these
computed top-of-wall permanent displacement values is considered to be
the design wall displacement. (This approach of altering the center or
rotation so as to find the maximum permanent displacement is consistent
with that used by Nadim and Whitman (1984).)

Figure 2.4 shows a rigid retaining wall of height H subjected to base
excitation, represented by horizontal and vertical ground accelerations,
X,(t) and y, (1), respectively. Note the sign convention for horizontal and

vertical ground accelerations in this formulation is the same as assumed
by Nadim and Whitman (1984); positive horizontal ground acceleration is
directed towards the retained soil and positive vertical acceleration is
directed towards the foundation. Inertia forces have been (again) applied
according to D’Alembert’s principle which permits the problem to be
treated as a static problem. The response of the wall is given in terms of
wall translation x (relative to the input excitation), and rotation 6 about
the center of rotation point O, which is located along the base of the wall.
CG is the center of gravity of the wall; R is the distance from rotation point
O to CG; Icg is the mass moment of inertia of the wall about the CG; & is
the wall-to-retained soil friction angle; o is the angle the back of the wall
makes with respect to vertical; W is the weight of the wall; and Pag is the
total dynamic active thrust on the wall. In their formulation the
Mononobe-Okabe relationship is used to compute the value of Par. The
point of application of the total active force Pag is assigned to a height mH
above the heel of the wall, with m being a value less than one. Its point of
application is based on the Seed-Whitman guidelines as described in
Section 4.2.2 in Ebeling and Morrison (1992), but with the incremental
dynamic force, APag, assigned to 0.52H above the base rather than 0.6H as
per Seed and Whitman (1970). (Recall that in the Seed-Whitman
formulation the total force Pag is the sum of the static force component,
P4, plus an incremental dynamic component, APag. Pag is computed using
the Mononobe-Okabe relationship and P4 is computed using the Coulomb
active earth pressure force relationship; with APag = Pag - Pa. Please refer
to Figure 4.10 in Chapter 4 of Ebeling and Morrison (1992).) The base
reaction is given in terms of the vertical and horizontal forces Py and Py,
and a moment of resistance, Mo.
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retained soil
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toe Point O

at Point O
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Foundation Soil

Figure 2.4. Forces and moments acting on a rigid block model of a gravity wall (after
Siddharthan, Ara, and Anderson (1990)).

The equation of horizontal equilibrium for the Figure 2.4 wall is

W .. w
F,=—X+P, ——
2 g " g

and the equation of

w

Xg(t)—PAEocos(§+a)+goRoéosin(n)

vertical equilibrium is

> F,=W-P, —EYg(t)+PAE osin(§+a)+goRoéocos(n)

Coulomb’s law of friction relates the maximum value of Py to P, by

(P,) . =P etan(g,)

Solving Equations 2.17 and 2.18 for P, and Py, respectively, results in

w

P =—X, (t)—%XJrPAE ocos(5+a)—%0ROéosin(77)

g

217

2.18

2.19

2.20
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PV:W—ng(tHPAEosin(§+a)+goRoéocos(77) 2.21

Combining Equations 2.20 and 2.21 into Equation 2.19 results in

W .. W .. W L
EXg(t)—EX+PAEocos(5+a)—goRn9-sm(77)= -

{W—%Yg(tHPAE osin(5+a)+%°R°é°COS(ﬂ)}'tan(¢b)

Rearranging, Equation 2.22 becomes

W .. W ..
Exg (t)_gX+PAE ecos(o+a)

—{W—%Yg(tHPAEosin(5+a)}tan(¢b): 2.23

%oRoéosin(ﬂ)*'%'R°é°C°S(77)‘tan(¢b)

Introducing the trigonometric identity

sin(¢,)

COS(¢b) 2.24

tan(g, ) =

to the second term of the right-hand side of Equation 2.23 and rearranging
terms results in

%.R.g.{sm(n){zgi%+Cos<,7){;“s<(¢;z>)}} 225

Introducing the trigonometric identity
sin(77)ecos (¢, )+cos(n)esin(g,)=sin(n+4,) 2.26
Equation 2.25 becomes

ﬂ.R.g.M

P COS(¢b) 2.27
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Replacing the right-hand side of Equation 2.23 with Equation 2.277 and
rearranging terms results in

g)?g (t)+P,. ecos(d+a)

—{W—%Yg (t)+PAEosin(5+a)}tan(¢b)= 2.28

w

—)"(+KOR090—Sin(n+¢b)
g g

cos(g,)

Siddharthan, Ara, and Norris (1990) observe that this equation (2.28),
which gives the equation of motion in the horizontal direction, can be
uncoupled by omitting the last term,

ﬂ.R.g.M

P COS(¢b) 2.27 bis

(i.e., the rotation term), from the right hand side of this equation. Note
that the resulting uncoupled equation is the same equation as used by
Richards and Elm (1979) and given in Chapter 4 of this report.

The equation of moment equilibrium for the Figure 2.4 wall is

zMo:Io°é:(lce+g°R2J°é 2.29

which becomes

%XORosin(n)+(ICG +%0R2]é=g)§ (t)eResin(7)
—g[g—Yg (t)]oRocos(n)JrPAE e(mH)ecos(S+a) 2.30

—P,e ®sin(6 +a)e[Recos(n7)+a—mHetan(a)]-M,

in which a is the horizontal distance between the CG and the heel of the
wall, n is the angle that the line joining points O and CG makes with the
horizontal. ¢y, is the friction angle at the interface between the wall base
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and foundation soil, Myo is the yield moment of resistance, and mH is the
location of the line of action of the backfill thrust from the base.

Equations 2.28 and 2.30 are coupled equations for d2x/dt2 and d26/dt2. A
step-by-step solution scheme is followed in order to obtain the wall
translation, x, and rotation, 0, in the time domain. This step-by-step
solution scheme is outlined in Siddharthan, Ara, and Anderson (1990).

Siddharthan, Ara, and Norris (1992) note that it is customary in dynamic
analyses to describe the response of a system in terms of generalized
coordinates which may be displacements, rotations, or a combination of
both. The generalized coordinates should be independent of each other,
and one should be able to represent the response at any other point in
terms of the generalized coordinates. For the retaining wall problem, it is
necessary to specify a point about which the wall translation and rotation
(generalized coordinates) need to be computed. This point is referred to as
the center of rotation. Nadim and Whitman (1984) selected this point to be
located at the base of the wall. In a linear problem, the displacement
response at any point will not depend on the selection of the center of
rotation. On the other hand, the retaining wall response is statically
indeterminate and nonlinear.

Siddharthan, Ara, and Norris (1992) observe that the resistance against
rotation offered by the foundation soil and moment of inertia about the
point of rotation depends on the selection of the center of rotation.
Therefore, the center of rotation will affect the computed wall
displacement. In the procedure adopted here, the center of rotation is
selected before starting the dynamic analysis and the sliding and rotation
of the wall about this point are computed. From these results, the top-of-
wall displacement is evaluated as a function of time. By varying the
location of the center of rotation along the base of the wall and repeating
the time-history analyses for the same ground motion, a number of top-of-
wall displacement values at the end of the excitation are noted. The
maximum of these top-of-wall displacement values is considered to be the
design displacement.

Uncoupled equation for rotation

Siddharthan, Ara, and Norris (1992) note that Equation 2.30 (in this
report), which gives the rotational equation of motion, can be uncoupled
by omitting the first term
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gXORosin(n) 2.31

(i.e., the sliding term) from the left-hand side of the equation, resulting in
the uncoupled equation for rotation about the center of rotation, point O,

W W _
(ICG +E0R2j9:EXg (t)eResin(n)

—g[g—Yg(t)]oRocos(n)JrPAEo(mH)ocos(5+a) 2.32

—P,c ®sin(5 +a)e[Recos(n7)+a—mHetan(a)]-M,

The complete derivation of Siddharthan et al. (1990, 1991, and 1992)
equations of motion is also given in Appendix A of Fishman and Richards

(1997).

To compare the Nadim and Whitman Equation 2.11 (this report)
formulation for the Figure 2.2.a retaining structure to the Siddharthan

et al. uncoupled Equation 2.32 for the Figure 2.4 retaining structure, some
geometrical conversions are required: a is set equal to zero degree for the
Figure 2.4 retaining wall in order to obtain a vertical wall-to-retained soil
interface and the radius R and angle n in Figure 2.4 are converted into the
Figure 2.2.a geometry designations by

R?* =B? +B: 2.33
Recos(7n)=B, 2.34
sin(5+a)e[Recos(n)+a—mHetan(a)|=sin(5)eB, 2.35
Resin(n)=B, 2.36

and
mHecos(d+a)=Lecos(9) 2.37

when « is equal to zero. Introducing these geometry designations into the
uncoupled Equation 2.32 and recognizing the differences in notation used
for several of the variables, it is concluded that the resulting relationship is
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the same as Nadim and Whitman’s Equation 2.11. Thus, the uncoupled
Siddharthan et al. formulation for rotation is the same as the Nadim and
Whitman formulation.

Foundation response

One of the input parameters is My, which is assessed by Siddharthan et al.
(1990, 1991, 1992) by assuming the foundation soil is represented by
Winkler springs, and these springs are not bonded to the foundation. The
resisting moment is determined by modeling the base as a strip footing
resting on Winkler springs. Equations are given in Siddharthan, Ara, and
Norris (1992) and Siddharthan, Gowda, and Norris (1991). Both full
contact and partial contact (lift-off) were considered. Py and Py, are the
foundation’s normal and shear reaction forces, respectively. The principal
author of this report observes that the foundation reaction moment, Myo,
in conjunction with the normal force, Py, implies an eccentricity of the
location of the foundation’s resultant reaction force, Py, with respect to the
user-defined center of rocking.

Fishman and Richards (1997) question the use of the Winkler spring
model once the soil reaches its ultimate bearing pressure. Fishman and
Richards (1997) present an alternative formulation for assessing the force
and moment provided by the soil foundation to the wall; key aspects of
their formulation are discussed in the subsequent subsection.

Summary observations regarding the Siddharthan et al. formulation by
other researchers

Fishman and Richards (1997) observe that the advantage to the
Siddharthan, Gowda, and Norris (1991) equations of motion is that they
involve much less computational work than those originally proposed by
Nadim and Whitman (1984) where they (i.e., Nadim and Whitman)
assume that the locations and magnitudes of the wall forces (i.e., Par) vary
as a function of sliding and rotating wall acceleration. Recall that the only
unknown variables in Equations 2.28 and 2.32 are X(t) and 6(t).
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2.4 Fishman and Richards rigid block model of a bridge abutment with
earthquake-induced, coupled permanent rotation and translation for
free and fixed connections to bridge decks

Siddharthan et al. (1990, 1991, and 1992) and Whitman (1992) proposed
the use of coupled equations of motion to predict seismic-induced
permanent deformation of retaining walls. These equations can be used to
describe mixed modes of deformation including sliding and/or tilting.
Equations of motion are cast in terms of relative acceleration between the
retaining wall and foundation soil. Relative displacement and rotations are
computed by double integration of the equations of motion with respect to
time, similar to Newmark (1965) and Richards and Elms (1979).
Specifically, Fishman and Richards (1997, 1998) modified these
Siddharthan et al. coupled equations of motion (discussed in the previous
subsection) and included the following modifications; (1) calculation of
seismic bearing capacity (and, specifically, the possibility of seismic loss of
bearing capacity); (2) estimation of the moment resistance of the
foundation soil; and (3) extension of the equations to consider bridge
abutments that may be forced to rotate about a point of fixity at the top of
the abutment at the connection to the bridge deck. The Fishman and
Richards (1997, 1998) free-body diagram of bridge abutment with a free
connection to bridge deck is shown in Figure 2.5. Note the sign convention
for horizontal and vertical ground accelerations in this formulation is the
same as assumed by Nadim and Whitman (1984) and Siddharthan et al.
(1990, 1991, and 1992); positive horizontal ground acceleration is directed
towards the retained soil and positive vertical acceleration is directed
towards the foundation.

The inertial forces are applied according to D’Alembert’s principle.
Fishman and Richards (1998) note that much like the Richards and Elms
(1979) approach to translating walls, Newton’s fundamental laws of
motion are applied to arrive at the coupled equations of motion proposed
by Siddharthan et al. (1990, 1991, and 1992) and described in the previous
section. The Siddharthan et al. coupled equations of motion for the

Figure 2.5 notation are
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%Xg (t)+P,. ecos(9)

—{W—%Yg(t)JrPAEosin(5)+FDv}tan(¢b) 2.38

:w)“(+ﬂ0ROéc—Sin(n+¢b)
g g cos(d,)

W _ w . W _
EXOROSln(n)Jr[ICG+E0R2JH:EXg(t)OROS|n(77)

—g[g—yg(t)]oRocos(UHPAEo(mH)ocos(5) 2.39

—P, #sin(5) o [Recos(17) +a]—F,, e[a+Recos(n)]-M,

Foy l Deck Load

X, (0 <—l

Yg () mH

\/Mo

Center of Rotation
at Point O

Figure 2.5. Free-body diagram of bridge abutment with free connection to bridge deck (after
Fishman and Richards (1998)).
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Note that by taking a equal to zero degrees and adding in the vertical deck
load Fpy, the Siddharthan et al. equations (Equations 2.28 and 2.30)
match Equations 2.38 and 2.39, respectively. Pag is the total dynamic
active thrust on the wall. In their formulation the Mononobe-Okabe
relationship is used to compute the value of Pag. Vertical acceleration can
be included quite easily by using kn/(1-ky) instead of k, when computing
Par and W becomes (1-ky)W in the equilibrium equations (e.g., see
Appendix A or Equation 33 and Figure 4.1a in Chapter 4 of Ebeling and
Morrison (1992)). The point of application of the total active force Pag is
assigned to a height mH above the heel of the wall, with m being a value
less than one. Fishman and Richards (1997) assume that Pag acts at the
wall mid-height, consistent with a Richards and Elms (1979) suggestion.
An additional detail in their computations is that until the base moves
creating an active situation, it acts as a “rigid” wall retaining “non-
yielding” backfill (in Ebeling and Morrison (1992) terminology). Citing
results from Wood (1975) analyses, Fishman and Richards (1997) assume
the seismic lateral pressure increment is parabolic with a thrust force Pre
roughly twice the Mononobe-Okabe value and with the wall/retained soil
interface friction angle, 3, is close to zero for this special case.

Siddharthan et al. equations of motion apply to a retaining wall, but not to
a pin-connected bridge abutment of the type shown in Figure 2.6. This
figure shows the free-body diagram of the bridge abutment problem solved
by Fishman and Richards.

Derivation of the equation of motion for an abutment pinned at the top is
presented in Appendix B of Fishman and Richards (1997). Summing
moments about the pin results in

. W . W .
M. =1_e0+—eR>ed——X_(t)eResin
Z pin CG g g g() (77) 2.40

+WeRecos(n)—P,.ehecos(5)—Neb+SeH

where N is the vertical soil resistance and S is the horizontal soil
resistance.

Rearranging the equation of motion results in,
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Figure 2.6. Free-body diagram of bridge abutment with fixed connection to bridge deck (after
Fishman and Richards (1997)).

Numerical methods, as described in Fishman and Richards (1997), are
used to solve for the acceleration components X(t) and 6(t). Specifically,
a step-by-step solution scheme is followed in order to obtain the wall
translation, x, and rotation, 0, in the time domain. A key aspect of their
formulation is formal consideration of seismic bearing capacity of the
foundation soil.

2.5 Steedman and Zeng rigid block model of a gravity wall with
earthquake-induced rotation about its toe

Figure 2.7 shows the Steedman and Zeng (1996) or, equivalently, the Zeng
and Steedman (2000) rotating block methodology for computing
permanent rotation and thus displacements of a gravity retaining wall
using a horizontal acceleration time-history to represent earthquake
shaking. Key formulation features include; a gravity retaining wall
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modeled as a rigid block; the gravity wall rotates about its toe and on a
rigid foundation; a gravity wall retaining moist backfill; and sufficient wall
movements away from the retained soil occur such that the shear strength
of the soil is fully mobilized, resulting in the active earth pressure force
Pag. Only a horizontal ground acceleration time-history is used to
represent earthquake shaking, i.e., vertical ground accelerations are
ignored for simplicity in their formulation. Note that with the point of
rotation assigned to the toe of the gravity wall, the resultant foundation-to-
base of wall reaction forces Fs and N act through this point as well.

gravity wall

Ye
ol
—_— igid base
A é rgi
FS aground
N
>
X

Figure 2.7. Forces and accelerations of a rigid block model of a gravity retaining wall with
rotation during horizontal shaking of the rigid base (after Zeng and Steedman (2000)).

A rotation 6 about the toe of the Figure 2.7 wall develops once a wall-
specific threshold acceleration is exceeded during earthquake shaking that
is represented by a horizontal ground acceleration aground, as depicted in
this figure. During rotation, the angular acceleration of the mass center
(labeled point c) of rigid body is a.. (Recall that mass is equal to the weight,
W, divided by the acceleration of gravity, g.) The x- and y-axis
accelerations of (rigid) mass center point ¢ during rotation are labeled (ac)x
and (ac)y in this figure. This results in the accumulation of permanent wall
rotation with time during further (horizontal) acceleration of the rigid
base. When ground acceleration drops below the threshold acceleration for
rotation for the wall, restoring forces and moments will act to slow the
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speed of angular rotation, thus reducing the rate of increase of the tilt
angle about the toe. Wall rotation ceases when the angular rotational
velocity (of the mass center about point O) returns to zero. Additional
increments of wall rotation A0 occur each time a (horizontal) ground
acceleration pulse exceeds the threshold acceleration for rotation for the
wall in the same manner that permanent sliding displacements
accumulate for a Newmark rigid sliding block model.

The equation for the acceleration of the Figure 2.7 (rigid) mass center
point ¢ was shown in Section 1.2 to be

a, =a,,,,taxr,—o’r, 1.6 bis

¢~ “ground

with the horizontal and vertical acceleration components of a. are

(3,), =8youg —AOY, — @ ®X, 1.7 bis

ground
and

(@), =aex,—w’ey, 1.8 bis

These three equations demonstrate that for a rigid block that undergoes
rotation during earthquake shaking, the horizontal acceleration of (rigid)
mass center point c is a function not only of the horizontal ground
acceleration but it is also a function of the angular acceleration o and the
angular velocity o during rotation of point ¢ about point O. Recall that this
differs from the situation of a rigid block that undergoes permanent
sliding displacement during earthquake shaking; the largest magnitude
horizontal acceleration felt by this rigid block is the maximum
transmissible acceleration, N*g, as discussed in previous chapters. N*g is
sometimes referred to as the yield acceleration. Note that N*g is not the
user-defined, horizontal ground (or, equivalently, rigid base) acceleration.
Unlike the sliding (rigid) block model, which effectively isolates the sliding
block from the shaking base below, the rotating rigid block model
continues to transmit horizontal acceleration through the “pin,” located at
the toe of the wall, into the wall.

In the Steedman and Zeng (1996) (rigid) gravity wall formulation, vertical
ground acceleration is ignored. However, Equation 1.8 demonstrates for a
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rigid block that undergoes rotation during earthquake shaking, vertical
acceleration of (rigid) mass center point c will occur, but is not a function
of the horizontal ground acceleration: The vertical acceleration of point c
is solely a function of the angular acceleration and the angular velocity
during rotation. The Steedman and Zeng rocking model for the prediction
of permanent displacement has been validated by comparison with
experimental data of a large gravity wall constrained to rock and subjected
to a series of damaging earthquakes in centrifuge testing, as described in
Steedman and Zeng (1996).

Limiting acceleration of a wall — lift-off of its base in rotation

When ground acceleration thrusts exceed a limiting value of acceleration,
the wall will begin to lift off of its rigid foundation, rotating about the
center of rocking (i.e., point O) at the toe of the wall. The inertial forces are
applied according to D’Alembert’s principle and earth pressure force
invoked by the (assumed pseudo-static) acceleration field. The limiting
acceleration of the wall can be determined from equilibrium equations of
the wall. For the Figure 2.7 gravity retaining wall subject to pure rotation,
the onset of lift-off from its foundation in rotation, the rotating moment

M =k, oWey +P, ecos(5+[)eh 2.42

rotation

exactly equals the restoring moment

M =Wex +P, esin(6+)e(B—hetanp) 2.43

restoring

where W is the weight of the wall, ki is the threshold acceleration
coefficient in lift-off of the wall from its base (with a corresponding
acceleration ay =ki times g), Pax is the Mononobe-Okabe active earth
pressure force, d is the wall-to-retained soil friction angle; B is the angle
the back of the wall makes with respect to vertical, h the location of the
line of action of the backfill thrust from the base, and B is the width of the
wall at its base. Equating Equations 2.42 and 2.43 results in the
relationship for the threshold acceleration coefficient in lift-off of the wall
from its base

Wex, +P,esin(d+p)e

K = (B—hetanf)—P,. ecos(d+f)eh 0 aa
(Wey]
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Angular acceleration and rotation of a wall

The equation for moment equilibrium about the center of rotation
(assigned to toe) of the Figure 2.7 wall is

ZI\/IO:—yCO(%JO(aC)X+XCO(gJ0(aC)y+ICoa 245

in which I is the mass moment of inertia of the wall about its centroid
(point ¢). Summing moments of the forces about the toe of the wall, the
left-hand side of Equation 2.45 becomes

D> M, =P, ecos(5+pB)eh—Wex,
—P,c ®sin(5+ B)e[B—hetanj]

2.46

Introducing Equation 2.46 into Equation 2.45, substituting Equations 1.7
and 1.8, and solving for the rotational acceleration «, results in

PAEocos(5+ﬂ)oh+[V;/joag oy, —W

eX, —P,. ®sin(d+ f)e[B—hetanf]
Wi o
{IC J{gjor }

To calculate o, dynamic earth pressure Pag is calculated by using the
horizontal ground acceleration ag (=kng) rather than the limiting value of
acceleration a; when the wall will begin to lift off of its rigid foundation
(=kug). Note that at each time-step i during wall rotation, the value for Pag
changes and is computed using the value for ky (=ag/g) consistent with
that time-step.

o =

Zeng and Steedman (2000) observe that in the rotating block method, this
threshold acceleration for rotating, aw, does not represent the true
acceleration of any particular points in the retaining wall system. In fact,
the acceleration of points within the retaining wall system will vary
throughout the rigid body. With regard to the calculation of the value for
Pag, Zeng and Steedman assume the acceleration is uniform in the backfill
and it is the same as the ground acceleration.
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The velocity of rotation or angular velocity, is determined by integration of
the acceleration of rotation

t
o= ja dt when w is greater than zero 2.48
0

or

w = 0 when Equation 2.48 gives w less than zero 2.49

The angle of permanent (incremental) rotation is the integration of the
angular velocity of rotation over the period of time being considered,

t
ezja) dt 2,50
0

Note that the cycle of permanent wall rotation through an angle 6 ceases
when the angular velocity o is zero. The increment in permanent wall
rotation ceases until the threshold acceleration for rotation ai: is exceeded
again. In practical application of the Steedman and Zang procedure to
earthquake ground motions, numerical methods would be applied to
perform these integrations. The final tilting angle is the accumulation of
incremental tilting angles during the entire earthquake.

Limiting acceleration of a wall sliding

Zeng and Steedman (2000) also considered the possibility of a gravity
retaining wall sliding along the rigid base during earthquake shaking.
When ground acceleration thrusts exceed a limiting value of sliding
acceleration the wall will begin to slide. The limiting acceleration of the
wall can be determined from the equilibrium equations of the wall.
Following established methods (discussed in previous chapters), sliding of
the wall will occur when the mobilized frictional force at the base reaches a
maximum and the earth pressure envoked by the assumed pseudo-static
acceleration value of limiting sliding acceleration. For the Figure 2.8 wall
at the instant when sliding starts, equilibrium of forces in the horizontal
direction results in

[k ®W +P,c ecos(S5+ B)]=[W+P,. esin(5+ )] etans, 2.51
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where d, is the wall-to-base friction angle. The threshold sliding
acceleration coefficient, kis, is

Kg ={[W+P, esin(5+ B)|etans, —P,. ecos(5+ B)} /W 2.52

i

|

gravity wall -
retained soil
h
' rigid base

Figure 2.8. Forces and acceleration of a rigid block model of a gravity retaining wall with
sliding (i.e., translation) during horizontal shaking of the rigid base (after Zeng and Steedman
(2000)).

An increment of sliding of the rigid block model of the gravity wall will
initiate when the (horizontal) ground acceleration, ag, is equal to the
threshold sliding acceleration, as ( = kis times g). Sliding will terminate
when the velocity of the wall is equal to the velocity of the ground, as
depicted in Figure 1.8. The increment in permanent wall translation ceases
until the threshold acceleration for sliding, as, is exceeded again. In
practical application of the Steedman and Zang procedure to earthquake
ground motions, numerical methods would be applied to perform these
integrations. The final translation is the accumulation of incremental
sliding displacements during the entire earthquake.
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Zeng and Steedman (1996 and 2000) observations

When the maximum ground acceleration is larger than the threshold
accelerations for both sliding and rotation, lateral displacement and tilting
may occur simultaneously. The sliding movement and tilting will interfere
with each other and will affect both the threshold acceleration and the
overall displacements. (1) Zeng and Steedman concluded that for a wall in
which sliding is initiated first, the tilting of the wall is not possible.

(2) Additionally, they concluded that if rotation starts first, the rotational
motion will increase the threshold acceleration for sliding and, hence,
reduce the total sliding displacement. An iterative, numerical procedure is
briefly summarized in Zeng and Steedman (2000) for performing coupled
rotation and displacement computations. (3) Steedman and Zeng (1996)
observe that although the angle of friction on the base of the wall is clearly
not significant in rocking, even a small tensile capacity on this surface will
have an important effect on the onset of outward movement, raising the
threshold for first yield. No tensile capacity was assumed in their models.
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3 New Rotational Analysis Model of a
Retaining Wall Rotating about its Toe and
Buttressed by a Reinforced Concrete Slab

3.1 Introduction

This chapter describes a new engineering formulation developed for
computing the rotational response to earthquake ground motions of toe-
restrained, rock-founded retaining walls. The resulting engineering
formulation is implemented within corresponding PC software
CorpsWanRotate using a graphical user interface (GUI) for input of
geometry, input of material properties, input/verification of earthquake
time-history files, and visualization of results. (Key aspects of the visual
modeler and visual post-processor CorpsWanRotate are described in
Chapter 5.)

The permanent displacement of retaining structures is not restricted to
walls that slide along their base as a result of inertial forces imparted
during earthquake shaking. For some retaining wall system configurations
and material properties, permanent displacements may instead result
from the rotation of a retaining wall about a point along its wall-to-
foundation interface. Chapter 2 reviewed key aspects of four existing,
simplified engineering formulations used to analyze seismically induced
permanent displacement due to rotation of a rigid block retaining wall
about a point along its base. These four formulations involve retaining
walls without toe restraint.

The idealized permanent displacement due to rigid body noncentroidal
rotation of a retaining wall about its toe during earthquake shaking and
with toe restraint is shown in Figure 3.1.t The buttressing effect of a
reinforced concrete slab is represented in this simplified dynamic model
by the user-specified force Presist acting on a vertical section extending
upwards from the toe of the wall as per Strom and Ebeling (2004).

1 The planar kinematics of rigid body noncentroidal rotation about a fixed axis is described in
Section B.6 of Appendix B.
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Figure 3.1. Idealized permanent, seismically induced displacement due to the rotation about
the toe of a rock-founded wall retaining moist backfill, with toe restraint, computed using
CorpsWaiRotate.

The Figure 1.3 cantilever retaining wall that is buttressed by an invert
spillway slab (which is a reinforced concrete slab) exemplifies this category
of retaining structure system for Corps retaining walls. The primary author
of this report is of the opinion that the assignment of the point of rotation
to the toe of the wall becomes a reasonable simplifying assumption
because of the constraint provided by the Figure 1.3 invert spillway slab to
lateral translations, combined with the effects of the stiff, competent rock
foundation.! A key result of a CorpsWanRotate analysis idealized in

Figure 3.1 is the permanent, earthquake-induced displacement of a
retaining wall due to rotation about the toe of the wall.

As in the Zeng and Steedman (2000) formulation discussed in Section 2.5,
rotation of a rigid block model of the structural retaining wall system in
this new formulation is assumed to occur about the toe of the wall (i.e., the

1 A competent, rigid base is assumed in this initial formulation for CorpsWaiRotate. Future improvements
to CorpsWanRotate will include automated procedures to evaluate the bearing capacity for the rock
foundation material.
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rigid block is “pinned” to the rigid base at its toe). This new procedure
differs from the Steedman and Zeng formulation by (1) formal
consideration of a toe restraint in the analysis (caused by the presence of a
reinforced concrete slab against the toe of the wall); (2) the ability of the
user to assign a vertical acceleration time-history in addition to a
horizontal acceleration time-history; (3) consideration of a pool of water in
front of the wall, a submerged foundation and a partially submerged
retained soil; and (4) the implementation of this formulation within
corresponding PC software CorpsWanRotate using a GUI for input of
geometry, input of material properties, input/verification of earthquake
time-history files, and visualization of results. In addition, a sweep-search
wedge formulation within the retained soil is used to determine the value
of Pag rather than relying on the Mononobe-Okabe relationship (cited in
the Steedman and Zeng (1996) formulation). Recall that the Mononobe-
Okabe relationship is valid for a retained soil with a constant surface slope
and whose strength is characterized by the Mohr-Coulomb shear strength
parameter ¢ (e.g., refer to Equations 33 through 35 in Ebeling and
Morrison (1992)). The advantage of the sweep-search method as
formulated in this report is that it allows for (a) the analysis of bilinear
ground surfaces and/or (b) the analysis of “cohesive” (S,) soils.!

The derivation for a rock-founded wall retaining moist backfill is
presented first. This is followed by the formulation for a rock-founded wall
retaining a partially submerged backfill and for the case of a pool in front
of the retaining wall.

3.2 Acceleration of rigid mass center (CG)

An important difference between the Newmark (1965) sliding block
method of analysis for earth retaining structures (i.e., the displacement
controlled approach that is discussed in Section 1.1.3) and the rotational
analysis of a retaining structure modeled as a rigid block is the
acceleration imparted to the rigid block. When a rigid block undergoes
permanent sliding displacement during earthquake shaking, the largest
magnitude horizontal acceleration felt by the rigid block (and the retaining
structure contained within the rigid block) is N*g, which is less than the

1 In the formulation described in this report, a cohesive soil refers to a total stress analysis in which the
shear strength of the soil is characterized in terms of its undrained shear strength, Su. Note that
minimum wall movements needed to fully mobilize the shear resistance of the soil, on the order of
those listed in Table 1.1, will impact the characterization of the retained soil shear strength parameters
used in the permanent displacement analysis.
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peak value for ground acceleration. The maximum transmissible
acceleration N*g is sometimes referred to as the yield acceleration; it is not
the user-defined, horizontal ground (or, equivalently, the rigid base)
acceleration. For a rigid block that undergoes rotation during earthquake
shaking, the accelerations felt by this rigid block during shaking are those
of the ground acceleration time-history plus the contribution of angular
acceleration and angular velocity during rotation of the rigid body about
its point of rotation. This is because continuous contact between the rigid
block undergoing rotation and the ground is maintained at the point of
rotation, i.e., point 0, during the entire earthquake shaking process. Thus,
large horizontal acceleration thrusts in the direction of the retained soil
will attempt to destabilize the wall, possibly resulting in incremental wall
rotations in the positive 0 direction shown in Figure 3.2 (i.e., rotation
outward) and corresponding incremental, permanent wall movements
directed away from the retained soil.

Relative-motion analysis of the rigid body model of the Figure 3.2 wall
retaining moist backfill is used to establish the acceleration of (rigid) mass
center point CG! by establishing the relationship between the acceleration
of point CG and the acceleration of point 0. In the CorpsWanRotate
formulation, the acceleration of point 0 at the toe of the retaining wall is
set equal to acceleration of the ground, aground, and is a known, user-
specified quantity. The horizontal and vertical components of the ground
acceleration, aground, are designated as an and ay in this figure, with
subscript “h” or “v” meaning “horizontal” or “vertical.”2

The sign convention adopted for ground acceleration, aground, by Nadim
and Whitman (1984), Siddharthan et al. (1990, 1991, and 1992), and
Fishman and Richards (1997, 1998) for user-specified horizontal an = kng
and vertical ay = kyg ground acceleration time-histories was adopted for
this formulation and shown in Figure 3.2 as the rigid base accelerations.
Positive horizontal ground acceleration is directed towards the retained
soil and positive vertical acceleration is directed downward into the rigid

1 Computation of the center of mass as well as mass of the structural wedge by CorpsWanRotate is
outlined in Section B.3.

2 Note that values of an and av are established by a pair of user-defined horizontal and vertical
acceleration time-histories in CorpsWaiRotate, each of which changes in magnitude and possibly
direction at each increment in time during earthquake shaking.
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Figure 3.2. Free-body and kinetic diagrams of a rigid block model of a cantilever wall retaining
moist backfill with rotation about the toe of the wall during horizontal and vertical shaking of
the rigid level base.

base foundation.! Recall that g is the universal gravitational constant while
kn and ky are the respective time-histories of the horizontal and vertical
ground accelerations, expressed in decimal fraction. The acceleration of
the center of gravity of the retaining wall structural system is designated
by the subscript “CG.” Incremental, permanent wall rotations can occur
during “strong” earthquake acceleration “pulses” (i.e., sequences in the
acceleration time-history that contain high-amplitude acceleration wave
forms and usually of short duration) in which horizontal ground
acceleration thrusts are directed towards the retained soil (i.e., acting in
the Figure 3.2 positive ay direction) and/or vertical ground acceleration
thrusts are directed towards the rigid base (i.e., acting in the Figure 3.2
positive ay direction). The resulting incremental, permanent wall
movements will be directed away from the retained soil. When these
incremental wall movements occur, they are assumed to be of sufficient
magnitude to fully mobilize the shear resistance in the retained soil. Active
earth pressures are assumed to act on the retained side of the wall during
these incremental wall rotations.

1 The sign convention used in CorpsWaiRotate is for the convenience of calculating the thrust force Pae
provided by the driving soil wedge and not based on considerations associated with the structural
wedge shown in Figure 3.2. Appendix A describes the Pae computation.
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Referring to Figure 3.2, the rigid mass center is designated point CG and
the center of rotation is point 0. The acceleration response of mass center
point CG, acg, will differ from the acceleration of point 0, equal to the
ground acceleration, aground , according to the relationship

a; =2a +8u5 0 31

ground

where acg/o is the acceleration of the center of mass relative to toe of the
wall (i.e., point 0). Note that accelerations acg and a, are absolute
accelerations of the two respective points on the rigid body. If the vectors
acc and ao are equal in magnitude and direction, the rigid body undergoes
pure translation. In all other cases, rotation of the rigid body will occur.
The acceleration of point CG relative to point 0, designated acg/0, may be
expressed in terms of normal and tangential components, respectively, of
the acceleration of point CG relative to point o,

- +( ) 3.2
aCG/O (aCG/O )tangent aCG/O normal

Note that the direction of vector (acg/o)tangent is consistent with the

Figure 3.3 angular acceleration vector o while the vector (acc/o)normal 1S
always directed from CG towards the point of rotation, point o, regardless
of the direction of ®.1:2:3 The accelerations felt at the Figure 3.3 mass
center CG are the sum of three components:

aCG = aground + (aCG/ 0 )tangent + (a CG/ 0 )normal 3.3

Introducing the cross product definitions of the tangential and normal
acceleration vectors, (acc/o)tangent and (acg/o)normal, (i.€., Equations 3.4 and
3.5 or, equivalently, Equation B.23) and referring to their Figure 3.4
horizontal and vertical vector direction components, Equation 3.3
becomes

1 See Section B.5 in Appendix B.

2 Recall that the angular velocity, o, is d%t =6 and the angular acceleration, a, is d%t = dz%tz =4.

3 Consistency in the direction of the vectors (aca/o)tangent and a is provided by evoking the right-hand rule
in the derivation of

(aCG/o )tangent =a Xl 0 34
and that the direction of vector (ace/0)normal is in the same direction as vector -rcg/o
2
(aCG/O)norma! —a)x(a)xrcc/o)——(a)) fes /0 3.5

as discussed in Hibbler (2001) on pages 294-295.



ERDC/ITL TR-06-2

71

(aCG/O)tangent =Teg0®0

(aCG/O)normal == rCG/O ® (0)2

(aCGIO )tangent

'caio

ta,=k,*g Rigid Base

Figure 3.3. Tangential, normal, and angular accelerations of the center of mass (of a rigid
block model of a cantilever wall retaining moist backfill) relative to the point of rotation during
horizontal and vertical shaking of the rigid level base.

(Ao )n =8, — @AY 5 0 -’ * AXee 0 3.6

and

2
(8g), =a, O NXg o+ @ OAyCG/O 3.7

Equation 3.6 demonstrates that the horizontal acceleration of point CG is
solely a function of (a) the horizontal ground acceleration, (b) the angular
acceleration, and (c) the angular velocity during rotation. Note that the
horizontal acceleration of (rigid) mass center point CG is not a function of
the vertical ground acceleration. Equation 3.7 demonstrates that the
vertical acceleration of point CG is solely a function of (a) the vertical
ground acceleration, (b) the angular acceleration, and (c) the angular
velocity during rotation. Note that the vertical acceleration of (rigid) mass
center point CG is not a function of the horizontal ground acceleration.
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Figure 3.4. Horizontal and vertical components of the tangential and normal acceleration of
the center of mass (of a rigid block model of a cantilever wall retaining moist backfill) relative
to the point of rotation during horizontal and vertical shaking of the rigid level base.

3.3 Threshold value of acceleration corresponding to incipient lift-off
of the base of the wall in rotation

During ground shaking, inertial forces are induced on the retaining wall
system. Acceleration time-histories are used to represent ground shaking
in the simplified CorpsWanRotate model of a retaining wall system. The
time-varying inertial forces lead to elastic deformations, which can
ultimately result in permanent rotation of the wall or sliding of the wall. In
the case of permanent rotation of a rigid block model of the retaining wall
system, (1) inertial forces vary in magnitude and direction with time and
(2) their magnitudes are proportional to the value of acceleration at any
given instant in time but acting in the direction opposite to acceleration.
Additionally, a rotational acceleration about a point of rotation develops
once the threshold acceleration for lift-off of the base of the wall in
rotation is exceeded, which leads to permanent rotation of the wall relative
to the top-of-foundation. When the ground acceleration drops below this
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threshold acceleration value, restoring forces and moments will act to slow
the speed of rotation, reducing the rate of increase of the angle of wall
rotation. An increment of permanent wall rotation occurs during this
interval in time. Additional permanent rotation will be induced during
further cycles of ground acceleration if the threshold acceleration for lift-
off of the base of the wall in rotation is again exceeded. The angle of
permanent wall rotation accumulates with each of these excursion cycles
in a manner similar to the accumulation of permanent sliding
displacement in Newmark’s sliding block method, briefly discussed in
Chapter 1 and discussed in detail in a subsequent chapter. The primary
author of this report observes that for a retaining wall system of specified
geometry and material properties (i.e., unit weights and shear strength
parameters, etc.) the threshold values of acceleration corresponding to
incipient lift-off of the base of the wall in rotation (rotating about the toe of
the wall in a CorpsWanRotate analysis) and for incipient sliding of the wall
are not the same.

So the first step in determining if the retaining wall will rotate prior to
sliding during earthquake shaking, or vice versa, is to compute: (1) the
value of acceleration that is needed for lift-off of the wall from its base in
rotation about the toe of the wall (discussed in this chapter); and (2) the
limiting acceleration required to reduce the factor of safety against sliding
to a limiting value of 1.0 (commonly referred to as the maximum
transmissible acceleration, N*g , sometimes referred to as the yield
acceleration and discussed in Chapter 4). The second step is to compare
these limiting acceleration values. For the simplified decoupled analyses
outlined in this report, the mode of deformation is dictated by the smaller
of the two acceleration values.

The free-body and kinetic diagrams of Figure 3.2 are combined in

Figure 3.5 into a single figure showing the dynamic forces acting on a rigid
block model of the structural wedge with rotation about the toe of the wall
during horizontal and vertical shaking of the rigid base.! This cantilever
wall retaining moist backfill is subjected to the five external forces of the
weight of the structural wedge, W, the dynamic active earth pressure force,
Pag, the resisting force, Presist, provided by the reinforced concrete slab at
the toe of the wall, and the horizontal and vertical components of the rigid

1 The inertial forces are applied according to D’Alembert’s principle. The advantage of the inertia-force
method based on D’Alembert’s principle is that it converts a dynamics problem into an equivalent
problem in equilibrium.
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base-to-wall reaction forces T and N’, respectively, acting through the toe
of the wall.

Retained Soil
AyCG /0 I:)resist h PAE
hPresist
h'9
Rigid Base
AXcapo *a, =k, *g
AXheel/toe

Figure 3.5. Inertia forces and resultant force vectors acting on a rigid block model of a
cantilever wall retaining moist backfill with rotation about the toe of the wall during horizontal
and vertical shaking of the rigid level base.

At the onset of lift-off of the base of the Figure 3.5 retaining wall (with
level base) subject to pure rotation about its toe, the rotating (i.e.,
overturning) moment equals the stabilizing (i.e., restoring) moment. The
summation of moments about point 0 of the Figure 3.5 forces acting on
the rigid body results in

w w
E'(ace)h *AYes 0 +E'(ace)v ® AXog 0 + P @ COS () @y = 28

Poresist +W @ AXy o + Py @8IN(5) @ Ax

.. ® )
resist Presist

heel /toe

Note that @ is a very small number at the onset of lift-off and is set equal
to zero as its limiting value when deriving this relationship. The
component of the threshold acceleration occurring at lift-off of the base is
designated as

= [ ]
(aCG )thresholdfrotation—h (k CG )threshold—rotationfh g 3.9

where (Kce)threshold-rotation-h 18 @ value of horizontal ground acceleration,
expressed in decimal fraction. Note that the horizontal acceleration value
[(KcG)threshold-rotation-h times g] is not a user-specified constant. Since the
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horizontal limiting acceleration is of interest, one option is to set the
vertical component of acceleration occurring at lift-off in rotation equal to
zero, as done by Nadim and Whitman (1984).* By making this assumption
and introducing Equation 3.9, Equation 3.8 becomes

Presist ® Moresist +W @ AXpg 10+ Pye
(k ) _ 'Sin(g)'AXhee//toe_PAE°COS(5)°hPAE 3.10
CG Jthreshold—rotation—-h W.Ay '
cG/0

Because of the inclusion of acceleration in Pag formulation (refer to
Appendix A), CorpsWanRotate solves Equation 3.10 using a trial-and-error
numerical approach. Observe that this relationship agrees with the Nadim
and Whitman equation (Equation 2.16) and the Steedman and Zang
equation (Equation 2.44) when Presist is set equal to zero.

3.4 Angular acceleration of the retaining wall structural wedge —
general formulation

If the maximum ground acceleration exceeds a threshold value of
acceleration corresponding to incipient lift-off of the base of the wall in
rotation, (ace)threshold-rotation-h , then permanent rotation of the wall will
occur. For the retaining wall shown in Figure 3.2, the equation of motion
when rotation has initiated is

W w
ZMO =l 0 _E°(ace )h *AVes o _g°(ace )v * MXeq /0 3.11

in which ) M, is the summation of moments about point o of external

forces (including the weight of the structural wedge, W) acting on the rigid
body (counterclockwise positive); and Icc is the mass moment of inertia
about the center of gravity point, CG (refer to Equations B.15 or B.16).2
Recall inertia forces have been applied according to D’Alembert’s principle
which permits the problem to be treated as a static problem. Introducing
Equations 3.6 and 3.7, results in

1 Another option, implemented in CorpsWanRotate, is to assign a constant value to the vertical
acceleration component. A procedure for determining the value for this constant is discussed in
Sections 3.9 and 3.10.

2 Computation of the mass moment of inertia in CorpsWaiRotate is described in Appendix E.
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W
2My =l .a_g.[ah —a® A0 -’ .AXCG/O:I.AyCG/O

3.12
w
- [av — 0 AXpg o+ o Ayce/o:l ® AXcg 0
Collecting terms, Equation 3.12 becomes
w 2 2
M, = a.{/CG +E.[(Aym/o) +( Mg 0) } }
w
+E.a)2.I:AXCG/O.AyCG/O_AyCG/O.AXCG/O:| 3.13
w
_g.[ah * Ay 0+, .AXCG/O]
which reduces to
w 2 2
XM, = a'{’c@ +E.[(AyCG/O) +(AXCG/O) } }
" 3.14
_g'[an * Ay 0+, .AXCG/O]
By referring to Figure 3.6, introducing
2 2 2
(rCG/O) :(AyCG/O) +(AXCG/O) 3.15

and recognizing that the mass moment of inertia about the point o (the of
rotation) is

Iy = log +—.(rce/0)2 3.16

Equation 3.14 becomes

w
ZMO:aOIO—EO[ahOAyCG/O+av0AXCG/O] 3.17
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Kinetic Diagram Kinetic Diagram

Figure 3.6. Equivalent kinetic diagrams for the rigid block model of a cantilever wall retaining
moist backfill with rotation about the toe of the wall during horizontal and vertical shaking of
the rigid level base.

Solving for the retaining wall’s angular acceleration, Equation 3.17
becomes

w
ZMO +E.[ah *AYog 0 T8, ® MXeg 0
a= 3.18
lo

or, equivalently, a is given by

w
ZMO +7.|:(kh .g).AyCG/O +(k, .g).AXCG/O]
o g / 3.19
0

Thus, Equation 3.18 or, equivalently, Equation 3.19 provides for the
calculation of the angular acceleration of the wall at every increment in
time during earthquake shaking once the threshold value of acceleration
corresponding to incipient lift-off of the base of the wall in rotation is
exceeded and the wall is rotating. When the ground acceleration drops
below (acc)hreshold-rotation-h , restoring forces and moments will act to slow
the speed of the angular rotation, thus reducing the rate of increase of the
permanent angle of rotation. Wall rotation ceases when the angular
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rotational velocity of the center of gravity returns to zero. Additional
increments of wall rotation occur each time a ground acceleration pulse
exceeds (ace)hreshold-rotation-h in the same manner that permanent sliding
displacements accumulate in a rigid block analysis.

The velocity of rotation (i.e., angular velocity) is computed by integration
of the angular acceleration during each segment of wall rotation (that
initiates when the threshold acceleration is exceeded)

t
w:Iadt when >0 3.20
0

or

w = 0 when Equation 3.17 gives w less than O 3.21

Note that CorpsWanRotate assumes that the wall cannot rotate back into the
retained soil, which is expressed by Equation 3.20. The permanent
rotation of the wall is the integration of the angular velocity of rotation

t
szw dt 3.22
0

This series of computations using Equations 3.18 through 3.22 are
repeated for each sequence of wall rotations that occurs for the duration of
earthquake shaking. The experience of the primary author of this report is
that when the acceleration time-histories used as input to CorpsWanRotate
are based on previously recorded earthquake events (a typical scenario),
the permanent rotation occurs during several, separate pulses occurring
throughout the duration of shaking.

Unlike the sliding (rigid) block model (discussed in Chapter 4), which
effectively isolates the sliding block from the shaking base below, the
rotating rigid block model continues to transmit horizontal acceleration
through the “pin,” located at the toe of the wall, into the wall. The center of
gravity wall accelerations during rotation are computed at each time
increment during wall rotation using the value for angular velocity, o, and
angular acceleration, o, at that same instant in time using Equations 3.6
and 3.7.
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3.5 Dynamic active earth pressure force Pace

Figure 3.5 shows an idealized structural wedge containing a cantilever
retaining wall retaining moist backfill with externally applied forces acting
on it during the seismically-induced rotation &of the wall about its toe,
point 0. One of the forces identified in this figure is the dynamic active
resultant earth pressure force exerted by the driving soil wedge on the
structural wedge, Par. Rather than relying on the Mononobe-Okabe
relationship, a sweep-search wedge formulation within the retained soil is
used to determine the value of Par. Recall that the Mononobe-Okabe
relationship is valid for a retained soil with a constant surface slope
(including the case of a level backfill) and whose strength is characterized
by the Mohr-Coulomb shear strength parameter ¢ (e.g., refer to Equations
33 through 35 in Ebeling and Morrison (1992)). The computed value for
Pax via the Figure 3.7.a sweep-search method in a cohesionless backfill will
agree with the value computed using the Mononobe-Okabe relationship.
The advantage of the sweep-search method as formulated in this report
and implemented in CorpsWanRotate is that it allows for (1) the analysis of
the more practical case of the bilinear ground surface depicted in Figure
3.7.b and/or (2) the analysis of “cohesive” (Su) soils. Sufficient wall
movement during earthquake shaking to fully mobilize the shear
resistance within the retained soil as per Table 1.1 criteria is assumed in
this formulation. The sweep-search formulation implemented within
CorpsWanRotate is given in Appendix A for effective shear strength (c’, ¢”)
and for undrained (Su) shear strength soil parameters.

The effect of an earthquake on the driving soil wedge is incorporated
through the use of the user-specified horizontal and vertical components
of the ground acceleration time-histories, an (= kng) and ay (= kvg),
respectively. Recall that g is the universal gravitational constant, while ky
and ky are the respective time-histories of the horizontal and vertical
ground accelerations, expressed in decimal fraction. No potential site
amplification effects are considered in this simplified formulation so the
ground acceleration time-histories are assumed to act within the driving
soil wedge as well. So, at each instant in time during earthquake shaking,
the horizontal and vertical inertia forces (ki times soil wedge weight, W,
and ky times soil wedge weight, W, respectively) acts at the center of mass
of the soil wedge and in the direction opposite to that in which their
respective component ground acceleration acts (refer to the right-hand
side of Figures 3.7.a and b).
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Figure 3.7. Structural wedge with toe resistance retaining a driving soil wedge with a moist slope (i.e., no water

table) analyzed by effective stress analysis with full mobilization of (c¢/,

¢") shear resistance within the backfill.
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The Mononobe-Okabe analysis procedure does not provide a means for
calculating the point of action of the resulting force Pag, nor does the
sweep-search soil wedge method of analysis. Limited tests results
involving dry sands (as discussed on page 63 in Ebeling and Morrison,
1992) indicate that the vertical position of Par ranges from 0.4 to 0.55
times the height of the wall (above the heel). Pag acts at a higher position
along the back of the wall than the static active earth pressure force due to
the concentration of soil mass comprising the sliding wedge above the
mid-wall height (Figure 3.8). With the static force component of Pag acting
below mid-wall height and the inertia force component of Pag acting above
mid-wall height, the vertical position of the resultant force Par will depend
upon the magnitude of the accelerations applied to the mass comprising
the soil wedge. Following the approach taken by Seed and Whitman
(1970), Pag is defined as the sum of the initial static active earth pressure
force, Pa, and the dynamic active earth pressure force increment, APag,

P, =P, + AP, 3.23

as depicted in Figure 3.8. The sweep-search method is also used in
CorpsWanRotate to compute the resultant static active earth pressure force
Pa. After reviewing the various results, Seed and Whitman (1970)
suggested applying the dynamic force component AP at 0.6 times H.
Based on this recommendation, computation of the location of the
resultant force Pag along the imaginary vertical section extending upwards
from the heel of the wall is made using

P, O(HJ+APAE ¢(0.6eH)
h 3

PAE —
P AE

3.24

with Pa acting at H/3 for moist, level, granular (with ¢’=0) backfill. Note
that the magnitude of Pag and thus, the magnitude of hpag is a function of
the seismic coefficient used in the driving wedge seismic analysis. The
solution process implemented in CorpsWanRotate is to first compute Pag
and P, solve for APar using Equation 3.23, then solve for hpar using
Equation 3.24.

1 Appendix C outlines procedures for determining the point of application of Pa for other backfill cases.
Appendix H discusses two example computations of static, active earth pressure distributions and
depth of cracking in cohesive soils.
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Figure 3.8. Resultant location of Pae based on the positions and magnitudes of the static
active earth pressure force, Pa, and incremental dynamic active earth pressure force, APag, of
a moist, level, backfill (after Ebeling and Morrison (1992)).

Once the magnitude and location of Pag that act on the back of the rigid
block model of the structural wedge are determined, an approach such as
the procedure described in Ebeling and Morrison (1992) and shown in
Figure 3.9 may be used to convert this force into equivalent pressure
diagram. Key to this Ebeling and Morrison approach is the use of pressure
distributions for each of the static Pa and for APag force components that
are consistent not only in their magnitudes but also consistent with their
Figure 3.8 P4 and APag force positions. The resulting total pressure
distribution acting on the structural wedge is the sum of the triangular
distribution of static active earth pressures that are consistent with P4 for
the moist granular backfill shown in the figure plus the trapezoidal stress
distribution consistent with APag acting at 0.6 times H.!

A key item is the selection of suitable shear strength parameters. In an
effective stress analysis, the issue of the suitable friction angle is
particularly troublesome when the peak friction angle is significantly
greater than the residual friction angle. In the displacement-controlled
approach examples given in Section 6.2 of Ebeling and Morrison (1992),
effective stress-based shear strength parameters (i.e., effective cohesion ¢’
and effective angle of internal friction ¢’) were used to define the shear
strength of the dilative granular backfills, with ¢’ set equal to zero in all

1n the case of a water table and an effective stress analysis in which the effective shear strength
parameters ¢’ and ¢’ are assigned to the (granular) retained soil, this approach is altered by changing
the distribution of equivalent static earth pressures representing Pa to account for pore water
pressures in the backfill in the usual manner for geotechnical engineering. This is demonstrated in
Figure 7.10 in Ebeling and Morrison (1992) and discussed in Appendix C of this report. In the case of a
total stress analysis, boundary water pressures (due to the presence of a water table in the retained
soil) are not applied along the imaginary interface between the driving (soil) wedge and the structural
wedge.
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Figure 3.9. The computation of equivalent earth pressures acting on a rigid block model of a
cantilever wall retaining moist, level, granular (with ¢’=0) backfill (after Ebeling and Morrison
1992).

cases due to the level of deformations anticipated in a sliding block
analysis during seismic shaking. In 1992, Ebeling and Morrison concluded
that it is conservative to use the residual friction angle in a sliding block
analysis, and this should be the usual practice for displacement based
analysis of granular retained soils. The primary author of this report would
broaden the concept to the assignment of effective (or total) shear strength
parameters for the retained soil to be consistent with the level of shearing-
induced deformations encountered for each design earthquake in a
rotational analysis and note that active earth pressures are used to define
the loading provided to the structural wedge by the driving soil wedge.
(Refer to Table 1.1 for guidance regarding wall movements required to
fully mobilize the shear resistance within the retained soil during
earthquake shaking.)

3.6 Moments due to external forces acting about the toe of the
structural wedge

The Figure 3.5 cantilever wall, with level base, retaining moist backfill is
subjected to the five external forces of the weight of the structural wedge,
W, the dynamic active earth pressure force, Pag, the resisting force, Presist,
provided by the reinforced concrete slab at the toe of the wall, and the
horizontal and vertical components of the rigid base-to-wall reaction
forces T and N’, respectively, acting through the toe of the wall. The
moment due to these external forces about the point 0 at toe of the wall
(counterclockwise positive, as previously stated) is
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2My=-WeAxy, P

resist i h PAE

'Sin(5)°AXhee//toe + Py .008(5).hPAE

Presist

3.25

Since the foundation reaction shear force T and normal force N’ act
through point o during rotation, they do not contribute to the moment. At
each instant in time during earthquake shaking, the horizontal and vertical
accelerations vary in direction. Thus, the magnitudes of Par and hpag vary
as well.

3.7 Angular acceleration of the retaining wall structural wedge —
formulation implemented in CorpsWanRotate

The relationship defining the angular acceleration of the retaining wall
structural wedge that is implemented in CorpsWanRotate is derived by
introducing Equation 3.25 into Equation 3.19. When rotation has initiated,
the angular acceleration of the structural wedge (with level base) is

-W e Ax P

resist

oh P,: ®sin(o)

.Axheel/toe + PAE ®COS (5) hd hPAE

cG/0 Presist

W
+E.[(kh °g)o Ay, +(K, 'g)°AXCG/0]

o= 3.26
IO

with the mass moment of inertia about the point o (the of rotation) given
by

Iy = log +g'(rce/o)2 bis 3.16

Recall a (or, equivalently, & ) is the angular acceleration of the structural
wedge of (total) mass M (=W/g) about point of rotation, point 0. The
resulting engineering formulation is implemented in the corresponding PC
software CorpsWanRotate and will perform a rotating analysis of each user-
specified retaining wall section.

Equation 3.26 agrees with the uncoupled Nadim and Whitman (1984)
equation (Equation 2.12), with the Siddharthan et al. equation
(Equation 2.32), when Presist is set equal to zero and with the Steedman
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and Zeng equation (Equation 2.47) when the vertical ground acceleration
is set equal to zero.?

3.8 Numerical method for computing the rotational time-history of a
rigid block retaining structure rotating about its toe

3.8.1 Introduction to a step-by-step solution scheme

Earthquake acceleration time-histories are used to represent the
earthquake demand in this formulation, as is the case for all rotating wall
formulations discussed in Chapter 2. Again, baseline-corrected, horizontal
and vertical acceleration time-histories are to be used to represent the
earthquake ground motions in CorpsWanRotate.2 It is the experience of the
primary author of this report that the duration of ground acceleration
time-histories used on Corps projects is on the order of tens of seconds,
and up to about one minute of earthquake shaking. The number of time
increments (i.e., discrete acceleration point values) contained in the
acceleration time-history corresponds to the number of solutions made in
the rotational wall analysis by CorpsWanRotate. The number of time
increments is defined by the duration of earthquake shaking and the time
increment DT used in digitization of the acceleration time-history.

1 Note: In order to compare Equation 3.26 with (1) Nadim and Whitman (Equation 2.12), recognize that
the equivalent geometry designations are

AXeg /0 =By 3.27
AYees0 =B 3.28
hpe =L 3.29
and

AXpee) 00 = Ba 3.30

for a point of rotation specified about the toe, point O, to to match the CorpsWaiRotate formulation.
In order to compare Equation 3.26 with (2) Siddharthan et al. (Equation 2.32) for a point of rotation
specified about the toe, the equivalent geometry designations are

AXs,0 =R ®cOS(77) 331
AYes,0 =Resin(z) 3.32
Poge = MH 3.33
Npae #COS(8)=mH e cos(d + ) 3.34
AXpoe1 /100 ®SIN(S) =sin(5 +ar) @ [Recos(n7) +a—mH e tan(a)] 3.35

but with o equal to zero to match the CorpsWaiRotate structural wedge geometry. In order to compare
Equation 3.26 with (3) Steedman and Zeng (Equation 2.47), the equivalent geometry designations are

MXeg 0 =Xo 3.36
AYee0=Ye 3.37
AXpoer /100 ®SIN(S) =siN(S5 + ) o [B—h e tan(B)] 3.38

but with B equal to zero to match the CorpsWanRotate structural wedge geometry.

2 Note that CorpsWanRotate requires the time-step DT for the horizontal and vertical acceleration time-
histories used in the same analysis be the same value.
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There is no standard time increment DT for the digitization and
subsequent processing of acceleration time-histories for Corps projects.
However, Ebeling, Green, and French (1997) observe that a DT equal to
0.02, 0.01, or 0.005 second is the most common. For example, an
earthquake acceleration time-history with 40 seconds of shaking and a
time-step of 0.02 second will contain 2,000 discretized acceleration
points. If the acceleration time-history was processed with a DT equal to
0.01 or 0.005 second, then the discretized acceleration time-histories
would contain 4,000, and 8,000 acceleration points, respectively.

A step-by-step solution scheme is followed in order to obtain the wall’s
rotational velocity, o, and rotation, 6, in the time domain by
CorpsWanRotate. An overview of the characteristics of this numerical
formulation is depicted in Figure 3.10. A key feature of the numerical
formulation used is the assumption of a linear variation in angular
acceleration o over time-step DT, from time t; to time t;.,. Values of o are
computed using Equation 3.26 at each time-step. This idealized figure
assumes that the wall is undergoing positive angular acceleration, positive
rotational (i.e., angular) velocity, and positive (permanent) rotation at
time ti, which continues through time ti+:. (Other cases will be considered
later.) It also assumes that the angular acceleration increases in magnitude
over this time-step, DT, as depicted in this figure. Recall the velocity of
rotation (i.e., angular velocity) is computed by integrating the angular
acceleration during each segment of wall rotation (refer to Equation 3.20).
So for a linear variation in angular acceleration over time-step DT, the
rotational velocity, o, is a quadratic relationship. Similarly, with the
permanent rotation of the wall being the integration of the angular velocity
of rotation (refer to Equation 3.21), the rotation of the wall about its toe is
a cubic relationship. The value for angular acceleration, rotational velocity
o and (permanent wall) rotation 6 at any point in time At after t; and
before time ti;; are given by the linear, quadratic, and cubic relationships
contained on the right-hand side of these three figures (with At less than
or equal to DT).
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Figure 3.10. Complete equations for rotational motions over time increment DT based on
linearly varying angular acceleration.

3.8.2 Positive angular accelerations oo and o4 at times ti and ti+1

Expanding on the details of the computations for the numerical
formulation depicted in Figure 3.10, the computation of the angular
acceleration, o, rotational velocity, o, and rotation, 0, at time t;., are made
as follows: Values for a, o, 0, at time t; are known from the previous
computation step in the step-by-step solution scheme.! The value for o at
time ti.; (designated alphat1 in the figure) is computed using Equation
3.26. Referring to Figure 3.11, the rotational velocity o at time ti+;
(designated omega1) is computed from the value for o at time t;

1 Note that at time ti the angular acceleration a is designated alphaO, the rotational velocity o is
designated omegaO and the (permanent wall) rotation 0 is designated thetaO.



ERDC/ITL TR-06-2

88

(designated omegao) plus the positive area under the linear angular
acceleration relationship over the time-step DT, designated Area, in this
figure. By the trapezoidal rule, o, at time ti..is

DT
a)lza)o+70(ao+al) 3.38

with the values for o and o, now known values that were computed in the
previous solution step. Note the wall is in motion at time t;, as reflected by
a positive value for oo (designated omegao in Figure 3.11). Similarly, the
wall rotation 0 at time ti.; (designated theta1) is computed from the value
for 0 at time t; (designated thetao) plus the positive area under the
quadratic rotational velocity relationship over the time-step DT,
designated Area, in this figure. For this linear acceleration method, 0, at
time i+ 1s

2

DT
0, =6,+DT e, +

o(200,+0a,) 3.39

with the value for 6, being a known value that was computed in the
previous solution step. The value for rotational velocity ® and (permanent
wall) rotation 0 at time t;.; are also described in terms of the area
relationships contained in Figure 3.11. In this manner a step-by-step
solution scheme is followed throughout the entire time-history of
earthquake shaking in order to obtain the wall velocity, o, and rotation, 0,
at each increment in time in the Figure 3.11 case of positive values for o at
times t; and ti+1.

In summary, Figure 3.11 outlines a numerical procedure to obtain values
for  and for 6 at time ti1, in situations for which values of a at times t; and
ti+:1 are both positive. However, there are three other situations that can
arise during the step-by-step solution: (a) the case of a negative value for o
at time t; and a positive value for a at time t;+1; (b) the case of wall rotation
decelerating over the entire time-step DT for which the values of o are
negative at both times t; and t;+:; and (c) the case of a positive value for o at
time t; and a negative value for o at time ti+,. In all four cases, the
assumption of linear angular acceleration over time-step DT is made
and the basic concept of integrating positive areas above and/or negative
areas below the time line of angular acceleration o to obtain the change in
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Figure 3.11. Rotational velocity and rotations at the end of time increment DT based on

linearly varying angular acceleration.

otational velocity o and then, in turn, the integration of positive and/or
negative areas above and/or below the time line of ® to obtain the change
in rotation 6 is used to determine the values for » and 0, respectively, at
time ti... These three additional step-by-step solutions will be discussed

next. Note the frequent use of the trapezoidal rule for ® and the linear
acceleration method for 6 in the solution processes to be described.

3.8.3 Positive angular acceleration o at time ti and negative angular

acceleration o1 at ti+1

Next consider a wall in motion (i.e., with a positive value for ®) at time t;

but with the Figure 3.12 case of a negative value for o computed using
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Equation 3.26 at time-step ti and positive value for o computed using
Equation 3.26 at the next time-step of ti...* The first step is to determine
the time instant [t; plus lhsDT] at which the angular acceleration « is equal
to zero, as labeled in the figure. By linear interpolation, this time
increment lhsDT is

IhsDT =

alphal —alphaO

alphaO e [ 2l ) ‘ 3.40

The negative area between the negative portion of the linear acceleration
line and the time line over the Figure 3.12 time increment lhsDT is

NegativeArea_,, = % e |hsDT e (alphaO +0) 341

Recall that the wall is in motion at time t; when o (designated omegao in
the figure) is positive. There are two possible outcomes for the Figure 3.12
step-by-step numerical solutions for values of ® and of 6 at time ti1,
depending upon the magnitude of omegao relative to the magnitude of
NegativeArea ... These possible scenarios are depicted by two columns of
figures in Figure 3.12, labeled as the Case 1 and Case 2 figure groups.

Case 1: This case results when the positive value for o at time t; is greater
than the magnitude of NegativeArea ,, (i.e., the negative area between the
negative portion of the linear acceleration line and the time line over the
portion of the Figure 3.12 time increment labeled lhsDT). The three left-
hand side figures in Figure 3.12 are used to describe the Case 1 step-by-
step solution scheme: The top figure describes the angular acceleration a,
the middle figure describes the rotational velocity o, and the lower figure
describes the permanent wall rotation 6.

The top Case 1 figure depicts the case of a (labeled) negative triangular
area between the linear angular deceleration o line and the time line (i.e.,
NegativeArea ., by Equation 3.41), being of less magnitude than the
positive value for o at time t; (designated omegao). Consequently, the wall
will remain in rotation during the entire time-step DT. At the increment in
time lhsDT after time t;, a portion of the negative deceleration area reduces

1 Note the assumption of a linear variation in angular acceleration o over the time-step DT in Figure
3.12.
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Figure 3.12. Two possible outcomes for the case of a negative angular acceleration at time t;
and a positive angular acceleration at time ti+1.

the value of rotational velocity o from the positive value of magnitude
omegao at time t; to a smaller magnitude value at time [t; plus lhsDT], as
shown in this figure. The rotational velocity o at time [t; plus lhsDT] is

relOmid = omega0 + % e |hsDT e (alpha0 +0) 3.42

The change in rotation from time t; to time [t; plus IhsDT] is equal to the
labeled positive area between the quadratic o curve and the time line. At
time [ti plus lhsDT] the wall rotation increases in magnitude from thetao
to relTmid.

relTmid = thetaO + IhsDT e omegal +

2
(UhsDT)” e(2ealpha0+0) 3.43
6

The wall continues in motion, with positive angular velocity » and with
additional permanent rotation 0 after time [t; plus lhsDT] when the
angular acceleration of the wall is positive. At time [t; plus lhsDT] the
magnitude of wall rotational velocity o begins to increase in magnitude as
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a result of the positive angular reacceleration of the wall. The positive
(labeled) triangular area between the time line and the linear angular
acceleration a line, shown in the top Case 1 figure, equals the change in ®
and for the wall, consequently, the value for o at time ti.; (labeled omega1
in the Case 1 middle figure) is

omegal = relOmid + % erhsDT ¢ (0 +alphal) 3.44

The change in wall rotation from time [t; plus lhsDT] to time ti,is equal to
the integral of the positive rotational velocity of the middle w-figure. The
permanent wall rotation, 0, increases in value from relTmid to thetai, as
depicted in the bottom figure.

2
thetal = relTmid +rhsDT e relOmid + @ e(2e0+alphal) 3.45

Case 2: This case results when the positive value for o at time t; is less
than the magnitude of NegativeArea ,, (i.e., the negative area between the
negative portion of the linear acceleration line and the time line over the
portion of the Figure 3.12 time increment labeled lhsDT). The four right-
hand side figures in Figure 3.12 are used to describe the Case 2 step-by-
step solution scheme. From the top to bottom, one figure describes the
angular acceleration, a, two figures describe the rotational velocity, », and
one figure describes the permanent wall rotation, 6.

The top, right-hand side, Case 2 figure depicts the case of a (labeled)
negative triangular area between the linear angular deceleration o line and
the time line, being of greater magnitude than the positive value for © at
time t; (designated omegao). Consequently, the wall will come to rest
before time ti+; is achieved. At an increment in time DTzeroV after time t;,
a portion of the negative deceleration area reduces the value of rotational
velocity o from the positive value of magnitude omegao at time t; to a
value of 0 at time [t; plus DTzeroV], as shown in this figure. At time [t; plus
DTzeroV] the angular acceleration is

3.46

relAmid =DTzeroD e (alp haoj

IhsDT
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where DTzeroD is the time increment shown in Figure 3.12. The
Figure 3.12 negative a area below time increment DTzeroV is

AreaTrapezoid_,, = %. DTzeroV e (alphaO + relAmid) 3.47

The Figure 3.12 negative a area below time increment DTzeroD is

AreaTriangle_,, = % e DTzeroD e (relAmid +0) 3.48

Thus, the total Figure 3.12 negative o area below time increment lhsDT is

NegativeArea_,, = AreaTrapezoid_,, + AreaTriangle_,, 3.49

The rotational velocity o at time [t; plus DTzeroV] is

relOmid = omegaO + AreaTrapezoid_,,, 3.50

With a value for relomid equal to zero, Equation 3.50 becomes

0 =omega0 + AreaTrapezoid_,, 3.51

Expanding by adding the term AreaTriangle.,. to both sides, Equation 3.51
becomes

AreaTriangle_,, = omegaO+ AreaTrapezoid_,, + AreaTriangle_,,  3.52

—a+

Which by introducing Equation 3.49, becomes

AreaTriangle_,, =omega0 + NegativeArea_,, 3.53

—a+

Introducing Equations 3.48 and 3.46 and solving for DTzeroD,
Equation 3.53 becomes

DTzeroD = [2e IhsDT 1, (omegaO + NegativeArea._,, ) 3.54
alphaO

Recognizing the time increment lhsDT is equivalent to
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IhsDT =DTzeroV +DTzeroD 3.55

and by introducing Equation 3.55 and 3.47 into Equation 3.54 and solving
for DTzeroV,

IhsDT
alphaO

DTzeroV =1hsDT — \/2 .( j o (omegaO +NegativeArea_,,)  3.56

The change in rotation from time t; to time [t; plus DTzeroV] is equal to
the labeled positive area between the quadratic o curve and the time line.
At time [t; plus DTzeroV] the wall rotation increases in magnitude from
thetao to relTmid. The rotational velocity o at time [t; plus DTzeroV],
expressed in terms of DTzeroV, is

relOmid = omegaO + % e DTzeroV e (alphaO + relAmid) 3.57

with the angular acceleration at time [t; plus DTzeroV] equal to

alphal —alpha0
DT

relAmid = alphaO + ( j e DTzeroV 3.58

The change in rotation from time t; to time [t; plus DTzeroV] is equal to
the labeled positive area between the quadratic o curve and the time line.
At time [t; plus DTzeroV] the wall rotation increases in magnitude from
thetao to relTmid.

relTmid =thetaO + DTzeroV e omegal0

DTzeroV ) 3.59
+(DT28OV)” | 5 4 alpha0 + relAmid)

The wall remains at rest with zero angular velocity, ®, and with no
additional permanent rotation, 6, from time [t; plus DTzeroV] until time [t;
plus IhsDT] when the angular acceleration of the wall begins (again). At
time [t; plus lhsDT] the wall begins to develop further permanent rotation
about its toe as a result of the positive angular reacceleration of the wall.
The positive (labeled) triangular area between the time line and the linear
angular deceleration o line, shown in the right-hand side of the top figure,
equals the change in ® and with the wall at rest , consequently, the value
for o at time ti.; (labeled omega1 in the lower o figure) is
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omegal =%orhsDTo(O+alpha1) 3.60

The change in wall rotation from time [t; plus lhsDT] to time ti, is equal to
the integral of the positive rotational velocity, as depicted in the middle
two, right-hand side w-figures. The top o figure being a computational
figure, and the bottom o figure being the o curve-shift figure that properly
accounts for zero wall rotational velocity over time increment DTzeroD,
with an insert detailed, curve-shift figure for m shown of this
computational o figure in Figure 3.12. The permanent wall rotation, 0,
increases in value from relTmid to theta1, as depicted in the bottom figure.

(rhsDT)?

thetal = relTmid +rhsDT 0 + ¢(2e0+alphal) 3.61

3.8.4 Negative angular accelerations o, and o1 at times t; and ti+1

Next consider a wall in motion (i.e., with a positive value for o) at time t;
but with the Figure 3.13 case of a negative value for o computed using
Equation 3.26 at time-steps t; and t;+:.* The first step is to determine if the
wall, which is in motion at time t; , comes to rest during the time-step DT.

The negative area between the negative portion of the linear acceleration
line and the time line over the Figure 3.13 time increment DT is

NegativeArea_, = % e DT e(alphaO + alphal) 3.62

There are two possible outcomes for the Figure 3.13 step-by-step
numerical solution for » and of 0 at time ti+;, depending upon the
magnitude of omegao relative to the magnitude of Equation 3.62
NegativeArea_,_. These possible scenarios are depicted by two columns of
figures in Figure 3.13, labeled as Case 1 and Case 2 figure groups.

1 Again, note the assumption of a linear variation in angular acceleration o over the time-step DT shown
in Figure 3.13.
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Figure 3.13. Two possible outcomes for the case of negative angular accelerations at times t;
and ti+1.

Case 1: This case results when the positive value for o at time t; is greater
than the magnitude of NegativeArea ,_ (i.e., the negative area between the
negative portion of the linear acceleration line and the time line over the
Figure 3.13 time-step DT). The three left-hand side figures in Figure 3.13
are used to describe the Case 1 step-by-step solution scheme: The top
figure describes the angular acceleration, a, the middle figure describes
the rotational velocity, , and the lower figure describes the permanent
wall rotation, 0.

The top Case 1 figure depicts the case of a (labeled) negative area between
the linear angular deceleration, «, line and the time line (i.e.,
NegativeArea_,_ by Equation 3.62), being of less magnitude than the
positive value for o at time t; (designated omegao). Consequently, the wall
will remain in rotation during the entire time-step DT. At the time-step DT
after time t;, the negative deceleration area reduces the value of rotational
velocity, o, from the positive value of magnitude omegao at time tito a
smaller magnitude value at time [t; plus DT], as shown in this figure. The
rotational velocity, o, at time [t; plus DT] is
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omegal = omegal + % ¢ DT e(alphaO +alphal) 3.63

The change in rotation from time t; to time [t; plus DT] is equal to the
labeled positive area between the quadratic o curve and the time line. At
time [ti plus DT] the wall rotation increases in magnitude from thetao to
thetai.

DT)?
thetal =thetaO+ DT e omegal + % ¢(2ealpha0 +alphal) 3.64

Case 2: This case results when the positive value for o at time t; is less
than the magnitude of NegativeArea_,_ (i.e., the negative area between the
negative portion of the linear acceleration line and the time line over the
portion of the Figure 3.13 time increment labeled lhsDT). The four right-
hand side figures in Figure 3.13 are used to describe the Case 2 step-by-
step solution scheme. From the top to bottom, one figure describes the
angular acceleration, a, two figures describe the rotational velocity, », and
one figure describes the permanent wall rotation, 6.

The top, right-hand side, Case 2 figure depicts the case of a (labeled)
negative area between the linear angular deceleration a line and the time
line (i.e., NegativeArea_,_ by Equation 3.62), being of greater magnitude
than the positive value for o at time t; (designated omegao). Consequently,
the wall will come to rest before time ti. is achieved. At an increment in
time DTzeroV after time t;, a portion of the negative deceleration area
reduces the value of rotational velocity, , from the positive value of
magnitude omegao at time t; to a value of 0 at time [t; plus DTzeroV], as
shown in this figure. At time [t; plus DTzeroV] the angular acceleration is

relAmid = alphaO + DTzeroV e ( aIphalD—TaIphaO j 3.65
where DTzeroV is the time increment shown in Figure 3.13. The
Figure 3.13 negative a area below time increment DTzeroV is
AreaTrapezoid , = % e DTzeroV e (alphaO + relAmid) 3.66

Introducing Equations 3.65, Equation 3.66 becomes
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| %oDTzeroV e alphal +M
Arealrapezoid , = . [a,phao  DTreroye ( alphal — alpha0 ﬂ 3.67
DT
This simplifies to
AreaTrapezoid_, = DTzeroV ealphaO + w

3.68

. ( alphal - alphaoj
DT

The change in rotation from time t; to time [t; plus DTzeroV] is equal to
the labeled positive area between the quadratic o curve and the time line.
At time [t; plus DTzeroV] the wall rotation increases in magnitude from
thetao to relTmid. The rotational velocity o at time [t; plus DTzeroV] is

relOmid = omega0 + AreaTrapezoid_,,_ 3.69

With a value for relomid equal to zero, Equation 3.69 becomes

0= [E .(alphalD—TalphaOﬂ o (DTzeroV)’

+alpha0 e DTzeroV + omega0

This quadratic equation has a general solution of

(alpha0)* -4

—alphaO £ _
. [1 . ( alphal —alpha0 ﬂ « omega0

2 DT

e 1 . ( alphal - alphaoj
2 DT

DTzeroV =

Even though this solution provides for two possible values for DTzeroV,
only the positive value is assigned to DTzeroV in CorpsWanRotate.

The change in rotation from time t; to time [t; plus DTzeroV] is equal to
the labeled positive area between the quadratic o curve and the time line.
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At time [t; plus DTzeroV] the wall rotation increases in magnitude from
thetao to relTmid.

relTmid =thetaO+ DTzeroV e omegal0

DT V)2 bis 3.59
+% ¢ (2ealpha0 +relAmid)

The wall remains at rest with zero angular velocity ® and with no
additional permanent rotation 6 from time [t; plus DTzeroV] until time [t;
plus DT]. Consequently, at time t;., the permanent wall rotation 6 is
constant, as depicted in the bottom figure.

thetal =relTmid 3.72
with the value for relTmid given by Equation 3.59.

3.8.5 Positive angular acceleration o, at time ti and negative angular
acceleration o at ti+1

Next consider a wall in motion (i.e., with a positive value for o) at time t;
but with the Figure 3.14 case of a positive value for o computed using
Equation 3.26 at time-step t; and negative value for o computed using
Equation 3.26 at the next time-step of ti...* The first step is to determine
the time instant [t; plus IhsDT] at which the angular acceleration a is equal
to zero, as labeled in the figure. By linear interpolation, this time
increment lhsDT is

IhsDT =

DT :
alphaO e bis 3.40
alphal —alphaO

The positive area between the positive portion of the linear acceleration
line and the time line over the Figure 3.14 time increment lhsDT is

PositiveArea,, = % e |hsDT e (alphaO +0) 3.73

The Figure 3.14 time increment rhsDT is given by

1 Again, observe the assumption of a linear variation in angular acceleration o over the time-step DT
shown in Figure 3.14.
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rhsDT =DT —1hsDT 3.74

The negative area between the negative portion of the linear acceleration
line and the time line over the Figure 3.14 time increment rhsDT is

NegativeArea,,, = % e rhsDT (0 +alphal) 3.75

There are two possible outcomes for the Figure 3.14 step-by-step
numerical solution for » and of 0 at time ti., , depending upon the
magnitude of omegao relative to the magnitude of the sum of the
PositiveArea, - plus the NegativeArea,,_ . These possible scenarios are
depicted by two columns of figures in Figure 3.14, labeled as Case 1 and
Case 2 figure groups.

Case 1: This case results if (a) the NegativeArea,,_ exceeds PositiveArea,
but the positive value for o at time t; is greater than the magnitude of the
negative sum of PositiveArea,,_ plus NegativeArea,,_ , or (b) the
NegativeArea,,_ is less than PositiveArea,,_ , consequently the positive
value for w, at time t; will increase to a larger value of o, at time t;+; (with
an increase equal to the positive sum of PositiveArea,, plus
NegativeArea,,_ ). The three left-hand side figures in Figure 3.14 are used
to describe the Case 1 step-by-step solution scheme: The top figure
describes the angular acceleration, o, the middle figure describes the
rotational velocity, o, and the lower figure describes the permanent wall
rotation, 0.

The top Case 1 figure depicts the case of a wall remaining in rotation
during the entire time-step DT because either (a) the NegativeArea,
exceeds PositiveArea.,_ but the positive value for » at time t; is greater
than the magnitude of the sum of PositiveArea,,_ plus NegativeArea,,_, or
because (b) the NegativeArea,,_ is less than PositiveArea,,_ . At the
increment in time ThsDT after time t;, the positive acceleration area
increases the value of rotational velocity, , from the positive value of
magnitude omegao at time t; to a larger magnitude value at time [t; plus
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Figure 3.14. Two possible outcomes for the case of a positive angular acceleration at time t
and a negative angular acceleration at time ti+1.

lhsDT], as shown in this figure. The rotational velocity, o, at time [t; plus
IThsDT] is

relOmid = omegaO + % e |hsDT e (alpha0 +0) bis 3.42

The change in rotation from time t; to time [t; plus lhsDT] is equal to the
labeled positive area between the quadratic o curve and the time line. At
time [ti plus lhsDT] the wall rotation increases in magnitude from thetao
to relTmid.

relTmid =thetaO+IhsDT e omega0

2 bis 3.43
+M. (2ealpha0+0)

The wall continues in motion, with positive angular velocity, o, and with
additional permanent rotation, 6, after time [t; plus lhsDT] when the
angular acceleration of the wall is positive. At time [t; plus lhsDT] the
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magnitude of wall rotational velocity, m, begins to decrease in magnitude
as a result of the angular deceleration of the wall. The negative (labeled)
triangular area between the time line and the linear angular deceleration o
line, shown in the top Case 1 figure, equals the change in ® and for the
wall. Consequently, the value for o at time ti+; (labeled omega1 in the

Case 1 middle figure) is

omegal = relOmid + % erhsDT ¢ (0 +alphal) bis 3.44

The change in wall rotation from time [t; plus lhsDT] to time ti., is equal to
the integral of the positive rotational velocity of the middle w-figure. The
permanent wall rotation, 0, increases in value from relTmid to thetai, as
depicted in the bottom figure.

(rhsDT)?

thetal = relTmid +rhsDT e relOmid + ¢(2e0+alphal) bis 3.45

Case 2: This case results when the NegativeArea,,_ exceeds
PositiveArea,,- and the positive value for o at time t; is less than the
magnitude of the sum of PositiveArea,,_ plus NegativeArea,,_ . The four
right-hand side figures in Figure 3.14 are used to describe the Case 2 step-
by-step solution scheme. From the top to bottom, one figure describes the
angular acceleration, a, two figures describe the rotational velocity, o, and
one figure describes the permanent wall rotation, 6.

The top, right-hand side, Case 2 figure depicts the case of the sum of a
(labeled) positive triangular area between the linear angular deceleration o
line and the time line (i.e., PositiveArea.,_ by Equation 3.73) plus a
(labeled) negative triangular area between the linear angular deceleration
a line and the time line (i.e., NegativeArea,,- by Equation 3.75), being
negative and of greater magnitude than the positive value for o at time t;
(designated omegao). Consequently, the wall will come to rest before time
ti+11s achieved.

At time [t; plus lhsDT] the wall’s rotational velocity increases in magnitude
from omegao to relomid. The rotational velocity o at time [t; plus lhsDT]
is
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relOmid = omega0 + % e |hsDT e (alpha0+0) bis 3.42

with the angular acceleration at time [ t; plus lhsDT] equal to zero.

The change in rotation from time t; to time [t; plus IhsDT] is equal to the
labeled positive area between the quadratic o curve and the time line. At
time [t; plus lhsDT] the wall rotation increases in magnitude from thetao
to relDmid.

(IhsDT)?

relDmid = thetaO + IhsDT e omegaO0 + e(2ealpha0+0) 3.76

At an increment in time [lhsDT+DTmid] after time t;, a portion of the
negative deceleration area reduces the value of rotational velocity o from
the positive value of magnitude relomid at time [t; plus lhsDT] to a value
of 0 at time [t; plus (1hsDT+DTmid)], as shown in this figure. At time [t;
plus (lhsDT+DTmid)] the angular acceleration is

3.77

relAend = DTmido(alphalj

rhsDT

where DTmid is the time increment shown in Figure 3.14. The Figure 3.14
negative a area below time increment DTmid is

AreaTriangle,, = % *DTmid ¢ (0 +relAend) 3.78

The Figure 3.14 negative o area below time increment DTzeroV is
AreaTrapezoid,, = %o DTzeroV e(relAend +alphal) 3.79
Thus, the total Figure 3.14 negative o area below time increment rhsDT is
NegativeArea, , = AreaTrapezoid,, + AreaTriangle,, 3.80

With the rotational velocity o at time [t; plus (lhsDT+DTmid)] equal to
Zero,
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O =relOmid + AreaTriangle, ,_ 3.81

By introducing Equations 3.42, 3.73, 3.77, and 3.78, and solving for
DTmid, Equation 3.81 becomes

DTmid = [-2e rhsDT * (omegaO + PositiveArea,,, ) 3.82
alphal

At time [t; plus (IhsDT+DTmid)] the wall comes to rest with

DTmid)*
relTend = relDmid + DTmid e relomid + (2T ¢ (5

e0+relAend) 3.83

The wall remains at rest with zero angular velocity, o, and with no
additional permanent rotation, 0, from time [t; plus (IhsDT+DTmid)] until
time ti+;. The permanent wall rotation, 0, at this time ti.; is

thetal =relTend 3.84

3.8.6 Starting the CoysWanRotate analysis and the initiation of wall rotation
during a DT time-step

Start of the step-by-step time-history analysis: The numerical
formulation used in the step-by-step time-history analysis by
CorpsWanRotate assumes that the wall is at rest at the start of the analysis
(i.e., at time t; equal to 0 and with i =1). Consequently, o, », and 6 are
equal to zero as an initial boundary condition at the first time-step (i.e.,
with i = 1).

Initiation of wall rotation during the first DT time-step: At the end of the
first DT time-step, at time increment t. (i.e., ti-; and with i = 1 so the
subscript i + 1 becomes 2), a trial angular acceleration value is computed
by CorpsWanRotate using Equation 3.26. If a positive value for o is
computed at time increment t., the system is in motion during this first
time-step DT. This means that the correct value for o was computed using
Equation 3.26.

However, if a negative value for o is computed and the system has been at
rest and with zero angular acceleration at time t; = 0 (i.e., tj and for i = 1),
the system is at rest at time t.. This means that the correct value for a is
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zero at time t. and not the negative value computed using Equation 3.26.
Stating this another way and referring to Equation 3.26, a negative value
for a results when negative moments due to the clockwise stabilizing
forces acting about the toe of the wall are greater than the moments due to
the counterclockwise overturning (i.e., destabilizing) forces acting about
the toe. Consequently a fictitious, negative value results from Equation
3.26 and the correct value for a is zero at time t. (or more generally, ti.1).

Initiation of wall rotation during a DT time-step: A wall is at rest at the
beginning of any DT time-step (designated time t; in Figures 3. 10 through
3.14) when  and 0 are equal to zero. At all DT time-steps other that the
first time-step, the values at time t; for a, ®, and 6 were computed during
the previous time-step and then assigned as known values for this next
time-step. The step-by-step numerical procedure implemented in
CorpsWanRotate allows for wall rotation to initiate during any DT time-step
during earthquake shaking. This will occur for a wall at rest at time t;, i.e.,
the start of the time-step, when a positive value is computed for o using
Equation 3.26 at time t;:; . The numerical procedure outlined in

Figure 3.11 allows for the computation of ® and 6 at time ti., for this case.

3.8.7 Cessation of wall rotation

A wall is in motion at the start of any DT time-step (designated time t; in
Figures 3.10 through 3.14) when o is nonzero. The step-by-step numerical
procedure implemented in CorpsWanRotate allows for wall rotation to
terminate during any DT time-step during earthquake shaking. This
occurs when the deceleration of the wall is sufficiently large during time-
step DT. The applicable numerical procedures are labeled as Case 2 in
Figures 3.13 and 3.14.

In the case of wall rotation decelerating and with negative values for o at
times ti and ti+; during time-step DT, the rotational velocity, o, at time ti+;
(designated omega1) and the wall rotation, 6, at time ti., (designated
theta1) are made using the Case 2 approach outlined in Figure 3.13. The
value for o at time ti+; (designated alpha1) is made using Equation 3.26.
Note the rotational velocity reduces to zero at a time increment DTzeroV
after time ti. The wall remains at rest and with zero rotational velocity over
time increment DTzeroD, as shown in this figure.

In the case of wall rotation decelerating and with a positive value for o at
time t; and a negative value for o at time t;:; during time-step DT, the
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rotational velocity, o, at time t;;; (designated omega1) and the wall
rotation, 0, at time ti+, (designated theta1) are made using the Case 2
approach outlined in Figure 3.14. The value for o at time t;+; (designated
alpha1) is made using Equation 3.26. Note the rotational velocity reduces
to zero at a time increment [lhsDT + DTmid] after time t;. The wall
remains at rest and with zero rotational velocity over time increment
DTzeroV, as shown in this figure.

Note that wall rotation can begin again at a later point in time, as
described in the subsection 3.8.6 paragraph entitled “initiation of wall
rotation during a DT time-step.”

3.9 New rotational analysis model of a wall retaining a partially
submerged backfill and rotating about its toe and buttressed by a
reinforced concrete slab

The formulation for a rock-founded wall retaining a partially submerged
backfill and for the case of a pool in front of the retaining wall is
summarized in this subsection. The formulation presented is an extension
of the moist backfill formulation discussed in the previous sections of this
chapter. Water pressures are assumed to act along three faces of the
structural wedge denoted as the toe, base, and the heel regions of

Figure 3.15. Forces acting on the toe are due to the presence of a pool of
water in front of the wall. A leaking vertical joint is assumed between the
base slab and the structural wedge with water pressures above the toe
controlled by the presence of the pool. The computation of water pressures
acting on this partially submerged structural wedge is discussed in detail
in Appendix D.! The Figure 3.15 distributions of water pressures are
converted into equivalent resultant forces, expressed in global x- and
y-coordinates, and their points of application along each of the three
regions. These resultant water pressure forces are used in an effective
stress based stability analysis of the structural wedge. Dynamic
considerations for the pool during earthquake shaking are accounted for in
the analysis using hydrodynamic water pressures computed using the
Westergaard (1931) procedure of analysis (see Appendix D). The
hydrodynamic water pressure resultant force, Pwa (Equation D.5), is
shown acting on the structural wedge in this figure (and shown acting in a

1n the initial CorpsWanRotate version, no excess pore water pressures due to earthquake-induced shear
strains within the soil regions are included in the current CorpsWaiRotate formulation (i.e., the excess
pore water pressure ratio ru is equal to zero). Refer to Ebeling and Morrision (1992) for a complete
description and discussion of ru.
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direction consistent with the direction of positive horizontal acceleration,
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Figure 3.15. Control points, water pressures, and corresponding resultant forces acting
normal to faces of the three regions of a structural wedge rotating about its toe—effective
stress analysis.

In the case of rotation about the toe, contact between the base of the
structural wedge and the foundation is lost sometime during earthquake
shaking. Recall that a simplistic rigid base assumption is made in this
formulation for rock-founded earth retaining structures. Due to the
possible formation of a gap sometime during earthquake shaking, the
Figure 3.15 pore water pressure distribution is used along the base. Note
that this distribution differs from the steady-state pore water pressures
resulting from a structural wedge in full contact with the rock foundation,
shown in Figure D.1. The exact pore water distribution within the
structure-to-foundation gap is a complex problem and a subject for state-
of-the-art research. In CorpsWanRotate, it is recognized that the Figure 3.15
(or, equivalently, Figure D.4) pore water pressure distribution along the
base of the structural wedge makes the simplistic assumption of the
hydrostatic pore water pressure at the heel of the wall extends along the
entire base of the structural wedge. It is based on the assumption that a
gap opens early on during earthquake shaking during rotation about the
toe of the retaining wall.

The resultant water pressure forces Utoe, Ubase, Uneel, and Pwa shown in
Figure 3.15 are superimposed on the free-body diagram of forces acting on
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the Figure 3.5 structural wedge, resulting in the Figure 3.16 free-body
diagram. Recall Presist is the force provided by the reinforced concrete (toe)

slab.
Retained Soil
Nog—r+— - ¥ .
Y .. — ...
Pool He, IAyCG/O pag]  Hw
Hpool baseI AYUtoeI M AY
Uheel

Rigid Base

| Point of rotation, 0

AXheel/toe

Figure 3.16. Inertia forces and resultant force vectors acting on a rigid block model of a
(inclined base) cantilever wall retaining a partially submerged backfill with rotation about the
toe of the wall during horizontal and vertical shaking of the inclined rigid base—effective
stress analysis.

3.9.1 Threshold value of acceleration corresponding to incipient lift-off of
the base of the wall in rotation—partially submerged backfill

At the onset of lift-off of the (inclined) base of the Figure 3.16 retaining
wall subject to pure rotation about its toe, the rotating (i.e., overturning)
moment equals the stabilizing (i.e., restoring) moment. The summation of
moments about point 0 of the Figure 3.16 forces acting on a rigid body
with results in the following modified form of Equation 3.8,

w w
E'(ace )n * AYcs 0 +E°(ace )v ® AXeg 0 +Pae .008(5).[(yhee/ +hPAE)_ytoe]

+Uheel—x b [(yheel + AYUheeI) - ytoe ] + Ubase—y i AXUbase + U b AYUbase +

base—x

Pwd i I:HPooI_base + 04 b (HPooI - HPooI_base )] = 3.85
Ppresisr + W  AXgg o + Py #SIN(5) @ Ax
e AY, +U o AX

toe—x Utoe toe-y

P

resist b Presist heel / toe

+U

Utoe
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Note that @ is a very small number at the onset of lift-off and is set equal
to zero as its limiting value when deriving this relationship. The
component of the threshold acceleration occurring at lift-off of the base is
designated as

= [ ] i
(aCG )threshold—rotation—h (k CG )threshold—rotation—h g bis 3.9

where (Kce)threshold-rotation-h 1S a value of horizontal ground acceleration,
expressed in decimal fraction. Note that the horizontal acceleration value
[(kce)threshold-rotation-h times g] is a not a user-specified constant.

For a user-specified constant! for vertical acceleration [i.e., (acc)v =
constant], CorpsWanRotate solves Equation 3.85 by introducing (acc)hreshold-
rotation-h and (kCG)threshold-rotation-h for (aCG)h and (kCG)h- Because of the
inclusion of acceleration in Par formulation (refer to Appendix A),
CorpsWanRotate solves Equation 3.85 using a trial-and-error numerical
approach. The value of horizontal acceleration at incipient lift-off in
rotation is reported in the WORKrotate. TMP output file generated in each
CorpsWanRotate analysis. This file may be viewed using the visual modeler
boxes labeled Show Lift-Off Evaluation on the Analysis tab.

In CorpsWallRotate output data files the Equation 3.85 moments acting
about the point of rotation (set equal to toe position of the toe in this
initial version of CorpsWanRotate) of the structural wedge are grouped into
Overturning Moments and Restoring Moments, which are defined as

Overturning Moments =

w w

_'(ace )h * Ao o +_°(ac<3 )v ® MXeg 0 +Pae '005(5)°[(yhee/ +hPAE)_ytoe]
g g 3.86
+Uheel—x b [(yheel + AYUheel) - ytoe ] + Ubase—y i AXUbase + U

base—x

Pwd ® [HPool_base + 04 ® (HPool - HPooI_base )]

and

1 A procedure for determing the value for this constant (for vertical acceleration) is discussed in
Section 4.10.
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Restoring Moments =
presist TW @ AXeg 0 +Pae esin(o)e Ax
+U o AY, _+U o AX

toe—x Utoe toe—y Utoe

eh 3.87

resist heel / toe

In a total stress analysis the internal pore water pressure force terms Upase
and Upeel are excluded from Equations 3.85 through 3.87 and ¢’ is set
equal to S, with ¢’ set equal to zero. Additionally, N’ is set equal to N.

Since the horizontal limiting acceleration is of interest, another option is a
simplified form of Equation 3.85 that may be derived by setting the
vertical component of acceleration in the incipient lift-off in rotation equal
to zero, as done by Nadim and Whitman (1984). By making this
assumption and introducing Equation 3.9, Equation 3.85 becomes

(kCG )threshold—rotation—h -

Presist .h +W.AXCG/O +PAE .Sin(a).Axheel/toe +
FUpey ® MXitoe —Pae ® Cos(é‘).[(yheel +hPAE)_ytoe]_

Presist

Utoe—x
Uheel—x b [(yheel + AYUheeI) - ytoe] - Ubase—y i AXUbase - Ubase—x ® AYUbase -

Pwd i I:HPool_base +0.4 0 (HPooI - HPooI_base )}
We Ayce/o

o AY

Utoe

3.88

Because of the inclusion of acceleration in Par formulation (refer to
Appendix A), CorpsWanRotate solves Equation 3.88 using a trial-and-error
numerical approach.

In a total stress analysis the internal pore water pressure force terms Upase
and Upeel are excluded from Equations 3.85 and 3.88.

3.9.2 Moments due to external forces acting about the toe of the structural
wedge—partially submerged backfill

The Figure 3.16 (inclined base) cantilever wall retaining partially
submerged backfill and with pool, is subjected to the nine external forces
of the weight of the structural wedge, W, the dynamic active earth pressure
force, Pag, the resisting force, Presist, provided by the reinforced concrete
slab at the toe of the wall, and the horizontal and vertical components of
the rigid base-to-wall reaction forces T and N’, respectively, acting through
the toe of the wall as well as the resultant water pressure forces Utoe, Ubase,
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Uheel, and Pywa. For the partially submerged backfill with pool in front of the
wall, the moment due to these external forces about the point o0 at toe of
the wall (counterclockwise positive) is

XMy =-WeAxy,,—F,

resist

eh P,: ®#sin(o)e Ax

Presist heel / toe

e AY

Utoe

+PAE ®COs (5) hd [(yheel + hPAE) - ytoe] - Utoe—y hd AXUl‘oe - Utoe—x
+U AXUtJase + Ubase—x o AYUbase + Uheel—x o [(yheel + AYUheeI) - ytoe]

+Pwd ® I:HPool_base +0.4 (HPOOI - HPooI_base )}

3.89

base—y ®

Since the foundation reaction shear force T and normal force N’ act
through point o during rotation, they do not contribute to the moment. At
each instant in time during earthquake shaking, the horizontal and vertical
accelerations vary in direction. Thus, the magnitudes of Par and hpar and
Pwa vary as well.

In a total stress analysis the internal pore water pressure force terms Upase
and Upeq are excluded from Equation 3.89.

3.9.3 Angular acceleration of the structural wedge wall retaining a partially
submerged backfill-formulation implemented in CopsWanRotate

The relationship defining the angular acceleration of the retaining wall
structural wedge that is implemented in CorpsWanRotate is derived by
introducing Equation 3.89 into Equation 3.19. When rotation has
initiated, the angular acceleration of the structural wedge is

—-W e Ax P

resist

cG/0 ® Noyesist — Pag #SIN(0) @ AXpeer o

o AY,

Utoe

+PAE ®COs (5) hd [(yheel + hPAE) - ytoe] - Utoe—y i AXUtoe -U
+U AXUbase + Ubase—x d AYUbase + Uheel—x i [(yheel + AYUheel) - ytoe ]

+Pwd * I:HPool_base +0.4 (HPool - HPool_base ):|

w
+E.[(kh .g).AyCG/O+(kV .g).AXCG/OJ

o= 3.90
IO

toe—x

base—y ®

with the mass moment of inertia about the point o (the of rotation) given
by
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2
e o) bis 3.16

Recall o (or, equivalently, # ) is the angular acceleration of the structural
wedge of (total) mass M (=W/g) about point of rotation, point 0. The
resulting engineering formulation is implemented in the corresponding
software CorpsWanRotate and will perform a rotating analysis of each user-
specified retaining wall section. The output files for CorpsWanRotate report
the Overturning Moments (Equation 3.86) and Restoring Moments
(Equation 3.87) as well as the angular acceleration o at each time-step t;.
Consequently, when viewing computed results using the visual Post-
Processor of CorpsWanRotate, it is more convenient to express Equation
3.90 as

{OverturningMoments —Restoring Moments}
o= I 3.91
0

In a total stress analysis the internal pore water pressure force terms Upase
and Uneq are excluded from Equations 3.90 and 3.91.

3.9.4 Numerical method for computing the rotational time-history of a rigid
block retaining structure rotating about its toe

Earthquake acceleration time-histories are used to represent the
earthquake demand in a rotational analysis of rigid body structural wedge
(permanent) rotation. A step-by-step solution scheme is followed in order
to obtain the wall’s rotational velocity, , and rotation, 6, in the time
domain by CorpsWanRotate. An overview of the characteristics of this
numerical formulation is given in section 3.8. Equation 3.26 for angular
acceleration, a, is replaced by Equation 3.90 in this discussion for the case
of a wall retaining a partially submerged backfill with a pool in front.

3.10 Effective vertical acceleration constant value for the incipient
lift-off in rotation evaluation process

In a rotational analysis (i.e., KEYanalysis = 2 of Group 7, Appendix F) the
complete, user-specified vertical acceleration (time-history) may be
requested for use in the time-history analysis. Alternatively, a constant
value for vertical acceleration may be used during the time-history
analysis of permanent wall rotation and/or in the analysis of the threshold
horizontal acceleration at incipient lift-off in rotation. This section
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describes a new procedure for determining an effective, representative
constant value for vertical acceleration.

In Section 4.6, a new procedure for determining an approximate, constant,
effective value for vertical acceleration in a Newmark (1965) sliding block
maximum transmissible acceleration analysis of earth retaining structures
is proposed. This same procedure may also be used to determine the
effective constant vertical acceleration for the acceleration pulses
generating wall rotation for the incipient lift-off evaluation process and
computation of the horizontal acceleration value [(Kcg)threshold-rotation-h times

gl.

In an incipient lift-off in wall rotation evaluation analysis of a retaining
structure, CorpsWanRotate allows the user to specify a constant value for
vertical acceleration to be used in the equilibrium Equation 3.85 when
computing (in a trial-and-error numerical procedure) the value for
horizontal acceleration [(kcg)reshold-rotation-h times g] . This software
implements the following two new methods to help determine a
representative value for the constant vertical acceleration:

Method 1 - average vertical acceleration value: Using the user-
specified horizontal acceleration time-history and the user-provided
constant value for vertical (Y) acceleration, the value for horizontal
acceleration at incipient lift-off in wall rotation, (acc)hreshold-rotation-h 1S
computed and a rotating block time-history analysis is performed. The
software then identifies at which i time increments that incremental
rotation, (6,);, takes place and the total number of incremental time-step
increments i during which rotation occurs, designated nrotation. The average
vertical acceleration value for the user-specified vertical acceleration time-
history is computed for all these i time increments using the relationship

Nrotation

¥ (a),
(8cs), e =——— 3.92

n rotation

The sign for the average vertical acceleration, (av)i, during each select time
increment i for which incremental rotation occurs is maintained in this
calculation.
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A trial-and-error procedure is used to determine the appropriate value for
the constant vertical acceleration value. The primary author of this report
usually starts with a constant vertical (Y) acceleration value set equal to
zero. An incipient lift-off in wall rotation evaluation analysis is made,
including a computation made by CorpsWanRotate using Equation 3.92 to
determine a value for (acg)v-ave. Then a second incipient lift-off in wall
rotation evaluation analysis is made in which the constant vertical
acceleration value is set equal to the previously computed value for
(acG)v-ave by the user. This second computation results in an updated value
for (ace)v-ave - The iterative process is repeated until the difference between
old and new values is minor; usually within four computations.

Method 2 - weighted vertical acceleration value: This approach is a
variation of Method 1. Using the user specified horizontal acceleration
time-history and the user-provided constant value for vertical (Y)
acceleration, the value for horizontal acceleration at incipient lift-off in
wall rotation, (acc)threshold-rotation-h, 1S computed and a rotational time-
history analysis is performed. The software then identifies at which i time
increments during which incremental rotation, (6;);, takes place and the
total number of time increments i during which rotation occurs is
designated nrotation. The total rotation is

Nrotation

6,=> (0) 3.93

A weighted vertical acceleration value is computed for the user-specified
vertical acceleration time-history with average vertical acceleration value,
(av)i, computed for each time increment i of incremental rotations using
the following relationship

)= S {0 2 s

r

Again, the sign for the average vertical acceleration, (av);, during each
select time increment i of incremental rotations is maintained in this
calculation.

A trial-and-error procedure is used to determine the appropriate value for
the constant vertical acceleration value. The primary author of this report
usually starts with a constant vertical (Y) acceleration value set equal to
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zero. An incipient lift-off in wall rotation and rotational time-history
analysis is made, including a computation made by CorpsWanRotate using
Equations 3.93 and 3.94 to determine a value for (acg)v-weighted - Then a
second incipient lift-off in wall rotation analysis is made in which the
constant vertical (Y) acceleration value is set equal to the previously
computed value for (acc)v-weighted by the user. This second computation
results in an updated value for (acc)v-weighted - The process is repeated until
the difference between old and new values is minor; usually within four
computations.

Method 2 differs from Method 1 in that the weighting factor applied to
each of the average vertical acceleration, (av);, values at the i time
increments of incremental rotation is assigned according to the relative
magnitude of incremental rotations occurring at each time increment.
Method 1 applies a uniform weighting factor.
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4 New Translational Block Analysis Model
of a Retaining Structure Buttressed by a
Reinforced Concrete Slab

4.1 Introduction

This chapter describes a new engineering formulation developed for
computing the permanent translational response to earthquake ground
motions of toe-restrained, rock-founded retaining walls. The resulting
engineering formulation is implemented within corresponding PC
software CorpsWanRotate using a GUI for input of geometry, input of
material properties, input/verification of earthquake time-history files,
and visualization of results. (Key aspects of the visual modeler and visual
post-processor CorpsWanRotate are described in Chapter 5.)

A key result from the translational (i.e., sliding) block method of analysis
is the computation of the permanent deformation of a retaining structural
system due to a user-specified design earthquake event. This design
earthquake event is represented by an acceleration time-history specified
within the rock-foundation base. Chapter 1 discussed the numerous
variations of rigid sliding block methods of seismic analysis as applied to
slopes, earthen dams, retaining wall systems, and foundations. They all
have their roots in the methodology outlined in Newmark (1965) and what
has come to be known as the Newmark sliding block model (Section 1.1.3).
This chapter discusses the formulation of the translational (rigid) block
analysis of the Figure 4.1 cantilever retaining structure buttressed by, e.g.,
a concrete slab at its toe, as implemented in CorpsWanRotate for Corps
retaining walls. The effect of this reinforced concrete slab is represented by
the user-specified force Presist acting on a vertical section extending
upwards from the toe of the wall. Strom and Ebeling (2004) present a
simplified engineering procedure to estimate the magnitude of Presist.
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Figure 4.1. Permanent, seismically induced displacement of a rock-founded cantilever wall
retaining moist backfill and with toe restraint, computed using CorpsWaiRotate.

4.2 Contrasting a translational with the rotational analysis of a rigid
block

A rotational analysis of permanent deformation of a retaining wall during
earthquake shaking was discussed in Chapter 3. An important difference
between the translational (i.e., Newmark sliding) block method of analysis
for earth retaining structures and the rotational analysis of a retaining
structure modeled as a rigid block is the acceleration imparted to the rigid
block. When a rigid block undergoes permanent sliding displacement
during earthquake shaking, the largest magnitude horizontal acceleration
felt by the rigid block (and the retaining structure contained within the
rigid block model) is less than the peak value for ground acceleration, as
depicted in Figure 1.8. Ebeling and Morrison (1992) designated the value
for a retaining wall’s maximum transmissible acceleration as N*g. The
maximum transmissible acceleration, N*g, is sometimes referred to as the
yield acceleration; it is not the user-defined, horizontal ground (or,
equivalently, the rigid base) acceleration. Contrast this to the response of a
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rigid block that undergoes rotation during earthquake shaking; the
accelerations felt by this rigid block during shaking are those of the ground
acceleration time-history. This is because continuous contact between the
rigid block undergoing rotation and the ground (modeled as a rigid base)
is maintained at the point of rotation (e.g., the toe of the Figure 3.1
retaining wall) during the entire earthquake shaking process. The
acceleration imparted to the center of mass of a rotating rigid block is
discussed in Sections 1.2 and 3.2.

Does a wall slide or does it rotate during earthquake shaking?
The first step in determining if the retaining wall will rotate prior to sliding
during earthquake shaking, or vice versa, is to compute (1) the value of
acceleration that is needed for lift-off of the wall from its base in rotation
about the toe of the wall using the procedure outlined in Chapter 3; and
(2) the limiting acceleration required to reduce the factor of safety against
sliding to a limiting value of 1.0 (commonly referred to as the maximum
transmissible acceleration using the procedure outlined in this chapter).
These two computations are accomplished by the software CorpsWanRotate.
The second step is to compare these limiting acceleration values. For the
simplified decoupled analyses outlined in this report, the mode of
deformation is dictated by the smaller of the two acceleration values.

4.3 Maximum transmissible acceleration

In the earthquake-induced translational displacement analysis of a
retaining wall, the primary variable is the permanent displacement. A
user-defined (ground) acceleration time-history is applied to the Figure
4.2 rigid base on which the retaining wall is founded in the idealized
model. The seismic inertia coefficient (N* in Ebeling and Morrison (1992)
terminology) that reduces the sliding factor of safety for the driving soil
wedge and the structural wedge to unity is first determined. The value for
the maximum transmissible acceleration (i.e., N*g; the yield acceleration
in Ebeling and Morrison (1992) terminology) is the horizontal acceleration
imparted to the retaining wall system, consisting of the driving wedge and
structural wedge (see Figure 1.7), that will nominally exceed the shear
resistance provided by the foundation along (or immediately below) the
interface between the base of the retaining structure and the foundation.
The driving soil wedge (Figure A.1) is represented by the dynamic force
Pax in the Figure 4.2 free-body diagram of the structural wedge figure
showing the dynamic forces acting on a rigid block model of the structural
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wedge with sliding along its base during shaking of the rigid base.* This
cantilever wall, which retains moist backfill, is subjected to the five
external forces of the weight of the structural wedge W, the dynamic active
earth pressure force Pag , the resisting force Presist provided by the
reinforced concrete slab at the toe of the wall, and the rigid base-to-wall
reaction shear and normal forces T and N’, respectively. The procedure
outlined in Section 3.6 and Appendix A are used to compute the value of
P4k at each acceleration time-history time-step. The structural wedge and
driving soil wedges are assumed to act as a single rigid body, as shown in
Figure 1.7. Thus, inertial forces due to the acceleration values applied at a
given time-step to the structural and driving wedges impact the magnitude
of Pag, as outlined in the sweep-search soil wedge solution procedure
summarized in Appendix A. Consequently, when the value for acceleration
of the rigid block changes with time-steps, the value of Par changes as well.

AXheel/toe
—

Retained Soil
AyCG,O I Presist hPAE
hPresist ‘ —_—
Toe; Point 0 / g

Rigid Base *

: v=K g

;:dNbase

Lbase

Figure 4.2. Inertia forces and resultant force vectors acting on a rigid block model of a
cantilever wall retaining moist backfill with sliding along its base during horizontal and vertical
shaking of the inclined rigid base.

At the onset of sliding of the Figure 4.2 retaining wall, the horizontal
driving force equals the stabilizing (i.e., restoring) force. The summation
of the Figure 4.2 horizontal forces acting on the rigid body results in

1 The inertial forces are applied according to D’Alembert’s principle. The advantage of the inertia-force
method based on D’Alembert’s principle is that it converts a dynamics problem into an equivalent
problem in equilibrium.
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go (@ )h +P,.ecos(5)=P,, +Tecos(g)+N'esin(¢) 4.1

T is the shear force required for equilibrium of forces acting on the
structural wedge. At incipient sliding, the shear strength along the base to
foundation interface becomes fully mobilized (i.e., FSglige = 1.0). Assuming
a full mobilization of shear resistance along the base (of length Liase), the
shear force may be computed utilizing the Mohr-Coulomb failure criteria,
in an effective stress analysis, as

T=c,

base

o/

base

+N'etan(6,,..) 4.2

Introducing Equation 4.2, Equation 4.1 becomes

w

—e(ayg ), + P ®c0Os(5) =

g 4.3

Pt +[ C'® Lynse +N'0tan(d,,,, ') Jecos (&) +N'esin(e)
Simplifying, Equation 4.3 becomes

w

—eo(ayg ), + Py ®cOs(5) =

g 4.3

P

i tC'eL,.  ecos(g)+N'e [tan(&base "Jecos(&)+ sin(e)]

The summation of the Figure 4.2 vertical forces acting on the rigid body
results in

0 :N'ocos(g)—Tosin(g)—W+%o(aCG)v —P,. esin(J) 4.4

Introducing Equation 4.2, Equation 4.4 becomes

0=N'ecos(&)—[c'eL,,, +N'etan(d',,,)]esin(e)

base

4.5
—W+%0(aCG )V —P,. esin(5)

Simplifying, Equation 4.5 becomes
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c'el,.. OSin(8)+W—\;VO(aCG ), + P ®sin(5)

N'= : 4.6
cos(&)—tan(d',,. )@ sin(e)

Introducing Equation 4.6, Equation 4.3 becomes

esist +C ‘e Lbase ®COS (8) +

g.(aCG)h +Pe ecos(5) =P,

clel

base

osin(5)+W—w0(aCG ), + Pac ®sin(5)
g 4.7

cos(&)—tan(d' .. ) ®sin(€)
o[tan(8',,. ) e cos(&)+sin(z)]

Equation 4.7 represents the equilibrium relationship for the (rigid)
structural wedge when the earthquake accelerations are such that the
factor of safety against sliding along its base is equal to 1.0. For a factor of
safety > 1.0 against sliding, the retaining wall does not slide. The rigid
body CG accelerations are the same as the rigid base accelerations (i.e.,
within the rock foundation). However, the accelerations felt by the rigid
body (i.e., at its center of gravity, CG) will differ from the rigid base
accelerations for user-defined rigid base acceleration (time-history) values
that exceed the value for acceleration that results in a factor of safety
against sliding equal to 1.0. During sliding, the acceleration felt by the
rigid body at its center of gravity, CG, is of constant magnitude.

The component of the threshold acceleration occurring at translation (i.e.,
sliding) along the base is designated as

= [ ]
(aCG )thresho/d—sliding—h (k CG )threshold—sliding—h g 4.8

where (Kcg)threshold-sliding-h i a value of horizontal ground acceleration,
expressed in decimal fraction. In Ebeling and Morrison (1992), the
acceleration (acg)threshold-sliding-h 1S referred to as the maximum
transmissible acceleration (N*g) or as the yield acceleration. Note that the
horizontal acceleration value [(kcg)threshold-stiding-h times g] is a not a user-
specified constant. Since the horizontal limiting acceleration is of interest,
one option is to set the vertical component of acceleration occurring at
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sliding equal to zero, as done by Richards and Elms (19779) and others.! By
making this assumption and introducing Equation 4.8, Equation 4.7
becomes

(kCG )thresho/d—sliding—h -

ecos(&)—P,. ecos(5)+

}o[tan(&'base)ocos(g)+sin(g)]

p

resist

c'el,,..®sin(e)+W+P,. esin(o)
cos(&)—tan(d',,.. )@sin(e)

w

+cCc'el

base

4.9

Because of the inclusion of acceleration in Par formulation (refer to
Appendix A) in this equation, CorpsWanRotate solves Equation 4.9 using a
trial-and-error numerical approach. Note that no safety factor need be
applied to the weight of the wall/structural wedge nor to its shear strength
in this calculation.

The summation of overturning and resisting moments about the toe (i.e.,
point 0) of the Figure 4.2 forces acting on the rigid body results in

W w
E'(ace )h *AVee o +E'(ace )V * M6 /0

+Pye .Cos(é‘).[(yheel +hPAE)_ytoe]+Nl. Onpase = 4.10
Pesist ® Moresisr =W @ AX g o + P, @SiN(5) @ Ax

resist Presist heel / toe

Recall the computation of hpag as well as the distribution of earth pressure
forces corresponding to Pag are discussed in Section 3.6 and in

Appendix C. Solving for the location of the result effective force normal to
the base, dnbase, Equation 4.10 becomes

w w
_g°(ace )h *AYes 0 _E’(ace )v ® AXeg /0

_PAE .Cos(é‘).[(yheel +hPAE) _ytoe]
+Pesisc ® D +WeAXe; 0+ Py .Sin(5).AXheeI/toe

dNbase == N' - 411

Presist

1 Another option, implemented in CorpsWanRotate, is to assign a constant value to the vertical
acceleration component. A procedure for determining the value for this constant is discussed in
Sections 4.5 and 4.6.



ERDC/ITL TR-06-2 123

Because of the inclusion of acceleration in Par formulation (refer to
Appendix A) in this equation, CorpsWanRotate solves Equation 4.11 using a
trial-and-error numerical approach. Introducing the horizontal limiting
acceleration (i.e., Equation 4.8) in the case of a wall sliding along its base
and setting the vertical component of acceleration occurring at sliding
equal to zero, Equation 4.11 simplifies to

—We °
w (kCG )threshold—sliding—h Ay CG/0

Py .005(5).[(yheel +hPAE)_ytoe]
® Npresist 7 W @ AX g o + P, @sin(o) e Ax

Nbase — N '

+P

resist Presist heel / toe

4,12

During sliding, the value of Pag is computed using the horizontal
acceleration value [(Kcg)treshold-sliding-h times g], the maximum
transmissible acceleration (N*g in Ebeling and Morrison (1992) notation).
Recall that full contact is maintained between the base of the wall and its
foundation during sliding in this formulation.

4.4 Time-history of permanent wall displacement

Earthquake shaking of the rock foundation is represented by time-
histories of acceleration in the translational block formulation
implemented in CorpsWanRotate.! Since the ground acceleration varies with
time, let the horizontal ground acceleration be represented by variable
fraction A times the constant acceleration of gravity, g, in Figure 1.8.
Recall that the integral of the acceleration time-history is equal to the
velocity time-history and the integral of velocity is displacement (i.e., the
permanent wall displacement in this case). For a “rigid block” (i.e.,
retaining wall structural wedge and driving wedge) subjected to an
acceleration of value larger than the Figure 1.8 maximum transmissible
acceleration, labeled N*g in this figure, the rigid block will displace. When
this occurs over several time-steps, the total permanent displacement of a
sliding structural wedge relative to the base (i.e., the rock foundation) is
the sum of the increments of displacement occurring during a number of
individual pulses of ground motion as shown in this figure. These
incremental relative displacements are determined as follows: For each
time the acceleration of the ground, equal to A times g, is greater than the

1 Baseline-corrected, horizontal and vertical acceleration time-histories are to be used to represent the
earthquake ground motions in CorpsWanRotate.
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constant N* times g shown in this figure, relative displacements (between
the retaining wall mass and the foundation) will initiate. The integral of
the difference in velocities between the sliding structural wedge and the
rock foundation velocity is equal to the incremental, relative displacement
of the sliding structural wedge.

This section describes the numerical method implemented within
CorpsWanRotate to compute the translational time-history of a rigid block
retaining structure during earthquake shaking. It mirrors the numerical
procedure used to compute the rotational time-history of a rigid block
rotating about its toe, discussed in Section 3.8.

4.4.1 Introduction to a step-by-step solution scheme

Earthquake acceleration time-histories are used to represent the
earthquake demand in this formulation. They are specified within the rigid
base of Figure 4.2. It is the experience of the primary author of this report
that the duration of ground acceleration time-histories used on Corps
projects is on the order of tens of seconds, and up to about one minute of
earthquake shaking. The number of time increments (i.e., discrete
acceleration point values) contained in the acceleration time-history
corresponds to the number of solutions made in the translational wall
analysis by CorpsWanRotate. The number of time increments is defined by
the duration of earthquake shaking and the time increment DT used in
digitization of the acceleration time-history.* There is no standard time
increment DT for the digitization and subsequent processing of
acceleration time-histories for Corps projects. However, Ebeling, Green,
and French (1997) observe that a DT equal to 0.02, 0.01, or 0.005 sec is
the most common. For example, an earthquake acceleration time-history
with 40 seconds of shaking and a time-step of 0.02 sec will contain 2,000
discretized acceleration points. If the acceleration time-history was
processed with a DT equal to 0.01 or 0.005 sec, then the discretized
acceleration time-histories would contain 4,000 and 8,000 acceleration
points, respectively.

A step-by-step solution scheme is followed in order to obtain the wall’s
permanent translational relative velocity, relV, and displacement, relD, in
the time domain by CorpsWanRotate. An overview of the characteristics of

1 Note that CorpsWanRotate requires the time-step DT for the horizontal and vertical acceleration time-
histories used in the same analysis be the same value.
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this numerical formulation is depicted in Figure 4.3. A key feature of the
numerical formulation used is the assumption of a linear variation in
relative acceleration relA over time-step DT, from time t; to time t;;.
Values of the user-provided ground acceleration (specified within the rigid
base model) are compared against the maximum transmissible
acceleration value [(kcg)threshold-stiding-h times g] at each time-step. (Recall
the value for maximum transmissible acceleration value [(kcg)hreshold-sliding-
n times g] is a constant.) This idealized figure assumes that the wall is
undergoing positive relative acceleration (i.e., value for acceleration of the
ground is greater than the value of [(kcg)reshold-stiding-h times g]), positive
relative velocity, and positive (permanent) displacement at time t;, which
continues through time ti... The relative acceleration values relAo and
relA1 are equal to the difference between the horizontal ground
acceleration value minus the constant value of [(kcg)threshold-sliding-h times g]
at times t; and ti+4, respectively, and assumed positive at both time-steps.
(Other cases will be considered later.) The idealized figure also assumes
that the relative acceleration increases in magnitude over this time-step
DT, as depicted in this figure. The relative velocity is computed by
integrating the relative acceleration during each segment of wall
translation.

t
relV = J-reIA dat when relV >0 4.13
0

or

relV =0 when Equation4.13 givesrelV <0 4.14

So for a linear variation in relative acceleration over time-step DT, the
relative velocity, relV, is a quadratic relationship. Note that CorpsWanRotate
assumes that the wall cannot slide back into the retained soil, which is
expressed by Equation 4.14. Similarly, with the permanent relative
displacement of the wall being the integration of the relative velocity, the
relative displacement of the wall is a cubic relationship listed in Figure 4.3.
The permanent relative displacement of the wall is the integration of the
relative velocity

t
relD = J.reIV dt 4.15
0
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This series of computations using relative accelerations and

Equations 4.13 through 4.15 are repeated for each sequence of wall
translations that occurs for the duration of earthquake shaking. The
experience of the primary author of this report is that when the
acceleration time-histories used as input to CorpsWanRotate are based on
previously recorded earthquake events (a typical scenario), the permanent
displacement occurs during several, separate pulses occurring throughout
the duration of shaking.

In Figure 4.3, the value for relative acceleration relA, relative velocity relV,
and (permanent wall) relative displacement relD at any point in time At
after t; and before time ti.,; are given by the linear, quadratic, and cubic
relationships contained on the right-hand side of these three figures (with
At less than or equal to DT).

Recall that during sliding the acceleration felt by the wall equals the
maximum transmissible acceleration. Thus, the sliding (rigid) block model
effectively isolates the sliding block from the shaking (rigid) base below.

4.4.2 Positive relative accelerations relAO and relAl at times t; and ti+1

Expanding on the details of the computations for the numerical
formulation depicted in Figure 4.3, the computation of the relative
acceleration, relA, relative velocity, relV, and relative displacement, relD,
at time t;+; are made as follows: Values for relA, relV, relD, at time t; are
known from the previous computation step in the step-by-step solution
scheme. The value for relA at time ti;, (designated relAz1 in the figure) is
computed as the difference between horizontal ground acceleration minus
the constant value of [(kcg)hreshold-sliding-h times g]. Referring to Figure 4.4,
the relative velocity at time ti,, (designated relV1) is computed from the
value for relative velocity at time t; (designated relVo) plus the positive
area under the linear relative acceleration relationship over the time-step
DT, designated Area, in this figure. By the trapezoidal rule, relV1 at time
ti+11S

relVl=relVO+ % o (relAO +relAl) 4.16

with the values for relVo and relAo now known values that were computed
in the previous solution step. Note the wall is in motion at time t; , as
reflected by a positive value for relative velocity (designated relVo in



Figure 4.3. Complete equations for relative motions over time increment DT based on linearly
varying acceleration.

Figure 4.4). Similarly, the permanent relative wall displacement at time ti.,
(designated relD1) is computed from the value for relative displacement at
time t; (designated relDo) plus the positive area under the quadratic
relative velocity relationship over the time-step DT, designated Areay in
this figure. For this linear acceleration method, relD1 at time t;., is

2

relD1 =relDO+DT erelVO + b1 4.17

e(2erelA0+relAl)

with the value for relDo being a known value that was computed in the
previous solution step. The value for relative velocity relV and (permanent

ERDC/ITL TR-06-2 127
at incremental
time
1
o relAl
Relative
Acceleration a0 e
(Linear)
g relA = relAO
—- DT - (relA1-relAQ)
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wall) displacement relD at time ti;, are also described in terms of the area
relationships contained in Figure 4.4. In this manner a step-by-step
solution scheme is followed throughout the entire time-history of
earthquake shaking in order to obtain the wall velocity, relV, and relative
displacement, relD, at each increment in time in the Figure 4.4 case of
positive values for relA at times t; and ti..

Known Unknown
relAQ relV1
relA1 relD1
relVO
relDO
o relAl
Relative
Acceleration - (DT
relAQ e Area_= (Y') (relA1+relA0)
(Linear) Areaa a 2
0 0
rel\VV1 = relVO + Areaa
Relati o relV1
Ve atl.ve Area = (DT) relVO
elocity relVO Wit
(Quadratic) 0 ! )'%rea\‘r 0 + ( 5 ) (2relAO + relA1)
* relD1
REELD relD1 = relDO + Area
Displacement relDO v
(Cubic) 0* 0
I I
t.
: tiat
Note: Positive relVO value.

Figure 4.4. Relative velocity and displacements at the end of time increment DT based on
linearly varying relative acceleration.

In summary, Figure 4.4 outlines a numerical procedure to obtain values
for relative velocity and for relative displacement at time ti,, in situations
for which values of relative acceleration relA at times t; and ti+; are both
positive. However, there are three other situations that can arise during
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the step-by-step solution: (a) the case of a negative value for relA at time t;
and a positive value for relA at time ti.; (b) the case of wall decelerating
over the entire time-step DT for which the values of relA are negative at
both times t; and ti+1; and (c) the case of a positive value for relA at time t;
and a negative value for relA at time t;.;. In all four cases, the assumption
of linear relative acceleration over time-step DT is made and the basic
concept of integrating positive areas above and/or negative areas below
the time line of relative acceleration, relA, to obtain the change in relative
velocity, relV, and then, in turn, the integration of positive and/or negative
areas above and/or below the time line of relV to obtain the change in
relative displacement, relD, is used to determine the values for relV and
relD, respectively, at time ti... These three additional step-by-step
solutions are discussed next. Note the frequent use of the trapezoidal rule
for relV and the linear acceleration method for relD in the solution
processes to be described.

4.4.3 Positive relative acceleration relAO at time ti and negative relative
acceleration relA1l at ti+1

Next consider a wall in motion (i.e., with a positive value for relV) at time t;
but with the Figure 4.5 case of a negative value for relAo computed at
time-step ti and positive value for relA1 computed at the next time-step of
ti+1.1 The first step is to determine the time instant [t; plus lhsDT] at which
the relative acceleration relA is equal to zero, as labeled in the figure. By
linear interpolation, this time increment lhsDT is

relAQ e (L) 4.18
relAl —relAO

IhsDT =

The negative area between the negative portion of the linear acceleration
line and the time line over the Figure 4.5 time increment lhsDT is

NegativeArea_,, = % e |hsDT e (relAO +0) 4.19

Recall that the wall is in motion at time t; when relative velocity
(designated relVo in the figure) is positive. There are two possible
outcomes for the Figure 4.5 step-by-step numerical solutions for values of
relV and of relD at time ti+, , depending upon the magnitude of relVo

1 Note the assumption of a linear variation in relative acceleration over the time-step DT in Figure 4.5.
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relative to the magnitude of NegativeArea_,.. These possible scenarios are
depicted by two columns of figures in Figure 4.5, labeled as the Case 1 and

Case 2 figure groups.

IhsDT rhsDT IhsDT rhsDT
Relative Negative Area . relA1 o relAd
Agceleratlon 0 0. (+) 0 0 0. (+) 0
(Blezs) ) CINC)
= . i
5] relAmid
relA0* 025 relAQ o &
o= &
ENS O &0 0
528 &
o relvo’, :
Relative  relVOs < RISV 0
Velocity .
(Quadratic) (+) reIled. (+). relV1 .
° ° relVo® v o A
0 I _reIled . N*)
relDmid i o relD1 ) T
- +
Rolative  roipg_ . ) D0/ relDmid !
Displacement (+) .y root (#)
(Cubic) 0 - 90 0 R R 0
IhsDT rhsDT DTzeroV DTzeroD rhsDT
Case 1 Case 2

Note: Positive relV0 value.

Figure 4.5. Two possible outcomes for the case of a negative relative acceleration at time t
and a positive relative acceleration at time ti+1.

Case 1: This case results when the positive value for relV at time t; is
greater than the magnitude of NegativeArea_ . (i.e., the negative area
between the negative portion of the linear acceleration line and the time
line over the portion of the Figure 4.5 time increment labeled hsDT). The
three left-hand side figures in Figure 4.5 are used to describe the Case 1
step-by-step solution scheme: The top figure describes the relative
acceleration, relA, the middle figure describes the relative velocity, relV,
and the lower figure describes the (permanent) relative wall displacement,
relD.

The top Case 1 figure depicts the case of a (labeled) negative triangular
area between the linear relative deceleration relA line and the time line
(i.e., NegativeArea », by Equation 4.19), being of less magnitude than the
positive value for relative velocity at time t; (designated relVo).
Consequently, the wall will remain in displacement (i.e., sliding) during
the entire time-step DT. At the increment in time lhsDT after time t;, a
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portion of the negative deceleration area reduces the value of relative
velocity from the positive value of magnitude relVo at time t; to a smaller
magnitude value at time [t; plus lhsDT], as shown in this figure. The
relative velocity at time [t; plus lhsDT] is

relVmid = relVO + % e |hsDT e(relA0+0) 4.20

The change in relative displacement from time t; to time [t; plus ThsDT] is
equal to the labeled positive area between the quadratic relative velocity
curve and the time line. At time [t; plus lhsDT] the relative wall
displacement increases in magnitude from relDo to relDmid.

IhsDT)?
raDmm:waDO+HmDTueN0+£—%;l_

¢(2erelA0+0) 4.21

The wall continues in motion, with positive relative velocity and with
additional permanent deformation after time [t; plus lhsDT] when the
relative acceleration of the wall is positive. At time [t; plus IhsDT] the
magnitude of the wall’s relative velocity begins to increase as a result of the
positive relative acceleration of the wall. The positive (labeled) triangular
area between the time line and the linear acceleration line, shown in the
top Case 1 figure, equals the change in relative velocity and for the wall,
consequently, the value for relative velocity at time ti., (labeled relV1 in the
Case 1 middle figure) is

relV1 =relVmid +%orhsDTo(O+relA1) 4.22

The change in wall displacement from time [t; plus lhsDT] to time ti;,is
equal to the integral of the positive relative velocity of the middle relV
figure. The permanent wall displacement increases in value from relDmid
to relD1, as depicted in the bottom figure.

, . (rhsDT)?
relD1 = relDmid + rhsDT e relVmid + Y (200+relAl) 4.23

Case 2: This case results when the positive value for relative velocity at
time t; is less than the magnitude of NegativeArea_ . (i.e., the negative area
between the negative portion of the linear acceleration line and the time
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line over the portion of the Figure 4.5 time increment labeled lhsDT). The
four right-hand side figures in Figure 4.5 are used to describe the Case 2
step-by-step solution scheme. From the top to bottom, one figure
describes the relative acceleration, two figures describe the relative
velocity, and one figure describes the permanent relative wall
displacement.

The top, right-hand side, Case 2 figure depicts the case of a (labeled)
negative triangular area between the linear relative deceleration line and
the time line, being of greater magnitude than the positive value for
relative velocity at time t; (designated relVo). Consequently, the wall will
come to rest before time ti.,is achieved. At an increment in time DTzeroV
after time t;, a portion of the negative deceleration area reduces the value
of relative velocity from the positive value of magnitude relVo at time t; to
a value of 0 at time [t; plus DTzeroV], as shown in this figure. At time [t;
plus DTzeroV] the relative acceleration is

4,24

relAmid = DTzeroD .( relAO )

IhsDT

where DTzeroD is the time increment shown in Figure 4.5. The Figure 4.5
negative (relative) deceleration area below time increment DTzeroV is

AreaTrapezoid_,, = %. DTzeroV e(relAO + relAmid) 4.25

The Figure 4.5 negative relative deceleration area below time increment
DTzeroD is

AreaTriangle_,, = % e DTzeroD e (relAmid +0) 4.26

Thus, the total Figure 4.5 negative relative deceleration area below time
increment lhsDT is

NegativeArea_,, = AreaTrapezoid_,, + AreaTriangle_,, 4.27

The relative velocity at time [t; plus DTzeroV] is

relVmid = relVO + AreaTrapezoid_,, 4.28
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With a value for relVmid equal to zero, Equation 4.28 becomes

O =relVO+ AreaTrapezoid_,, 4.29

Expanding by adding the term AreaTriangle.a. to both sides,
Equation 4.29 becomes

AreaTriangle_,, =relVO+ AreaTrapezoid ,, + AreaTriangle_,, 4.30

Which by introducing Equation 4.27, becomes

AreaTriangle_,, = relVO+ NegativeArea_,, 4.31

Introducing Equations 4.26 and 4.24 and solving for DTzeroD,
Equation 4.31 becomes

DTzeroD = |2e [ IhSDTj *(relVO+NegativeArea._,. ) 4.32
relAO

Recognizing the time increment lhsDT is equivalent to

IhsDT =DTzeroV + DTzeroD 4.33

and by introducing Equations 4.33 and 4.25 into Equation 4.32 and
solving for DTzeroV,

IhsDT
relAO

DTzeroV = IhsDT — \/ 2e ( j o (relVO + NegativeArea._,, ) 434

The change in relative displacement from time t; to time [ ti plus DTzeroV]
is equal to the labeled positive area between the quadratic relative velocity
curve and the time line. At time [t; plus DTzeroV] the wall displacement
increases in magnitude from relDo to relDmid. The relative velocity at
time [t; plus DTzeroV], expressed in terms of DTzeroV, is

relVmid = relVO + % e DTzeroV e(relAO + relAmid) 4.35

with the relative acceleration at time [t; plus DTzeroV] equal to
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e DTzeroV 4.36

relAmid = relAO + (Mj

The change in relative displacement from time t; to time [t; plus DTzeroV]
is equal to the labeled positive area between the quadratic relative velocity
curve and the time line. At time [t; plus DTzeroV] the wall displacement
increases in magnitude from relDo to relDmid.

(DTzeroV)?

relDmid = relDO + DTzeroV e relVO + *(2erelAD +relAmid) 4.37

The wall remains at rest with zero relative velocity and with no additional
permanent relative displacement from time [t; plus DTzeroV] until time [t;
plus lhsDT] when the relative acceleration of the wall begins (again). At
time [t; plus lhsDT] the wall begins to develop further permanent displace-
ment as a result of the positive relative reacceleration of the wall. The posi-
tive (labeled) triangular area between the time line and the linear relative
acceleration line, shown in the right-hand side of the top figure, equals the
change in relative velocity; and with the wall at rest, consequently, the
value for relative velocity at time ti.; (labeled relV1 in the lower relative
velocity figure) is

relVl = % erhsDT (O +relAl) 4.38

The change in wall displacement from time [t; plus lhsDT] to time ti.. is
equal to the integral of the positive relative velocity, as depicted in the
middle two, right-hand side relV figures. The top relV figure being a com-
putational figure, and the bottom relV figure being the relV curve-shift
figure that properly accounts for zero wall relative velocity over time incre-
ment DTzeroD, with an insert detailed, curve-shift figure for relV shown of
this computational relV figure in Figure 4.5. The permanent relative wall
displacement increases in value from relDmid to relD1, as depicted in the
bottom figure.

relD1 = relDmid +rhsDT ¢ 0 +

2
@o(2oO+relAl) 4.39
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4.4.4 Negative relative accelerations relAO and relAl at times ti and ti+1

Next consider a wall in motion (i.e., with a positive value for relative
velocity) at time t; but with the Figure 4.6 case of a negative values for
relative acceleration computed at time-steps t; and t;+:.t The first step is to
determine if the wall, which is in motion at time ti, comes to rest during
the time-step DT.

The negative area between the negative portion of the linear acceleration
line and the time line over the Figure 4.6 time increment DT is

NegativeArea_, = % o DT o (relA0 + relAl) 4.40

There are two possible outcomes for the Figure 4.6 step-by-step numerical
solution for relative velocity and relative displacement at time ti.,
depending upon the magnitude of relVo relative to the magnitude of
Equation 4.40 NegativeArea_,_. These possible scenarios are depicted by
two columns of figures in Figure 4.6, labeled as Case 1 and Case 2 figure
groups.

Case 1: This case results when the positive value for relative velocity at
time t; is greater than the magnitude of NegativeArea ,_ (i.e., the negative
area between the negative portion of the linear acceleration line and the
time line over the Figure 4.6 time-step DT). The three left-hand side
figures in Figure 4.6 are used to describe the Case 1 step-by-step solution
scheme: The top figure describes the relative acceleration, the middle
figure describes the relative velocity, and the lower figure describes the
permanent relative wall displacement.

1 Again, note the assumption of a linear variation in relative acceleration over the time-step DT shown in
Figure 4.6.
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Figure 4.6. Two possible outcomes for the case of negative relative accelerations at times ti
and ti+1.

The top Case 1 figure depicts the case of a (labeled) negative area between
the linear relative deceleration line and the time line (i.e., NegativeArea »_
by Equation 4.40), being of less magnitude than the positive value for
relative velocity at time t; (designated relVo). Consequently, the wall will
remain in motion during the entire time-step DT. At the time-step DT
after time t;, the negative deceleration area reduces the value of relative
velocity from the positive value of magnitude relVo at time t; to a smaller
magnitude value at time [t; plus DT], as shown in this figure. The relative
velocity at time [t; plus DT] is

relVl = relVO+%oDTo(reIAO+relV1) 4.41

The change in relative displacement from time t; to time [t; plus DT] is
equal to the labeled positive area between the quadratic relative velocity
curve and the time line. At time [t; plus DT] the wall displacement
increases in magnitude from relDo to relD1.
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DT)?
relD1 =relDO+DT erelVO + % o(2erelAD +relAl) 4.42

Case 2: This case results when the positive value for relative velocity at
time t; is less than the magnitude of NegativeArea_»_ (i.e., the negative area
between the negative portion of the linear acceleration line and the time
line over the portion of the Figure 4.6 time increment labeled lhsDT). The
four right-hand side figures in Figure 4.6 are used to describe the Case 2
step-by-step solution scheme. From the top to bottom, one figure
describes the relative acceleration, two figures describe the relative
velocity, and one figure describes the permanent relative wall
displacement.

The top, right-hand side, Case 2 figure depicts the case of a (labeled)
negative area between the linear relative deceleration line and the time
line (i.e., NegativeArea_»_ by Equation 4.40), being of greater magnitude
than the positive value for relative velocity at time t; (designated relVo).
Consequently, the wall will come to rest before time ti.,is achieved. At an
increment in time DTzeroV after time t;, a portion of the negative
deceleration area reduces the value of relative velocity from the positive
value of magnitude relVo at time t; to a value of 0 at time [t; plus
DTzeroV], as shown in this figure. At time [t; plus DTzeroV] the relative
acceleration is

4.43

relAmid = relAQ + DTzeroV (M)

DT

where DTzeroV is the time increment shown in Figure 4.6. The Figure 4.6
negative relative deceleration area below time increment DTzeroV is

AreaTrapezoid , = % e DTzeroV e (relAO +relAmid) 4.44

Introducing Equations 4.43, Equation 4.44 becomes

% eDTzeroV e relAO +

Arealrapezoid , = 4.45

DTzeroV .
DT

relAO +DTzeroV e (Mﬂ
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This simplifies to

AreaTrapezoid_, = DTzeroV e relAO + 4.46

(DTzeroV)” | ( relA1 - relAQ )
DT

The change in rotation from time t; to time [t; plus DTzeroV] is equal to
the labeled positive area between the quadratic relative velocity curve and
the time line. At time [t; plus DTzeroV] the wall displacement increases in
magnitude from relDo to relDmid. The relative velocity at time [t; plus
DTzeroV]is

relVmid = relVO + AreaTrapezoid_,_ 4.47

With a value for relVmid equal to zero, Equation 4.47 becomes

0- [1 (relA:L —relAO

p o7 ﬂ o (DTzeroV)’ +relAO e DTzeroV +relVO  4.48

This quadratic equation has a general solution of

—relA0 + \/( relA0)’ —4 o B . (re’MD‘Tremﬂ erelVO

1 (relAl — reIAOj
Qe —of —— — —
[2 DT

Even though this solution provides for two possible values for DTzeroV,
only the positive value is assigned to DTzeroV in CorpsWanRotate.

DTzeroV = 4.49

The change in displacement from time t; to time [t; plus DTzeroV] is equal
to the labeled positive area between the quadratic relative velocity curve
and the time line. At time [t; plus DTzeroV] the relative wall displacement
increases in magnitude from relDo to relDTmid.

(DTzeroV)?

relDmid = relDO + DTzeroV e relVO + o(2erelAO+relAmid) bis 4.37

The wall remains at rest with zero relative velocity and with no additional
permanent displacement from time [t; plus DTzeroV] until time [t; plus
DT]. Consequently, at time t;;+; the permanent relative wall displacement is
constant, as depicted in the bottom figure.
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relD1 = relDmid 4.50
with the value for relDmid given by Equation 4.37.

4.4.5 Positive relative acceleration relAO at time ti and negative relative
acceleration relAl at ti+1

Next consider a wall in motion (i.e., with a positive value for relative
velocity) at time t; but with the Figure 4.7 case of a positive value for relative
acceleration at time-step t; and negative value for relative acceleration at the
next time-step of ti...1 The first step is to determine the time instant [t; plus
lhsDTT] at which the relative acceleration is equal to zero, as labeled in the
figure. By linear interpolation, this time increment lhsDT is

relAQ e (LJ bis 4.18
relAl —relAO

IhsDT =

The positive area between the positive portion of the linear acceleration
line and the time line over the Figure 4.7 time increment lhsDT is

PositiveArea,, = % ¢ |hsDT e(relA0+0) 451

The Figure 4.7 time increment rhsDT is given by

rhsDT =DT —lhsDT 4,52

The negative area between the negative portion of the linear acceleration
line and the time line over the Figure 4.7 time increment rhsDT is

NegativeArea,, = % erhsDT (0 +relAl) 453

There are two possible outcomes for the Figure 4.7 step-by-step numerical
solution for relative velocity and relative displacement at time ti.,
depending upon the magnitude of relVo relative to the magnitude of the
sum of the PositiveArea,,_ plus the NegativeArea,,_. These possible

1 Again, observe the assumption of a linear variation in relative acceleration over the time-step DT shown
in Figure 4.7.
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scenarios are depicted by two columns of figures in Figure 4.7, labeled as

Case 1 and Case 2 figure groups.

Relative
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(Linear)

Relative
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(Quadratic)

Relative
Displacement
(Cubic)
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Figure 4.7. Two possible outcomes for the case of a positive relative acceleration at time t;
and a negative relative acceleration at time ti+1.

Case 1: This case results if (a) the NegativeArea,,_ exceeds
PositiveArea, - but the positive value for relative velocity at time t; is

greater than the magnitude of the negative sum of PositiveArea, - plus

NegativeArea,_, or (b) the NegativeArea, »_ is less than PositiveArea, s,
consequently the positive value for relVo at time t; will increase to a larger

value of relV1 at time ti., (with an increase equal to the positive sum of

PositiveArea, 5 plus NegativeArea,,_ ). The three left-hand side figures in
Figure 4.7 are used to describe the Case 1 step-by-step solution scheme:
The top figure describes the relative acceleration, the middle figure
describes the relative velocity, and the lower figure describes the
permanent relative wall displacement.

The top Case 1 figure depicts the case of a wall sliding during the entire

time-step DT because either (a) the NegativeArea, . exceeds
PositiveArea, - but the positive value for relative velocity at time t; is
greater than the magnitude of the sum of PositiveArea,,_ plus
NegativeArea,,_, or because (b) the NegativeArea, 5 is less than
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PositiveArea, . At the increment in time lhsDT after time t;, the positive
acceleration area increases the value of relative velocity from the positive
value of magnitude relVo at time t; to a larger magnitude value at time [t;
plus 1hsDT], as shown in this figure. The relative velocity at time [t; plus
IThsDT] is

relVmid =relVO + % e |hsDT e (relA0+0) bis 4.20

The change in displacement from time t; to time [t; plus IhsDT] is equal to
the labeled positive area between the quadratic relative velocity curve and
the time line. At time [t; plus lhsDT] the wall displacement increases in
magnitude from relDo to relDmid.

relDmid = relDO + |hsDT e relVO +

2
@ o(2erelA0+0) bis4.21

The wall continues in motion, with positive relative velocity and with
additional permanent relative displacement after time [t; plus IhsDT]
when the relative acceleration of the wall is positive. At time [t; plus IhsDT]
the magnitude of wall relative velocity begins to decrease in magnitude as
a result of the relative deceleration of the wall. The negative (labeled)
triangular area between the time line and the linear relative deceleration
line, shown in the top Case 1 figure, equals the change in relative velocity
for the wall. Consequently, the value for relative velocity at time ti+
(labeled relV1 in the Case 1 middle figure) is

relV1 = relVmid + % erhsDT ¢(0 +relAl) bis 4.22

The change in wall displacement from time [t; plus lhsDT] to time ti..is
equal to the integral of the positive relative velocity of the middle relV-
figure. The permanent relative wall displacement increases in value from
relDmid to relD1, as depicted in the bottom figure.

(rhsDT)?

relD1 = relDmid + rhsDT e relVmid + e(200+relAl) bis4.23

Case 2: This case results when the NegativeArea, »_ exceeds
PositiveArea, - and the positive value for relative velocity at time t; is less
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than the magnitude of the sum of PositiveArea,,_ plus NegativeArea,,_ .
The four right-hand side figures in Figure 4.7 are used to describe the Case
2 step-by-step solution scheme. From the top to bottom, one figure
describes the relative acceleration, two figures describe the relative
velocity, and one figure describes the permanent relative wall
displacement.

The top, right-hand side, Case 2 figure depicts the case of the sum of a
(labeled) positive triangular area between the linear relative deceleration
line and the time line (i.e., PositiveArea,,- by Equation 4.51) plus a
(lIabeled) negative triangular area between the linear relative deceleration
line and the time line (i.e., NegativeArea.,_ by Equation 4.53), being
negative and of greater magnitude than the positive value for relative
velocity at time t; (designated relVo). Consequently, the wall will come to
rest before time ti., is achieved.

At time [t; plus lhsDT] the wall’s relative velocity increases in magnitude
from relVo to relVmid. The relative velocity at time [t; plus lhsDT] is

relVmid = relVO + % ¢ |hsDT e(relA0+0) bis 4.20

with the relative acceleration at time [t; plus lhsDT] equal to zero.

The change in displacement from time t; to time [t; plus IhsDT] is equal to
the labeled positive area between the quadratic relative velocity curve and
the time line. At time [t; plus lhsDT] the wall displacement increases in
magnitude from relDo to relDmid.

2
relDmid = relDO + |hsDT e relVO + @

*(2erelA0+0) 454

At an increment in time [lhsDT+DTmid] after time t;, a portion of the
negative deceleration area reduces the value of relative velocity from the
positive value of magnitude relVmid at time [t; plus lhsDT] to a value of 0
at time [t; plus (lhsDT+DTmid)], as shown in this figure. At time [t; plus
(IhsDT+DTmid)] the relative acceleration is

4.55

relAend = DTmid -( relAl j

rhsDT
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where DTmid is the time increment shown in Figure 4.7. The Figure 4.7
negative relative acceleration area below time increment DTmid is

AreaTriangle,, = % e DTmid ¢ (0 +relAend) 4.56

The Figure 4.7 negative relative acceleration area below time increment
DTzeroV is

AreaTrapezoid,, = % e DTzeroV e (relAend +relAl) 457

Thus, the total Figure 4.7 negative relative acceleration area below time
increment rhsDT is

NegativeArea, , = AreaTrapezoid,, + AreaTriangle,, 4.58

With the relative velocity at time [t; plus (lhsDT+DTmid)] equal to zero,

O =relVmid + AreaTriangle, ,_ 4.59

By introducing Equations 4.20, 4.51, 4.55 and 4.56, and solving for
DTmid, Equation 4.59 becomes

DTmid = |-2e ( ! hSDTj «(relVO+PositiveArea,, ) 4.60
relAl

At time [t; plus (lhsDT+DTmid)] the relative wall displacement comes to
rest with

(DTmid)?

relDend = relDmid + DTmid e relVmid + e(2e0+relAend) 4.61

The wall remains at rest with zero relative velocity and with no additional
permanent relative displacement from time [t; plus (lhsDT+DTmid)] until
time t;+1. The permanent relative wall displacement at this time ti., is

relD1 = relDend 4.62
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4.4.6 Starting the Co,sWanRotate analysis and the initiation of wall
translation during a DT time-step

Start of the step-by-step time-history analysis: The numerical
formulation used in the step-by-step time-history analysis by
CorpsWanRotate assumes that the wall is at rest at the start of the analysis
(i.e., at time t; equal to 0 and with i =1). Consequently, relative
acceleration, relative velocity, and relative displacement are equal to zero
as an initial boundary condition at the first time-step (i.e., with i = 1).
Recall the relative acceleration at time t; is equal to the difference between
the horizontal ground acceleration value at time t; minus the constant
value of [(Kcg)threshold-sliding-h times g].

Initiation of wall displacement during the first DT time-step: At the end
of the first DT time-step, at time increment t. (i.e., ti+; and with i = 1 so the
subscript i + 1 becomes 2), a relative acceleration value is computed by
CorpsWanRotate. If a positive value for relative acceleration is computed at
time increment t. then the system is in motion (i.e., sliding) during this
first time-step DT.

However, if a negative value for relative acceleration is computed and the
system has been at rest and with zero relative acceleration at time t; = 0
(i.e., tiand for i = 1) then the system is at rest at time t.. This means that
the correct value for relative acceleration is zero at time t..

Initiation of wall displacement during a DT time-step: A wall is at rest at
the beginning of any DT time-step (designated time t; in Figures 4.3
through 4.7) when relative velocity and relative displacement are equal to
zero. At all DT time-steps other that the first time-step, the values at time
t; for relative acceleration, relative velocity, and relative displacement were
computed during the previous time-step and then assigned as known
values for this next time-step. The step-by-step numerical procedure
implemented in CorpsWanRotate allows for wall displacement to initiate
during any DT time-step during earthquake shaking. This will occur for a
wall at rest at time t;, i.e., the start of the time-step, when a positive value
is computed for relative acceleration at time ti+;. The numerical procedure
outlined in Figure 4.4 allows for the computation of relative velocity and
relative displacement at time t;., for this case.
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4.4.7 Cessation of wall translation

A wall is in motion at the start of any DT time-step (designated time t; in
Figures 4.3 through 4.7) when relative velocity (i.e., relV) is nonzero. The
step-by-step numerical procedure implemented in CorpsWanRotate allows
for wall translation (i.e., sliding) to terminate during any DT time-step
during earthquake shaking. This occurs when the deceleration of the wall
is sufficiently large during time-step DT. The applicable numerical
procedures are labeled as Case 2 in Figures 4.6 and 4.7.

In the case of wall translation decelerating and with negative values for
relative acceleration at times t; and ti+; during time-step DT, the relative
velocity at time ti.; (designated relV1) and the relative wall displacement at
time ti.: (designated relD1) are made using the Case 2 approach outlined
in Figure 4.6. Note the relative velocity reduces to zero at a time increment
DTzeroV after time t;. The wall remains at rest and with zero relative
velocity over time increment DTzeroD, as shown in this figure.

In the case of wall translation decelerating and with a positive value for
relative acceleration at time t; and a negative value for relative acceleration
at time ti+; during time-step DT, the relative velocity at time ti.,
(designated relV1) and the relative wall displacement at time ti.
(designated relD1) are made using the Case 2 approach outlined in Figure
4.7. Note the relative velocity reduces to zero at a time increment [lhsDT +
DTmid] after time t;. The wall remains at rest and with zero relative
velocity over time increment DTzeroV, as shown in this figure.

Note that wall translation can begin again at a later point in time, as
described in the subsection 4.4.6 paragraph entitled “initiation of wall
rotation during a DT time-step.”

4.5 New translational analysis model of a wall retaining a partially
submerged backfill and buttressed by a reinforced concrete slab

4.5.1 Introduction

The formulation for a rock-founded wall retaining a partially submerged
backfill and for the case of a pool in front of the retaining wall is
summarized in this subsection. The formulation presented is an extension
of the moist backfill formulation discussed in the previous sections of this
chapter. Water pressures are assumed to act along three faces of the
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structural wedge denoted as the toe, base, and the heel regions of Figure
4.8. Forces acting on the toe are due to the presence of a pool of water in
front of the wall. A leaking vertical joint is assumed between the base slab
and the structural wedge with water pressures above the toe controlled by
the presence of the pool. The computation of water pressures acting on
this partially submerged structural wedge is discussed in detail in
Appendix D.! The Figure 4.8 distributions of water pressures are
converted into equivalent resultant forces, expressed in global x- and y-
coordinates, and their points of application along each of the three
regions. These resultant water pressure forces are used in an effective
stress-based stability analysis of the structural wedge. Dynamic
considerations for the pool during earthquake shaking are accounted for in
the analysis using hydrodynamic water pressures computed using the
Westergaard (1931) procedure of analysis (see Appendix D). The
hydrodynamic water pressure resultant force Pwa (Equation D.5) is shown
acting on the structural wedge in this figure (and shown acting in a
direction consistent with the direction of positive horizontal acceleration,
+an).

1n the initial CorpsWanRotate version, no excess pore water pressures due to earthquake-induced shear
strains within the soil regions are included in the current CorpsWaiRotate formulation (i.e., the excess
pore water pressure ratio ru is equal to zero). Refer to Ebeling and Morrision (1992) for a complete
description and discussion of ru.
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Figure 4.8. Control points, water pressures, and corresponding resultant forces acting normal
to faces of the three regions of a structural wedge sliding along its base—effective stress
analysis.

In the case of a wall sliding along its base, contact between the base of the
structural wedge and the foundation is maintained during earthquake
shaking. Recall that a simplistic rigid base assumption is made in this
formulation for rock-founded earth retaining structures. There is no
formation of a gap sometime during earthquake shaking. Note that the
Figure 4.8 water pressure distribution is the steady-state pore water
pressures resulting from a structural wedge in full contact with the rock
foundation, shown in Figure D.1.

The resultant water pressure forces Utoe, Ubase, Uneel, and Pwa shown in
Figure 4.8 are superimposed on the free-body diagram of forces acting on
the Figure 4.2 structural wedge, resulting in the Figure 4.9 free-body
diagram. Recall Presist is the force provided by the reinforced concrete (toe)
slab.
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Figure 4.9. Inertia forces and resultant force vectors acting on a rigid block model of a
(inclined base) cantilever wall retaining a partially submerged backfill with sliding along the
base of the wall during earthquake shaking of the inclined rigid base—effective stress
analysis.

4.5.2 Threshold value of acceleration corresponding to incipient lift-off of
the base of the wall in rotation—partially submerged backfill

At the onset of sliding of the Figure 4.9 retaining wall, the horizontal
driving force equals the stabilizing (i.e., restoring) force. The summation
of the Figure 4.9 horizontal forces acting on the rigid body results in

%o(aw)h +P,.0c08(8)+ U, +P,y =

eel—x

4.63
P

resist

+Tecos(&)+N'esin(e)+Uy , +U

toe—x
T is the shear force required for equilibrium of forces acting on the
structural wedge (i.e., FSglige = 1.0). At incipient sliding, the shear strength

along the base to foundation interface becomes fully mobilized. Assuming
a full mobilization of shear resistance along the base (of length Liase), the
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shear force may be computed utilizing the Mohr-Coulomb failure criteria,
in an effective stress analysis, as

T =Cpose '®Lpase +N'otan(s,

base

base l base l) bis 4'2

The summation of the Figure 4.9 vertical forces acting on the rigid body
results in

4.64

toe—y

0 =N'ocos(g)—Tosin(g)—W+%o(aCG)v —P,c #sin(8)+ Uy, —U

Introducing Equation 4.2 for T, Equation 4.64 becomes

1
Ce Lbase toe—y

N'= _ 4.65
cos(&)—tan(d' .. ) ®sin(e)

osin(8)+W—\;VO(aCG)V +P, 08in(6)—Uppee, +U,

Introducing Equations 4.2 and 4.65 and collecting variables,
Equation 4.63 becomes

g'(ace)h +P,; 0C08(0)+Upee)  + Py =

P

resist

+U +

+C ‘o L ®COs ((C,‘) + Utoe—x base—x

base

clel

base

osin(g)JrW—\;/o(aCG ), +Pac #SiN(8) = Upase_y + Vs, 4.66

cos(&)—tan(d' .. )esin(e)
o[tan(d",,, ) cos(&)+sin(e) |

Equation 4.66 represents the equilibrium relationship for the (rigid)
structural wedge when the earthquake accelerations are such that the
factor of safety against sliding along its base is equal to 1.0. For a factor of
safety > 1.0 against sliding, the retaining wall does not slide. The rigid
body CG accelerations are the same as the rigid base accelerations (i.e.,
within the rock foundation). However, the accelerations felt by the rigid
body (i.e., at its center of gravity, CG) will differ from the rigid base
accelerations for user-defined rigid base acceleration (time-history) values
that exceed the value for acceleration that results in a factor of safety
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against sliding equal to 1.0. During sliding, the acceleration felt by the
rigid body at its center of gravity is of constant magnitude.

The component of the threshold acceleration occurring at translation (i.e.,
sliding) along the base is designated as

= [ ] i
(aCG )threshold—sliding—h (k CG )threshold—sliding—h g bis 4.8

where (Kkcg)hreshold-sliding-h i @ value of horizontal ground acceleration,
expressed in decimal fraction. In Ebeling and Morrision (1992), the
acceleration (acc)threshold-sliding-h 1S referred to as the maximum
transmissible acceleration (N*g) or as the yield acceleration. Note that the
horizontal acceleration value [(kcg)threshold-stiding-h times g] is a not a user-
specified constant.

For a user-specified constant! for vertical acceleration [i.e., (acg)v =
constant], CorpsWanRotate solves Equation 4.66 by introducing (acc)
threshold-sliding-h and (kcc) threshold-sliding-h for (ace)n and (kce)n. Because of the
inclusion of acceleration in Pag formulation (refer to Appendix A) in this
equation, CorpsWanRotate solves Equation 4.66 using a trial-and-error
numerical approach. Note that no safety factor need be applied to the
weight of the wall/structural wedge nor to its shear strength in this
calculation. The value of maximum transmissible (horizontal) acceleration
at incipient sliding is reported in the WORKslide.TMP output file
generated in each CorpsWanRotate analysis. This file may be viewed using
the Visual Modeler boxes labeled Show Sliding Evaluation on the Analysis
tab.

In CorpsWanRotate output data files, the Equation 4.66 horizontal forces
acting on the structural wedge are grouped into driving forces and
resisting forces, which are defined as

Driving Forces = % *(agg ), +Pie #C0S(8)+Upeery +Pog 4.67

and

1 A procedure for determining the value for this constant (for vertical acceleration) is discussed in
Section 4.6.
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Resisting Forces =P, +C'oL, . 0cos(&)+U, o, +U e +
. w :
c'e Lbase o SIn(E) +W- E ® (aCG )v + PAE d Sln(5) - Ubase—y + Utoe—y
. 4.68
cos(&)—tan(d',,. )®sin(e)
o[tan(",,. ) ecos(&)+sin(z) ]
Introducing Equation 4.65, the resisting forces is also expressed as
Resisting Forces =
Presist +C ‘e Lbase ®COS (‘9) + Utoe—x + Ubase—x + 4.69

{N'} o[ tan(5",,., ) e cos(&)+sin(¢)]

In a total stress analysis, the internal pore water pressure force terms Upase
and Upeel are excluded from Equations 4.66 through 4.69 and ¢’ is set
equal to S, with ¢’ set equal to zero. Additionally, N’ is set equal to N in
Equations 4.63 through 4.69.

Since the horizontal limiting acceleration is of interest, another option is a
simplified form of Equation 4.66 that may be derived by setting the
vertical component of acceleration occurring at sliding equal to zero, as
done by Richards and Elms (1979) and others. By making this assumption
and introducing Equation 4.8, Equation 4.66 becomes

(kCG )threshold—sliding—h =
base +U _PAE .005(5)_Uh

base—x
clelL,. .esin(e)+W+P, osin(é)—Ubasefy +Uipe_y 4.70
cos(&)—tan(d' .. ) ®sin(e)

P

resist T C oL ®COS (‘C") + Utoe—x eel-x Pwd +

o[tan(8',,. ) e cos(&)+sin(z)]
w

Because of the inclusion of acceleration in Par formulation (refer to
Appendix A) in this equation, CorpsWanRotate solves Equation 4.70 using a
trial-and-error numerical approach.

In a total stress analysis, the internal pore water pressure force terms Upase
and Upeq are excluded from Equations 4.63 through 4.70.
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The summation of overturning and resisting moments about the toe (i.e.,
point 0) of the Figure 4.9 forces acting on the rigid body results in

w w
E'(ace )n *AYee 0 +E°(ace )v ® AXcg /0 +Pae 'COS(5)°[(yhee/ +hPAE)_ytoe]

N0 0se +Upeerx ® I:(y heet T AY tneer ) ~Yie :' +Upzse—y ® MXipase T Upase—x
OAY jose +Pu ®| Hroor_nase +0-4 8 (Mo = Hoog_oase ) | = 4.71
Presist ® Moresist + W @ AXpg o + Py ®Sin (0)e AXpeer /o
U,y @AY oo T Uoe, @ AX oo

toe—x toe-y

Solving for the location of the result effective force normal to the base,
dnbase, Equation 4.10 becomes

w w
_E'(ace )n *Aesso _§°(ace )V ® AXcq/0

_PAE ®COS (5) ° [(yheel + hPAE) ~Yioe ]
_Uheel—x b I:(yheel + AYUh(—:*eI ) - ytoe:l - Ubase—y i AXUbase - Ubase—x i AYUbase
_Pwd d |:HPooI_base + 04 i (HPool - HPooI_base ):|

oh +W.AXCG/O +PAE .Sin(é‘).AXheel/toe
oAY, +U, _ oAX

Utoe toe—y Utoe
= 4,72

+P

resist Presist

+U
dNbase == N 1

toe—x

Because of the inclusion of acceleration in Par formulation (refer to
Appendix A) in this equation, CorpsWanRotate solves Equation 4.72 using a
trial-and-error numerical approach. Introducing the horizontal limiting
acceleration (i.e., Equation 4.8) in the case of a wall sliding along its base
and setting the vertical component of acceleration occurring at sliding
equal to zero, Equation 4.72 can be simplified to
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w
E ° (kCG )threshold—sliding—h * A-yCG/O

~P,c ecos(o)e [(yheel FNope) = Yioe ]
_Uheel—x b I:(yheel + AYUheel ) - ytoe:l - Ubase—y o AXUbase - Ubase—x * AYUbase

_Pwd ® |:HPool_base +0.40 (HPooI - HPooI_base ):|
* hPresist +We AXCG/O + PAE ° Sln(é) * AX
o AY, . +U AX

+Utoe—x Utoe toe—y o Utoe

- = 473

Nbase N 1

+P,

resist heel /toe

During sliding, the value of P is computed using the horizontal
acceleration value [(kcg)threshold-sliding-h times g], the maximum
transmissible acceleration (N*g in Ebeling and Morrison (1992) notation).
Recall that full contact is maintained between the base of the wall and its
foundation during sliding in this formulation.

In a total stress analysis, the internal pore water pressure force terms Upase
and Upeel are excluded from Equations 4.71 through 4.73.

4.5.3 Numerical method for computing the translational time-history of a
rigid block retaining structure

Earthquake acceleration time-histories are used to represent the
earthquake demand in a displacement analysis of rigid body structural
wedge (permanent) translation. A step-by-step solution scheme is followed
in order to obtain the wall’s relative velocity and relative displacement in
the time domain by CorpsWanRotate. An overview of the characteristics of
this numerical formulation is given in section 4.4.

4.6 Vertical acceleration in the new translational analysis model of a
wall retaining a partially submerged backfill and buttressed by a
reinforced concrete slab

Vertical accelerations can be included in the Newmark (1965) sliding block
analysis of earth retaining structures. However, several sliding block
formulations, e.g., Richards and Elms (1979) and others, set the vertical
component of acceleration occurring at sliding equal to zero in their
formulations. Whitman and Liao (1985, pages 30 and 74) observe that the
vertical earthquake ground motion component is generally not considered
to be of as much significance as the horizontal component and has
generally been ignored in sliding block analyses. From their study of the
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effect of vertical accelerations using 14 earthquake records on wall
displacements (summarized in Section 6.5 of their report), they conclude
that incorporating vertical ground accelerations causes greater residual
displacement.

Current Corps projects often involve the development of horizontal and
vertical acceleration time-histories for use in the design of various project
features. One of the Corps projects leading to the development of
CorpsWanRotate is sited in a high seismic region on the West coast and
situated in close proximity to an active fault that dominates the ground
motion hazard. Initial assessments of the Maximum Credible Earthquake
design events led to the development of horizontal and vertical
acceleration time-histories with positive/negative peak values of
1.2g/-1.02g and 0.83g/-1.2g, respectively. Normally the polarity of ground
motions is not retained in their development so that in a sliding block
analysis four combinations of horizontal and vertical ground motions are
investigated, with two due to the reverse in sign for the horizontal and two
due to the reverse in sign for the vertical acceleration time-histories. This
can easily be accomplished by selecting the option to invert a time-history
in the CorpsWanRotate Visual Modeler in the horizontal and/or vertical
earthquake time-history tabs. For the case of a “dry” site (i.e., no pool nor
water table within the retained soil), with cohesionless soils, interface
friction & between the driving and structural wedges equal to zero, the
computed value for the effective normal force acting along the base of a
structural wedge would be less than or equal to zero according to Equation
4.6 or Equation 4.65. The shear force resistance along the base of the
structural wedge would be less than or equal to zero by Equation 4.2,
resulting in infinite relative displacements. Consequently, a vertical
acceleration time-history with magnitudes (at time-steps) approaching or
exceeding 1g cannot be used in the current formulation.

In an attempt to answer questions regarding the impact of a vertical
acceleration time-history of significant amplitude on seismic response, as
is the case for the Corps project discussed in the previous paragraph, an
alternative method to incorporate the effects of vertical accelerations in a
Newmark (1965) sliding block analysis is proposed. This new approach is
incorporated in CorpsWanRotate program.

In a Newmark sliding block analysis of a retaining structure,
CorpsWanRotate allows the user to specify a constant value for vertical
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acceleration to be used (a) in the equilibrium Equation 4.7 or 4.66 when
computing (in a trial-and-error numerical procedure) the value of
maximum horizontal transmissible acceleration, (acc)threshold-sliding-h , and
(b) during the entire horizontal sliding block time-history analysis. This
software implements the following two new methods for determining an
approximate, constant, effective value for vertical acceleration:

Method 1 - average vertical acceleration value: Using the user-
specified horizontal acceleration time-history and the user-provided
constant value for vertical acceleration, the value for maximum horizontal
transmissible acceleration, (acg)hreshold-sliding-h, is computed and a sliding
block time-history analysis is performed. The software then identifies at
which i time increments that incremental sliding (d.); takes place and the
total number of incremental time-step increments i during which sliding
occurs, designated ngide. The average vertical acceleration value for the
user-specified vertical acceleration time-history is computed for all these i
time increments using the relationship

(ac )v_ave =1 4.74

The sign for the average vertical acceleration, (av);, during each select time
increment i for which incremental sliding occurs is maintained in this
calculation.

A trial-and-error procedure is used to determine the appropriate value for
the constant vertical acceleration value. The primary author of this report
usually starts with a constant vertical (Y) acceleration value set equal to
zero. A Newmark sliding block analysis is made, including a computation
made by CorpsWanRotate using Equation 4.74 to determine a value for
(acg)v-ave - Then a second Newmark sliding block analysis is made in which
the constant vertical acceleration value is set equal to the previously
computed value for (acc)v-ave by the user. This second computation results
in an updated value for (acg)v-ave - The iterative process is repeated until
the difference between old and new values is minor, usually within four
computations.

Method 2 - weighted vertical acceleration value: This approach is a
variation of Method 1. Using the user-specified horizontal acceleration
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time-history and the user-provided constant value for vertical (Y)
acceleration, the value for maximum horizontal transmissible acceleration,
(aca)threshold-sliding-h, 1S computed and a sliding block time-history analysis is
performed. The software then identifies at which i time increments during
which incremental sliding (d.); takes place and the total number of time
increments i during which sliding occurs is designated nsiige. The total
horizontal displacement is

d,=>(d,), 4.75

A weighted vertical acceleration value is computed for the user-specified
vertical acceleration time-history with average vertical acceleration value,
(av)i, computed for each time increment i of incremental displacements
using the following relationship

r

Again, the sign for the average vertical acceleration, (ay);, during each
select time increment i of incremental displacements is maintained in this
calculation.

A trial-and-error procedure is used to determine the appropriate value for
the constant vertical acceleration value. The primary author of this report
usually starts with a constant vertical (Y) acceleration value set equal to
zero. A Newmark sliding block analysis is made, including a computation
made by CorpsWanRotate using Equations 4.75 and 4.76 to determine a
value for (acg)v-weighted - Then a second Newmark sliding block analysis is
made in which the constant vertical (Y) acceleration value is set equal to
the previously computed value for (acg)v-weighted by the user. This second
computation results in an updated value for (acg)v-weighted . The process is
repeated until the difference between old and new values is minor, usually
within four computations.

Method 2 differs from Method 1 in that the weighting factor applied to
each of the average vertical acceleration, (av);, values at the i time
increments of incremental sliding is assigned according to the relative
magnitude of incremental displacements occurring at each time
increment. Method 1 applies a uniform weighting factor.
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5 The Visual Modeler and Visual Post-
Processor — CorpsWanRotate

5.1 Introduction

This chapter discusses the Visual Modeler, how to perform a
CorpsWanRotate analysis, and how to interpret the results using the Visual
Post-Processor. It also provides guidance for using the CorpsWanRotate
software package. The software package is referred to by its abbreviated
name, CWRotate, throughout this chapter.

5.2 Visual modeler and visual post-processor
5.2.1 Introduction to the visual modeling environment

CWRotate is a program for performing rotational or translational time-
history analysis of a variety of wall structures during earthquake loading.
This chapter is intended to give the user an understanding of how the
CWRotate program is to be used to its greatest potential. To that end it
also tries to imbue the user with an understanding of the work-flow in
creating and executing a CWRotate analysis.

Input data for the CWRotate program falls into six different groups, and
the user-interface reflects those groupings using tabs. The input groupings
are:

e Horizontal earthquake time-history data
e Vertical earthquake time-history data

e Structural geometry

e Structural wedge information

e Driving wedge information

e Analysis specific data

There is one other tab, a “splash” tab that shows a typical example of the
type of problem handled by the CWRotate program; this is labeled as the
Introduction tab. Above the Introduction tab shown in Figure 5.1 is a drop
down menu entitled “File.” Activating this menu allows the user to open an
existing, user-created, ***.CWR file that replenishes the contents of all



ERDC/ITL TR-06-2 158

tabs. Also on the Analysis tab are the controls to run an analysis and post-
processing options.

Introduction Tab: The first tab, labeled Introduction, shows the
structural wedge, idealized as a rigid body, and the forces acting on it
(Figure 5.1). The rock-founded cantilever retaining wall is buttressed at its
toe by, e.g., an invert spillway slab (not shown). The rotation of the
structural wedge about its toe is assumed to occur during earthquake
shaking.

Forces Shown on the Introduction Tab: P4 is the dynamic active
earth pressure force due to the driving, moist soil wedge (not shown) or
the partially submerged soil wedge (when a water table is present in the
retained soil). Inertial effects due to earthquake shaking are incorporated
in Pag. W is the weight of the structural wedge, including both the weight
of the (cantilever) retaining wall as well as the weight of the soil contained
with this idealized structural wedge. W times ki, and W times ky are the
horizontal and vertical inertial forces, respectively, acting on the structural
wedge during earthquake shaking. The reactions of the rock foundation on
the structural wedge are represented through the horizontal and vertical
forces T and N’, respectively. Presist is the force provided to the toe of the
(cantilever) retaining wall by the invert spillway slab (not shown) during
earthquake shaking.

5.2.2 Earthquake time-history input

Both horizontal and vertical time-history input follow the same input
pattern. First an appropriate, base-line corrected acceleration time-history
data file is selected for the Corps project by the user. Given the non-
standardized nature of earthquake time-history data files, certain
attributes need to be specified to correctly read the input (ASCII) data file.
These attributes are entered in the Format section of the Earthquake
Time-history (EQTH) tabs — Horizontal and Vertical. This is an
exceptionally powerful tool for handling any format EQTH files. Figure 5.2
shows the Horizontal Earthquake Time-History tab.

To read in an appropriate EQTH data file, the user must first specify a file
to be read in. The user can type a specific filename or select a file using the
Find button that exists on the Earthquake Time-History tabs.
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Figure 5.1. The Introduction tab features and idealized structural wedge diagram.

When a file has been selected, a format must be built. All specifications for
reading a file are grouped in a frame labeled EQTH Format. To know
what information to enter for reading the file, it will be beneficial to be
able to peruse the file to find each section of data.
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The first data in each EQTH file are a number of header lines. These are of
no concern to the CWRotate program, so entering how many header lines
there are allows the program to skip those lines. Also of no concern to the
program CWRotate are line numbers in the input. In order to ignore them,
the user must specify whether these line numbers exist, and if they do,
which side of the data are they on.

It is more important to know how many data samples are on each line.
Entering the Number of Values/Line keeps the program from entering
blank samples or ignoring samples. The value entered for Time-step
should be the amount of time that occurs between samples, establishing
the sampling frequency and the total time for the earthquake data.

Since CWRotate works from the beginning of an earthquake, it is to be
assumed that the first sample, time-step 0, will be of value 0.0 in whatever
units are to be chosen. If the EQTH file does not have this zero point, it
will have to be added. This can be done using the combo box provided.

In the same manner, the units in which the data were recorded can be
specified. NOTE: The vertical EQTH file uses the same units as the
Horizontal EQTH file. EQTH units must be consistent.

Finally, there is a combo box that shows several options for a data format.
These formats are displayed as if they were in a FORTRAN FORMAT
statement. These are especially important in areas where data text may
run together.

After an EQTH format has been built for a particular file, the user can read
in the Earthquake Time-history. When the button has been pressed, the
actual values of the maximum and minimum values for that file are
displayed in the Data Limits sub-frame of the EQTH Format frame. A
plot of the input data also is displayed at the bottom of the tab. The Edit
EQTH Data frame is also enabled.

The Edit EQTH Data frame is a tool that allows the user to scale the
EQTH data to values more appropriate for modeling the problem at hand.
There is a combo box that allows the user to invert the user-specified
earthquake acceleration time-history values, which is valuable for
determining how the direction of peak values influences the computed
results.
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There are also two possible ways of scaling the input data, either by setting
an absolute scale value to multiply the samples by or by setting an absolute
maximum value for the positive peak value and scaling the other samples
to match. To choose the scale method, click the radio button beside that
option. Then type in the value desired.

When this is done the inactive choice will be updated with the related
value. Also, the scaled minimum and maximum values will be displayed,
and the data plot at the bottom of the form will reflect the changes.

If the user desires a hardcopy of the scaled data in the same format as at
the bottom of the tab, there is a button labeled Print Plot.

Vertical acceleration time-histories are handled in a similar fashion as the
horizontal acceleration time-histories.

5.2.3 Structural geometry input

For simplification of the geometric modeling and engineering analysis
required to configure the structural wedge for analysis, it is assumed that
the structural geometry of any structure designed by this program will be
described in axis-aligned right-triangular and rectangular regions. Using
this idea, a structural region template was created (see the lower image in
Figure 5.3) that allows the user to specify regions as widths and heights for
an accurate representation of the wall. There are a total of ten different
regions that may be used. Each region is placed in relation to the other
regions, and most regions can be represented as zero width and/or height,
effectively removing them from the structure. The result of this modeling
technique is the possibility to model almost any standard Corps retaining
wall cross section.

The diagrams in Figures 5.4 and 5.5 illustrate how the sections can be used
to create different wall cross sections. Figure 5.4 displays each of the ten
sections as well as their widths and heights. Each section is either
rectangular or right triangular, and can therefore be defined by specifying
the width and height of each of the sections that, when assembled
together, form the structural wedge. Three material regions of concrete,
moist soil, and saturated soil are allowed. The concrete material regions
are assigned to material region numbers 1, 2, 6, 7, and 10. Moist soil
material regions are assigned numbers 4, 5, and 9, while saturated soil
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material regions are assigned numbers 3 and 8. Values for the three
material unit weights are specified by the user as part of the input data.
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Figure 5.2. A strong earthquake time-history ground motion shown in the Earthquake tab.
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Figure 5.3. Dynamic forces acting on the free-body section of the structural wedge and its
material regions.
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Figure 5.4. Examples of width and height definition for each of the ten structural wedge
material regions.

Figure 5.5 shows examples of how different walls may be configured using
the ten sections. Entering a width or height of zero enables sections to be
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entirely ignored for a structural wedge. For example, in the first diagram,
region 6 is not used and therefore its width (or height) is set to zero as user

input.

No Slope
(No Material 5)

No Water Table
(No Materials 3 and 8)

No Water Table
(No Materials 3 and 8)

No Water Table
(No Materials 3 and 8)

No Slope
(No Material 5)

No Water Table

(No Materials 3 and 8) | 75

No Wall Batter

(No Materials 6 and 7) kY

No Water Table

(No Materials 3 and 8) | *

No Water Table

(No Materials 3 and 8) A

Figure 5.5. Examples of structural wedge material regions (Sheet 1 of 4).

a. Moist backfill (Continued)

When region 10 is specified, as in the case of some of the hypothetical wall
geometries shown in Figure 5.5, the user is allowed to input the height of
the region but not its width. The width of region 10 is dictated by the
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geometry (specifically, the width) of region 1, as shown in these figures.

When this region is present, the user specifies its height.

No Water Table ‘- @
(No Materials 3and 8) | :, -

No Water Table :
(No Materials 3 and 8) 2

No Water Table
(No Materials 3 and 8)

No Water Table
(No Materials 3 and 8)
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(No Materials 3 and 8)

(o

(10

a. Moist backfill (Continued).
Figure 5.5. (Sheet 2 of 4).
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a. Moist backfill (Concluded).
Figure 5.5. (Sheet 3 of 4).

Figure 5.5b shows the configurations possible if a water table is specified
in the retained soil. Regions 3 and 8 are created when a table within the
retained soil is higher than the concrete structure above the heel point.
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b. Partially submerged backfill.
Figure 5.5. (Sheet 4 of 4).

The Figure 5.6 Geometry input tab is designed around this template
scheme and provides a visual confirmation for the user. At the upper left of
the tab, there is a region template that shows all of the regions that can be
used in CWRotate. Each region is color-coded to show which of the three
materials it belongs to. The currently selected region (chosen in the
Region Information box) is highlighted to show the user which
geometry is being changed.
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At the upper right of the tab is a drawing of the geometry as created by the
user. Three data points are also displayed for the structure (although
overlapping points may hide others). The toe point is the lower leftmost
point of the wall and it is displayed in purple. All geometry is placed
relative to this toe location. Its coordinate is entered in the Toe Position
box, using the units specified in the Units of Length combo box. Since
all data are relative to this point, changing the toe position will not change
the input geometry plot.

Another point displayed on the input geometry plot is the rotation point.
In this initial version of CorpsWanRotate, the rotation point will be specified
by default to be the same as the toe point and will hide the toe point dot in
the input geometry plot. The rotation point, displayed in red, is the point
at the base, coincident with the toe of the wall. It is the point about which
the structural wedge will rotate. Note that the rotation point is restricted
to the toe point in the Rotation Point data box display. The boxes for the
coordinate entries are gray, signifying a fixed value that the user may
not change.

The last point that is displayed on the input geometry plot is the center of
gravity for the structural wedge, displayed in light green. The center of
gravity is computed for the user, based on the geometry for the model and
the material unit weights for each region of the geometry. The actual
absolute coordinates of the center of gravity are displayed in the Center
of Gravity box. Because it is a computed value, its (coordinate) entry
boxes are gray to designate that the user need not perform this tedious
calculation.

There are four unit weights for the model. These unit weights are for
concrete, moist soil, saturated soil, and water. They are user-specified
input in the Unit Weights data box, using the units displayed in the title
for the box.

The input geometry is input using the Region Information box. The
user can select a region to edit, which will be highlighted in the region
template plot, and then specify a width and height for that region. Any
other affected regions are adjusted to fit the new region and the results are
displayed in the input geometry window.



ERDC/ITL TR-06-2 170

Another way to change the geometry of the model is to specify the
Backfill Water Table Height. The water table height specifies the
separation point between moist and saturated soil, in the input geometry
(and in the driving wedge, discussed later). The water table height is
specified relative to the heel of the model, defined as the lower rightmost
point, possibly below the toe.

On the pool side, the water must be taken into account for rotation or
sliding, too. The Pool Base height is set by the top of the buttressing,
reinforced concrete toe slab, and is measured (vertically) from the toe. The
Pool Height is also measured relative to the toe. These two heights define
the total height of the pool for hydrodynamic water pressure calculations
(see Appendix D).

The last bit of input data to be entered on the input geometry tab is a force
representing the buttressing action of the reinforce concrete slab acting on
the vertical face extending upwards from the toe of the wall. This is a user-
specified force which acts horizontally at a user-specified height above the
toe of the retaining wall. (Refer to Strom and Ebeling (2004) for a method
to determine the magnitude of this force.) The relative height and
magnitude are specified in the Resisting Force box, using the units in
the title of the box. Its height is measured relative to the toe.

From the Geometry tab, a button click can let the user view the water
pressures for the structural geometry, relative to the water heights
(Figures 5.7 and 5.8). (Refer to Appendix D for a complete description of
the assumptions made for water pressures in this initial version.) Another
tab shows the computed data for the structural wedge (Figure 5.9). Tables
showing the current input and computed values (center of gravity,
moment about the rotation point, etc.) can be viewed, saved to a file, or
printed. It is also possible to print a plot of the input data from this
window.
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Figure 5.7. Boundary water pressure diagram — full contact along the base of the retaining
wall with its foundation in a sliding block analysis.

5.2.4 Structural wedge data

To simplify the computation of forces upon a wall, the model of the
retaining system was split into two wedges: The structural wedge contains
the retaining wall geometry, and the driving wedge to the right of the
structure that “pushes” against the structural wedge.

From the Structural Wedge data tab, it is possible to enter the
engineering material properties for the structural wedge. Soil strength can
be entered using parameters associated with either the Effective Stress
or Total Stress method of analysis, with either choice determining what
is input. Consideration of seismically induced permanent deformations is
part of the material property specification process. These data input tabs
for the structural wedge are shown in Figures 5.10 and 5.11, respectively.

If Effective Stress method of analysis is chosen, then the effective angle
of internal friction and the effective cohesion need to be entered for both
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the foundation soil and the soil-to-concrete interface at the base of the
retaining wall.

Options
Erschi T Geometry w/' Boundary 'Water Pressure -

Geometry w/ Boundary Water
Full Base Contact Preszure - Loss of Contact

™

Figure 5.8. Boundary water pressure diagram — loss of contact (i.e., development of a gap)
along the base of the retaining wall with its foundation in a rotational analysis.

If Total Stress is chosen then the undrained shear strength is required
for both foundation soil and the soil-to-concrete interface. The tab changes
reflect the different input. Note that in a total stress analysis the friction

angle (PHI) box does not accept user input and its value is internally set
equal to zero by CWRotate.
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Figure 5.10. Defining the material properties using the Structural Wedge tab for an effective
stress analysis.
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Figure 5.11. Defining the material properties using the Structural Wedge tab for a total
stress analysis.
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5.2.5 Driving wedge data

Modeled after the input to the PC-based program EQWedge (developed by
the primary author of this report), the driving wedge data allow the input
of engineering data for determining the force imposed by the driving
wedge on the structural wedge. The sweep-search wedge formulation is
used to compute this force, as discussed in Appendix A. Some structural
wedge geometry data are also displayed on this tab as a reminder for the
user.

Once again, the method for determining the soil strength determines the
data that are input for the driving wedge soil properties. If Effective
Stress is chosen then the effective angle of internal friction and the
effective cohesion need to be entered for the retained soil of the driving
wedge (Figure 5.12). (The effective angle of interface friction is also
specified.) Otherwise, if Total Stress is chosen then only the undrained
shear strength is required for the retained soil of the driving wedge (Figure
5.13). The tab changes to reflect the different input. All other inputs for
this tab stay the same.

The value entered for Delta is the effective angle of interface friction
between the driving wedge and the structural geometry. This interface is
the imaginary vertical section that extends upwards from the heel of the
wall and delineates the driving wedge from the structural wedge.

The height of the vertical section is determined from the structural wedge
geometry. It is provided to give the user knowledge of the length of the
vertical interface between the structural wedge geometry and the driving
wedge.

The height to level backfill and backfill slope entries define the shape of
the driving wedge. It is assumed that the retained soil geometry is as high
as or higher than the structural wedge geometry, as defined by the height
to level backfill. If the retained soil is higher than the structural geometry,
then a slope must be specified for the backfill, until it reaches the level
backfill limit.

The next three values shown are the moist unit weight, the saturated unit
weight, and the hydrostatic water table. These values were all entered in
the structural wedge Geometry tab, and are provided here as a reminder.
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The next value, ry, is the excess pore water pressure ratio due to
earthquake shaking in an effective stress analysis. It is disabled in this
program (at this time). However, provisions are made to add this option to
CWRotate in the future.

The final value for entry is the minimum angle for the slip plane. Using a
sweep-search method of analysis, CWRotate will evaluate all potential slip
planes in 1-degree increments, between the user-provided Min. angle for
slip plane value (in degrees) and 89 degrees, from horizontal. If a
maximum thrust force is not found (refer to insert figure to Figure A.1)
then the driving wedge defined by the user-provided minimum angle for
slip plane is used to compute the thrust force acting on the structural
wedge. A low value for this angle is typically specified by the primary
author of this report (e.g., on the order of 5 degrees or so) unless there are
geometrical constraints.
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Figure 5.12. Defining the material parameter for the Driving Wedge tab — effective stress
method of analysis.
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Figure 5.13. Defining the material properties for the Driving Wedge tab — total stress method
of analysis.
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5.2.6 Analysis results and visual post-processor

The Figure 5.14 Analysis tab is broken into three sections: Input
Parameters, Run CWRotate Analyzer, View Qutput. The Input
Parameters section allows the user to enter last-minute analysis options.
The Run CWRotate Analyzer section is a button to execute the program.
The View Output section contains options for viewing the many outputs of
the CWRotate Analysis, including an option to view the total rotation
and/or slide of the structure.

Immediately prior to execution of CWRotate it is a good idea to create a
restart file containing all the input information. This is accomplished by
using the file drop down menu and the save option. The file created has a
“CWR?” extension. This file may be read in by CWRotate using this same
file drop down menu and populate the data contained within all tabs at a
later point in time.

After the Run CWRotate Analyzer button is activated, a CWRotate.IN
ASCII data input file, described in Appendix F, is created by the Visual
Modeler and the FORTRAN engineering program is executed. This
FORTRAN engineering program creates the output and plot data files that
are used in the Figure 5.14 Visual Output frame of the Analysis tab.
Appendix G lists and summarizes the contents of these output and plot
data files.
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Figure 5.14. The Analysis tab.

In the Input Parameters frame allows for the user to select/specify the
following four pieces of information:

1. Vertical Time-History Usage combo box:
e Determine representative constant value

Evaluate with representative constant value
Evaluate with current time-history
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2. Constant Y Acceleration data box.
3. Analysis Type combo box:

e Sliding Analysis
e Rotating Analysis
e Sliding and Rotating Analysis

4. Output Units combo box.

Input Parameters selection is best described by the following staged seis-
mic evaluation approach: The first step in the process is to determine if the
user-specified retaining wall will slide or rotate during shaking when sub-
jected to the Corps Project Design Earthquake:

1.

Select a Sliding Analysis Type and select Vertical Time-history
Usage: Determine a representative constant value for the vertical
time-history (which will be a trial-and-error, iterative process). In the first
iteration specify a Constant Y Acceleration set equal to zero. Select
Run CWRotate Analyzer and view the results to determine the average
and the weight vertical acceleration during sliding (definitions given in
Section 4.6), as reported by the Show Sliding Evaluation button (or,
equivalently, in the WORKslide. TMP ACSII output file). Perform a second
CWRotate analysis using an updated Constant Y Acceleration value
based on this vertical acceleration information. Repeat the analysis until
conversion is achieved. Read the updated value for the maximum trans-
missible acceleration and the updated value for the incipient lift-off in
rotation acceleration as reported by the Show Lift-Off Evaluation
button (or, equivalently, in the WORKrotate. TMP ACSII output file). Note
that both analyses are using the same Constant Y Acceleration values
in their respective computations. The smaller of the two horizontal accel-
eration constants dictates if the wall will slide or rotate for the given wall
geometry, soil shear strengths, and ground motions. If the values for the
maximum transmissible acceleration and the value for the incipient lift-off
in rotation acceleration are close, it may be worthwhile to perform a sec-
ond series of rotating block analyses to determine a more accurate value
for the Constant Y Acceleration that is consistent with the acceleration
pulses generating wall rotation for the lift-off evaluation process, rather
than using the value determined by using the results based on a sliding
block evaluation process.

In order to determine a value for the Constant Y Acceleration that is
consistent with the acceleration pulses generating wall rotation for the
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lift-off evaluation process, select a Rotating Analysis Type and select
Vertical Time-history Usage: Determine a representative con-
stant value for the vertical time-history (which will be a trial-and-error,
iterative process). In the first iteration specify a Constant Y Accelera-
tion (set equal to zero or the value determined from the final sliding block
analysis discussed in the previous paragraph). Select Run CWRotate
Analyzer and view the results to determine the average and the weight
vertical acceleration during sliding (definitions given in Section 4.6), as
reported by the Show Lift-Off Evaluation button (or, equivalently, in
the WORKrotate. TMP ACSII output file). Perform a second CWRotate
analysis using an updated Constant Y Acceleration value based on the
vertical acceleration information. Repeat the analysis until conversion is
achieved. Read the updated value for the incipient lift-off in rotation accel-
eration as reported by the Show Lift-Off Evaluation button (or, equiva-
lently, in the WORKrotate. TMP ACSII output file). The smaller of the two
horizontal acceleration constants, the maximum transmissible accelera-
tion value and the value for the incipient lift-off in rotation acceleration,
dictates if the wall will slide or rotate for the given wall geometry, soil shear
strengths, and ground motions.

If the wall will slide before it will rotate, then for the sliding block analysis
using the final Constant Y Acceleration value (determined during the
sliding pulses?), continue viewing the results of the Newmark time-history
analysis using the as reported in the figure(s) activated by the Plot Slid-
ing Time-History button. Show Sliding Evaluation button (or,
equivalently, in the WORKslide. TMP ACSII output file) also reports the
value for the cumulative (permanent) horizontal relative wall displace-
ment. Forces acting on the structural wedge are reported in this same data
output box and file.

If the wall rotates before it slides, then another CWRotate analysis is
required. Select a Rotating Analysis Type and select Evaluate with
current time-history for the Vertical Time-history Usage. View the
results of the rotating structural wedge time-history analysis as reported in
the figure, is activated by the Plot Rotating Time-history button.
Show Lift-Off Evaluation button (or, equivalently, in the
WORKTrotate. TMP ACSII output file) also reports the cumulative

1 Based on Input Parameter selection for the Analysis tab of a Sliding Analysis Type and Vertical Time-
History Usage: Determine a representative constant value or with Evaluate with representative
constant value.
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(permanent) wall rotation. Moments and Forces acting on the structural
wedge are reported in other output button activated files (refer to Appen-
dix G for a description of output file contents).

If the user were to select a Sliding and Rotating Analysis Type, select
Evaluate with a representative constant value for the Vertical
Time-history Usage and specify a Constant Y Acceleration value,
and Run CWRotate Analyzer. During the CWRotate analysis, the pro-
gram would automatically determine if the wall will slide or rotate and
perform the appropriate time-history analysis (but not both complete
time-history analyses).

The two examples discussed in the following two subsections demonstrate
this process.

5.2.7 Example 1 — Earth retaining wall at a dry soil site — No reinforced
concrete slab buttress at the wall’s toe

In this first example consider the case of the seismic stability evaluation of
the Figure 5.15 reinforced concrete earth retaining structure. No buttress-
ing toe slab exists in this evaluation. This 22-ft high earth retaining struc-
ture retains moist cohesionless soil, dense sand, and is founded on rock.
During construction, a thin layer of dense sand was used to level the top of
rock before pouring the base of the reinforced concrete retaining wall. It is
assumed that this Corps project is sited in a high seismic region on the
West coast and situated in close proximity to an active fault that domi-
nates the ground motion hazard. The projects horizontal and vertical
strong ground motion component time-histories were provided (by the
District) and possess scaled horizontal and vertical acceleration time-
histories with positive/negative peak values of 0.96g/-0.82g and
0.68g/-0.96g, respectively. Both acceleration time-histories are baseline
corrected. The polarity of ground motions was not retained during their
development.
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Retained soil
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Figure 5.15. Rock-founded earth retaining wall for Example 1.

Figure 5.16 shows the input Geometry tab data for this problem. Material
region numbers 1, 2, 4, 6, and 10 are used to define the geometry of the
structural wedge. Note a resisting force at the toe of the wall is set equal to
zero since a reinforced concrete buttress slab is not present.

A minimum angle for slip plane of 3 degrees from horizontal is specified in
the Driving Wedge tab (not shown). Additionally, residual shear
strength parameter values of ¢’ = 35 degrees and ¢’ = 34 degrees are
specified for the retained soil and the cohesionless soil immediately in
contact with the base of the structural wedge, respectively.
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Figure 5.16. Data contained within the input Geometry tab for Example 1.

The first step in the CWRotate analysis is to determine if the Figure 5.15
retaining wall will slide or rotate during shaking when subjected to the
District’s Project Evaluation Earthquake. Select a Sliding Analysis Type
and select Determine a representative constant value for the Verti-
cal Time-history Usage (which will be a trial-and-error, iterative proc-
ess). Table 5.1 summarizes the computed results from this two-iteration
process. In the first iteration, a Constant Y Acceleration is set equal to
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zero. The program is executed via select Run CWRotate Analyzer but-
ton and the results used to determine the average and the weighted verti-
cal acceleration during sliding (definitions given in Section 4.6), are
viewed by the Show Sliding Evaluation button (or, equivalently, in the
WORKslide. TMP ACSII output file). Based on the computed average and
weighted vertical acceleration values, a second CWRotate analysis is con-
ducted using a Constant Y Acceleration set equal to 0.01g. Figure 5.17
shows the Analysis tab input and settings for this computation. This sec-
ond iteration/Newmark sliding block computation is made with Constant
Y Acceleration set equal to a constant 0.01 g. Conversion is achieved in
this computation as demonstrated in the tabulated values. The bottom fig-
ure in Figure 5.18 shows the magnitude of vertical acceleration for each
time-step during which sliding occurs (specifically, the average accelera-
tion during each time increment of sliding) for this second Newmark slid-
ing block analysis (activated by the Plot Effective Vertical Acc. button).
The Table 5.1 average and weighted vertical acceleration values are com-
puted using the Section 4.6 Equations 4.74 and 4.76, respectively. Note
that even though the peak positive/negative vertical accelerations are
0.68g/-0.96g, respectively, for the time-history figure second from the top
in Figure 5.18, these peak values are not concurrent with the times of slid-
ing. The vertical accelerations that occur during sliding are far lower in
magnitude and are labeled effective vertical accelerations (that occur dur-
ing sliding) in this bottom figure. In this manner, a vertical acceleration
time-history possessing peak positive/negative vertical accelerations of
0.68g/-0.96g, respectively, becomes a constant Y acceleration of (positive)
0.01g for the sliding analysis.

The computed value for the (horizontal) maximum transmissible
acceleration is equal to 0.34 g (reported by the Show Sliding
Evaluation button or, equivalently, in the WORKslide. TMP ASCII output
file). For the incipient lift-off in rotation the computed horizontal
acceleration is computed to be 0.37g (reported by the Show Lift-Off
Evaluation button or, equivalently, in the WORKrotate. TMP ASCII
output file). These computations are also made with a Constant Y
Acceleration of 0.01g. (It is reasoned that those horizontal acceleration
pulses during which sliding occurs will also dominate the pulses during
which rotation will occur.) Since the maximum transmissible acceleration
is the smaller of the two horizontal acceleration constants, the wall will
slide during earthquake shaking (for the given wall geometry, soil shear
strengths, and ground motions used in this particular analysis).
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A separate analysis to determine a value for the Constant Y
Acceleration that is consistent with the acceleration pulses generating
wall rotation for the lift-off evaluation process was also conducted.! After
iteration, the computed results were the same as for the sliding block
based analyses; a Constant Y Acceleration value of 0.01g with the
horizontal acceleration for incipient lift-off in rotation computed to be
0.37g (reported by the Show Lift-Off Evaluation button or,
equivalently, in the WORKrotate. TMP ASCII output file).

Table 5.1. Assessment of constant Y acceleration, the effective vertical acceleration for

Example 1.
User Specified Average Vertical Weighted Vertical Maximum
Iteration | Acceleration Acceleration Acceleration Transmissible
No. (kcav*g (kca)v-ave*g (kca)v-weighted* g Acceleration
1 0 0.0124¢g 0.0121g 0.35g
2 0.01g 0.0128g 0.0136¢g 0.34g

1 Based on Input Parameter selection for the Analysis tab of a Rotating Analysis Type and Vertical Time-
history Usage: Determine a representative constant value.
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Figure 5.17. The final Analysis tab for Example 1.
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Figure 5.18. Time-history of the evaluation of the effective vertical acceleration.

Since the Figure 5.15 retaining wall will slide before it will rotate, then
continue viewing the results for the Newmark time-history permanent
deformation analysis results, which for this problem is shown in

Figure 5.19. This figure is seen by activating the Plot Sliding Time-
history button on the Analysis tab. (Note that the Show Sliding
Evaluation button (or, equivalently, in the WORKslide. TMP ASCII
output file) also reports the value for the cumulative (permanent)
horizontal relative wall displacement.) The upper figure is a plot of the
horizontal acceleration time-history and the red line designates the
maximum transmissible acceleration value of 0.34g. Wall displacements
start to occur the first time the acceleration trace plots above this red line.
Observe that permanent wall translation starts at about 10 seconds after
initial shaking and concludes by about 17 seconds out of a total of

35 seconds of ground shaking. The cumulative permanent displacement is
about 9 inches, which occurs over about six significant relative (wall)
velocity and displacement pulses (refer to the second and third figure
down from the top, respectively). During sliding the maximum inertial
force imparted to the structural wedge and to the driving soil wedge (and

34.00)
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to Pag) is due to a horizontal acceleration of 0.34g , the value for the
maximum transmissible acceleration (with a constant vertical acceleration
of 0.01g). Forces acting on the structural wedge are reported by the Show

Sliding Evaluation button (or, equivalently, in the WORKslide.TMP
ASCII output file). By allowing the retaining wall to slide, the retaining
wall structural wedge and soil wedge are not subjected to inertia forces due

to the higher accelerations values, i.e., up to 0.96g of horizontal

acceleration. Thus, allowing the wall to slide during earthquake shaking

provides for lower design forces than would otherwise occur should
translational wall movements have been constrained.
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Figure 5.19. Newmark sliding block time-history results for Example 1.

Selected output for the driving soil wedge forces and pressures acting on
the structural wedge during sliding are as follows:
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***%*% Farth Pressure Forces ****
B e e e e L e

PAEegSLIDE = 17817.83 1bs
ALPHAPAESLIDE = 432.00 degrees

HPAEeqgSLIDE = 10.23 ft

DCaeSTIDE = 0.00 ft

Fressure Distributions acting at an angle 0.00 degrees
from normal to the vertical plane through the heel

Height

above

Heel Static Incremental EQ Total EQ
(ft) (lb/ft"2) (1b/ft"2) (1b/ft™2)
22.00 0.00 638.30 638.30
3.54 691.52 236.55 Gz28.07
0.00 811.06 159.57 970.64

For a dense sand, the Table 1.1 guidelines indicate that for a 22-ft-high
section, active earth pressures may be used in the analysis if wall
movements exceed ¥4 in. (=0.001 times 22 ft times 12 in./ft). With
predicted wall movements on the order of 9 inches, the use of active earth
pressures in the dynamic time-history permanent displacement
calculations is deemed appropriate.

Since the polarity of ground motions was not retained in their
development, this analysis would be repeated three more times with the
user reversing the polarity of the horizontal and vertical input ground
motions to determine the most critical results.

Using the forces provided in the output file?, the user is advised to
determine if the bearing capacity of the foundation is adequate.

5.2.8 Example 2 — Earth retaining wall at a dry soil site — 1-foot thick
reinforced concrete slab buttress at the wall’s toe

Consider the case of the Figure 5.15 earth retaining structure buttressed by

a 1-ft-thick reinforced concrete slab as shown in Figure 5.20. As was the

1 Appendix G summarizes the contents of the output files.
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case in Example 1, the 22-ft-high earth retaining structure retains moist
cohesionless soil, a dense sand, and is founded on rock. During
construction, a thin layer of dense sand was used to level the top of rock
before pouring the base of the reinforced concrete retaining wall. It is
assumed that this Corps project is sited in a high seismic region on the
West coast and situated in close proximity to an active fault that
dominates the ground motion hazard. The same pair of ground motions
are used in both examples: The projects horizontal and vertical strong
ground motion component time-histories were provided (by the District)
and possess scaled horizontal and vertical acceleration time-histories with
positive/negative peak values of 0.96g/-0.82g and 0.68g/-0.96g,
respectively. Both acceleration time-histories are baseline corrected. The
polarity of ground motions was not retained during their development.

Retained soil
Dense sand
Ymoist = 125 pCf
c=0
4 ¢"Peak =39 deg
¢’Residual =35 deg

3 1.5 8’

— 10 deg

Reinforced concrete
retaining wall
Y. = 150 pcf

Reinforced concrete

slab \ "
y
k1

7 |
TEEES Heel ' mremeemmeeeees

Dense sand > .
¢ =0 a,=k," g
§'peax = 38 deg

¢’Residual =34 deg +aV = kV g

Rock foundation
¢’ = 2400 psf
¢’ =32 deg

Figure 5.20. Rock-founded earth retaining wall buttressed at the toe of the wall by a 1-ft-thick
reinforced concrete slab for Example 2.

Figure 5.21 shows the input Geometry tab data for this problem. Material
region numbers 1, 2, 4, 6, and 10 are used to define the geometry of the
structural wedge. Note that a 120 kip per ft run of wall resisting force is
specified at the toe of the wall and acts at height of 1.5 ft above the toe. Its
magnitude is determined using the procedure outlined in Strom and
Ebeling (2004).
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A minimum angle for slip plane of 3 degrees from horizontal is specified in
the Driving Wedge tab (not shown). Additionally, residual shear
strength parameter values of ¢’ = 35 degrees and ¢’ = 34 degrees are
specified for the retained soil and the cohesionless soil immediately in
contact with the base of the structural wedge, respectively.

EWHutate - C:\Program Files\Microsoft ¥izual Studio‘\MyProjectz\CWRotate wethC._. [E3
File

Structural

Haorz. Wert,
Introduction | Earthguake E arthguake wedge Diriving ‘i edg Analyzis

Time Higtary | Tirme Hiztary

Fegion Template Input Geometry
Order of [nput
1] Concrete Regions

21\ ater Table ]
]
o 2 _‘Tq 2
= b 2 3 B
5 1
10 17_
=
1 |
10 |
— Toe Pozition—— : . — Rotation Point
e — Region Infarmaticn o
: IEI Current Fegion; IHEgiDn 4 j o (1]
' ||:| : i ||:|
Width: |g
— Piool [height above Toe]; KEfabt I1 8 —;ien;r ISIFEGEEIEEVSIEEE?‘
Surface: ; : = = -
IU— — Unit "feightz - [BA3 Y- BETETEToT
{150 ' :
Iuﬂ |-| 25 Units of Length:
[130 I Z
— Backfill wWater Table—— 624 E:f'ﬁt'_”g ]
Height [above Heel): S 1.5
I':I "Wigw Wi ater Pressures | Farce: I'I 20000

Figure 5.21. The input Geometry tab for Example 2.
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The first step in the CWRotate analysis is to determine if the Figure 5.20
retaining wall will slide or rotate during shaking when subjected to the
District’s Project Evaluation Earthquake. Select a Sliding Analysis Type
and select Determine a representative constant value for the
Vertical Time-history Usage (which will be a trial-and-error, iterative
process). Table 5.2 summarizes the computed results from this three-
iteration process. In the first iteration, the value for Constant Y
Acceleration is set equal to zero. The program is executed via the Run
CWRotate Analyzer button and the results are used to determine the
average and the weighted vertical acceleration during sliding (definitions
given in Section 4.6). These results are observed by activating the Show
Sliding Evaluation button (or, equivalently, in the WORKslide. TMP
ASCII output file). Based on the computed average and weighted vertical
acceleration values, a second CWRotate analysis is conducted. This second
computation is made using a Constant Y acceleration set equal to
0.15g. The second iteration is followed by a third iteration. Figure 5.22
shows the Analysis tab input and settings for this third computation. This
third iteration/Newmark sliding block computation with Constant Y
Acceleration set equal to a constant 0.13 g provides reasonable
convergence, as demonstrated in the tabulated values. The Table 5.2
average and weighted vertical acceleration values are computed using the
Section 4.6 Equations 4.74 and 4.76, respectively. Recall the peak
positive/negative vertical accelerations are 0.68g/-0.96g, respectively, for
the vertical acceleration time-history. The vertical accelerations that occur
during sliding are far lower in magnitude as reflected by in the plot used to
compute the effective vertical acceleration that occurs during sliding (the
plot is activating the Plot Effective Vertical Acc button). In this
manner, a vertical acceleration time-history possessing peak
positive/negative vertical accelerations of 0.68g/-0.96g, respectively,
becomes a constant Y acceleration of (positive) 0.13g. It is referred to as
the effective vertical acceleration during sliding and is a constant.

Table 5.2. Assessment of constant Y acceleration, the effective vertical acceleration for
Example 2 — Sliding Evaluation.

User-Specified Average Vertical Weighted Vertical Maximum
lteration | Acceleration Acceleration Acceleration Transmissible
No. (kea)v*g (Kea)v-ave* g (Kca)v-weighted* Acceleration
1 0 0.0835g 0.187g 0.804g
2 0.15¢g 0.0361g 0.1097g 0.71g
3 0.13g 0.042g 0.1216g 0.72g
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The computed value for the (horizontal) maximum transmissible
acceleration is equal to 0.72 g (reported by the Show Sliding
Evaluation button or, equivalently, in the WORKslide. TMP ASCII output
file). For the incipient lift-off in rotation the computed horizontal
acceleration is computed to be 0.522g (reported by the Show Lift-Off
Evaluation button or, equivalently, in the WORKrotate. TMP ASCII
output file). These computations are made with a Constant Y
Acceleration of 0.13g.

A separate analysis to determine a value for the Constant Y
Acceleration that is consistent with the acceleration pulses generating
wall rotation for the lift-off evaluation process was also conducted:. Two
iterations are required. Figure 5.23 shows the Analysis tab input and
settings for the second computation. This second iteration of the rotational
block computation with Constant Y Acceleration set equal to a
constant 0.05g provides reasonable convergence, as demonstrated in the
tabulated values of Table 5.3, based on the computed average and
weighted vertical acceleration values. The horizontal acceleration of
incipient lift-off in rotation is computed to be 0.552¢g (reported by the
Show Lift-Off Evaluation button or, equivalently, in the
WORKTrotate. TMP ASCII output file). Figure 5.23 shows the Analysis tab
settings for the second iteration. Observe that after the second rotational
analysis results of 0.552 g, horizontal acceleration of incipient lift-off in
rotation with a Constant Y Acceleration value of 0.05 g is only slightly
different from those lift-off of the base results obtained for the sliding
block-based analysis (0.522 g for a Constant Y Acceleration of 0.13 g).

Table 5.3. Assessment of constant Y acceleration, the effective vertical acceleration for
Example 2 — Rotational Evaluation.

User-Specified Average Vertical Weighted Vertical Maximum
Iteration | Acceleration Acceleration Acceleration Transmissible
No. (kca)v*g (kca)v-ave*g (kca)v-weighted* g Acceleration
1 0.13¢g 0.0412g 0.0515¢g 0.522g
2 0.05¢g 0.0412g 0.0515¢g 0.552g

Since the incipient lift-off in rotation acceleration is the smaller of the two
horizontal acceleration constants, the wall will rotate during earthquake

1 Based on Input Parameter selection for the Analysis tab of a Rotating Analysis Type and Vertical Time-
history Usage: Determine a representative constant value.
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shaking (for the given wall geometry, soil shear strengths, and ground
motions used in this particular analysis).
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Figure 5.22. The third iteration Analysis tab settings for Example 2 — Sliding Evaluation.
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Figure 5.23. The second iteration Analysis tab settings for Example 2 —
Rotational Evaluation.

Since the wall rotates before it slides, a final CWRotate analysis is

conducted. Select a Rotating Analysis Type and select Evaluate with

current time-history for the Vertical Time-history Usage as shown

in Figure 5.24. Note with the Vertical Time-history Usage option of
current (vertical) time-history being selected for the analysis, the value
contained in the Constant Y Acceleration box, displaying a value of
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0.05g (displayed as a value entry in gray rather than black), is not used in
the permanent wall rotation analysis. View the results of the rotating
structural wedge time-history analysis as reported in the figure, is
activated by the Plot Rotating Time-history button. Show Lift-Off
Evaluation button (or, equivalently, in the WORKrotate. TMP ASCII
output file) also reports the cumulative (permanent) wall rotation. Figure
5.25 shows the results of the rotational time-history analysis. Note that the
total permanent rotation of approximately 29 degrees occurs over five
rotational pulses. Moments and Forces acting on the structural wedge are
reported using other output buttons and files (refer to Appendix G for a
description of output file contents). Figure 5.26 shows the resulting
position for the rigid block after earthquake shaking ends.
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Figure 5.24. The rotational Analysis tab settings for final Example 2 — Computation.




ERDC/ITL TR-06-2

202

Cumulative Wall Rotation

Options  Plot  Print
400.00 1 : I I
200,00 |
000 A - T f"\"'r"'""“q"l'vﬂ.,l l\'l..ull ITl Ty &W%WWWMW“J T A SR
P YA
-400.00 |
0.000 2000 4.000 6.000 8.000 10.000 12.000 14.000 16.000 18.000 20,000 22.000 24.000 26.000 28.000 30.000 32000 34.00}
Scaled ACCK [ in per sec™2 ) ¢ Lift-off Acceleration = 213119 [in per sec™2 |
100000
500001 [
0.00 “| TVY¥ KR Titon
" Pt} LIS s uensy T Bafpond o +
0.000 2.000 4.000 £.000 2.000 10000 12000 14000 16000 12000 20000 22000 24000 2E000 28000 30000 32000 34.00)
Angular wall Acceleration [ degress per sec™2 |
EO0.00 P\
40,000 | \
20,00
o L85 A
0.000 2000 4.000 6.000 8.000 10.000 12.000 14.000 16.000 18.000 20,000 22.000 24.000 26.000 28.000 30.000 32000 34.00f
Rotational wall Velocity [ degrees per sec |
0.ED P‘\
0.40 I ||l
0.z0
o TR ]
0.000 2.000 4.000 £.000 2.000 10000 12000 14000 16000 12000 20000 22000 24000 2E000 2000 30000 32000 34.00)
Incremental ‘w'all Fotation | degrees |
20,00
20,000 f
1000 J
0.00
0.000 2000 4.000 6.000 8.000 10.000 12.000 14.000 16.000 18.000 20,000 22.000 24.000 26.000 28.000 30.000 32000 34.00}
CUMULATIVE Wall Rotation [ degrees | : Final Rotation = 28520408 degrees : W all Dvertums if Rotation Exceeds 43.533 degrees
< 3
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RotonPlor

Options

Ratation Angle = 28520  Overturning Angle = 43.533

Figure 5.26. Permanent rotation of the rigid block after earthquake shaking ends for
Example 2.

Selected output for the driving soil wedge forces and pressures acting on
the structural wedge at a time of 11.38 seconds that results in maximum
angular acceleration of the wall during rotation are as follows:

MAXIMUM Angular Wall Acceleration = 18.7262131106 (rad per sec”2)
at time = 11.3800 (sec) with
Scaled ACCX = 0.9162968000 in g's
Scaled ACCY = 0.31225280001in g's
Overturning Moment = 3937112.54 ft-lb
Interface Overturning Moment = 3937112.54 ft-lb
Foundation Overturning Moment = 3937112.54 ft-1b
Restoring Moment = 361866.15 ft-1b
PAE = 333527.87 lbs
Slip plane angle from horizontal = 3.00 (deg)
Minimum slip plane angle from horizontal = 3.00 (deg)
Height of PAE above the Heel = 13.04 ft
PAE run number = 1189
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Normal force to Base = 24909.47 lbs
Shear force to Base = 16801.65 lbs

For a dense sand, the Table 1.1 guidelines indicate that for a 22-ft-high
section, active earth pressures may be used in the analysis if wall
movements exceed ¥4 in. (=0.001 times 22 ft times 12 in./ft). With
predicted wall rotation on the order of 29 degrees, the use of active earth
pressures in the dynamic time-history permanent displacement
calculations is deemed appropriate (calculations not shown).

Since the polarity of ground motions was not retained in their
development, this analysis would be repeated three more times with the
user reversing the polarity of the horizontal and vertical input ground
motions to determine the most critical results.

Using the forces provided in the output file?, the user is advised to
determine if the bearing capacity of the foundation is adequate.

The difference between the Figure 5.20 retaining wall of Example 2 and
the Figure 5.15 retaining wall system of Example 1 is the addition of a 1-ft
thick reinforced concrete slab at the toe of the wall. Due to the buttressing
effect of the reinforced concrete slab, the wall will now rotate before it
translates during the user-specified seismic event. This results in higher
forces acting on the wall. For example, the maximum P4 dynamic earth
loading for Example 2 is 333,528 lb per ft run of wall while for Example 1
it is 17,818 1b per ft run of wall. This is because the accelerations felt by
this rigid block during shaking are those of the ground acceleration time-
history plus the contribution of angular acceleration and angular velocity
during rotation of the rigid body about its point of rotation, a result of the
continuous contact between the rigid block and the ground being
maintained at the point of rotation (refer to Section 3.2).

1 Appendix G summarizes the contents of the output files.
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6 Summary, Conclusions, and
Recommendations

6.1 Summary and conclusions

Engineer Manual 1110-2-2502 Retaining and Flood Walls gives engineer-
ing procedures that are currently being used by District Engineers in their
initial assessment of seismic wall performance of existing earth retaining
structures and the preliminary sizing of new retaining structures. The
engineering procedures given in EM 1110-2-2502 for retaining walls make
extensive use of the simplified pseudo-static procedure of analysis of earth
retaining structures and expresses wall performance criteria in terms of
computed factors of safety against sliding and bearing failure, and base
area in compression. The simplified pseudo-static procedure of analysis
makes it difficult to interpret the actual wall performance for Corps proj-
ects subjected to “strong” design ground motions because of simplifica-
tions made in the procedure of analysis. In a pseudo-static analysis an
oversimplification occurs when the engineer is forced to render the com-
plex, horizontal and vertical earthquake acceleration time-history events
to constant values of accelerations and assume a constant direction for
each. These constant values are denoted as the pseudo-static acceleration
coefficients in the horizontal and vertical directions (refer to Section 1.1.1
of this report). The engineer is also required to assume a constant direc-
tion for each of these components. An acceleration time-history, in actual-
ity, varies both in magnitude and in direction with time.

The simplified pseudo-static procedure does not allow for interpretation of
actual wall performance by District Engineers. Intense shaking imparted
by the OBE and MCE design events makes the interpretation of the
simplified procedure of analysis even more difficult. The more important
questions for the wall are whether the wall slides into the spillway basin,
or rotates into the spillway basin, or even tips over onto its side during the
earthquake event. The simplified pseudo-static procedure of analysis is not
capable of answering these questions. The answers depend on the
magnitude of the pseudo-static coefficient used in the calculations
compared to the magnitude of the peak values for the acceleration pulses
as well as the number and duration of these strong shaking acceleration
pulses in the design earthquake event time-history. When considering
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both horizontal and vertical accelerations, the resulting wall response is
further complicated by the time-history of phasing between the pulses of
horizontal and vertical accelerations. Only the permanent wall sliding
displacement/wall rotation method of time-history analysis can answer
these questions. Again, wall displacements will influence the seismic earth
pressure forces imparted on the wall by the retained soil.

Formal consideration of the permanent seismic wall displacement in the
seismic design process for Corps-type retaining structures is given in
Ebeling and Morrison (1992). The key aspect of the engineering approach
presented in this Corps document is that simplified procedures for
computing the seismically-induced earth loads on retaining structures are
also dependent upon the amount of permanent wall displacement that is
expected to occur for each specified design earthquake. The Ebeling and
Morrison simplified engineering procedures for Corps retaining structures
are geared towards hand calculations. The engineering formulation and
corresponding user friendly, PC-based software discussed in this report
extend these simplified procedures.

This research report describes the engineering formulation developed for
the permanent rotational response of rock-founded, toe-restrained
retaining walls to earthquake ground motions. The corresponding PC
software CorpsWanRotate developed to perform a rotating or sliding analysis
of each user-specified retaining wall section was discussed. Baseline-
corrected, horizontal and vertical acceleration time-histories are used to
represent the earthquake ground motions in the formulation implemented
within CorpsWanRotate. A particular formulation of the permanent sliding
displacement response of Corps retaining walls for a user-specified
earthquake acceleration time-history was also described. The engineering
methodology and software are particularly applicable to rock-founded L-
walls and T-walls (usually referred to as cantilever retaining walls) and
semi-gravity walls. CorpsWanRotate is applicable to a variety of retaining
walls buttressed at their toe by a structural feature such as a reinforced
concrete slab. The presence of the structural feature at the toe of the
retaining wall may result in a tendency for the earth retaining structure to
rotate rather than slide during earthquake shaking. Other examples of
Corps earth retaining structures having this structural feature include
navigation walls, spillway chute walls, spillway discharge channel walls,
approach channel walls to outlet works structures, highway and railway
relocation retaining walls, and floodwall channels. CorpsWanRotate may



ERDC/ITL TR-06-2 207

also be used to predict permanent seismically induced (rotational or
translational) displacements of retaining walls without toe restraint.

The engineering methods contained in this report and
implemented within CorpsWanRotate allow the engineer to
determine if a given retaining wall has a tendency to rotate or to
slide for a specified seismic event. This is a new capability for
the seismic design/evaluation process for Corps retaining
structures.

CorpsWanRotate was designed for ease of use in a PC environment and to
render the complex problem of seismic evaluation/design of retaining
walls that tend to permanently displace during earthquakes to a more
straight-forward and rapid engineering process. The computed permanent
wall rotation and other pertinent information allow for a rapid
investigation of retaining wall configurations by District Engineers.

Minimum Wall Displacement: Recall that CopsWanRotate applies an
active earth pressure force to the structural wedge in the permanent
rotation analysis, as is done in most sliding block formulations for
retaining walls. Table 1.1 lists the approximate magnitudes of movements
required to reach minimum active earth pressure conditions. Although
this Clough and Duncan (1969) guidance is for static loading, after careful
evaluation Ebeling and Morrison (1992, in Section 2.2.2) concluded that
the Table 1.1 values may also be used as rough guidance for minimum
retained soil seismic displacement to fully mobilize a soil shear resistance,
resulting in dynamic active earth pressures. That is, the permanent
displacements resulting from rotations computed using CorpsWanRotate
must equal or exceed the Table 1.1 values (given as displacement-
normalized wall heights in this table). If not, then the dynamic earth
pressures are underestimated in the analysis.

6.2 Recommendations for future research

Engineering formulations and software provisions based on sound seismic
engineering principles are needed for a wide variety of the Corps retaining
walls that (1) rotate or (2) slide during earthquake shaking and (3) for
massive concrete retaining walls constrained to rocking. The engineering
formulation discussed in this report and implemented within
CorpsWanRotate was developed to address the first two of these three modes
of retaining wall responses to earthquake shaking.
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The formulation of complete engineering procedures and corresponding
software are needed to compute the seismic response of Corps-type earth
retaining structures that slide or rock in place during earthquake shaking.
A particular formulation of the permanent sliding displacement response
of retaining walls for a user-specified earthquake acceleration time-history
is incorporated in CorpsWanRotate. However, a more versatile, simplified
sliding block formulation that eliminates the need for an acceleration
time-history is in the final stages of development by the primary author of
this report (Ebeling et al. 2007), CorpsWanSLIP. An ERDC research effort is
needed to develop simplified engineering formulations and corresponding
GUI-based PC software for analyzing Corps retaining walls that rock in
place during seismic shaking due to their sizeable mass or due to lower
levels of ground shaking. Their seismically induced wall movements will
not be sufficient to fully mobilize the shear resistance within the retained
soils and the resulting (seismic) earth pressures will be larger than the
resultant active earth pressure force Pag, whose formulation is given in
Appendix A and implemented within CorpsWanRotate.

In addition, the engineering methodology and corresponding software
CorpsWanRotate were formulated for rock-founded retaining structures.
Research is needed to extend this formulation to soil-founded Corps
retaining structures.

For the initial version of CorpsWanRotate, a simplified assumption is made
that for steady-state conditions, hydrostatic water pressures exist within
the heel region of the backfill. This implies that all head loss occurs due to
flow within the foundation below the base of the structural wedge as
discussed in Appendix D. Future improvements should include the
formulation and inclusion of more refined steady-state seepage analyses
implemented within CorpsWanRotate.

Most Corps hydraulic structures that act as earth retaining structures
possess a vertical face in contact with the pool (when present).
Consequently, hydrodynamic water pressures acting on this front “wet”
face are approximated in the CorpsWanRotate using the Westergaard (1931)
procedure (see Apendix D). This procedure needs to be expanded to
include consideration of hydrodynamic water pressures acting on inclined
“wetted” structural faces during sliding of the structural wedge. In
addition, a more rigorous hydrodynamic water pressure formulation that
accounts for the variation in horizontal acceleration along the “wetted”
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face of rigid block models of walls that rotate about a point of rotation
(specified as the toe in this initial CorpsWanRotate version) during
earthquake shaking needs to be developed and implemented within
CorpsWanRotate.

The evaluation of the adequacy of the bearing capacity of the foundation
for loadings imposed by walls that rotate needs to be evaluated. This is
currently being done using hand computations by engineers using the
computed forces provided by CorpsWanRotate. This evaluation needs to be
formulated and then incorporated within CorpsWanRotate.

Excess pore water pressures may be generated by earthquake shaking of
contractive backfill and foundation soils. The procedures outlined in
Ebeling and Morrison (1992) to account for ry > 0 needs to be
incorporated within CorpsWanRotate.
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Appendix A: Computation of the Dynamic
Active Earth Pressure Forces for a Partially
Submerged Retained Soil Using the Sweep-
Search Wedge Method

A.1 Introduction

This appendix describes the derivation of the dynamic active earth
pressure force for partially submerged backfills using the sweep-search
wedge method. The effect of earthquakes is incorporated through the use
of a constant horizontal acceleration, an = kn*g, and a constant vertical
acceleration, ay = k,*g, acting on the soil mass comprising the active wedge
within the backfill, as shown in Figure A.1.
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Figure A.1. Dynamic active sweep-search wedge analysis (hydrostatic water table).

The Mohr-Coulomb 7 =c+ 0o, etang relationship is used to define the
shear strength along a potential slip plane in the sweep-search soil wedge
formulation derived in this appendix and implemented in CorpsWanRotate.
For granular soils the cohesion intercept c is usually set equal (with a
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non-zero ¢ value) to zero after consideration is given to the anticipated
level of permanent deformation associated with anticipated permanent
wall movements and the development of the active earth pressure force,
Pag. The purpose for including the cohesion intercept in the shear strength
used to define the sliding wedge formulation given in Section A.2 is to
derive a set of equations that may be easily adapted to both effective and
total stress analyses. In a total stress analysis ¢ is set equal to zero, the
cohesion intercept, c, is set equal to the undrained shear strength, S,, and
the internal pore water pressures are ignored.

In Section A.2 the relationships used in a sweep-search wedge formulation
used to determine the magnitude of the dynamic active earth pressure
force, Pag, is derived for an effective stress analysis using Mohr-Coulomb
shear strength parameters ¢’ and ¢’ for the retained soil.».> The earth and
water pressure forces acting on the trial soil wedge are derived for the case
of a hydrostatic water table. Any increase in the pore water pressures

1A key item is the selection of suitable shear strength parameters. In an effective stress analysis, the
issue of the suitable friction angle is particularly troublesome when the peak friction angle is
significantly greater than the residual friction angle. In the displacement controlled approach examples
given in Section 6.2 of Ebeling and Morrison (1992), effective stress-based shear strength parameters
(i.e., effective cohesion, ¢’, and effective angle of internal friction, ¢’) were used to define the shear
strength of the dilative granular backfills, with ¢’ set equal to zero in all cases due to the level of
deformations anticipated in a sliding block analysis during seismic shaking. In 1992 Ebeling and
Morrison concluded that it is conservative to use the residual friction angle in a sliding block analysis,
and this should be the usual practice for displacement-based analysis of granular retained soils. The
primary author of this report would broaden the concept to the assignment of effective (or total) shear
strength parameters for the retained soil be consistent with the level of shearing-induced deformations
encountered for each design earthquake in a rotational analysis and note that active earth pressures
are used to define the loading imposed on the structural wedge by the driving soil wedge. (Refer to
Table 1.1 for guidance regarding wall movements required to fully mobilize the shear resistance within
the retained soil during earthquake shaking.) Therefore, engineers are cautioned to carefully consider
the reasonableness of including a nonzero value for effective cohesion, c’, in their permanent
deformation analyses.

2 CorpsWallRotate performs a permanent displacement analysis of a retaining wall due to earthquake
shaking. Reversal in the direction of the horizontal component of the time-history of earthquake ground
shaking occurs many times during the typical tens of seconds of ground motion. Consequently, a
reversal in direction of the inertial force imparted to the structural wedge and to the soil driving wedge
occurs many times during the course of the analysis using CorpsWanRotate. In a traditional soil wedge
formulation for static loading, a crack is typically considered to exist within the upper portion of the soil
driving wedge for a cohesive soil (with shear strength, Sy, specified in a total stress analysis or ¢’
specified in an effective stress analysis) and the planer wedge slip surface is terminated when it
intersects the “zone of cracking” at a depth, dcrack, below the ground surface (e.g., see Appendix H in
EM 1110-2-2502). This assumption is not made in the CorpsWanRotate formulation for dynamic loading.
Instead, it is assumed that in the dynamic wedge formulation, the crack within the “zone of cracking”
at the top of the retained cohesive soil of the driving wedge will not remain open during earthquake
shaking due to the inertial load direction reversals during this time-history based CorpsWaiRotate
analysis. So, even for cohesive soils, the Figure A.1 planar slip surface, obtained from the sweep-
search method of analysis used by CorpsWaiRotate to obtain a value for the earthquake-induced
resultant driving force, Pae (acting on the structural wedge), extends uninterrupted within the driving
soil wedge (in the retained soil) to the ground surface and is not terminated by a vertical crack face to
the ground surface when it enters the zone of cracking.
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above their steady state values in response to the shear stains induced
within the saturated portion of the backfill during earthquake shaking is
typically reflected in a value of excess pore water pressure ratio, ry > 0, as
discussed in Ebeling and Morrison (1992). No excess pore water pressures
are included in the submerged portion of the backfill in this derivation
(i.e., ru is equal to zero) although provisions are made to add this option to
CorpsWanRotate in the future. Appendix A in Ebeling and Morrison (1992)
provides a complete wedge solution derivation that includes excess pore
water pressures (using ru).

Section A.3 briefly discusses the computation made by CorpsWanRotate of
the static active earth pressure force, P4, for partially submerged backfills
using the sweep-search wedge method.

Section A.4 summarizes the computations made by CorpsWanRotate of the
dynamic active earth pressure force, Pag, for a total stress analysis in
which a value for the shear strength, Sy, of the retained soil is specified by
the user. The dynamic active earth pressure force, Pag, is again computed
using the sweep-search wedge method.

Section A.5 summarizes the computations made by CorpsWanRotate of the
static active earth pressure force, Pa, for a total stress analysis in which a
value for the shear strength, S, of the retained soil is specified by the user.
The static active earth pressure force, Pa, is again computed using the
sweep-search wedge method.

Section A.6 discusses the computation of the weight of a soil wedge with a
bilinear ground surface.

For cohesive soils, including ¢’-¢’ soils, no adhesion force is included along
the vertical imaginary section extending upwards through the retained soil
from the heel of the wall that delineates the Figure A.1 driving soil wedge
from the adjacent structural wedge.

A.2 Dynamic Active Earth Pressure Force, Pae — Effective Stress
Analysis

Figure A.1 represents a free body diagram for the derivation, which
follows. The base of the wedge is the trial planar slip surface representing
the active failure plane, which is inclined at angle alpha (a) to the
horizontal. The top of the Figure A.1 wedge is bounded by a horizontal
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ground surface and a vertical face along the interface between the driving
soil wedge and the structural wedge.

The weight of the soil wedge acts at the center of mass and is computed as

1
tana

A1l

1
W:§7/toH20

with y; being the total unit weight for the soil wedge.>

The three forces acting along the planar slip surface are represented by an
effective normal force, N’, a shear force, T, and the pore water pressure
force. Assuming a full mobilization of shear resistance along the slip
surface, the shear force may be computed utilizing the Mohr-Coulomb
failure criteria as

T=N'tang'+c'eL A3

Note that the length of the potential slip plane, L, relates to the height of
the soil wedge, H, at an angle o from horizontal by

L=he( ) A4
sina

Recall the entire slip plane length, L, is used in the analysis of the driving
soil wedge for cohesive soils to compute Pag due to the assumption that the
“zone of cracking” at the top of the retained cohesive soil of the driving soil
wedge will not remain open during earthquake shaking due to load
direction reversals during this time-history based CorpsWanRotate analysis.2

The total pore water pressures acting along the submerged faces of the soil
wedge are described in terms of the steady state pore water pressure.

1 Using the Figure 4.13 Ebeling and Morrison (1992) relationship, y: for the Figure A.1 soil wedge (with a
planer slip surface and level backfill) is computed to be

H, Y H, \
Ve = (Wj ® ¥ saturated +|: 1- (?j j| ® ¥ moist A2

with ymoist the moist unit weight of the soil above the water table and ysaturated the saturated unit weight
below the water table. An alternative method for determining the value for W based on the geometry of
the trial soil wedge cross sectional area with regions of moist and saturated unit weights is given in
Section A.6.

2 |In the case of a soil wedge defined by the Figure 3.7.b bilinear ground surface, the total weight W is
computed using the relationships given in Section A.6.
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A.2.1 Calculation of Water Pressure Forces for a Hydrostatic Water Table

The pore water pressure at the ground water table (Figure A.2) is

u® =0 A5

static

For a hydrostatic water table, the pore water pressure distribution is linear
with depth, and at the bottom of the wedge is computed as

bot
Ustatic = Yw ®Hw A.6

y U R
w ot
static g statigy h

Ustatic—asm o= Ustatic

u

cosa=W,

static-a

Figure A.2. Equilibrium of horizontal and vertical hydrostatic water pressure forces acting on
the retained soil wedge.

A.2.2 Static Water Pressure Forces Acting on the Wedge

The static pore pressure distribution immediately behind the structural
wedge is triangular and the resultant force may be calculated as

u

static

1 2
= — .H A.7
27w w

The static pore pressure force acting normal to the planar slip surface (of
angle o from horizontal) is also triangular and the resultant force may be
computed as

|
sina

U

static—a

1 2
=—y oH o A8
27’w w
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A.2.3 Equilibrium of Vertical Forces

Equilibrium of vertical forces acting on the Figure A.1 soil wedge (with a
potential slip plane at an angle o from horizontal) results in the
relationship

—Pesins +W(1—k,)—[T]sina—N'ecosa—(U

static—a

+U

shear—a

Jeosa =0 A9

Introducing Equation A.3 into Equation A.9 results in

—Pesing+W(1-k,)—[c'eL+N'setang']sina

A.10
—N'ecosa — (Ustatic—a + Ushear—a ) cosa =0
and solving for the normal effective force, N’, becomes
sind 1-k
N'=-P . +W ( - v)
tang'esina +cosa tang'esina +cosa A1l
cosa , sina '
_( static—a ) . —Ce L .
tang'esina +cos«a tang'esina +cosa

A.2.4 Equilibrium of Forces in the Horizontal Direction

Equilibrium of horizontal forces acting on the Figure A.1 soil wedge (with a
potential slip plane at an angle o from horizontal) results in the

relationship
Pecoss—N'esina —(Ug,._, )Sina
A12
+[T]cosa—W ek, +(Uqyy, ) =0

Substituting Equation A.3 into Equation A.12, and with the horizontal
components of water pressure forces of equal magnitude and opposite
direction (refer to Figure A.2), Equation A.12 simplifies to

Pecoso—N'esina+[c'eL+N'tang'|cosa —W ek, =0 A13

Combining the N’ terms results in

Pecosd—N'(sina—tang'ecosa)—Wek, +c'eLecosa =0 A14
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Multiplying Equation A.11 (for N’) by [~ (sina —tang'scos )] and
simplifying! becomes
—-N'(—tang'scosa +sina)=+Psindetan(a—¢')-W(1-k, )tan(a —¢')

A.16
+c'eLtan(a—¢")esina +(U

static—a

Jcosa etan(a—g¢')

Substituting Equation A.16 into Equation A.14 gives

PecosS+Pesinsetan(a—¢')
-W(1-k,)tan(a—¢')+c'eLetan(a—¢')esina A17

+c'eLecosa +(U,,_, )cosaetan(a—¢')-Wek, =0

Combining terms results in

P[coss+sinsetan(a—¢')|=W[(1-k,)tan(a—¢')+k, |

—c'eLetan(a—¢')esina—c'sLecosa—(U

static—a

A18
Jcosa etan(a—g¢')

Solving for the resultant force, P, which acts at angle ¢ for the trial soil
wedge with a potential slip plane at an angle o from horizontal,

_ CONSTANT,, —CONSTANT,,

P : A.19
cosd +sindetan(a—¢')
where
CONSTANT,, =W[(1-k, )tan(a—¢')+k, | A.20
and
CONSTANT,, =+c'eLetan(a—¢')esina+c'eLecosa +
A21
(Usio—e ) COS 2 @ tan(a —¢")
1
1 Note: tan(a — 4) = sina —tang's cosa . COSa _ tana —tang' A15

cosa+tang'esing _ 1 1+tang'etana
cosa
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The dynamic active earth pressure force, Pag, is equal to the maximum
value of P for the trial wedges analyzed and «,. =« for this critical wedge,

as shown in Figure A.1.

In order to assign a location to Pag, the static value for Pa is needed (refer
to Equation 3.24 for the moist backfill, level ground case and to Appendix
C for all other cases). CorpsWanRotate proceeds with the computation of
hpak , the location of the resultant force, Pag , using the value for Px
computed by procedure discussed in this next section. The computation of
hpar by CorpsWanRotate in an effective stress analysis is described in
Sections C.1 through C.3 of Appendix C.

A.3 Static Active Earth Pressure Force, P» — Effective Stress Analysis

The solution for the static active earth pressure force for an effective stress
analysis of a partially submerged backfill is calculated by using a variation
of the sweep-search wedge method derived in Section A.2. Hydrostatic
water pressures are assumed within the submerged portion of the retained
soil, including within the zone of cracking. The relationships needed are
developed by setting P equal to Pstatic-effective stress ; Kh and ky equal to zero,
and L equal to Lpe: in Equations A.19 through A.21. The portion of the trial
wedge planar slip plane that is below the zone of cracking has the length
Lyet as shown in Figure A.3. Mohr-Coulomb shear strength parameters ¢’
and ¢’ are used to characterize the shear strength of the retained soil. In a
traditional soil wedge formulation for static loading, a crack is typically
considered to exist within the upper portion of the soil driving wedge for a
cohesive soil (with a cohesive shear strength ¢’ specified in an effective
stress analysis) and the planer wedge slip surface is terminated when it
intersects the zone of cracking at a depth dcrack below the ground surface
(e.g., see Appendix H in EM 1110-2-2502). This assumption is made in the
CorpsWanRotate formulation for static loading (but not when computing Pag
for dynamic loading as discussed previously). A sweep-search wedge
method of analysis as idealized in Figure A.3 is used by the CorpsWanRotate
to determine the value of the active earth pressure force, Pa.



ERDC/ITL TR-06-2 223

static-effective stress

evel

d
=

static-effective stress,
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y

Figure A.3. Static active sweep-search wedge analysis, effective stress analysis with a
hydrostatic water table (zone of cracking of depth decrack).

For a given trial soil wedge with a potential slip plane at an angle o from
horizontal, the resultant force Psatic-effective stress ; Which acts at angle ¢ for
the trail soil wedge, is given by

CONSTANT,, <... —CONSTANT,, <.

Ptato-eecvesvs = cosS+sinsetan(a—¢') A22
where
CONSTANT,, g =W [tan(a —¢")] A23
and
CONSTANT,, g... =+C'oL, otan(a—¢')esina+c'el,  ecosa+ o4

(Ustatic—a )COS ae tan(a _ ¢|)

The weight, W, of the soil wedge for the Figure A.3 bilinear soil surface
problem (with cracking) is calculated using one of the procedures
described in Section A.6. The static active earth pressure force, Pa, is equal
to the maximum value of Pstatic-effective stress fOr the trial wedges analyzed and
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a , = a for this critical wedge using the (graphical) procedure depicted in
Figure A.3.

In preparation for determining the location of resultant for location for Pag
(to be described in Appendix C) Equation A.22 is recast in the following
form to distinguish the contribution of the weight and the frictional
component of the soil wedge resultant force, Pstatic-effective stress, from the
cohesive component:

PStatic—effective stress PStatic—¢—weight - PStatic—C A.25
with
W(tan(a —¢")] = (Uyaye_o )OS (ar) @ tan(a —¢')
P Static—g-weight — . A.26
cosS+sindetan(a—¢')
and
c'el _e|tan(a—¢')|esina+c'el_ _ecosa
P Static-C — = [ ( ¢ )] net A.27

cosd+sindetan(a—¢')

Note that the frictional/weight component, Pstatic-g-weight, Of resultant force
Pstatic-effective stress (Equation A.25) is reduced by the cohesion force
component, Psatic-c. The subtraction the force Pstatic-c in Equation A.25
reflects a resultant force component Pstatic-c for a tensile stress distribution
component, to be discussed in Appendix C.

A depth of cracking is considered in an effective stress analysis of P with
the assignment of a nonzero value for cohesion (¢’). CorpsWanRotate uses a
trial-and-error procedure to determine the value for derack when computing
Pa. In this iterative procedure, (1) an initial value for dcrack is assumed (set
equal to zero in the first iteration); (2) the trial wedge procedure of
analysis discussed in this section is performed and a corresponding trial
value for P, is computed, along with values for its frictional /weight force
component, Pstatic-g-weight, and for cohesion force component, Pstatic-c ; (3) a
new depth of crack is computed based on values for Pstatic-¢-weight and Pstatic-c
and their corresponding earth pressure distributions that are determined
using the procedure outlined in Section C.3 for P4 ; (4) repeat these steps
(1) through (3) until convergence in the value for derack is achieved.
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CorpsWanRotate uses the P value in the computation of hpag, the location of
the resultant force Pag as discussed in Appendix C, using the last value for
P computed by this trial-and-error procedure.

A.4 Dynamic Active Earth Pressure Force, Pae — Total Stress Analysis

In a total stress analysis, the value for the dynamic active earth pressure
force, Pag, is computed based on a user-specified shear strength, S,, for the
retained soil. The dynamic active earth pressure force is also computed for
this situation using the sweep-search wedge method described in Section
A.2 but with the following two changes; (1) cohesion term ¢’ is set equal to
Su, with ¢’ and the interface friction angle ¢ set to zero, and (2) the pore
water pressures internal to the soil wedge are set equal to zero. The
relationships needed are developed from Equations A.19 through A.21. For
a given trial soil wedge with a potential slip plane at an angle o from
horizontal, the resultant force Psy is given by

P,, = CONSTANT,, o, —CONSTANT,, ., A28
where
CONSTANT,, ¢, =W[(1-k,)tan(a)+k, | A.29
and
CONSTANT,, ¢, =+S,eLetan(a)esina+S,eLecosa A.30

The dynamic active earth pressure force, Pag, is equal to the maximum
value of Pg, for the trial wedges analyzed and «,. = o for this critical
wedge, analogous to the (graphical) procedure depicted in Figure A.1 for
determining the value of Pag from all values for P.

Recall the entire slip plane length, L, is used in the analysis of the driving
soil wedge for cohesive soils to compute Pag due to the assumption that the
zone of cracking at the top of the retained cohesive soil of the driving soil
wedge will not remain open during earthquake shaking due to load
direction reversals during this time-history based CorpsWanRotate analysis.

In order to assign a location to Par the static value for P4 is needed.
CorpsWanRotate proceeds with the computation of hpag , the location of the
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resultant force Pag , using the value for P, computed by procedure
discussed in this next section. The computation of hpag by CorpsWanRotate
in a total stress analysis is described in Section C.4 of Appendix C.

A.5 Static Active Earth Pressure Force, PA» — Total Stress Analysis

In a traditional soil wedge formulation for static loading, a crack is
typically considered to exist within the upper portion of the soil driving
wedge for a cohesive soil (with a undrained shear strength, Sy, specified in
an total stress analysis) and the planer wedge slip surface is terminated
when it intersects the zone of cracking at a depth, dcrack, below the ground
surface (e.g., see Appendix H in EM 1110-2-2502). This assumption is
made in the CorpsWanRotate formulation for static loading (but not when
computing Par for dynamic loading as discussed previously). A sweep-
search wedge method of analysis as idealized in Figure A.4 is used by the
CorpsWanRotate to determine the value of the active earth pressure force Pa.
The solution for the static active earth pressure force for a total stress
analysis of a partially submerged backfill is calculated by using a variation
of the sweep-search wedge method derived in Section A.3. The static active
earth pressure force is computed for this situation using the sweep-search
wedge method described in Section A.3 but with the following three
changeS; (1) the term Pstatic-effective stress 1S Set equal to Pstatic-total stress,

(2) cohesion term ¢’ is set equal to Sy, with ¢’ and the interface friction
angle o set to zero, and (3) the pore water pressures internal to the soil
wedge are set equal to zero. Hydrostatic water pressures due to the
presence of water within the cracks in the zone of cracking are considered.
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Figure A.4. Static active sweep-search wedge analysis, total stress analysis with a hydrostatic
water table (zone of cracking of depth dcrack).

The relationships needed are developed from Equations A.22 through
A.24. For a given trial soil wedge with a potential slip plane at an angle o
from horizontal, the resultant force Pstatic-total stress 1S given by

Pstaticftotal stress PStatic—weight - PStatic—Su - AU A31
Ptatio—weigne =W ®tan(a) A.32
Pyoic-su =SueL,, etan(a)esin(a)+Suel, ecos(a) A.33

with the difference in water pressure force within the cracks on both sides
and acting on soil driving wedge is given by

AU = Ucrack—heel - Ucrack A.34
The weight, W, of the soil wedge for the Figure A.4 bilinear soil surface
problem (with cracking) is calculated using one of the procedures

described in Section A.6. The static active earth pressure force, Pa, is equal

to the maximum value of Pstatic-total stress fOr the trial wedges analyzed and
a, = a for this critical wedge, using the (graphical) procedure depicted in

Figure A.4.
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Equation A.31 distinguishes the contribution of the weight component of
the soil wedge to Pstatic-total stress from the cohesive component. Note that the
weight component, Pstatic-weight, Of resultant force Pstatic-total stress (Equation
A.31) is reduced by the cohesion force component, Pstatic-su. The
subtraction the force Pstatic-su in Equation A.31 reflects a resultant force
component, Pstatic-su, fOr a tensile stress distribution component, to be
discussed in Appendix C.

A depth of cracking is considered in a total stress analysis of P4 with the
assignment of a nonzero value for cohesion (Su). CorpsWanRotate uses a
trial-and-error procedure to determine the value for deack when computing
Pa. In this iterative procedure, (1) an initial value for dcrack is assumed (set
equal to zero in the first iteration); (2) the trial wedge procedure of
analysis discussed in this section is performed and a corresponding trial
value for P, is computed, along with values for its weight force component,
Pstatic-weight, and for cohesion force component, Pstatic-su ; (3) @ new depth of
crack is computed based on values for Pstatic-weight and Pstatic-su and their
corresponding earth pressure distributions that are determined using the
procedure outlined in Section C.4 for Pa ; (4) repeat these steps (1)
through (3) until convergence in the value for dcrack is achieved.
CorpsWanRotate proceeds with the computation of hpag, the location of the
resultant force Pag as discussed in Appendix C, using the last value for P4
computed by this trial-and-error procedure.

A.6 Weight Computation of a Soil Wedge with a Bilinear Ground
Surface

CorpsWanRotate computes the value for Pag and Py via the Figure 3.7 sweep-
search method. An advantage of the sweep-search method is that it allows
for the analysis of the more practical case of the bilinear ground surface
depicted in Figure 3.7.b. The computation of the area of soil wedge above
and below the water table and total weight, W, are made as follows:

A.6.1 o greater than o.corer

For the case of the soil wedge with a potential slip plane at an angle o from
horizontal being greater than the angle designated o.corner , defining the line
between the point corresponding to the heel of the wall and the
intersection of the level backfill and the sloping ground surface point 4 in
Figure A.5, the total cross-sectional area is
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1
Area,,, =§°{Xl o[y, Y]+ X o[ya—y. ]+ X o[y, - v, ]} A.35

with (x, y1), (X2, y2), and (x3,y3) being the vertices of the triangle of the trial
soil wedge shown in this figure. Point 5 denotes the intersection of the
hydrostatic water table with the planar trial wedge that extends from point
1to point 2. The area of the trial soil wedge below the water table is
designated AreaW in this figure.

14

— T —>
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evel

u [
v /
H R
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heel |

y a>a

I corner
X

Figure A.5. Soil wedge defined by a bilinear ground surface with o greater than ccomer and no
crack.

Figure A.6 extends the Figure A.5 case to consider a crack within a
retained (cohesive) soil. The case shown is for a crack depth that extends
to below the hydrostatic water table. Note the depth of cracking extends
from the ground surface to a depth, derack, below the sloping ground
surface as well as below the level portion of the retained soil. Point 7
denotes the intersection of the depth, dcrack, with the planar trial wedge
that extends from point 1 to point 2. Points 7, 2, and 8 delineate a
triangular region of the trial soil wedge that is fully contained within the
depth of cracking.
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crack
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X

Figure A.6. Soil wedge defined by a bilinear ground surface with o greater than owcomer and
crack depth derack that extends below the water table.

The portion of the total cross-sectional area (i.e., Area:ta by Equation
A.35) entirely contained within the depth of cracking zone is given by

1
Area,,, :E.{X7 .[yz _y8]+X2 °[y8 _Y7]+X8 '[Y7 _y2]} A.36

with (x7, y,), (X2, y-) and (xs,ys) being the vertices of the triangle of the trial
soil wedge identified Figure A.7. Consequently, the total soil wedge area
less this triangular zone of cracking (Areacrack) is designated as the Areapet
and is computed to be

Area . = Area,,, —Area A.37

total crack
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Figure A.7. Areanet and Areacrack Within the soil wedge defined by a bilinear ground surface with
o, greater than o.comer fOr @ crack depth dcrack that extends below the water table.

The cross-sectional area of the entire submerged portion of the trial soil
wedge (with crack) is

1
AreaW=§o{x1 o[Vs—Yol+Xso[Vo—¥i ]+ Xs o[¥1 =5} A.38

with (x, y1), (X5, ¥5), and (X6,ys) being the vertices of the triangle of the
submerged portion of the soil wedge, as shown in Figure A.5. The portion
of the area given by Equation A.38, i.e., the total submerged cross-
sectional area (i.e., AreaW), contained within the depth of cracking is

1
AreaW,, =§°{X7 '[y5 _y10]+X5 '[ylo _y7]+X10 '[y7 _y5]} A39

with (x5, y7), (X5, ¥5), and (Xi0,Y10) being the vertices of the triangle of the
trial soil wedge identified Figure A.8. The total cross-sectional area of the
submerged portion of the trial soil wedge (with crack) less the triangular
zone of cracking below the water table, is designated in Figure A.8 as
AreaW,e: and given by

AreaW.

net

= AreaW — AreaW.

crack

A.40

Consequently, the net moist cross-sectional area of the trial soil wedge
above the water table is equal to
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Area = Area,,, —AreaW, A41

moist—net net

and identified in Figure A.8.
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Figure A.8. Areamoist-net, AreaWhnet, and AreaWerack Within the soil wedge defined by a bilinear
ground surface with a greater than ocomer and crack depth derack that extends below the water
table.

The weight of the net submerged portion of the trial soil wedge, Wiaturated,

1S
VVsaturated = 7/ saturated * Ar ea anet A.42
with the weight of the net moist portion of the soil wedge
Wmoist = }/moist s Areamoist—net A.43

The total weight for the net trial soil wedge, considering a depth of crack,
dcrack, is equal to

W=W,

saturated

+W

moist

Ad4

This and the other relationships given in this subsection are also valid in
the case of dcrack equal to zero, i.e., cohesionless soils.
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A.6.2 Ocorner greater than o

For the case in which the angle o.corner (from horizontal), defining the line
between the point corresponding to the heel of the wall and point 4 in
Figure A.9 that designates the intersection of the level backfill and the
sloping ground surface, is greater than the angle o of soil wedge for the
potential slip plane, the total cross-sectional area is

1 {xlo[yz—y4]+x20[y4—yl]+x4O[yl—y2]+}
Area,,, =—® A.45
xlo[y4—y3]+x40[y3—yl]+x30[y1—y4]

with (1, y1), (X2, ¥2), and (x4,y4), and with (1, y1), (X4, y4), and (x3,y3) being
the vertices of the two triangles that form the soil wedge shown in this
figure. The area of the trial soil wedge below the water table is designated
AreaW in this figure and is defined by the vertices (x;, y1), (X5, y5), and
(X6,¥6)-

1 Areatotal

A AreaW =— :_"; 7\ o Tw
a

| acal‘ner > a

X

Figure A.9. Soil wedge defined by a bilinear ground surface with ocomer greater than a.

A621 dcrack > A4t09

Figure A.10 extends the Figure A.9 case to consider a crack within a
retained (cohesive) soil. Note the depth of cracking extends from the
ground surface to a depth, dcrack, below the sloping ground surface as well
as below the level portion of the retained soil. The case shown is for a crack
depth that intersects the planer trial slip plane (extending from points 1 to
2) below the sloping ground surface of slope  (versus below the level
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ground surface region). This intersection point is designated as point 7 in
this figure, corresponding to the case of derack > A4t09. Point 9 defines the
point along the planar trial slip surface (extending from point 1 to point 2)
that is below point 4. The case shown in Figure A.10 is for point 7 above
the hydrostatic water table. Points 7, 2, 4, and 8 delineate a region of the
trial soil wedge that is fully contained within the depth of cracking (i.e.,
Areacrack)-

Area _{(Xz;—Xs)+(X9—X7)H(y4—y9)+(ys—y7) .

crack

2 2 A.46
1
§°{X9 '(y2 _y4)+X2 0()/4 —y9)+x4 '(y9 _yz)}
dcrack/ tan(a)
HLeveI
H
1 Xy
Aps =Yy — %, ® tan(a)
y Yo =2y 'tan(a)
I_. acomer -0 xg = ‘x4
X ‘x?' = (H - dcmck) - [taﬂ(a)— tan(ﬁ)]
Yy =%, @ tan(a)
X, = X
dcrack . A4t09 yg = y,}, + dcmck

Figure A.10. Soil wedge defined by a bilinear ground surface with o.comer greater than o and
crack depth, dcrack, that extends below the water table (dcrack > Aatog).

The total soil wedge area less this triangular zone of cracking (Areacrack) is
designated as the Areane: in Figure A.10 and is computed to be

Area ., = Area,,, —Area bis A.37

total crack
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The cross-sectional area of the entire submerged portion of the trial soil
wedge, designated AreaW, is given by Equation A.38. Figure A.11 extends
Figure A.10 so as to distinguish the moist net area, designated Areamoist-net,
from the submerged net area, designated AreaWnet.

dcrackj tan(«)

8
Areamoistfnet / g

2 1A%y |
1 -~ H
dcrack 6 o TT Lo
H X,* tan(c) H
AreaW . 1W
v heel y
1 + X >
‘ Ayos = ¥y — %, .tan(a)
y Yo =x4® tan(a')
L acomer >0 ‘xg = ‘x4
X ‘x?' = (H - dcmc}c) - [tan(a)i tan(ﬁ)]
Yo =x; 0 tan(a)
Xy = Xy
dcrack . Aéltog Y = ¥, + dcmck

Figure A.11. Areamoistnet, AreaWhnet, and AreaWcrack Within the soil wedge defined by a bilinear
ground surface with acomer greater than o and crack depth, derack (derack > Aatoo)-

In the Figures A.9 through A.10 case, the zone of cracking is above the
hydrostatic water table. Should the crack zone include a region of cracking
below the water table as is the case for Figure A.8 when y; is less than Hy,
the total cross-sectional area of the submerged portion of the trial soil
wedge (with crack) less the triangular zone of cracking below the water
table is equal to AreaWpet and is given by

= AreaW — AreaW. bis A.40

crack

AreaW

net

AreaWerack is given by Equation A.39. Consequently, the net moist cross-
sectional area of the trial soil wedge above the water table is equal to

Area = Area,, — AreaW, bis A.41

moist—net net
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and identified in Figure A.11.

The weight of the net submerged portion of the trial soil wedge, Wsaturated,
is

Wsaturated = 7saturated i Area Wnet bis A.42
with the weight of the net moist portion of the soil wedge
Wmoist = ymoist i Areamoist—net biS A-43

The total weight for the net trial soil wedge, considering a depth of crack,
dcrack, is equal to

W=W,

saturated

+W

et bis A.44
This and the other relationships given in this subsection are also valid in
the case of dcrack equal to zero, i.e., cohesionless soils.

A.6.2.2 dcrack < A4t09

Figure A.12 extends the Figure A.9 case to consider a crack within a
retained (cohesive) soil and for a crack depth that intersects the planer
trial slip plane (extending from points 1 to 2) below the level ground
surface region of retained soil (versus below the sloping ground surface
retained soil region). This intersection point is designated as point 7 in this
figure, corresponding to the case of dcrack < Astog. Point 9 defines the point
along the planar trial slip surface (extending from point 1 to point 2) that
is below point 4. The case shown in Figure A.10 is for point 7 above the
hydrostatic water table. Points 77, 2, and 8 delineate a triangular region of
the trial soil wedge that is fully contained within the depth of cracking (i.e.,
Areacrack). The portion of the total cross-sectional area (i.e., Areaiotal by
Equation A.45) entirely contained within the depth of cracking zone is
given by

1
Area,,, =§.{X7 '[Y2_y8]+X2 .[YS _Y7]+X8 .[Y7 _Y2]} bis A.36
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d..../ tan(a)

crack’

[
SR [dm

H Level

%4 Agpo =Vs =X, ® tan(“)

Vg =X, ® tan(a)

y
aCO/‘ﬂ(Z)‘ > a x9 = x4
X Xg = X5
yS = HLevel
d <A x7 = xZ - [dcrack - tan(a)]
crack 4t09 _ _ d
y7 - y8 crack

Figure A.12. Soil wedge defined by a bilinear ground surface with acomer greater than a and
crack depth dcrack that extends below the water table (derack < A4too).

The total soil wedge area less this triangular zone of cracking (Areacrack) is
designated as the Areane: in Figure A.12 and is computed to be

Area ., = Area,,, — Area,,., bis A.37

The cross-sectional area of the entire submerged portion of the trial soil
wedge, designated AreaW, is given by Equation A.38. Figure A.13 extends
Figure A.12 so as to distinguish the moist net area, designated Areamoist-net,
from the submerged net area, designated AreaWnet.
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dgraci! tan(o)

[
SR [dm

Areamoist—net \

evel

X Appg =Yy =X, ® tan(a)

Vo =X, ® tan(a)

y
aCO/‘ﬂ(Z)‘ > a x9 = x4
X Xg = X5
yS = HLevel
d <A x7 = xZ - [dcrack - tan(a)]
crack 4t09 _ _ d
y7 - y8 crack

Figure A.13. Areamoistnet, AreaWnet, and AreaWcrack Within the soil wedge defined by a bilinear
ground surface with o.comer greater than o and crack depth, derack (derack < A4tog).

In the Figures A.12 and A.13 case, the portion of the soil wedge contained
within the zone of cracking (designated Areacrack) is above the hydrostatic
water table. Should this crack zone include a region of cracking below the
water table as is the case for Figure A.8 when y; is less than H., the total
cross-sectional area of the submerged portion of the trial soil wedge (with
crack) less the triangular zone of cracking below the water table is equal to
AreaW,e and is given by
AreaW

net

= AreaW — AreaW.

crack

bis A.40

AreaWerack is given by Equation A.39. Consequently, the net moist cross-
sectional area of the trial soil wedge above the water table is equal to

Area = Area,, —AreaW, bis A.41

moist—net net

and identified in Figure A.11.
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The weight of the net submerged portion of the trial soil wedge, Wiaturated,

is
saturatea = Y saturatea ® Ar€AW e, bis A.42
with the weight of the net moist portion of the soil wedge
Winoist = Vmoist ® Ar€8moist et bis A.43

The total weight for the net trial soil wedge, considering a depth of crack,
dcrack, 1s equal to

W=W,

saturated

+W

moist

bis A.44

This and the other relationships given in this subsection are also valid in
the case of dcrack €qual to zero, i.e., cohesionless soils.
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Appendix B: An Abbreviated Review of
Dynamics of a Rigid Body

This appendix provides an abbreviated review of dynamics of a rigid body.
The reader is cautioned that the notation used herein is not universally
consistent with the notation used in the main body of this report.

B.1 Dynamic Equilibrium of a Particle under Planar Motion

Newton’s second law of motion relates the accelerated motion of a particle
to the forces acting on it. It expresses in mathematical form, for a particle
of mass m, the relationship between the displacement of the particle and
time,

fr:m.a B.1

where f; is the resultant force acting on the particle that experiences an
acceleration a that has the same direction as the resultant force f. shown
in the Figure B.1 free-body diagram. A free-body diagram of the particle
considers it to be free of its surroundings and shows all forces acting on it.
The kinetic diagram is also shown in this figure. Kinetics is the analysis of
forces which cause the motion of the particle depicted in this figure. Note
that the measurements of motion are made from an inertial coordinate
system. That is, one that does not rotate and is either fixed or translates
with constant velocity. According to rectilinear kinematics (i.e., the study
of the geometry of motion without consideration of the forces causing the
motion) for a particle, its acceleration, a, is equal to its change in velocity
with time, dv/dt, and its velocity, v, is equal to its change in position with
time, ds/dt, with ds the change in a particle’s position with time. It is
easily shown mathematically that acceleration, a, is the second derivative
of the position vector with time, d2s/dt2. Consequently, the equation of
motion is a differential equation of second order.

Interpretation of the equation of motion: The equation of motion states
that the unbalanced force on a rigid body causes it to accelerate.

1 Bold text symbolizes a vector in this appendix.
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External forces f, and f,
Particle

acceleration of

f1/' magnitude a

Particle of mass m @

v

a
f2
s
y o= >
‘ f=2f ma
X Graphical
equivalency
Free-body of E[he Kinetic
diagram vectors diagram

Figure B.1. Free-body and kinetic diagrams of a particle subjected to external forces f1 and f.

The resultant of the externally applied forces f; and f5, i.e., fr (= Zf)
vectorial sum of all external forces, produces the vector m times a whose
magnitude and direction is represented by the kinetic diagram in Figure
B.1. A key concept depicted in this figure is the graphical equivalency (in
both magnitude and direction) of the resultant force f; of the free-body
diagram and the vector m a of the kinetic diagram.

Inertial force vector: By rewriting the resultant force vector f; as Zf,
and transferring the term m times a to the left-hand side, the equation of
motion of particle mass m is expressed as

> f-mea=0 B.2

where the vector m times a is referred to as inertia force vector. The
concept of the inertia force vector acting on the particle is best understood
by referring to Figure B.2. If this vector is treated in the same way as the
“force vector” Zf then the state of “equilibrium” created is referred to as
dynamic equilibrium. This method for application of the equation of
motion is referred to as D’Alembert’s principle. The key concept is that
acceleration component produces an inertia force (i.e., the second term in
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Equation B.2) in the direction opposite to the acceleration component and
acts at the center of mass of the particle.

External forces f, and f,
Particle
acceleration of
f1/' maghnitude a
Particle of mass m @ >
\ a
f2
DTSN
y 4 —-— s . .. .‘ P>
m a > f
X
Inertia Resultant
force force
vector vector
m a >f

Figure B.2. Inertia force and resultant force vectors for an accelerating particle.

Interpretation of the inertial force vector: Recall from elementary
mechanics that the inertia of the particle mass is the resistance of the mass
to a change in velocity. The change in velocity with respect to time is
acceleration. Thus, the inertial mass is considered to be a measure of the
particle’s resistance to acceleration. By D’Alembert’s principle the laws of
static equilibrium apply to a dynamic system if the inertia forces, as well as
the actual external forces, are considered as forces acting on the system
and the vector sum is zero. In a sense, the dynamics problem has been
reduced to a statics problem at every time t during the particles motion.
The inertial force is sometimes described as a fictitious force or as an
imaginary force in this zero vector sum application of D’Alembert’s
principle to establishing dynamic equilibrium.
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Lastly, the equation of motion of a particle of mass, m, can also be
rewritten in vector form in terms of its components along coordinate axes

xandy,
D f—mea =0 B.3
ny—moay:O B.4

where Zfx and Zfy are the resultant force vectors (algebraic sums of the
components of all external forces along the respective x- and y-axis;
positive sense for these forces along the respective positive x- and y-axis),
and the vectors m times ax and m times ay are inertia force vectors
acting at the center of mass of the particle and in the direction of the
respective orthogonal axes. (Note that the resultant force vector fis
equivalent to the vector sum of fx and Zfy.) Each of the acceleration
components in the x- and y-coordinates produces an inertia force in the
direction opposite to each acceleration component.

B.2 Dynamic Equilibrium of a Rigid Mass under Planar Motion

Although Newton’s law of motion is directly applicable only to the motion
of a single particle of finite mass (but no volume), it is easily extended
using elementary mechanics to cover the translational motion of rigid
bodies that are idealized as a collection of particles that remain at fixed
distances with respect to each other. The planar motion of the mass center,
G, of the rigid body is expressed as

F.=Mea, B.5

where F; is the resultant of all external forces acting on the rigid body of
mass, M, and ag is the instantaneous linear acceleration of the mass center
of the rigid body relative to an inertial reference frame and in the direction
of result force Fr. The result force Fr is equal to the vector sum of all
external forces, ZF. The mass center, G, of the rigid body moves (i.e.,
translates) as though the rigid body were a single particle subjected to the
resultant force F, as exemplified in the Figure B.3 rigid body subjected to
the coplanar force vectors F,, F., and W. The weight of the body,

W =Meg,is included on the free body diagram since it represents an
external force acting on the body. Note that all three force vectors are
concurrent at mass center point, G. This equation is satisfied at every time
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t during transient (i.e., time-varying) loading of a rigid body. Note that for
a rigid body in translation and without rotation, the line of action of the
resultant force vector F; passes through the mass center, G.

Free-body diagram of a Force Kinetic
rigid body —> Polygon diagram

Mass center
at point G

F
4——1 F2 4 -
I ; L
W Fr Graphical
Fo , raphica

equivalency | . Mag

o F ’ of the
%, vectors

X ’ Resultant force vector F, ’

Rigid body
acceleration

Weight of rigid mass, W = Mg of magnitude a
G

g is the constant of acceleration due to gravity

Figure B.3. Free-body and kinetic diagrams of a rigid body subjected to forces F1, F2, and W.

Figure B.3 shows a rigid body with an acceleration of magnitude ag.
Assuming that the (Figure B.3) planar rigid body cross section is an
idealization of a cross section of a retaining structure, the reaction force
vector of the foundation acting on the retaining structure is not included.
The exclusion of this force results in a nonzero resultant force vector Fr
acting on the rigid body, thus the rigid body is in motion by Equation B.5.
Inclusion of a foundation-to-retaining structure reaction force R (external
to the rigid body) as depicted in Figure B.4 results in a rigid body in static
equilibrium (i.e. a body at rest with a zero resultant force vector F; acting
on the rigid body and a zero M times ag vector). Note that the Figure B.4
rigid body is subjected to the coplanar force vectors Fy, F2, W, and R, with
all four force vectors concurrent at mass center point, G.
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Mass center

Free-body diagram of a Force
‘ rigid body —> Polygon

Kinetic
diagram

at point G
F, —
F, ;
w R
F Graphical .
1// . .
y ) equivalency Mag=0
F=0 F =0 of the
r v v vectors
‘ Resultant force vector F, No rigid body
acceleration
(i.e.,ag=0)

Figure B.4. Free-body and kinetic diagram of a retaining structure subjected to forces F1, F2,

W, and R that is in static equilibrium.

The equation of motion (Equation B.5) of mass center, G (e.g., refer to

Figure B.3), can also be rewritten in vector form in terms of its
components along coordinate axes x and y,

ZFX_M.(aG)X =0

ZF.V_M.(aG)y =0

where the vectors M times (ac)x and M times (ac)y are referred to as
inertia force vectors. If each of these vectors is treated in the same way as
the “resultant force vectors,” 2Fx and XFy, then the state of “equilibrium”
created is referred to as dynamic equilibrium. Note that the resultant force
vector F; is equivalent to the vector sum of ZFx and XFy, the algebraic
sums of the components of all external forces along the respective x- and

y-axis; positive sense for these forces are in the direction along the
respective positive x- and y-axis shown in this figure. This method for

application of the equation of motion is often referred to as D’Alembert’s
principle. Each of the acceleration components (ag)x and (ag)y (which are
not shown in Figure B.3 but are the components of vector ag along the x-
and y-axes) produces inertial forces (i.e., the second term in Equations
B.3 and B.4) in the direction opposite to these acceleration components
that act at the center of gravity of the rigid mass. The inertia force vector

M times ag for the Figure B.3 rigid body subjected to external force
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vectors F1, F2, and W is depicted in Figure B.5. Note this vector acts in
the direction opposite to the resultant force vector Fr (and opposite to
acceleration vector ag).

H Free-body diagram of a
rigid body Rigid body
acceleration
of magnitude ag
Mass center ’x"
at point G . F / Ma
2 F2 , P
F1
w I ;
) F, ’ Inertia force vector
Fy/ AN
y F, /
X T g
‘ Resultant force vector F,

Figure B.5. Inertia force and resultant force vectors for an accelerating rigid body subjected to
forces F1, F2, and W.

B.3 Mass of a Rigid Body

The mass, m, per unit volume at any point within a body is given by

m = B.8

r
g

where at any point within the body y is the total unit weight per unit

volume, and g is the constant of acceleration due to gravity (equal to
32.174 ft/sec?, 386.086 in./sec2, 980.665 m/sec2, or 980.665 gal).

The total mass, M, of the planar rigid body is defined as

M:J.J.m dx dy B.9

Area

Equivalently, this total mass, M, is

M =

W
— B.10
g
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where W is the total weight of the entire rigid body.

In order to compute the center of mass of a rigid body, it is often
convenient to discretize the rigid body into regular geometrical and/or
material regions (e.g., see Figure B.6), each with a constant material unit

weight and thus a constant mass per unit volume. The mass for each
region i, m,, is

m, = ” m dx dy B.11

Areai

and for regular geometry, its region mass center (denoted as x; and y;) is
easily computed.

For a rigid body comprised of regions of different masses, the center of
mass (point G) of the rigid body is computed by

_ D mex
Xl 100 B.12

2.

and
y==_"" B.13

where )’ m; is equal to the sum of masses of each of the discretized

regions, which is also the total rigid body mass M, and x; and y; are the
individual coordinate centers of each mass region i.
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Region numbers

Mass center
at point G

<!

Figure B.6. Example discretization of a rigid body into regular geometrical and material
regions.

B.4 Equation of Rotational Motion of a Rigid Mass

If a rigid body is acted on by external forces and the resultant force vector
does not pass through the mass center of the rigid body, the body may
rotate as well as translate. A body subjected to general plane motion
undergoes a combination of translation and rotation. In the special case of
the translational component of motion along a straight path, then the body
travels along a cycloidal path under the combined translational and
rotational motions. Considering the rotational component separately,
rotation is produced by a moment equal to the resultant force Fr about the
body’s mass center, G, or, equivalently, the sum of moments of each
external force about mass center, G. When the rigid body rotates about an
axis through mass center, G, perpendicular to the x-y plane (and denoted
as the z-axis), any point in the body travels along a circular path. The
equation of motion governs the translational aspect of the kinetic problem.
The rotational aspects of the kinetic problem are governed by the equation

DM, =l 0a B.14

where Mg is the sum of moments of all external forces acting on the rigid
body with respect to the an axis through mass center, G, perpendicular to
the x-y plane (and denoted as the z-axis), I is the mass moment of inertia
of the body with respect to an axis through G, and a is the angular
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acceleration.* Note that positive sense for moment(s) agrees with the
assumed sense of the angular acceleration a.

The angular acceleration vector a is positive for counter-clockwise angular
acceleration about the z-axis. Similarly, the vector Mg is defined as being
positive for counter-clockwise moments of external forces about the z-axis
according to the right-hand rule. Recall that the x, y, and z axes are
orthogonal. The vector for a positive resultant moment Mg points out of
the drawing, along the positive z-axis.

Consider the Figure B.7 rigid body subjected to force vectors Fy, F», and
W. Note that two of the three coplanar force vectors are not concurrent at
mass center point, G, as they were in Figure B.3. The resultant force vector
F: is shown in Figure B.7; recall that the resultant force vector Fr is the
vector sum of the all external forces as shown in the force polygon.
Because the resultant force vector is nonzero, the body of mass, M,
translates at an acceleration, ag, according to Equation B.5 (or,
equivalently, Equations B.6 and B.7). Additionally, because force vectors
F, and F. do not act along a line that projects through the center of mass,
the rigid body is also subject to a resultant moment vector Mg (the sum
of moments of all forces about mass center point, G), of magnitude

D M, =F, eh, +F,eh, B.17

where h; and h, are the perpendicular distances between the lines of action
of vectors F, and F», respectively, and parallel lines that pass through
mass center, G, as shown in Figure B.7. The action of the vector ZMg on
the rigid body results in the angular rotation of the body. An alternate,

1 For a body undergoing planar motion, the mass moment of inertia lg is the integral of the “second
moment” about the z-axis and passing through point G of all the elements of mass dm which compose
the body.

Iy = [r*dm B.15

The “moment arm” r is the perpendicular distance from the z-axis to the arbitrary element dm. In
planar kinetics, the axis chosen for analysis passes through the body’s mass center, G, and is always
perpendicular to the plane of motion. With x and y being the distance from dm to mass center, G, (as
measured along the x- and y-axes, respectively) and substituting r? = (x2 +y2) , Equation B.15
becomes

Iy = J.(x2 +y?) dm B.16
The mass moment of inertia, lg, is @ measure of the resistance of a rigid body to the angular
acceleration a in the same manner as mass is a measure of the rigid body’s resistance to the
acceleration, ag.
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equivalent expression for the resultant moment vector Mg is given in
terms of the resultant force vector F; as

D> M, =F ed B.18

where d is the perpendicular distance between the line of action of vector
F: and a parallel line passing through mass center, G, as shown in Figure
B.7. The angular acceleration of the Figure B.7 rigid body about mass
center point, G, is given by Equation B.14. This equation is satisfied at
every time t during transient (i.e., time-varying) loading of a rigid body.
The mass center, G, of the rigid body moves (i.e., translates and rotates) as
though the rigid body were a single particle subjected to the resultant force
F; acting at lever arm d from mass center.

Free-body diagram of a Force
rigid body & its — Polygon Kinetic
acceleration vectors with diagram
agand a resultant
. moment Mg

Mass center

at point G
ht -
L
i , . | Graphical
’ rgp ica ,//MaG
y ! equivalency |
F ' ’ of the
r H P
>, vectors
z ’ Resultant force vector F, Rigid body with
- acceleration ag
Resultant moment and angular
IMg = Fd = Fihy + Foh, acceleration a

Figure B.7. Free-body and kinetic diagrams of a rigid body subjected to the forces F1, F2, and
W. F1and F2 are eccentric to mass center, G.

According to planar kinematics of a rigid body, its angular acceleration a is
equal to its change in angular velocity with time, dw/dt, and its angular
velocity, o, is equal to its change in angular displacement with time,
do/dt, with do representing the change in angular position with time.!

1 Planar kinematics of a rigid body is the study of the geometry of motion without consideration of the
forces causing the motion.
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It is easily shown mathematically that angular acceleration, a, is the
second derivative of the angular position with time, d20/dtz.

It is useful to keep in mind that the two vectors M times ag and I times
a are not the same as a force and a moment of a force, respectively.
Rather, they are the result of external forces acting on the rigid body.

Equation B.14 can also be rewritten in vector form as

ZMG—IGoa:O B.19

where the vector I times a is considered as the moment that acts counter
to sum of moments of all external forces acting on the rigid body ZMg
about the center of mass, G, resulting in a vector sum of zero

(D’Alembert’s principle). The inertia force vector M times ag and the
inertia vector I times a for the Figure B.7 rigid body subjected to
external force vectors F1, F2, and W are depicted in Figure B.8. Observe
in this figure that these two inertial vectors act in the direction opposite to
the resultant force vector, Fr, (and opposite to acceleration vector, ac) and
opposite to sum of moments of all external forces about the center of mass,
G, Mg, (and opposite to the angular acceleration vector a), respectively.

Free-body diagram of a
rigid body

Resultant moment
EMg =Fd=F,h, + F;h,

‘ Inertial force vector

<

MaGl,x

Mass center
at point G

d
T
s s
e A T h, F, ¢ \ Angular
h| ) )% acceleration o
Fi } W F, <
F, N / Rigid body with translational
L, a

G - acceleration a; and angular

acceleration o
z ‘ Resultant force vector F, ‘

Figure B.8. Inertia force and resultant force vectors for a rigid body subjected to the forces F1
and F2, eccentric to mass center, G, and subjected to force W.
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B.5 Equations of Motion: Rotation about a Fixed Axis

Consider the Figure B.7 (or B.8) rigid body of mass center, G, shown in
Figure B.9, which is now constrained to rotate in the x-y plane about a
fixed axis perpendicular to the page and passing through a pin at point O.
The angular velocity, o, and angular acceleration, a, are caused by the
external force and couple moment system acting on the body. Because the
body’s center of mass, G, moves in a circular path about point O, the
acceleration of this point is represented by its tangential and normal
components.! The tangential component of acceleration has a magnitude

a=aer,, B.26

and must act in a direction which is consistent with the body’s angular
acceleration, a.. The magnitude of the normal component of acceleration is

a,=a’ er,, B.27

This component is always directed from the center of mass point, G, to
point O, regardless of the direction of ®, as shown in Figure B.10.

1 The tangential velocity v vector of mass center, G, along its Figure B.9 circular path about point O is the
cross product of @ and re/o0
V=axr,,, B.20

Recall that the angular velocity, o, is the time rate of change in angular position and equals d%t .

Given that a, :dvdt and a, :VZ/rG/O ,and with v=wer, , and « :d%t , the magnitude of

tangential acceleration becomes

a=aer,, B.21
and the magnitude of normal acceleration becomes

a,=aw’ el B.22

Like velocity, the acceleration of mass center point, G, may be expressed in terms of vector cross
product. Taking the time derivates of the vector Equation B.20 results in

a:aer/OJra)x(wer/o) B.23
Which is equivalent to

a=a, +a, B.24
Performing the vector cross products results in the following two acceleration vector components
a=axty,,—wo’er B.25

Note an is directed from point G towards point O, hence the negative sign. Additionally, at and an are
perpendicular to one another. Refer to pages 294-295 in Hibbler (2001) for additional details
regarding the cross products of the vectors discussed in this footnote and the direction of the resulting
vector by the right-hand rule.
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Path of mass
center point G

reference

pin at
pt. O

Figure B.9. Free-body diagram of a rigid body subjected to the forces F1, F2, and W which is

attached to a pin at point O. (Pin reaction force at point O not shown.)

Path of mass
center point G

reference

pin at
pt. 0

Figure B.10. Tangential and normal acceleration vectors of mass center point, G, for the free-
body diagram of a rigid body subjected to the forces F1, F2, and W which is attached to a pin

at point O. (Pin reaction force at point O not shown.)

The free-body and kinetic diagrams for the body are shown in Figure B.11.
The two components, m times a; and m times an, shown on the kinetic

diagram, are associated with the tangential and normal acceleration
components of the body’s mass center, G. These vectors act in the same

direction as the acceleration components of the body’s mass center. The I
times o vector in the kinetic diagram acts in the same direction as a. The

equations of motion which apply to the rigid body are
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Z:F,,:Moa,7 :I\/Ioa)2orG

/0

ZFt :Moat:MoaorG/o

ZMG =l;ex

B.28

B.29

B.14 bis

The resultant force vector Fr, shown in the Figure B.11 force polygon
(middle diagram), is the vector resultant of the forces F,, F=, W, and
reaction force Fo (acting at pin 0). The left-hand sides of Equations B.28

and B.29 define the magnitude of the resultant force vector F; with its

vector components oriented along the normal and tangential axes defined

Free-body diagram of a
rigid body & its
acceleration vectors
a, a,and a

—>

Force
Polygon
with
resultant
moment Mg

Resultant

Path of mass

‘ Resultant force vector F, ‘

moment

center point G

F pin at
pt. 0

Y

FI‘

Kinetic
diagram

Path of mass

SMq

center point G

w
Graphical
equivalency
of the vectors S pin at
pt. 0

by the Figure B.11 vectors an and rg/o, respectively.!

Figure B.11. Free-body and kinetic diagrams of a rigid body subjected to the forces F1, F2, W,
and reaction force Fo acting at pin 0. (Resultant vector Fr not shown in the free-body diagram,

the left-hand side diagram.)

In the case of Figure B.11 planar motion about a fixed axis of rotation (i.e.,

axis z, perpendicular to the x-y plane) that does not pass through mass

point, G, Equation B.14 is replaced by

1 The magnitude of vector F; is given by

F=y(XR) +(ZR)

B.30
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ZMO =l e B.31

where Mo (not shown in Figure B.11) is now the sum of moments of all
external forces (four forces in the case of Figure B.11; Fy, F., W, and
reaction force Fo) acting on the rigid body with respect to this fixed axis of
rotation through point O and Io is the mass moment of inertia of the body
with respect to point O. The resulting moment XMp is equal to the
moments of forces F;, F2, and W about point O, which are eccentric to the
pin. Since reaction force Fo acts at pin 0, it does not contribute to this
resultant moment. Summing moments due to these three forces about pin
O, with counterclockwise moments positive, the magnitude of the
resultant moment vector Mo (the sum of moments of all forces about
point O) is

> M,=-F, eh',+F,eh',-Wex, B.32

where h’,, h’,, and xw are the perpendicular distances between the lines of
action of vectors F, F2, and W, respectively, and parallel lines that pass
through pin O, as shown in Figure B.11. The action of the vector ZMo (not
shown) acting about pin O on the rigid body results in the angular rotation
of the body and is graphically equivalent to the Figure B.11 vector Ig
times o shown in the kinetic diagram (the right-hand side diagram).

The two mass moments of inertia Ig and Io are related by the parallel axis
theorem,

ly=lg+Merg B.33

where M is the mass of the rigid body and rg/o is the perpendicular
distance between the parallel z-axes (perpendicular to the x-y plane)
passing through points G and O. It is used to transfer the mass moment of
inertia, Ig, from a set of three orthogonal planes passing through the
body’s mass center, G, to a corresponding set of orthogonal planes passing
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through some other point O.* For applications, one should remember that
“Ioa” accounts for the “moment” of both M times a;and Ig times a about
point O. An alternate, equivalent expression for Io is

2 2
Iy =lg +M (X306 + Yo 06 B.37

B.6 Planar Kinematics of a Rigid Body: Noncentroidal Rotation about
a Fixed Axis

Planar kinematics of a rigid body is the study of the geometry of motion
without consideration of the forces causing the motion. The rigid body
shown in Figure B.9 is an example of a body undergoing noncentroidal
rotation. The rigid body’s mass center, G, travels along a circular path of
radius rg/o centered at the point 0 in this figure, where the axis of rotation
intersects the plane of reference.

Angular displacement: The change in the angular position of the of the
Figure B.9 radius vector from point 0 to G, which can be measured as a
differential d6 and is a vector quantity, is called the angular displacement.
Since motion is always about a fixed axis (whose origin is point 0) the
direction of vector d0 is always along the axis. Specifically, the direction is
determined by the right-hand rule. In Figure B.9 both 6 and d6 are
directed counterclockwise. Thus the directional sense of ® is outward from
the Figure B.9 drawing.

Angular Velocity: The angular velocity vector, o, is the time rate of change
in angular position

ae
w=— B.38
dt
1 Introducing Equation B.33 into the relationship
DMy =l,ea bis B.31
results in
ZMoz(IG+MorG/O2)oa B.34
Expanding terms, Equation B.32 becomes
ZMO:IGoaJrMorG/OO(rG/OOa) B.35

and by introducing Equation B.26, simplifies to
ZMO:IGoa+MorG/Ooat B.36
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and is often measured in radians/sec. Its direction is always along the axis
of rotation, i.e., in the same direction as d6. When indicating the angular
motion of the Figure B.9 rigid body we arbitrarily chose counterclockwise
rotations as positive; the directional sense of w is outward from the

Figure B.9 drawing.

Angular Acceleration: The angular acceleration, o, measures the time rate
of change of the angular velocity

dw
a=— B.39
dt
or, equivalently,
d’o
a=—— B.40
dt

The line of action of o is the same as that for ®. However, its sense of
direction depends on whether o is decreasing or increasing. Note that if ®
is decreasing, then o is the angular deceleration and it has a sense of
direction opposite to o.

The similarity between the differential relations for angular motion and for
rectilinear motion of a particle (i.e., v = ds/dt; a = dv/dt) should be
apparent.

B.7 Planar Kinetics of a Rigid Body

A rigid body undergoing general plane motion undergoes a combination of
translation and rotation. Returning to the Figure B.7 (discussed in Section
B.5), this rigid body of mass M is subjected to the external forces Fy, Fa,
and W contained in the plane of the rigid body. (Note that no
displacement and/or rotational constraints are placed on this body.) The
motion of the rigid body is completely defined by the resultant of the
external forces and moment of these forces about its mass center,

DY F,=Me(a,), B.41

D F,=Me(a,), B.42
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Y M =lsec bis B.14

Equations B.41 and B.42 describe the magnitude of the x- and y-
components of the resultant force F; (refer to Equation B.30) which may
also be expressed as

F,=Mea, bis B.5
where the vectors F; and ag are shown in Figure B.7.

Considering the rotational component separately, rotation is produced by
a moment equal to the Figure B.7 resultant force vector F; about the
body’s mass center, G, or equivalently, the sum of moments of each
external force about mass center, G (as discussed in the Section B.4). Note
that if the resultant of external forces acting on the Figure B.7 rigid body
had passed through the mass center, G, it would be constrained to move in
translation with zero angular acceleration. In this case the resultant force
F; acting on the Figure B.7 rigid body does not pass through the mass
center, resulting in an angular rotation about point G.

Considering the rotational component separately for the Figure B.7 rigid
body, rotation is produced by the sum of moments of each external force
about the body’s mass center, G, resulting in this case with centroidal
rotation. However, if the motion of the body is constrained to rotate about
a fixed axis which does not pass through its mass center, noncentroidal
rotation results. A rigid body subjected to this constraint was discussed in
Sections B.5 and B.6 and shown in Figures B.9, B.10, and B.11.
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Appendix C: An Approach for Computing the
Dynamic Active Earth Pressure Distribution
for a Partially Submerged Retained Soil

This appendix provides an approach for computing the dynamic active
earth pressure distribution equivalent to the pseudo-static force Par and
its corresponding point of application. The computation of the resultant
location of Par and a corresponding pressure distribution for a granular
backfill is discussed in Section C.1 in which Mohr-Coulomb effective stress
shear strength parameter ¢’ (with ¢’ set equal to zero) is used to
characterize the shear strength of the retained soil. Wall movements
sufficient to fully mobilize the shear strength of the backfill are assumed in
the formulation, thus allowing for the use of active earth pressures. A
hydrostatic water table is assumed in this formulation. Section C.2
discusses the computation of the resultant location of the static P4 force
component of Par and a corresponding pressure distribution for a granular
backfill with a non-level backfill surface.

Section C.3 discusses the computation of the resultant location of Par and
a corresponding pressure distribution for a backfill in which Mohr-
Coulomb effective stress shear strength parameter ¢’ and ¢’ are nonzero.
Section C.4 discusses the computation of the resultant location of Par and
a corresponding pressure distribution for a backfill in which Mohr-
Coulomb total stress shear strength parameter c is set equal to the
undrained shear strength, Sy, and ¢ is set equal to zero.

C.1 Earth Pressure Distribution for the Dynamic Active Earth Pressure
Force, Pag, of a Partially Submerged, Cohesionless, Level Backfill —
Effective Stress Analysis with ¢’ Equal to Zero

In Section 3.5 of Chapter 3, an approach to convert the resultant active
earth pressure force, Pag (calculated using the approach outlined in
Appendix A), into an equivalent pressure diagram for a wall retaining
moist granular backfill was outlined. Key to this approach is the
construction and use of pressure distributions for each of the two force
components of Pag,

P, =P, +AP,. bis 3.23
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The procedure was outlined in Figure 3.9 for a granular, moist backfill
with a level ground surface. This figure demonstrates that the resulting
total pressure distribution acting on the structural wedge is the sum of the
triangular distribution of static active earth pressures plus the trapezoidal
stress distribution consistent with APag. For this moist backfill condition,
the static pressures are consistent with Pa for the ¢’=0, moist granular
backfill (with no water table), the equivalent resultant force for the static
active earth pressure distribution acts at a height of H/3 and the
equivalent resultant force for the incremental dynamic earth pressure
distribution acts at a height equal to 0.6 times H. For partially submerged
backfills, Equation 3.24 and Ebeling and Morrison (1992) describe an
extension of this procedure to the case of a level, granular backfill with a
partially submerged backfill containing a hydrostatic water table. This
procedure is outlined below using a four-step computational process:

Step 1: Convert the static active earth pressure force, Pa, into an
equivalent active earth pressure diagram

The active earth pressure coefficient, Ka, is first computed using the
relationship
P
K,=7—2— c.1
I o, dh
0

vertical

with P5 computed by the sweep-search method in CorpsWanRotate (refer to
Section A.3) and the denominator equal to the integral of the vertical
effective stress (i.e., the effective overburden pressure distribution). For
level backfill with a hydrostatic water table of height H, above the heel of
the wall (and no surcharge), the denominator of Equation C.1 is computed
using the simplified relationship

H
J.J\'/ertical dh =
0
%.7moist.(H_Hw)2+7/moist.I:(H_Hw).Hw:| C2
1
+§.(7saturated _yw).(Hw )2

with
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Ymoist = Mmoist unit weight of the retained soil (above the water table)
Ysaturated = saturated unit weight of the retained soil (below the water table)

H = height of the imaginary section as measured vertically from the heel of the
wall to the horizontal ground surface (and equal to the height of the
imaginary section taken at the interface of the driving soil wedge with the
structural wedge)

(H-H,) = thickness of the backfill above the hydrostatic water table

Note that the height term Hy in Equation C.2 is used to denote the
thickness of the submerged backfill above the heel of the wall.

The static active earth pressure ca, acting at an effective interface friction
angle of & to the normal of the vertical imaginary section, is computed at
any depth, d, below the ground surface as

0, =K, (Vo ®d)  With d<(H-H,) C3a

above the water table, and

Oy :KA ‘{ymoist .(H_Hw)—’_(}/saturated_yw).l:d_(H_Hw):I}
with d>(H-H, )

C3.b

below the hydrostatic water table, as shown in Figure C.1.
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Gmp P4 = O

o-midfPA = KA s []/moist * (H - HW )]

Gtop-PA

Ymoist

ysaturated

v

Ubot—PA = KA ® [ymni.vt ® (H - Hw ) + (}/.vaturated - }/w ) ® Hw]

Figure C.1. Static active earth pressure ca distribution acting at an effective interface friction
angle of & to the normal of the vertical imaginary section through the heel of the wall —
effective stress analysis.

The area under the Figure C.1 active earth pressure diagram is equal to Pa.

The hpa location of the equivalent resultant force (Pa) for the Figure C.1
earth pressure distribution is computed in a two-step process: First, the
active earth pressure distribution is converted into an equivalent set of

Figure C.2 forces Fi, F», F5, and F,

F. L= 1 ° _O-toprA + O mig—pa c4
(H-H,) L 3 6
F,= N e + Cmia-pa | s
(H-H,) L 6 3
,:3 — i ° i O mid—Pa + Opot—PA | c6
H L 3 6
I:4 — i ° i Gmid—PA + Gbot—PA ] Cc.7
H | 6 3
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Secondly, from the moment equilibrium relationship for the horizontal
components of the four forces about the heel,

{il—',}ocos(é‘)ohm ={F, eH+(F,+F,)eH, +F, ¢0}ecos(5) c.8

i=1

the hpa location of the equivalent resultant active earth pressure force Pj is
computed using

F,oH+(F,+F,)e(H=H,)+F, ¢0
h,, = 1 ® +(2+ 34'( w)+ 2 ® co

F

i

i=1

Note that

il—', =P, C.10

i=1

with P being the value computed by the sweep-search trial wedge solution
discussed in Section A.3.

Observe in Figure C.2 that the location of the resultant force Pa for a level,
granular (c’=0) backfill with a partially submerged backfill containing a
hydrostatic water table is above the H/3 height for a moist backfill (with
no water table).

Step 2: Create an incremental dynamic force component pressure diagram

The incremental dynamic force component APax is next converted into an
equivalent earth pressure diagram. Using the relationship

AP, =P,  —P, c.11

and with values for Par and Pa provided by the dynamic and static sweep-
search solutions made by CorpsWanRotate using the procedures outlined in
Appendix A. The Ebeling and Morrison (1992) simplified procedure
assumes a trapezoidal distribution for the corresponding incremental
stress distribution, acting at an effective interface friction angle of 5 to the
normal of the vertical imaginary section, as shown in Figure C.3. The
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resulting force corresponding to the area under the pressure distribution is
equal to APsg and acts at a height to 0.6 times H.

O-top—PA = O
O-mid—PA = KA b [}/moist ¢ (H - Hw )]
Gtop-PA F,
A — o~
O'mid-PA F
A 2
= = =’
3 -
d
H P,
1 / HW
hea fb—""
l Ohot-PA F,
v b k 8 v b / k 6
heel heel
O-hot—PA = KA ® [}/moi.\'t M (H - Hw)+ (y.vuturuti'd - yw). Hw

Figure C.2. The static active earth pressure distribution and its equivalent set of forces —
effective stress analysis.

Step 3: Create the dynamic active earth pressure diagram

The dynamic active earth pressure diagram is created by adding the earth
pressure diagrams created in steps 1 and 2. The resulting force
corresponds to the area under the combined pressure distribution and is
equal to Pag (recall Pag = Pa + APag). Its point of application above the heel
of the wall is given by

P,e(h,, )+ AP 0.6eH
hPAE = A.( PA) PAE.( * ) Cc.12
AE

Step 4: Compete the pressure diagram by adding in the pore water
pressure distribution.

In this effective stress analysis, pore water pressures will be added to the
Figure C1 Pa and Figure C3 APsx component earth pressure distributions
in order to obtain a total diagram of pressures acting on the structural
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AP,
O top-aPaE = 1.6 '( I
o -G T+ H e O-mp—APAL«‘ = O hor-APAE
Gtop—APAE mid-APAE — O bor-APAE w H
S —a
/ Ymoist
X |-
G Omid-APAE "= 7'y
d
H Y — ] Ysaturated
Hw
— Opot-APAE
4 b " o) v
heel
AP,
O pornpar = 0.4 '( H

Figure C.3. The dynamic earth pressure distribution corresponding to the incremental
dynamic force component APae , acting at an effective interface friction angle of & to the
normal of the vertical imaginary section through the heel of the wall (after Ebeling and
Morrison (1992)).

wedge (and not to be confused with a total stress analysis). Pore water
pressures act normal to the imaginary vertical section through the heel of
the wall in this effective stress characterization of earth pressures acting
on the structural wedge. For a hydrostatic water table, the pore water
pressure at depth, d, below the ground surface is given by

u=0 with d<(H-H,) C.13.a

above the water table, and

u=y,e[d-(H-H,)| with d>(H-H,) C.13.b

below the hydrostatic water table, as shown in Figure C.5.
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Ymoist

ysatu rated

heel

Figure C.5. Hydrostatic pore water pressure distribution acting normal of the vertical
imaginary section through the heel of the wall.

Thus, a total diagram of pressures acting on the structural wedge consists
of the Figure C1 P, distribution, plus the Figure C3 APag distribution, plus
the Figure C.5 pore water pressure distribution.

C.2 Earth Pressure Distribution for the Static Active Earth Pressure
Force, Pa, component of Pae of a Cohesionless, Backfill with a Sloping
or a Bilinear Ground Surface — Effective Stress Analysis with ¢’ Equal
to Zero

The previous section describes an approach to convert the resultant active
earth pressure force, Pag, (calculated using the approach outlined in
Appendix A) into an equivalent pressure diagram for a wall retaining
moist granular backfill with ¢’ equal to zero. This procedure starts with the
computation of an equivalent static active earth pressure force P4 and an
equivalent active earth pressure diagram for a level backfill ground
surface. This section expands on the Section C.1 procedure for determining
the distribution and resultant location of P4 for a sloping and a bilinear
ground surface backfill following a procedure outlined in ETL 1110-2-322.
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C.2.1 The Basic Procedure to Compute the Active Effective Stress
Distribution Corresponding to Pa for a Moist Retained Soil with a Sloping
Ground Surface

The procedure to calculate the active earth pressure distribution for
resultant static force Pa due to the geometry of the backfill is outlined
using the information contained within Figure C.6 for a moist, granular
frictional (¢’ > 0 and ¢’ = 0) retained soil with a constant slope for the
ground surface. The sweep-search wedge procedure described in Section
A.3 is used to first compute the value for P4 as well as the orientation of
the planar slip surface, a., for the critical soil wedge that originates at
point 1. The equation to compute the active earth pressure (designated as
ca) at key points is given in this figure and is equal to the active earth
pressure coefficient, Ka, times the vertical effective stress at depth z in the
moist retained soil. The key feature for this formulation is that at a given
point along the vertical imaginary section through the heel of the
structural wedge (and labeled in this figure), the effective vertical stress
(designated as ov-,in the brackets) is computed using a depth z, the depth
below the ground surface as shown in this figure. A computation of cv-,
and, subsequently, ca are made in this figure for point 1 (at the heel). Note
that depth z, designated as z, for point 1, is determined by extending the
critical, planar slip plane from point 1 until it intersects the ground
surface. This same procedure is followed to compute a different value for z,
ovz and for o4 at any other point of interest along the imaginary vertical
section of height H. To determine the value for the active earth pressure
coefficient, Ka, the value for the force Pa from the sweep-search method of
analysis is divided by the integral of the oy., distribution along the
imaginary vertical section of height H (refer to the Ka equation given in
this figure). For the case of a moist granular retained soil with a constant
surface slope, the equation for oy, and ca at key points and for Ka are
straight-forward and given in this figure.
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o, =K, [O-v—z3:| o, =K, 0 [0]
Oy = KA i [Gvfn] JA—I = KA * [ymoist * Zl]
Note: o, is the vertical effective stress at depth z in the moist retained soil

A

o, .
—_— 4-3 < ret:(;?led
!/ | Wedge
/ slip z, 2 =He tan(a)
H 5 / plane tan(a ) - tan(3)
a
| - [\
- O,
heel 3
y P P P
L K, = B 4 — . 4 — . 4
X J.O-v,:dh E.O—vle .H E.[ymoist .Zl].H
0

Figure C.6. The active earth pressure distribution corresponding to the incremental static

force component Pa, acting at an effective interface friction angle of 8 to the normal of the

vertical imaginary section through the heel of the wall — moist retained soil with ¢’>0 and
c¢’=0.

The procedure outlined in Step 1 in Section C.1 that converts the ca
distribution into equivalent forces (see Figure C.2) is used to compute the
resultant location hpa of P4 for use in Equation C.12 for the resultant
location hpag of Pag. The procedure outlined in Step 2 and Step 3 in
Section C.1 are used to compute the incremental dynamic force component
APag and its corresponding equivalent earth pressure diagram.

C.2.2 The Basic Procedure to Compute the Active Effective Stress
Distribution Corresponding to Pa for a Partially Submerged Retained Soil
with a Sloping Ground Surface

This section expands upon the procedure outlined in Section C.2.1 by
including the case of a partially submerged granular backfill (with a
hydrostatic water table). The procedure to calculate the active earth
pressure distribution for resultant static force P4 due to the geometry of
the backfill is outlined using the information contained within Figure C.7
for a granular frictional (¢’ > 0 and ¢’ = 0) retained soil with the critical
planar wedge slip plane that passes through point 1 (with o > ocorner) and
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intersects the sloping portion of the ground surface. The sweep-search
wedge procedure described in Section A.3 is used to first compute the
value for P4 as well as the orientation of the planar slip surface, o, for the
critical soil wedge that originates at point 1. The equation to compute the
active earth pressure (designated as ca ) at the key points identified in this
figure as 1, 6, and 3, is equal to the active earth pressure coefficient, Ka,
times the vertical effective stress at depth z in the retained soil. The key
feature for this formulation is that at a given point along the vertical
imaginary section through the heel of the structural wedge (identified in
this figure as points 1, 6, and 3), the effective vertical stress (designated as
o’vzin the brackets) is computed using a depth z, the depth below the
ground surface as shown in this figure. A computation of ¢’y; and,
subsequently, ca are made in this figure for point 1 (at the heel). Note that
depth z, designated as z, for point 1, is determined by extending the
critical, planar slip plane from point 1 until it intersects the ground surface
(at point 2). This same procedure is followed to compute the value for z,
o'v-2, and oa at the other key point 6 (and point 3) along the imaginary
vertical section of height H. A plane oriented at a.a from horizontal is
projected from the point of interest, e.g., point 6, up through the retained
soil until it intersects the sloping ground surface. ¢’y-z6 is computed using
the resulting vertical height zs of this planar surface, as shown in this
figure. Moist unit weights above the water table and buoyant unit weights
below the water table (assuming a hydrostatic water table in the retained
soil) are used to compute the vertical effective stress ¢’y-,. To determine
the value for the active earth pressure coefficient, Ka, the value for the
force Pa from the sweep-search method of analysis is divided by the
integral of the 'y, distribution along the imaginary vertical section of
height H (refer to the equation given in this figure). [¢’y-; is contained
within the brackets of the o4 relationships in this figure.] For the case of a
granular retained soil with a constant surface slope, the equation for ¢’v-,
and cx at key points and for K, are straight-forward and given in this
figure.
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o,=K,0 [0]
ous=K, e [7mmst ® Za]
o, =K, [}/mm'sl ° (Zl -H, ) + (}/sa/u/‘an’d - 7/W)° H,

[-]

— H Level

T

aA > acorner P
: K,=—"—
X 47

j o' . dh

0

Figure C.7. The active earth pressure distribution corresponding to the incremental static
force component Pa, acting at an effective interface friction angle of & to the normal of the
vertical imaginary section through the heel of the wall — partially submerged backfill with ¢’>0
and ¢’=0.

The procedure outlined in Step 1 in Section C.1 that converts the ca
distribution into equivalent forces (as generalized in Figure C.8) is used to
compute the resultant location hpa of P4 for use in Equation C.12 for the
resultant location hpag of Pag. The procedures outlined in Step 2 and

Step 3 in Section C.1 are used to compute the incremental dynamic force
component, APag, and its corresponding equivalent earth pressure
diagram.
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F = 1 o| Za-rop 4 Gacbor
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Figure C.8. Conversion of a linear stress distribution into an equivalent set of forces.

L

C.2.3 The Basic Procedure to Compute the Active Effective Stress
Distribution Corresponding to Pa for a Partially Submerged Retained Soil
with a Bilinear Ground Surface

This section expands upon the procedure outlined in Section C.2.2 in the
case of a partially submerged granular backfill. The procedure to calculate
the active earth pressure distribution for resultant static force Pa due to
the geometry of the backfill is outlined using the information contained
within Figure C.9 for a granular, frictional (¢’ > 0 and ¢’ = 0) retained soil
for which the critical planar wedge slip plane that passes through point 1
(with ocomer > aa) and intersects the horizontal portion of the bilinear
ground surface. The sweep-search wedge procedure described in Section
A.3 is used to first compute the value for P4 as well as the orientation of
the planar slip surface, a., for the critical soil wedge that originates at
point 1. The equation to compute the active earth pressures (designated as
ca) at the Figure C.9 key points 1, 12, 6, and 3 is equal to the active earth
pressure coefficient, Ka, times the vertical effective stress at depth z in the
moist retained soil. The key feature for this formulation is that at a given
point along the vertical imaginary section through the heel of the
structural wedge (identified in this figure as points 1, 12, 6, and 3), the
effective vertical stress (designated as ¢’v-; in the brackets) is computed
using a depth z, the depth below the ground surface as shown in this
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figure. A computation of ¢’v.;, and, subsequently, ca are made in this figure
for point 1 (at the heel). Note that depth z, designated as z, for point 1, is
determined by extending the critical, planar slip plane from point 1 until it
intersects the horizontal ground surface. This same procedure is followed
to compute the value for z, 'y, and ca at the other key points 12, 6, and 3
along the imaginary vertical section of height H. A plane oriented at aa
from horizontal is projected from the point of interest (e.g., point 6) up
through the retained soil until it intersects the sloping ground surface. ¢’y-
26 is computed using the resulting vertical height z¢ of this planar surface,
as shown in this figure. The computations outlined in Figure C.9 differ
from the Figure C.7 computations because the deepest soil wedge slip
plane (originating at point 1) intersects the horizontal rather than the
sloping portion of the ground surface. Thus an additional key point 12 is
needed to define the o4 distribution. Moist unit weights above the water
table and buoyant unit weights below the water table (assuming a
hydrostatic water table in the retained soil) are used to compute the
vertical effective stress ¢’v-,. To determine the value for the active earth
pressure coefficient, Ka, the value for the force Pa from the sweep-search
method of analysis is divided by the integral of the c¢’y-, distribution along
the imaginary vertical section of height H (refer to the equation given in
this figure). [c’y-; is contained within the brackets of the o4 relationships
given in this figure.] For the case of a granular retained soil with a bilinear
ground surface, the equation for ¢’y-; and ca at key points and for K are
straight-forward and given in this figure.
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Figure C.9. The active earth pressure distribution corresponding to the incremental static
force component Pa, acting at an effective interface friction angle of § to the normal of the
vertical imaginary section through the heel of the wall for a bilinear ground surface — partially
submerged backfill with ¢’>0 and ¢'=0.

The procedure outlined in Step 1 in Section C.1 that converts the ca
distribution into equivalent forces (see Figure C.8) is used to compute the
resultant location hpa of P4 for use in Equation C.12 for the resultant
location hpag of Par. The procedures outlined in Step 2 and Step 3 in
Section C.1 are used to compute the incremental dynamic force component
APag and its corresponding equivalent earth pressure diagram.

C.3 Earth Pressure Distribution for the Dynamic Active Earth Pressure
Force, Pag, for a Backfill with Mohr-Coulomb Shear Strength
Parameters ¢’ and ¢’ — Effective Stress Analysis

This section discusses the computation of the resultant location of Par and
a corresponding pressure distribution for a backfill in which Mohr-
Coulomb effective stress shear strength parameter ¢’ and ¢’ are both
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nonzero.! Pag is equal to the sum of P4 plus APag by Equation 3.23. The
same four-step computational process outlined in Section C.1 is used to
determine the earth pressure distribution and resultant location for Pag for
a backfill with nonzero ¢’ and ¢’ effective stress based Mohr-Coulomb
shear strength parameters assigned to the backfill:

Step 1: Convert the static active earth pressure force, Pa, into an equivalent
active earth pressure diagram.

Equation A.25 of the sweep-search wedge solution method described in
Section A.3 demonstrates that P, is made up of two forces, (1) a frictional
and weight force component and (2) a cohesive force component. The
frictional/weight resultant force component is reduced by the cohesion
force component. The subtraction of the cohesion force component in
Equation A.25 reflects a cohesion force component for a tensile stress
distribution component of the resulting (effective) active earth pressure ca
distribution of stresses with depth,

Oy = KA—¢—weight o 'v—z - SIGe C.14

The component of (effective) active earth pressure distribution due to
cohesion is designated as SIGc in this report and is of constant magnitude
with depth. SIGc is computed by

SIGc = P/;_;C C.15

1 A key item is the selection of suitable shear strength parameters. In an effective stress analysis, the
issue of the suitable friction angle is particularly troublesome when the peak friction angle is
significantly greater than the residual friction angle. In the displacement controlled approach examples
given in Section 6.2 of Ebeling and Morrison (1992), effective stress based shear strength parameters
(i.e., effective cohesion ¢’ and effective angle of internal friction ¢’) were used to define the shear
strength of the dilative granular backfills, with ¢’ set equal to zero in all cases due to the level of
deformations anticipated in a sliding block analysis during seismic shaking. In 1992 Ebeling and
Morrison concluded that it is conservative to use the residual friction angle in a sliding block analysis,
and this should be the usual practice for displacement based analysis of granular retained soils. The
primary author of this report would broaden the concept to the assignment of effective (or total) shear
strength parameters for the retained soil be consistent with the level of shearing-induced deformations
encountered for each design earthquake in a rotational analysis and note that active earth pressures
are used to define the loading imposed on the structural wedge by the driving soil wedge. (Refer to
Table 1.1 for guidance regarding wall movements required to fully mobilize the shear resistance within
the retained soil during earthquake shaking.) Therefore, engineers are cautioned to carefully consider
the reasonableness of including a nonzero value for effective cohesion ¢’ in their permanent
deformation and permanent rotation analyses.
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with Pa.ccorresponding to the cohesion component of Pa computed using
Equation A.25 in the sweep-search wedge method of analysis with a
critical wedge oriented at angle aa. The active earth pressure coefficient,
Ka-¢-weight, is computed using

o

_ " A-¢-weight
KA—¢—weight ~H c.16
[o,, dn
0

with Pa-y-weight corresponding to the frictional/weight component of Pa
computed using Equation A.25 in the sweep-search wedge method of
analysis. The effective vertical stress c'v-; is computed using a depth z, the
depth below the ground surface using the procedure outlined in the
Section C.2. In a moist backfill (i.e., with no water table) the depth to zero
stress (i.e., depth of cracking) is computed as

SIGe

d c.i7

crack —

tan(a,) }

. oK gt ®
Y moist A-g—weight |:tan(0[A)—tan(ﬂ)

The effective vertical stress at the deepest point in the crack in moist soil
(and above a water table) is computed equal to

o v-z-dcrack ymoist *z

C.18

dcrack

which, for a plane at angle a.a (from horizontal) intersecting the sloping

ground becomes
tan(a)
Zerack = Aorack ® C.19
dcrack crack |:tan(a)—tan(ﬂ)}
and oca-derack 1S equal to zero at the crack tip
O p—dcrack — 0= KA—¢—weight b O-Iv—z—dcrack - SlGe C.20

In the case of a crack extending below a hydrostatic water table within a
retained soil, the effective vertical stress at the deepest point in the crack
in Equation C.20 is computed using
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! —_— f—
o v—z—dcrack 7/moist * zlltoWT + (ysaturated 7/w) b ZWTtocrack c.21

with ziiowr and ZwTtocrack dimensions as shown in Figures C.10.a and
C.10.b. In retained soils with a hydrostatic water table an iterative
approach, using Equations C.20 and C.21, is used by CorpsWanRotate to
determine the value of dcrack.

11 —3
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1, -
/.

B

d A \ WTtocrack H

{:\(l A \ Oeorner 1

v P v
’ 7 heel

y
a,>a

O 4 derack® crack

corner

Figure C.10.a Graphical definition of z11towt @and zwrtocrack in the effective vertical stress
G'vzderack COMputation with x11 < x4.

For the partially submerged retained soil case of Figure C.10.a, the depth
to crack, derack, extends below the hydrostatic water table, and point 11 is
located on the slope of the retained soil’s ground surface (as indicated by
X1 < X4). Equations C.19 through C.21are used in a trial-and-error
procedure to compute the value of derack (and yacrack). The following
relationships, based on the Figure C.10.a geometry, are also used in the
solution process,

Xyy = Zyorae / taN(@) C.22
Z11towr = Zderack — ZWrtocrack C.23

with
Zwrtocrack = Y6 ~ Y derack C.24

For
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Ye=H c.25

w

the variable Zwrtocrack is also expressed as

ZWTtocrack = dcrack - (H - Hw ) C.26

Note that for y; equal to H,

Your =H—d c.27

crack

Z11toWT

v - H

—_— Level
Zjcrack 4

v ZwTtocrack Hw

y a >a,

I corner

X

Figure C.10.b Graphical definition of z11towr and zwrecrack in the effective vertical stress
O'vzderack cOMputation with x11 > xa.

For the partially submerged retained soil case of Figure C.10.b, the depth
to crack, derack, also extends below the hydrostatic water table but with
point 11 located on the level ground surface of the retained soil (as
indicated by x1; > x4). The Equation C.19 relationship between Zgcrack and
dcrack is not applicable. The following equation is substituted,

Z jorack — (HLevel - H) + dcrack with X114 > Xy C.28

or, equivalently,

Zasrack = Z1o +( Xy — X, )otan(a) with x> x, C.29
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Equations C.20 and C.21 are used in a trial-and-error procedure to
compute the value of derack (and yderack). The following relationships, based
on the Figure C.10.b geometry, are also used in the solution process,

X11 = Zgorae / tAN (@) bis C.22
z,=x,*tan(a) C.30
Z11towr = Zderack — Zwrtocrack bis C.23
with
Zytiocrack = Y6 ~ Y derack bis C.24
substituting
Y =H, bis C.25
and for y; equal to H,
Yaerack = H = orack bis C.27

Recognizing that z:.owr is a constant, equal to the difference between Hievel
and H,, (in the case of xi; > x,), the variable zZwrtocrack 1S also expressed as

Zyrtocrack — Zdcrack (H Level — H w ) bis C.26

Another useful geometrical Figure C.10.b relationships is

212

Yi2 = Y3~
tan(a)
{tan(a)—tan(ﬁ)}

CorpsWanRotate performs a permanent displacement analysis of a retaining
wall due to earthquake shaking. Reversal in the direction of the horizontal

component of the time-history of earthquake ground shaking occurs many
times during the typical tens of seconds of ground motion. Consequently, a
reversal in direction of the inertial force imparted to the structural wedge
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and to the soil driving wedge occurs many times during the course of the
analysis using CorpsWanRotate. In a traditional soil wedge formulation for
static loading, a crack is typically considered to exist within the upper
regime of the soil driving wedge for a cohesive soil and the planer wedge
slip surface is terminated when it intersects the zone of cracking at a depth
dcrack below the ground surface (e.g., see Appendix H in EM 1110-2-2502).
This assumption is not made the CorpsWanRotate formulation for dynamic
loading. Instead, it is assumed that in the dynamic wedge formulation, the
crack within the zone of cracking at the top of the retained cohesive soil of
the driving wedge will not remain open during earthquake shaking due to
the inertial load direction reversals. So even for cohesive soils, the Figure
A.1 planar slip surface obtained from the sweep-search method of analysis
used by CorpsWanRotate to obtain a value for the earthquake-induced
resultant driving force Pag (acting on the structural wedge), extends
uninterrupted within the driving soil wedge (in the retained soil) to the
ground surface and is not terminated by a vertical crack face to the ground
surface when it enters the zone of cracking. Since P4 is used solely to
determine the value for hpag, the resultant location for Pag with the
procedure outlined in this appendix, a continuous planar slip surface is
also assumed in Ps computations. A sweep-search wedge formulation is
used to compute Pa. Equation C.17 for crack depth, dcrack, in moist backfill
and Equation C.20 in partially submerged backfill are used solely to
establish the static earth pressure diagram component of Pag pressures
along the imaginary vertical section passing through the heel of the wall,
consistent with the Equation 3.23 formulation. This assumption is made
for the earth pressure distribution corresponding to P4 with consideration
of dcrack because the permanent displacement of the structural wedge is
away form the backfill, and it is likely that at this vertical section a vertical
crack may occur. Thus, dcrack is accounted for in the hpar computation
using Equation C.12. The static tensile ca stresses along the driving soil
wedge-to-structural wedge interface (i.e., located along the vertical
imaginary section extending through the heel) are neglected over the
depth of cracking due to the presence of the crack by CorpsWanRotate.

Step 2: Create an incremental dynamic force component pressure diagram.

The incremental dynamic force component, APag, is next converted into an
equivalent earth pressure diagram using the relationship

AP, =P, —P, bis C.11
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and with values for Pag and P4 provided by the dynamic and static sweep-
search solutions made by CorpsWanRotate using the procedures outlined in
Appendix A (Sections A.4 and A.5). The Ebeling and Morrison (1992)
simplified procedure assumes a trapezoidal distribution for the
corresponding incremental stress distribution with an interface friction
angle of 6 =0 to the normal of the vertical imaginary section in a total
stress analysis (refer to Figure C.3). The resulting force corresponding to
the area under the pressure distribution is equal to APar and acts at a
height to 0.6 times H.

Step 3: Create the dynamic active earth pressure diagram.

The dynamic active earth pressure diagram is created by adding the earth
pressure diagrams created in Steps 1 and 2. The resulting force
corresponds to the area under the combined pressure distribution and is
equal to Pag (recall Pag = Pa + APag). Its point of application above the heel
of the wall is given by

P, ®(hyy )+ AP, ¢(0.6eH)
PAE

bis C.12

hPAE =

In the special case of cohesive soils, the CorpsWanRotate analysis disregards
the tensile stresses when defining the static active earth pressures and the
corresponding resulting static active earth pressure force to be applied to
the structural wedge, as well as when computing hpa for this modified
stress distribution. A trapezoidal earth pressure distribution is still used to
define APag.

Step 4: Compete the pressure diagram by adding in the pore water pressure
distribution.

Refer to discussion in Step 4 of Section C.1.

C.3.1 The Basic Procedure to Compute the Active Effective Stress
Distribution Corresponding to Pa for a Partially Submerged Retained Soil
with a Sloping Ground Surface

The procedure outlined in Section C.2.2 is expanded to consider the case
of a partially submerged backfill with nonzero effective cohesion and
friction shear strength parameters (i.e., ¢’ > 0 and ¢’ > 0). The procedure
to calculate the active earth pressure distribution for resultant static force
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Pa due to the geometry of the backfill is outlined using the information
contained within Figure C.11 for which the critical planar wedge slip plane
that passes through point 1 (with o> oicorner) intersects the sloping portion
of the bilinear ground surface. The sweep-search wedge procedure
described in Section A.3 is used to first compute the value for P4 as well as
the orientation of the planar slip surface, aa, for the critical soil wedge that
originates at point 1. The equation to compute the active earth pressures
(designated as o4 ) at the Figure C.11 key points designated as 1, 6, dcrack,
and 3 is, by Equation C.14, equal to the active earth pressure coefficient,
Ka-¢-weight, times the vertical effective stress at depth z in the retained soil
minus SIGc. The key feature for this formulation is that at a given point
along the vertical imaginary section through the heel of the structural
wedge (identified in this figure as points 1, 6, derack, and 3), the effective
vertical stress (designated as ¢’y in the brackets and for a hydrostatic
water table) is computed using a depth z, the depth below the ground
surface as shown in this figure. A computation of ¢’y-, and, subsequently,
oa are made in this figure for point 1 (at the heel). Note that depth z,
designated as z, for point 1, is determined by extending the critical, planar
slip plane from point 1 until it intersects the sloping ground surface. This
same procedure is followed to compute the value for z, ¢'y-,, and o4 at the
other key points 6, dcrack, and 3 along the imaginary vertical section of
height H. A plane oriented at as from horizontal is projected from the
point of interest (e.g., point derack) up through the retained soil until it
intersects the sloping ground surface. 6’v-s-derack is computed using the
resulting vertical height, Zdcrack, of this planar surface, as shown in this
figure. The computations outlined in Figure C.11 differ from the Figure C.7
computations because the of the depth of cracking. Thus an additional key
point, derack, is needed to define the o4 distribution. Moist unit weights
above the water table and buoyant unit weights below the water table
(assuming a hydrostatic water table in the retained soil) are used to
compute the vertical effective stress c’y-.. To determine the value for the
active earth pressure coefficient, Ka-y-weight, the value for the force
component Pa g weight from the sweep-search method of analysis is divided
by the integral of the ¢’y., distribution along the imaginary vertical section
of height H (refer to the equation given in this figure). [¢’y-; is contained
within the brackets of the o relationships given in this figure.] For the
Figure C.11 case of a granular retained soil with a constant surface slope
(as far as this effective vertical stress computational procedure is
concerned), the equation for ¢’y and oa at key points and for Ka--weight are
straight-forward and given in this figure.
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Figure C.11. The active earth pressure distribution corresponding to the incremental static
force component, Pa, acting at an effective interface friction angle of 5 to the normal of the
vertical imaginary section through the heel of the wall for a bilinear ground surface — partially
submerged backfill with ¢’>0 and ¢’>0.

The procedure outlined in Step 1 in Section C.1 that converts the ca
distribution into equivalent forces (see Figure C.8) is used to compute the
resultant location hpa of P for use in Equation C.12 for the resultant
location hpag of Pag. The procedures outlined in Step 2 and Step 3 in
Section C.1 are used to compute the incremental dynamic force
component, APag, and its corresponding equivalent earth pressure
diagram.

C.3.2 The Basic Procedure to Compute the Active Effective Stress
Distribution Corresponding to Pa for a Partially Submerged Retained Soil
with a Bilinear Ground Surface

The procedure outlined in Section C.2.3 is expanded to consider the Figure
C.12 geometry of a partially submerged backfill with nonzero effective
cohesion and friction shear strength parameters (i.e., ¢’ > 0 and ¢’ > 0).
The procedure to calculate the active earth pressure distribution for
resultant static force Pa due to the geometry of the backfill is outlined
using the information contained within Figure C.12 for which the critical
planar wedge slip plane that passes through point 1 (with o> ctcorner),
intersecting the level portion of the bilinear ground surface. The sweep-
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search wedge procedure described in Section A.3 is used to first compute
the value for P4 as well as the orientation of the planar slip surface, o, for
the critical soil wedge that originates at point 1. The equation to compute
the active earth pressures (designated as ca ) at the Figure C.12 key points
designated as 1, 12, 6, derack, and 3 is, by Equation C.14, equal to the active
earth pressure coefficient, Ka-y-weight, times the vertical effective stress at
depth z in the retained soil minus SIGc. The key feature for this
formulation is that at a given point along the vertical imaginary section
through the heel of the structural wedge (identified in this figure as points
1,12, 6, derack, and 3), the effective vertical stress (designated as c’y-, in the
brackets and for a hydrostatic water table) is computed using a depth z,
the depth below the ground surface as shown in this figure. A computation
of 6’y and, subsequently, ca are made in this figure for point 1 (at the
heel). Note that depth z, designated as z, for point 1, is determined by
extending the critical, planar slip plane from point 1 until it intersects the
horizontal ground surface. This same procedure is followed to compute the
value for z, 6'y-,, and o4 at the other key points 12, 6, dcrack, and 3 along the
imaginary vertical section of height H. A plane oriented at as from
horizontal is projected from the point of interest (e.g., point derack) up
through the retained soil until it intersects the sloping ground surface.
G'v-z-derack 1S computed using the resulting vertical height Zgcrack of this
planar surface, as shown in this figure. The computations outlined in
Figure C.12 differ from the Figure C.9 computations because of the depth
of cracking. Thus an additional key point, dcrack, is needed to define the ca
distribution. Moist unit weights above the water table and buoyant unit
weights below the water table (assuming a hydrostatic water table in the
retained soil) are used to compute the vertical effective stress ¢’y-,. To
determine the value for the active earth pressure coefficient, Ka-y-weignt, the
value for the force component Pa-y-weight from the sweep-search method of
analysis is divided by the integral of the ¢’v-; distribution along the
imaginary vertical section of height H (refer to the equation given in this
figure). [c'y-; is contained within the brackets of the o relationships given
in this figure.] For the case of the Figure C.12 retained soil with a constant
surface slope (as far as this effective vertical stress computational
procedure is concerned), the equation for ¢’v.;, and o4 at key points and for
Ka-¢-weight are straight-forward and given in this figure.
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Figure C.12 The active earth pressure distribution corresponding to the incremental static
force component, Pa, acting at an effective interface friction angle of § to the normal of the
vertical imaginary section through the heel of the wall for a bilinear ground surface — partially
submerged backfill with ¢’>0 and ¢’>0.

The procedure outlined in Step 1 in Section C.1 that converts the ca
distribution into equivalent forces (see Figure C.8) is used to compute the
resultant location hpa of P4 for use in Equation C.12 for the resultant
location hpag of Pag. The procedures outlined in Step 2 and Step 3 in
Section C.1 are used to compute the incremental dynamic force component
APag and its corresponding equivalent earth pressure diagram.

C.4 Earth Pressure Distribution for the Dynamic Active Earth Pressure
Force, Pag, for a Backfill with Mohr-Coulomb Shear Strength Parameters,
S, — Total Stress Analysis

This section discusses the computation of the resultant location of Par and
a corresponding pressure distribution for a backfill in which Mohr-
Coulomb total stress (undrained) shear strength parameter, Sy, is
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nonzero.! Pag is equal to the sum of P4 plus APag by Equation 3.23. The
first three steps of the computational process outlined in Section C.1 are
used to determine the earth pressure distribution and resultant location
for Pax for a backfill with nonzero S total stress shear strength parameter
assigned to the backfill:

Step 1: Convert the static active earth pressure force, Pa, into an equivalent
active earth pressure diagram.

Equation A.31 of the (total stress) sweep-search wedge solution method
described in Section A.5 demonstrates that P is made up of two forces, (1)
a force component due to the weight of the soil (driving) wedge and (2) a
cohesive force component. The resultant force component due to the
weight of the soil wedge is reduced by the cohesion force component. The
subtraction of the cohesion force component in Equation A.31 reflects a
cohesion force component for a tensile stress distribution component of
the resulting (effective) active earth pressure ca distribution of stresses
with depth,

Oy = KA—we/'ght *0, ,— SIGsu C.32

The component of (total) active earth pressure distribution due to
cohesion is designated as SIGs, in this report and is of constant magnitude
with depth. SIGs, is computed by

SIG,, = P*‘HS“ C.33

with Pa-su corresponding to the cohesion component of P4 computed using
Equation A.31 in the sweep-search wedge method of analysis with a critical
wedge oriented at angle aa. The active earth pressure coefficient, Ka-weight,
is computed using

1 A key item is the selection of suitable shear strength parameters. The assignment of total (or effective)
shear strength parameter(s) for the retained soil to be consistent with the level of shearing-induced
deformations encountered for each design earthquake in a rotational analysis and note that active
earth pressures are used to define the loading imposed on the structural wedge by the driving soil
wedge. (Refer to Table 1.1 for guidance regarding wall movements required to fully mobilize the shear
resistance within the retained soil during earthquake shaking.)
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P, ..
K _ A-weight C.34

A—weight H
[o,, an
0

with Pa.weight corresponding to the weight component of Pa computed using
Equation A.31 in the sweep-search wedge method of analysis. The total
vertical stress ov-,is computed using a depth z, the depth below the ground
surface using the procedure similar to that outlined in the Section C.2. In a
moist backfill (i.e., with no water table) the depth to zero stress (i.e., depth
of cracking) is computed as

SIG,,

d
J/moist b KA—weight .|:

C.35

crack

tan(e,) }
tan(e, )—tan(p)

The total vertical stress at the deepest point in the crack in moist soil (and
above a water table) is computed equal to

O-v—z—dcrack

= 7moist hd chrack C.36

which, for a slip plane intersecting the sloping ground is

tan(a) _
chrack = dcrack .|: } bis C.19

tan(a)—tan(p)

and oca-derack 1S equal to zero at the crack tip

O a_dcrack = 0= KA—weight ® 0, _, dcrack —

SIG,, C.37
In the case of a crack extending below a hydrostatic water table within a
retained soil, the total vertical stress at the deepest point in the crack in
Equation C.37, is computed using

O-v—z—dcrack = ymoist hd ZiitoWT + j/saturated * zWTtocrack C.38

with Ziitowr and Zwriocrack dimensions are the same as were shown in
Figures C.10.a and C.10.b for the effective stress based analysis. In
retained soils with a hydrostatic water table an iterative approach, using
Equations C.37 and C.38, is used by CorpsWanRotate to determine the value
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of derack- Note that pore water pressure internal to the soil wedge is not
included in the Equation C.38 total vertical stress computation.

CorpsWanRotate performs a permanent displacement analysis of a retaining
wall due to earthquake shaking. Reversal in the direction of the horizontal
component of the time-history of earthquake ground shaking occurs many
times during the typical tens of seconds of ground motion. Consequently, a
reversal in direction of the inertial force imparted to the structural wedge
and to the soil driving wedge occurs many times during the course of the
analysis using CorpsWanRotate. In a traditional soil wedge formulation for
static loading, a crack is typically considered to exist within the upper
regime of the soil driving wedge for a cohesive soil and the planer wedge
slip surface is terminated when it intersects the zone of cracking at a
depth, derack, below the ground surface (e.g., see Appendix H in EM 1110-2-
2502). This assumption is not made the CorpsWanRotate formulation for
dynamic loading. Instead, it is assumed that in the dynamic wedge
formulation, the crack within the zone of cracking at the top of the
retained cohesive soil of the driving wedge will not remain open during
earthquake shaking due to the inertial load direction reversals. So even
for cohesive soils, the Figure A.1 planar slip surface obtained from the
sweep-search method of analysis used by CorpsWanRotate to obtain a value
for the earthquake induced resultant driving force Pg (acting on the
structural wedge) extends uninterrupted within the driving soil wedge (in
the retained soil) to the ground surface and is not terminated by a vertical
crack face to the ground surface when it enters the zone of cracking. Since
P4 is used solely to determine the value for hpag, the resultant location for
Par with the procedure outlined in this appendix, a continuous planar slip
surface is also assumed in Pa computations. A sweep-search wedge
formulation is used to compute Pa. Equation C.35 for crack depth derack in
moist backfill and Equation C.37 in partially submerged backfill are used
solely to establish the static earth pressure diagram component of Pag
pressures along the imaginary vertical section passing through the heel of
the wall, consistent with the Equation 3.23 formulation. This assumption
is made for the earth pressure distribution corresponding to Py with
consideration of dcrack because the permanent displacement of the
structural wedge is away form the backfill, and it is likely that at this
vertical section a vertical crack may occur. Thus, derack is accounted for in
the hpar computation using Equation C.12. The static tensile ca stresses
along the driving soil wedge-to-structural wedge interface (i.e., located
along the vertical imaginary section extending through the heel) are
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neglected over the depth of cracking due to the presence of the crack by
CorpsWanRotate.

Step 2: Create an incremental dynamic force component pressure diagram.

The incremental dynamic force component, APag, is next converted into an
equivalent earth pressure diagram using the relationship

AP,. =P, —P, bis C.11

and with values for Par and P provided by the dynamic and static sweep-
search solutions made by CorpsWanRotate using the procedures outlined in
Appendix A (Sections A.4 and A.5). The Ebeling and Morrison (1992)
simplified procedure assumes a trapezoidal distribution for the
corresponding incremental stress distribution with an interface friction
angle of 5 =0 to the normal of the vertical imaginary section in a total
stress analysis (refer to Figure C.3). The resulting force corresponding to
the area under the pressure distribution is equal to APsg and acts at a
height to 0.6 times H.

In the case of a Figure A.4 water filled crack, APag is given by

AP, =P,. —P,— AU C.39

with values for Pag and Pa provided by the dynamic and static sweep-
search solutions made by CorpsWanRotate using the procedures outlined in
Appendix A (Sections A.4 and A.5). Pa is set equal t0 Pstatic-total stress
(Equation A.31) for the critical slip plane (i.e., at angle o = aa) AU
(Equation A.34) is the difference in water pressure force within the cracks
on both sides of the Figure A.4 driving soil wedge. Recall that in a total
stress analysis, internal pore water pressures are not applied along the
imaginary vertical sections and slip plane defining the driving soil wedge.
However, should a crack extend to below the water table, the boundary
water pressures and their resultant forces are included along the
imaginary vertical sections in the free-body diagram for the static soil
wedge, as depicted in Figure A.4, and in the computation of Pa. Further, it
is assumed that in the dynamic wedge formulation used to compute Pag,
the crack within the zone of cracking at the top of the retained cohesive
soil of the driving wedge will not remain open during earthquake shaking
due to the inertial load direction reversals during this time-history based
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analysis. So, no crack depth is included in the CorpsWanRotate analysis of
the dynamic resultant force, Pag, for cohesive soils.

Step 3: Create the dynamic active earth pressure diagram.

The dynamic active earth pressure diagram is created by adding the earth
pressure diagrams created in Steps 1 and 2. The resulting force
corresponds to the area under the combined pressure distribution and is
equal to Pag (recall Pag = Pa + APag). Its point of application above the heel
of the wall is given by

P, O(hPA)+APAE ¢(0.6eH)
PAE

Pope = bis C.12

In the case of a Figure A.4 water filled crack, the point of application of Pag
is

P, O(hPA)+AU0hAU +AP,. ¢(0.60H)
PAE

hope = C.40

with Py set equal to Pstatic-total stress ( Equation A.31) for the critical slip plane
(i.e., at angle o = aa); AU is (Equation A.34) the difference in water
pressure force within the cracks on both sides of the Figure A.4 driving soil
wedge, and hpa and hy are the resultant locations of these respective
forces.

In the special case of cohesive soils, the CorpsWanRotate analysis disregards
the tensile stresses when defining the static active earth pressures and the
corresponding resulting static active earth pressure force to be applied to
the structural wedge, as well as when computing hps for this modified
stress distribution. A trapezoidal earth pressure distribution is still used to
define APag.

C.4.1 The Basic Procedure to Compute the Active Total Stress Distribution
Corresponding to Pa for a Partially Submerged Retained Soil with a Sloping
Ground Surface

The procedure outlined in this subsection considers the case of a partially
submerged backfill in which Mohr-Coulomb total stress (undrained) shear
strength parameter, S, is nonzero (i.e., a nonzero cohesion). The
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procedure to calculate the active earth pressure distribution for resultant
static force, P4, due to the geometry of the backfill is outlined using the
information contained within Figure C.13 for which the critical planar
wedge slip plane that passes through point 1 (with o> olcorer) intersects
the sloping portion of the bilinear ground surface. The sweep-search
wedge procedure described in Section A.5 is used to first compute the
value for P, as well as the orientation of the planar slip surface, o, for the
critical soil wedge that originates at point 1. The equation to compute the
active earth pressures (designated as oa ) at the Figure C.13 key points
designated as 1, 6, derack, and 3 is, by Equation C.32, equal to the active
earth pressure coefficient, Ka-weight, times the vertical total stress at depth z
in the retained soil minus SIGs.. The key feature for this formulation is
that at a given point along the vertical imaginary section through the heel
of the structural wedge (identified in this figure as points 1, 6, dcrack, and
3), the total vertical stress (designated as ov-, in the brackets) is computed
using a depth z, the depth below the ground surface as shown in this
figure. A computation of ov-, and, subsequently, ca are made in this figure
for point 1 (at the heel). Note that depth z, designated as z, for point 1, is
determined by extending the critical, planar slip plane from point 1 until it
intersects the sloping ground surface. This same procedure is followed to
compute the value for z, 6v-;, and ca at the other key points 6, dcrack, and 3
along the imaginary vertical section of height H. A plane oriented at aa
from horizontal is projected from the point of interest (e.g., point derack) up
through the retained soil until it intersects the sloping ground surface. 6y-,-
derack 18 computed using the resulting vertical height zdcrack of this planar
surface, as shown in this figure. Moist unit weights above the water table
and submerged unit weights below the water table are used to compute the
vertical total stress ov-,. To determine the value for the active earth
pressure coefficient, Ka-weight, the value for the force component Pa-weight
from the sweep-search method of analysis is divided by the integral of the
ov-; distribution along the imaginary vertical section of height H (refer to
the equation given in this figure). [cy-; is contained within the brackets of
the oa relationships given in this figure.] For the Figure C.13 case of a
retained soil with a constant surface slope (as far as this total vertical
stress computational procedure is concerned), the equation for cv-, and ca
at key points and for Ka-weight are straight-forward and given in this figure.



ERDC/ITL TR-06-2 291
O3 =Ky veign ® [0] - SIGg, P
_ s
O derack = K soveign ® [7um;.\-z ® Z derack ]_ SIGg, =0 S[GS” - H
Oy6= KAfweight ® [;/maisz ®Z ] - SIGg,
O =K oiaia ® [7 moist ® (Z —H, ) + ¥ saturatea ®* H w] = SIGy, E
043 3
- 5 Iz
crack (D t Zdcrack| <6
O 4-derack T é . _ _: Hiovel
A-6 /. 5 z, 1
H s
5 3 H,
{.‘. Ay Qeorner l
_vy P, A
O 41
heel | 1
y a,>a Py
A corner K veian = H”"ﬂ
I—' X [o,. an
0

Figure C.13. The active earth pressure distribution corresponding to the incremental static
force component, Pa, acting at an interface friction angle of 8 =0 to the normal of the vertical
imaginary section through the heel of the wall for a bilinear ground surface - partially

submerged backfill with Su>0.

The same procedure outlined in Step 1 in Section C.1 that converts the ca
distribution into equivalent forces (see Figure C.8) is used to compute the

resultant location hpa of P4 for use in Equation C.12 for the resultant
location hpag of Par. The procedures outlined in Step 2 and Step 3 in
Section C.4 are used to compute the incremental dynamic force
component, AP4g, and its corresponding equivalent earth pressure
diagram.

C.4.2 The Basic Procedure to Compute the Active Total Stress Distribution
Corresponding to Pa for a Partially Submerged Retained Soil with a Bilinear

Ground Surface

The procedure used to calculate the active earth pressure distribution for

resultant static force Pa due to the geometry of the backfill is outlined

using the information contained within Figure C.14 for which the critical

planar wedge slip plane that passes through point 1 (with o> dicorner),

intersecting the level portion of the bilinear ground surface. It considers
the case of a partially submerged backfill in which Mohr-Coulomb total
stress (undrained) shear strength parameter, S, is nonzero (i.e., a nonzero
cohesion). The sweep-search wedge procedure described in Section A.5 is

used to first compute the value for P as well as the orientation of the
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planar slip surface, aa, for the critical soil wedge that originates at point 1.
The equation to compute the active earth pressures (designated as ca ) at
the Figure C.14 key points designated as 1, 12, 6, dcrack, and 3 is, by
Equation C.32, equal to the active earth pressure coefficient, Ka-weignt,
times the vertical total stress at depth z in the retained soil minus SIGsy.
The key feature for this formulation is that at a given point along the
vertical imaginary section through the heel of the structural wedge
(identified in this figure as points 1, 12, 6, dcrack, and 3), the total vertical
stress (designated as ov-; in the brackets) is computed using a depth z, the
depth below the ground surface as shown in this figure. A computation of
ov-z and, subsequently, ca are made in this figure for point 1 (at the heel).
Note that depth z, designated as z; for point 1, is determined by extending
the critical, planar slip plane from point 1 until it intersects the horizontal
ground surface. This same procedure is followed to compute the value for
z, ov2, and o4 at the other key points 12, 6, derack, and 3 along the imaginary
vertical section of height H. A plane oriented at aa from horizontal is
projected from the point of interest (e.g., point dcrack) up through the
retained soil until it intersects the sloping ground surface. cv-z-derack 1S
computed using the resulting vertical height, Zdcrack, of this planar surface,
as shown in this figure. Moist unit weights above the water table and
submerged unit weights below the water table are used to compute the
vertical total stress ov-;. To determine the value for the active earth
pressure coefficient, Ka-weight, the value for the force component, Pa-weight,
from the sweep-search method of analysis is divided by the integral of the
ov-; distribution along the imaginary vertical section of height H (refer to
the equation given in this figure). [cy-; is contained within the brackets of
the oa relationships given in this figure.] For the case of the Figure C.14
retained soil with a constant surface slope (as far as this total vertical
stress computational procedure is concerned), the equation for cv-, and ca
at key points and for Ka-weight are straight-forward and given in this figure.
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Figure C.14. The active earth pressure distribution corresponding to the incremental static
force component, Pa, acting at an effective interface friction angle of & =0 to the normal of the
vertical imaginary section through the heel of the wall for a bilinear ground surface — partially

submerged backfill with Su>0.

The same procedure outlined in Step 1 in Section C.1 that converts the ca
distribution into equivalent forces (see Figure C.8) is used to compute the
resultant location hpa of P4 for use in Equation C.12 for the resultant
location hpag of Par. The procedures outlined in Step 2 and Step 3 in
Section C.4 are used to compute the incremental dynamic force
component, AP4g, and its corresponding equivalent earth pressure
diagram.
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Appendix D: Water Pressures Acting on a
Partially Submerged Structural Wedge

An earth retaining structure under investigation using CorpsWanRotate may
retain a partially submerged backfill and may have a pool of water present
in front of the structure. This appendix summarizes the computation of
water pressures acting on a partially submerged structural wedge.
Dynamic considerations for the pool during earthquake shaking are
accounted for in the analysis using hydrodynamic water pressures
computed using the Westergaard (1931) procedure of analysis.

D.1 Steady-State Water Pressures Acting on the Structural Wedge

Effective Stress Analysis: In an effective stress based stability
analysis, knowledge of the water pressures acting on the structural wedge
is required. Figure D.1 shows key points and water pressures acting
normal to the faces of the structural wedge that retains a partially
submerged backfill and has a pool of water in front of the structure.
Accounting for water pressures is an essential feature of an effective
stress-based stability analysis.

hydrostatic .. A
water pressure

Toe
reqgion| e PP T Y £

gion Zl Heel H

H region w
Pool T3 T2 9
1 HPooI_baseI T4lToe

R PN

B2
'A‘ pore water pressure |

& Base region [—

Figure D.1. Control points and steady-state water pressures acting normal to faces within the
three regions of a structural wedge in full contact with the foundation — effective stress
analysis.
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Full contact between the base of the structural wedge and the foundation
is assumed in Figure D.1. This is the situation for the sliding block method
of analysis.

In CorpsWanRotate the faces of the structural wedge are divided into three
regions: the toe region, the base region, and the heel region. Coordinates
of key points defining these three regions are provided as input. These
points are specified in a counterclockwise fashion progressing around the
wetted perimeter of the structural wedge, as discussed in data input group
5 of Appendix F. For the structural wedge shown in Figure D.1, four points
(designated points T1, T2, T3, and T4) define the wetted toe face, two
points define the wetted base face (designated points B1 and B2), and two
points define the wetted heel face (designated points T1 and T2). For the
initial version of CorpsWanRotate, a simplified assumption is made that that
for steady-state conditions, hydrostatic water pressures exist within the
heel region of the backfill. This implies that all head loss occurs due to flow
within the foundation below the base of the structural wedge.: Thus, the
pore water pressure at point H1 (also labeled as point B2) is equal to yw
times Hy. Hydrostatic water pressures are also assumed within the pool at
the toe region of the structural wedge. Consequently, the pore water
pressure at point T4 (also labeled as point B1) is equal to yw times Hpool. At
points T2 and T3, the boundary water pressure is equal to y, times the
depth to the point as measured from pool elevation. A linear variation in
boundary water pressures is assumed along the base region, from point B1
to point B2. In this fashion, the steady-state boundary water pressures are
assigned to the Figure D.1 idealized structural wedge.

CorpsWanRotate converts the Figure D.1 boundary water pressures into
equivalent forces and points of application using the procedure outlined in
Figure D.2 for the base region. The base region is defined by the two points
B1 and B2. The pore water pressure at point B1 is designated us,, and the
pore water pressure at point B2 is designated ug.. A linear variation in
pore water pressure exists between these two points and acts normal to
this linear face. The pressure distribution acting normal to this linear face
is then converted to equivalent forces (e.g., forces Fg; and Fg, at points B1
and B2, respectively) using the equations given in this figure. This same
approach is used to compute equivalent point forces along each linear
segment used to define all faces within the other two regions. Each region

1 Future improvements to CorpsWanRotate will include other steady-state seepage conditions.
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is reduced to linear segments of face geometry of constant or linear

variation in pore water pressure with distance (e.g., three line segments
are used to define the toe region while one line segment is used to define

the heel region).
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Figure D.2. Distribution of pore water pressures and its equivalent set of forces.

Also shown in Figure D.2 is a method for determining an equivalent
resultant force, designated Fpase, and its point of application dgpase (as

measured from the toe) and its point of application. An expanded variation

on this procedure is used by CorpsWanRotate to compute the point of

application of resultant force acting on each of the three regions identified

in Figure D.1.

Global x- and y-coordinate forces are needed for the stability analysis of
the structural wedge. They are computed for the equivalent point forces
for each linear segment (defined by each adjacent pair of points) within

each of the three regions. By specifying the Figure D.1 points in a

counterclockwise fashion around the wetted perimeter of the structural
wedge, the equivalent point forces acting normal to the wetted perimeter

face (refer to Figure D.2) may be converted into x- and y- global
coordinates using the procedure shown in Figure D.3. In this

generalization, four hypothetical loaded faces, with each face defined by
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extending point I to point J, are shown. The face loaded by water pressure
for each hypothetical line segment is identified in this figure. The
procedure to convert a normal force, for example, at each point J into its x-
and y- global force components is outlined using the equations given in
this figure. Key to using the equations given in this figure is to determine
for a given I-to-J line segment which quadrant this line segment falls into.
For the toe region, the three line segments shown in Figure D.1 fall within
quadrants IV and II. The single line segment defining the base region falls
within quadrant IV and the line segment defining the heel region falls
within quadrant I, along the positive Y axis.
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Figure D.3. Conversion of equivalent point forces at point J into global x- and y- coordinate

forces.

In the case of rotation about the toe, contact between the base of the
structural wedge and the foundation is lost sometime during earthquake
shaking. Recall that a simplistic rigid base assumption is made in this
formulation for rock-founded retaining structures. Due to the possible
formation of a gap sometime during earthquake shaking, pore water
pressures along the base may differ from those shown in Figure D.1. (No
excess pore water pressures due to earthquake-induced shear strains
within the soils are included in the current CorpsWanRotate formulation.)
The exact pore water distribution within the structure-to-foundation gap is
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a complex problem and a subject for state-of-the-art research. In
CorpsWanRotate, a simplistic assumption of the hydrostatic pore water
pressure at the heel of the wall is extended to along the entire base of the
structure, as shown in Figure D.4. This assumes that a gap opens early on
during earthquake shaking during rotation about the toe of the retaining

wall.
hydrostatic v
Water pressure llllllllllllllllllllllll
Toe —
region| " l ....... . y
Hpool region w
ﬂHPoolfbaseI Er:t ﬂ

| Point of rotation |/ 52
PWPg, pore water pressure |
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Figure D.4. Control points and water pressures acting normal to faces within the three regions
of a structural wedge rotating about its toe — effective stress analysis.

Total Stress Analysis: In a total stress-based stability analysis,
boundary water pressures are specified along the toe region only of the
structural wedge. Knowledge of the internal (with respect to the soil and
rock foundation) pore water pressures acting along/within the base region
and the heel region of the structural wedge is not required in a total stress
analysis.

Water pressure forces acting on the structural wedge are reported in the
Workslide. TMP output file and the WORKrotate. TMP output file
generated in each CorpsWanRotate analysis. These files may be viewed using
the visual modeler boxes labeled Show Sliding Evaluation and Show
Lift-Off Evaluation on the Analysis tab, respectively.

D.2 The Westergaard Procedure for Computing Hydrodynamic Water
Pressures

Most Corps hydraulic structures that act as earth retaining structures
possess a vertical face in contact with the pool (when present). The
Westergaard procedure is used by CorpsWanRotate for computing the
magnitude of the hydrodynamic water pressures along the idealized rigid
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walls during earthquake shaking. The solution developed by Westergaard
(1931) is for the case of a semi-infinite long water reservoir retained by a
concrete dam with a vertical face and subjected to a horizontal earthquake
motion. The fundamental period of the concrete dam is assumed to be
much smaller than the fundamental period of the earthquake so that the
acceleration for the massive structure is approximated as the acceleration
of the earthquake motion along the rigid base. This allows the problem of a
very stiff concrete dam to be simplified to the case of a rigid vertical face
moving at the same horizontal acceleration as the base horizontal
acceleration. Using the equations of elasticity of a solid to describe the
propagation of sounds in liquids (waves propagate without shear
distortions) and with the water considered to compressible, a solution to
the equation of motion of the water was developed for a harmonic motion
applied along the base of the reservoir. This solution ignores the effects of
surface waves and is valid only when the period of the harmonic excitation
is greater than the fundamental natural period of the reservoir (Chopra
1967). The fundamental period for the reservoir, Ty, is equal to

T = P D.1

Where the velocity of sound in water, C, is given by

K
C=|— D.2
0
And the mass density of water, p, is given by
Yw
p = — D.3
g

With the bulk modulus of elasticity of water, K, equal to 4.32 x 107 1b/ft?,
the unit weight for water, y, equal to 62.4 1b/ft’ and the acceleration due
to gravity, g, equal to 32.17 ft/sec?, C is equal to 4,720 ft/sec. For example,
with a depth of pool of water, H,, equal to 25 ft, Tw is equal to 0.02 second
(47 Hz) by Equation D.1.

The resulting relationship for hydrodynamic pressure on the face of the
dam is a function of the horizontal seismic coefficient, ky, (expressed as a
decimal fraction of acceleration of gravity, g), the depth of water, Y., the
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total depth of the pool of water, Hp, the fundamental period of the
earthquake, and the compressibility of the water, K. The hydrodynamic
pressure is opposite in phase to the base application and for positive base
accelerations the hydrodynamic pressure is a tensile. Westergaard (1931)
proposed the following approximate solution for the hydrodynamic water
pressure distribution: a parabolic dynamic pressure distribution, pwd,
described by the relationship

7
pwdzg.kh.yw.\[yw.Hp D.4

The resultant dynamic water pressure force, Pwq, is equal to

Pwd:%.kh.yw.(Hp)z D-5

acting at an elevation equal to 0.4 H;, above the base of the pool as shown
in Figure D.5. This dynamic force does not include the hydrostatic water

RIGID VERTICAL FACE

= Upoo||_|p P :l Pud
B - T o4 Hp
Bigid base ~n* 9
HYDROSTATIC WATER HYDRODYNAMIC WATER
PRESSURES + PRESSURES

(Westergaard Procedure)

pressure force acting along the face of the dam (refer to Figure D.5).

Figure D.5. Hydrostatic and Westergaard hydrodynamic water pressures acting along vertical
wall during earthquakes.

Note that the value for Pya is restricted to |P,,| < U, in CopsWanRotate

when acceleration(s) induce a hydrodynamic water pressure Pwq force
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acting counter to the direction of the hydrostatic water pressure force,
Upool. This occurs in the case of the vector configuration for base
acceleration(s) as shown in Figure D.5 (i.e., base acceleration(s) directed
away from the body of the pool and towards the body of the dam).

In a maximum transmissible acceleration evaluation and during sliding in
a Newmark sliding block time-history analysis of permanent
displacement, the horizontal acceleration used to compute Pyaq is a
constant and equal to the value computed by Equation D.5 with ky, in this
equation set equal to the maximum transmissible acceleration coefficient.
Hp in Equation D.j5 is set equal to the difference between the surface and
the base height of the pool (i.e., Hpool — Hpool_base) in CorpsWanRotate. The
initial version of CorpsWanRotate implements the Westergaard
hydrodynamic water pressure force Equation D.5 approximation in both
the sliding and rotating block analysis. For a rigid block approximation
and for the Corps hydraulic retaining structures with a vertical “wet” face
(pool-side), the Westergaard procedure is considered a reasonable
assumption by the primary author of this report. However, it is recognized
that this assumption and approach is less accurate for the rotating block
analysis than for the sliding block analysis because of the variation in
horizontal accelerations along the wetted face of the structural wedge, as
may be inferred by reference to the dependence of the horizontal
acceleration on not only the ground acceleration as well as the angular
acceleration, rotational velocity and position of the point of interest as
noted in Equation 3.6 for Figure 3.3. In this initial version of
CorpsWanRotate, only the ground acceleration is used to compute Pwq using
Equation D.5.: In a structural wedge analysis of incipient lift-off in
rotation, the horizontal acceleration used to compute Pyq at incipient lift-
off is another constant (of different value from the maximum
transmissible acceleration value). Consequently, the value for Pyq is also a
constant for the lift-off calculation. During a rotational time-history
analysis, the magnitude of horizontal acceleration used to compute Pyq
varies with time during rotation. So Pwq also varies in magnitude and
direction with time in a rotational analysis in CorpsWanRotate.

1 Future improvements in CorpsWanRotate will include the development of a more complete hydrodynamic
water pressure force formulation that accounts for the variation in acceleration along the “wetted” face
of the Corps hydraulic earth retaining structure during rotation by considering angular acceleration,
rotational velocity, and position of all points along the wetted face.
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Appendix E: Mass Moment of Inertia
Computation

This appendix outlines the mass moment of inertia computation for the
structural wedge. Figure E.1 depicts the dynamic forces acting on the
structural wedge as well as the ten material regions used to define this
structural wedge that contains the retaining wall.

Each of the ten Figure E.2 material regions are labeled by a material region
number and are either rectangular or triangular in shape. The user
specifies the width and height of each of the ten material regions to define
the geometry of the structural wedge. In the following two sections, the
mass moments of inertia of a rectangle and a triangle are first derived. The
mass moment of inertia of the entire structural wedge is then assembled
from each of the ten material regions using one of these basic
formulations.

Figure E.2 defines the reference points on each of the ten material regions.
This point defines the left-most point on each material region. For
rectangles and triangles with vertical left-hand sides, it is always the
lower-most, left point. It is used to determine the position of each material
region within CorpsWanRotate.

E.1 Mass Moment of Inertia of a Rectangle

For a Figure E.3 rectangle of width b and height h, the cross-sectional area
is

Area,nge =b®h E.1
and with a mass of rectangle of
_ Ve Arearectangle E.2
tangle -
rectanglie g

Note that the mass per unit volume is given by

m= bis. B.8

7
g
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Figure E.1. Dynamic forces acting on the structural wedge and its material regions.
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Figure E.3. Rectangle of width b and height h.

The x- and y- axes mass moments of inertia of the rectangle about the
rectangle’s center of gravity, CG, are

4 1
Ix—CG—reCtangIe = (gj h E ohe (h)3 E.3
and
rl, 1 3
Iy—CG—rectangIe = (gj h E ohe (b) E4

Let the distance between the center of gravity of the rectangle to an
arbitrary point P be equal to Ax and Ay.

The x- and y- axes mass moments of inertia of the rectangle about point 0

are
e Area
IX—P = Ix—CG—rectangle + (7 e j. (Ay)2 E.5
g
and
Ve Arearec angle 2
Iy—P = Iy—CG—rectangIe +( g e j. (AX) E6
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E.2 Mass Moment of Inertia of a Triangle

For a Figure E.4 triangle of base width b and height h, the cross-sectional

area is
1
Area ... =—®beh E.7
2
and with a mass of triangle of
Y-CG-triangle
h
X-CG-triangle
CG
triangle Ay
—
A .
y X Point P
‘ . b R
X
Area,,
Mtriangle = }/ : g renge E.8

Figure E.4. Triangle of base width b and height h.

The x- and y- axes mass moments of inertia of the triangle about its center
of gravity, CG, are

1
Ix—CG—triangIe = (gj i % i b s (h)3 E.9

and
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Y 1 3
Iy—CG—triangle = (gj d % ehe (b) E.10

Let the distance between the center of gravity of the triangle to an
arbitrary point P be equal to Ax and Ay.

The x- and y- axes mass moments of inertia of the triangle about point 0

are
e Area, .
Ix—P = Ix—CG—triangIe + (M] s (Ay)2 E11
g
and
o Area,.
Iy—P = Iy—CG—triangle + (%j ¢ (AX)2 E.12

E.3 Mass Moment of Inertia of the Structural Wedge

The center of gravity of the structural wedge is computed in
CorpsWanRotate following the procedure described in Section B.3. The mass
moment of inertia about this center of gravity is computed using either
Equations E.5 and E.6 for a rectangle or Equations E.11 and E.12 for a
triangle, for each of the ten material regions and with point P assigned to
the coordinate of the center of gravity of the structural wedge. The mass
moment of inertia about the center of rotation of the structural wedge,
point 0 in Figure E.1, is computed using Equation 3.16.
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Appendix F: Listing and Description of
CorpsWanRotate ASCII Input Data File
(file name: CWROTATE.IN)

This appendix lists and describes the contents of the ASCII input data file
to the FORTRAN engineering computer program portion of
CorpsWanRotate. This data file, always designated as CWROTATE.IN, is
created by the graphical user interface (GUI), the visual modeler portion of
CorpsWanRotate.

First line/First column - Designate this data input is for a
CorpsWanRotate analysis

Type a capital R in the first column of the first line.

The ASCII input data to CorpsWanRotate are provided in eight groups of
data. They are as follows:

Group 1 - Global Geometry of the Structural Wedge that Contains the

Retaining Wall

XTOE, YTOE X and Y coordinates of the toe of the wall.

XROTATE, X and Y coordinates of the point of rotation.

YROTATE

XHEEL, YHEEL X and Y coordinates of the heel of the wall.

Gweight, Gmass, Weight and mass of the structural wedge.

Gconstant The value for Geconstant identifies the units of
length, density, force, and pressure being used
according to the table below.

GXCG, GYCG X and Y coordinates of the center of gravity.

GIXmassptO, X-mass moment of inertia about the point of

GIYmassptO, rotation, Y-mass moment of inertia about the

GjmassptO point of rotation, and the mass moment of inertia

about the point of rotation.



ERDC/ITL TR-06-2 309

Value for Units of Units of Soil and Concrete | Units of Units of
Gconstant Length Densities Force Pressure
32.174 feet Ib/ft3 Ib Ib/ft2
386.086 inches Ib/in3 Ib Ib/in2
9.80665 meters KN/m3 kN kN/m2 (=kPa)
980.665 centimeters kN/cm3 kN kN/cm?2
9806.65 millimeters kN/mm3 kN KN/mm?2

Group 2 - Base of Structural Wedge

PHII, Ci, PHIf, Cf, ISTRENGTHsw

Ci and PHIi are the Mohr-Coulomb shear strength parameters for the base
of wall-to-foundation interface.

Cf and PHIf are the Mohr-Coulomb shear strength parameters for the
foundation.

and

ISTRENGTHSsw = 1 Strength definition below the structural wedge —
Effective Stress

ISTRENGTHSsw = 2 Strength definition below the structural wedge — Total
Stress

Note:

In a Total Stress Analysis PHI is set equal to zero, and C is set equal to the
value for the undrained shear strength, Sy, for the base of wall-to-
foundation interface and the foundation, respectively. Internal pore water
pressures are not considered explicitly in total stress analyses, but the
effects of the pore pressures in the undrained tests are reflected in the
undrained shear strength value, as discussed in Duncan and Buchignani
(1975). Consequently, uplift pressures acting normal to the foundation
interface are not included in the free-body force diagram of the structural
wedge in a total stress analysis by CorpsWanRotate.

Group 3 - Resisting Force Normal to a Vertical Plane Extending up Through
the Toe of the Structural Wedge

XRESIST, YRESIST, FXRESIST X and Y coordinates of the resisting
horizontal force, and the value of the horizontal force in consistent units.
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Group 4 - Driving Wedge in the Retained Soil

PHI, C, DELTA

H, HLEVEL, BETA
GAMAMOIST, GAMASAT
SLIPMIN
ISTRENGTHdw

C and PHI are the Mohr-Coulomb shear strength parameters for the
retained soil (i.e., the backfill), and DELTA is the interface friction along
the vertical plane extending up thorough the heel of the structural wedge.

GAMAMOIST is the moist unit weight of the retained soil and GAMASAT
is the saturated unit weight in consistent units (force/lengths).

H is the height of the vertical plane extending up from the heel of the
structural wedge to the ground surface (H < HLEVEL).

BETA is the slope of the ground surface of the retained soil in degrees
(BETA = o if HLEVEL = H).

HLEVEL is the height to level retained soil as measured from the heel of
the wall/structural wedge (HLEVEL > H).

Note: For the infinite slope problem, input a large value for HLEVEL such
that the critical, planer slip surface computed within the retained soil does
not intersect the fictitious (imaginary) level retained soil ground surface.

SLIPMIN is the shallowest planar slip surface that a potential slip surface
can achieve in the retained soil. SLIPMIN is measured from horizontal and
specified in degrees (a value between 1 and 89 degrees).

with
ISTRENGTHdw = 1 Soil Strength definition within retained soil —
Effective Stress

ISTRENGTHdw = 2 Soil Strength definition within retained soil — Total
Stress

Note:

In a Total Stress Analysis PHI is set equal to zero and C is set equal to the
value for the undrained shear strength, S, of the retained soil (i.e., the
backfill). Internal pore water pressures are not considered explicitly in
total stress analyses, but the effects of the pore pressures in the undrained
tests are reflected in the undrained shear strength value, as discussed in
Duncan and Buchignani (1975). Consequently, pore water pressures acting
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normal to the potential slip plane within the retained soil are not included
in the free-body force diagram of the soil wedge in a total stress analysis by
CorpsWallROtate.

Group 5 - Water Table Height in the Retained Soil and Pool Height, with
Input in Four Parts

Part 1: GAMAW

HW, HPool, HPool_base

with

GAMAW is the unit weight of water in consistent units (units of
force/lengths).

HW is the height of water table in the retained soil (i.e., the backfill) as
measured from the heel of the wall of the structural wedge.

HPool is the height of pool in front of the wall as measured from the toe of
the wall of the structural wedge.

and

HPool_base is the height to the base of the pool as measured from the toe
of the wall of the structural wedge (HPool_base < HPool).

Note:

For no water table in the retained soil (i.e., a “dry” backfill), HW is set
equal to zero.

For no pool in front of the wall, HPool and HPool_base are equivalent and
set equal to zero.

Data provided in subsequent three parts define points along each of the
three wetted perimeter regions of the structural wedge. The first point
specified is at the intersection of the pool with the exposed face of the wall.
All subsequent points are specified in a counterclockwise fashion
progressing around the wetted perimeter of the structural wedge (of toe
region to base region to heel region).

Special case; “dry” site: In the case of a “dry” site, HW, HPool, and
HPool_base are all set to zero. Skip Parts 2, 3 and 4 input.

Skip Part 2 input if HPool = o.
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Part 2: nWetToePTS
X_Wet_Toei, Y_Wet_Toe; (i=1 to nWetToePTS)

with
nWetToePTS is the total number of points defining the exposed wetted
perimeter face of the wall and progressing from the pool of water to the toe

of the wall, including the point defining the intersection of the base of the
pool and the wetted wall face.

X_Wet_Toei, Y_Wet_Toe; are the coordinates of the exposed wetted
perimeter face of the wall and progressing from the pool of water to the toe
of the wall.

Note: The coordinates of the point defined by the intersection of the
exposed wetted perimeter and the base of the pool are to be included in
the nWetToePTS points.

Part 3: nWetBasePTS
X_Wet_Basei, Y_Wet_Base; (i=1 to nWetBasePTS)

with
nWetBasePTS is the total number of points defining the wetted perimeter

face of the base of structure-to-foundation interface and progressing
from the toe to the heel of the wall.

X_Wet_Base;, Y_Wet_Base; are the coordinates of the exposed wetted
perimeter face of the base of structure-to-foundation interface and
progressing from the toe to the heel of the wall of the structural wedge.

Note: nWetBasePTS is set equal to 2 and the coordinates of the toe and the
heel of the wall are provided as input.

Skip Part 4 input if HW = o.

Part 4: nWetHeelPTS
X_Wet_Heeli, Y_Wet_Heel; (i=1 to nWetHeel PTS)

with
nWetHeelPTS is the total number of points defining the wetted perimeter
face of the structural wedge to soil driving wedge interface, progressing

along a vertical imaginary section extending upwards from the Heel of the
wall to the surface of the water table in the retained soil.

X_Wet_Heel;, Y_Wet_Heel; are the coordinates of the wetted perimeter
face of the structural wedge to soil driving wedge interface, progressing
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along a vertical imaginary section extending upwards from the heel of the
wall to the surface of the water table in the retained soil.

Note: nWetHeelPTS is set equal to 2 and the coordinates of a line defined
by two points, (1) the heel of the wall and (2) the point defined by the
intersection of a vertical line extending from the heel to the surface of the
water table.

Group 6 - Acceleration Time-Histories with Input in Two Parts

Part 1: NOACC, DT, GACC, XSCALE, YSCALE, KEYACCY
with

NOACC is the total number of acceleration time-history values.
DT is the time-step in seconds.

GACC is the constant of acceleration due to gravity as given in the table
below.

XSCALE is the scale factor applied to the horizontal acceleration time-
history (negative value to invert time-history).

YSCALE is the scale factor applied to the vertical acceleration time-history
(negative value to invert time-history).

and

KEYACCY is set to 0 in the case of horizontal and vertical acceleration
time-histories.

or

KEYACCY is set to 1 in the case of a horizontal acceleration time history
and a constant vertical acceleration value. (When KEYACCY = 1, KEYkv
must be set equal to 3 in Group 6 Analysis control data.)

Value for GACC Units
32.174 ft/sec?
386.086 in/sec?
9.80665 m/sec?
980.665 cm/sec?
9806.65 mm/sec?
1.0 G
980.665 gal
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Part 2: In the case of KEYACCY = 0, input
T(i=1to NOACC), ACCX(I=1to NOACC), ACCY(I=1to NOACC)

or

In the case of KEYACCY = 1, input
T(i=1to NOACC), ACCX(I=1to NOACC)

Note:

1. Horizontal and vertical inertial forces act in the direction opposite to the
direction of the horizontal and vertical accelerations.

2. All time-histories are required to have zero acceleration value(s) for T(1) =
0.0 in the data input file.

3. Values for the horizontal accelerations used in CorpsWanRotate are equal to
ACCX(I) times XSCALE times GACC.

4. Values for the vertical accelerations used in CorpsWanRotate are equal to
ACCY(I) times YSCALE times GACC.

Group 7 - Analysis Controls

KEYkv, constACCY, KEYanalysis

with

KEYkv = 1 Use the vertical acceleration time-history ACCY(I=1 to NOACC)
to determine a representative constant value for the vertical acceleration
during those time-steps when the structural wedge slides. This requires an

iterative process involving sequential executions of CorpsWanRotate , during
which an updated value for the constant constACCY is specified.

Note:

1. KEYanalysis (see input below) must be set equal to 1 in this case and value
for constACCY (see input below) is required.

2. Recommendation: For the first evaluation, the value for constACCY is
usually set equal to zero.

3. Recommendation: For the second evaluation, the value for constACCY
may be set to the average value for the vertical acceleration computed
during those time-steps when the structural wedge slides (reported in the
CorpsWanRotate output), determined from the output from the first KEYkv
= 1 analysis.

4. The KEYanalysis =1 analysis is repeated using updated constACCY values
until the change in constACCY value and the vertical acceleration
computed during those time-steps when the structural wedge slides is
sufficiently small.



ERDC/ITL TR-06-2 315

KEYkv = 2 Evaluation using the current vertical acceleration time-history
ACCY(I=1to NOACC).

Note: KEYanalysis (see input below) must be set equal to 2 in this case.

KEYkv = 3 Evaluation using a constant value for the vertical acceleration
constACCY (see below).

Note:

1. KEYkv must be set equal to 3 when KEYACCY = 1 (in Group 6 data).
2. KEYanalysis (see below) can be set equal to 1, 2, or 3 in this case.

with
constACCY = Constant value for the vertical acceleration. This can be an
average vertical acceleration during sliding or during rotation. Specified in

the same units as the acceleration time-histories of Group 6 (Units
consistent with the value of GACC).

Note: Value for constACCY is used to compute the value for the horizontal
yield acceleration in a siding analysis (designated as cofkhslide in the
output file WORKslide. TMP) or to compute the value for the horizontal
acceleration for which there is incipient lift-off of the structural wedge
from its foundation in rotation (designated as cofkhrotate in the output
file WORKrotate. TMP).

and
KEYanalysis = 1 Sliding analysis of the structural wedge.
KEYanalysis = 2 Rotating analysis of the structural wedge.

KEYanalysis = 3 Conduct either a sliding or rotating rigid block analysis of
the Structural Wedge using a constant value for the vertical acceleration
(KEYkv must be set equal to 3). A sliding analysis is conducted when the
value of the horizontal maximum transmissible acceleration, cofkhslide, is
less than the value of the horizontal acceleration for which there is
incipient lift-off of the structural wedge from its foundation in rotation,
cofkhrotate; otherwise a rotating block analysis is conducted.

Group 8 - Units for Output of Acceleration, Velocity, and Displacement
Time-Histories

DISPACC The value for DISPACC identifies the units of the scaled
acceleration, computed velocity, and computed displacements according
to the table below.
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Value for DISPACC Units of Acceleration Units of Velocity | Units of Displacement
32.174 ft/sec? ft/sec ft

386.086 in/sec? in/sec in.

9.80665 m/sec? m/sec m

980.665 cm/sec? cm/sec cm

9806.65 mm/sec? mm/sec mm
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Appendix G: Listing of CorpsWanRotate ASCII
Output Files

This appendix lists the CorpsWanRotate ASCII Output Files. Table G.1 lists
the output box labels and corresponding (tape) files for the visual modeler
Analysis tab and briefly describes the contents.

Table G.1. Output data files used by output boxes in the visual modeler Analysis tab.

Visual Modeler

Output Box

Label Name of Tape Description

Show Log of CWROTATE.RUN Summary of execution steps and limited results.

CWRotate

Execution

Show Input Echo | CWROTATE.OUT Echo of key input variables assigned by the visual

of CWRotate modeler.

Execution

Plot AccX PLOTaccX.TMP Scaled horizontal acceleration time-history.

Show AccX WORKaccX.TMP Show data file of scaled horizontal acceleration
time-history.

Plot AccY PLOTaccY.TMP Scaled vertical acceleration time-history.

Show AccY WORKaccY.TMP Show data file of scaled vertical acceleration time-
history.

Plot AccYX PLOTaccYX.TMP Scaled X- and Y- time-histories and ratio of a
scaled-ACCY divided by scaled-ACCX.

Show AccYX WORKaccYX.TMP Show data file of scaled X- and Y- time-histories and
ratio of a scaled-ACCY divided by scaled-ACCX.

Show Sliding WORKslide.TMP Iteration results for Maximum Transmissible

Evaluation Acceleration; yield acceleration (horizontal) for

structural wedge slide limit state. Boundary water
pressures to the structural wedge, when present,
are listed in this file. When water is present, the
resultant water pressure forces acting on the
structural wedge are reported in this file.

Show Lift-Off
Acceleration

WORKrotate.TMP

Iteration results for Maximum Acceleration resulting
in lift-off of the structural wedge from its foundation
with rotation about its toe. Boundary water
pressures to the structural wedge, when present,
are listed in this file. When water is present, the
resultant water pressure forces acting on the
structural wedge are reported in this file.

Plot PA File

PLOTpa.TMP

Sweep-search wedge results of a versus P and the
resulting static active earth pressure force Pa. A
single sweep-search wedge solution is contained in
this file using SMF = 1.0.
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Visual Modeler
Output Box
Label

Name of Tape

Description

Show PA File

WORKpa.TMP

Sweep-search wedge results of a versus P and the
resulting static active earth pressure force, Pa. A
single sweep-search wedge solution is contained in
this file, calculated using SMF = 1.0.

Plot PO File

PLOTpo.TMP

Sweep-search wedge results of o versus P and the
resulting approximation for the static at-rest earth
pressure force Po. A single sweep-search wedge
solution is contained in this file, calculated using
SMF = 1/1.5=0.67. The value for P, is not used in
the sliding nor rotational rigid block calculations of
the initial version of CWRotate.

Show PO File

WORKpo.TMP

Sweep-search wedge results of a versus P and the
resulting approximation for the static at-rest earth
pressure force Po. A single sweep-search wedge
solution is contained in this file, calculated using
SMF = 1/1.5=0.67. The value for P, is not used in
the sliding nor rotational rigid block calculations of
the initial version of CWRotate.

Plot PAE File

PLOTpae.TMP

Sweep-search wedge results of a versus P and the
resulting dynamic active earth pressure force, Pac.
This file contains results from multiple analyses.
When a rotational rigid block time-history analysis
is conducted, this file can become quite large. Drop
down menu options can be used to plot user
selected Pae plot numbers. Pae run numbers are
identified in various output files.

Show PAE File

WORKpae.TMP

Sweep-search wedge results of a versus P and the
resulting dynamic active earth pressure force, Pac.
This file contains results from multiple analyses.
When a rotational rigid block time-history analysis
is conducted this file can become quite large. Drop
down menu options can be used to view user
selected Pae analyses. Pae run numbers are
identified in other output files.

Plot Sliding
Time-history

PLOTslideTH.TMP

Time-history of sliding block analysis.

Show Sliding
Time-history

PLOTslideTH.TMP

Show data file of time-history of sliding block
analysis.

Plot Rotating
Time-history

PLOTrotatTH.TMP

Time-history of rotating block analysis.

Show Rotating
Time-history

PLOTrotatTH.TMP

Show data file of time-history of rotating block
analysis.

Show Moments
about the
Rotation Point

WORKrotatTH1.TMP

Time-histories of overM, restoreM, Pag, ALPHAr1

Show Rotational
Values

WORKrotatTH2.TMP

Time-histories of ALPHAr1, OMEGAr1, THETAr1,
totTHETAr1
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Visual Modeler
Output Box
Label

Name of Tape Description

Show Forces
acting on the

WORKrotatTH3.TMP | Time-histories of overM, restoreM, Pae, Hpae,

Nbase, Tultbase

Structural

Wedge in

Rotation

Plot Effective PLOTKEYkvATH.TMP | Time-history of effective vertical acceleration during
Vertical Acc. sliding or rotation analysis with KEYkv = 1

Show Effective PLOTKEYkvATH.TMP | Show data file of time-history of effective vertical
Vertical Acc. acceleration during sliding or rotation analysis with

KEYkv =1

A second table, Table G.2 lists other tape files generated in each
CorpsWanRotate analysis and briefly describes the contents.

Table G.2. Output data files used by output boxes in the visual modeler Analysis tab.

Name of Tape

Description

Print to screen a summary of execution steps and limited results. Same
information as is contained in CWROTATE.RUN.

OUTPUTpa.TMP

Summary of forces acting on each wedge in a sweep search wedge
analysis of o versus Pa (static active earth pressure force). A single
sweep-search wedge solution is contained in this file.

OUTPUTpo.TMP

Summary of forces acting on each wedge in a sweep search wedge
analysis of o versus Py (static at-rest earth pressure force). A single
sweep-search wedge solution is contained in this file.

OUTPUTpae.TMP

Summary of forces acting on each wedge in a sweep-search wedge
analysis of o versus Pae (pseudo-static active earth pressure force). This
file contains results from multiple analyses. When a rotational rigid block
time-history analysis is conducted, this file can become quite large.
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Appendix H: Earth Pressure Distribution and
Depth of Cracking in a Cohesive Retained
Soil — Static Active Earth Pressures

This appendix summarizes for static loading the results of sweep-search
analyses of two types of cohesive soils, the first being an effective stress
analysis with Mohr-Coulomb effective stress shear strength parameters ¢’
and ¢’ used to characterize the shear strength of the retained soil and the
second case for a backfill in which Mohr-Coulomb total stress shear
strength parameter c is set equal to the undrained shear strength, S,, and
with ¢ set equal to zero. The objective of this appendix is to demonstrate
the trial-and-error procedure used to determine the depth of cracking in a
cohesive soil as well as the resulting static active earth pressure
distribution that is applied to the structural wedge in a CorpsWanRotate
analysis.

Background: The sole purpose of a P computation in a CorpsWanRotate
analysis is to determine the value for hpax , the resultant location for Pag .
The procedure used is outlined in Appendix C. The approach used can also
be interpreted in terms of an equivalent earth pressure distribution
applied to the structural wedge by the driving soil wedge in a
CorpsWanRotate analysis that is made up of two components, the earth
pressure distribution due to the static active earth pressures and a
trapezoidal earth pressure distribution due to the incremental dynamic
force component APag (with APag = Pag - Pa). The methodologies
discussed in Appendix A are used by CorpsWanRotate to first determine the
resultant earth pressure forces, Pa and Pag, and then the methodologies
discussed in Appendix C are used to compute the resulting earth pressure
distributions for Pa and APag, respectively. In order to compute values of
Par and Pa by the dynamic and static sweep-search solutions of trial soil
wedges, a depth of cracking needs to be specified in each sweep-search
analysis made by CorpsWanRotate of a cohesive soil. Initial sweep-search
soil wedge solutions are always made assuming a zero depth of crack. This
is sufficient for the Par computation, as discussed previously. However, an
iterative procedure is used to determine the value for the depth of cracking
in the analysis of P in cohesive soils and the corresponding earth pressure
distribution (which includes both compression as well as tensile stresses).
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After the resulting static earth pressure force, Pa, computation is
completed, a resulting earth pressure distribution is constructed and new
depth of cracking for static loading is determined. CorpsWanRotate then
proceeds with second sweep-search trial wedge analysis of the retained
soil for a new value for P corresponding to this new, nonzero crack depth
value. A new static earth pressure distribution and new crack depth are
determined. The process is repeated until the depth of cracking used in the
sweep-search trial wedge analysis and the depth of cracking determined
from the static active earth pressure distribution are nearly the same
value. This iterative procedure is demonstrated for two examples in this
appendix.

In the special case of cohesive soils, the CorpsWanRotate analysis disregards
the tensile stresses when defining the static active earth pressures and the
corresponding resulting static active earth pressure force to be applied to
the structural wedge, as well as when computing the resulting force
location, hpa, of this modified stress distribution. A trapezoidal earth
pressure distribution is used to define AP for cohesive as well as
cohesionless soils.

H.1 Example No. 1: Effective Stress Analysis of a Cohesive Soil

Consider the case of the Figure H.1 20-ft high, moist, cohesive, retained
soil with ¢’ = 200 psf, ¢’ = 10 degrees, 6 = 0 degrees, and ymoist = 110 psf.
The first step in the CorpsWanRotate analysis of this static earth pressure
problem is a sweep search trial wedge analysis starting with assumption
that the depth of cracking is equal to zero. This results in a computed Pa
value equal to 8,105.9 per ft run of wall using the method outlined in
Section A.3 of Appendix A for a planar slip surface with aa computed to be
50 degrees from horizontal. The second step is to compute the
corresponding earth pressure distribution and depth of cracking using the
procedure outlined in Section C.3 of Appendix C. This active earth
pressure distribution resulted in a depth of cracking equal to 4.767 ft.
Ignoring the tensile stresses within the depth of cracking, as is done by
CorpsWanRotate, the resultant net force, Pastaticrosa, corresponding to the
computed triangular compressive earth pressure stress distribution, is
equal to 8,985.9 Ib per ft run of wall with a point of application at 5.078 ft
at the end of this first iteration. These results are consistent with the
results given in Example 6-4 of Bowles (1968). Since the depth of cracking
from the active earth pressure distribution (i.e., 4.767 ft) is so different
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from the value assumed in the sweep search trial wedge solution for P
(i.e., o ft), additional analyses are required.

Pstatic—effective stress
Pa
a
Area
crack )
S A-top
A T ( )
Aok “..: zone of cracking i d‘crack
W S I I 2 _
. 3 AstaticPOSa
Pstatic—effective stress ‘e (+)
\ A '
6=0 O A-bot
Sweep Search Active
Soil Wedge Stress
Analysis Distribution

Figure H.1. Sweep-search trial wedge analysis of a cohesive retained soil and the
corresponding active earth pressure distribution — effective stress analysis.

The second sweep-search trial wedge analysis starts with an assumption of
4.767 ft for the depth of cracking, as indicated in Table H.1. A total of four
iterations are required to converge on a depth of cracking in which the
depth of crack used in the sweep-search soil wedge analysis results is
consistent with the depth of cracking resulting from the active stress
distribution. In the final iteration (i.e., number 4), the net active force
corresponding to the compressive stress distribution starting 3.973 ft
below top of wall is equal to 9,549.7 1b per ft run of wall. Note that the
sweep-search active soil wedge solution for aa equal to 50 degrees is
computed to be equal to 8,962.9 Ib per ft run of wall. These two values
differ because P4 is computed by the sweep-search (active) wedge solution
and includes the contribution of tensile stresses due to cohesion in the
retained soil (e.g., refer to Equation A.27).
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Table H.1. lterative results from the static sweep-search wedge analysis of a cohesive soil —
effective stress.

Depth of Crack Depth of Crack
Used in Sweep- Resulting from
Search Soll PastaticMAxXa PastaticPosa Active Stress

lteration | Wedge Analysis | aa (Ib per ft of | 6'atop | G'Abot (Ib per ft of | Hpastatica | Distribution

No. (ft) (deg) [ run wall) (psf) | (psf) run wall) (ft) (ft)

1 0 50 |[8105.9 -369.211,179.80 | 8,985.9 5.078 |4.767

2 4,767 50 |[8985.9 -281.211,179.80| 9,527 1 5.384 |3.849

3 3.849 50 |8953.3 -298.1(1,193.40|9,549.2 5.334 |3.998

4 3.998 50 |[8962.9 -295.411,191.70 | 9,549.7 5.342 |3.973

H.2 Example No. 2: Total Stress Analysis of a Cohesive Soil

Consider the case of the Figure H.2 20-ft high, moist, cohesive, retained
soil with S, = 600 psf (with ¢ = 0 degrees), & = 0 degrees, and Ymoist = 130
pst. The first step in the CorpsWanRotate analysis of this static earth
pressure problem is a sweep-search trial wedge analysis starting with
assumption that the depth of cracking is equal to zero. This results in a
computed P4 value equal to 2,000 per ft run of wall using the method
outlined in Section A.5 of Appendix A for a planar slip surface with aa
computed to be 45 degrees from horizontal. The second step is to compute
the corresponding earth pressure distribution and depth of cracking using
the procedure outlined in Section C.4 of Appendix C. This active earth
pressure distribution resulted in a depth of cracking equal to 9.231 ft.
Ignoring the tensile stresses within the depth of cracking, as is done by
CorpsWanRotate, the resultant net force, Pastaticposa, corresponding to the
computed triangular compressive earth pressure stress distribution, is
equal to 7,538.5 lb per ft run of wall with a point of application at 3.59 ft at
the end of this first iteration.
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Figure H.2. Sweep-search trial wedge analysis of a cohesive retained soil and the
corresponding active earth pressure distribution — total stress analysis.

These CorpsWanRotate analysis results are consistent with the results for a
Rankine active earth pressure distribution, for which the horizontal stress
at any depth is given by

o,=K,ey. .. *depth—2ece K, H.1
with
K, =tan’ (45 —gj H.2

Solving Equation H.1 for the depth of zero active horizontal earth pressure,
results in a depth of cracking of

d 2000\/K_A

crack = K H.3

A ® 7moist

With ¢ equal to zero and c set equal to Sy in this problem, Equations H.1
and H.3 simplify to

Oy =Vimoist ®*dEPth—20S, H.4
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d H.5

crack —
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With S, equal to 600 psf and ymeist = 130 psf, the horizontal active earth
pressure at the ground surface and at a 20-ft depth are computed to be
-1,200 psf and 1,400 psf, respectively, by Equation H.4. Additionally, the
depth of cracking is computed to be 9.231ft below the ground surface.
These results are consistent with those from the first iteration of the
CorpsWanRotate analysis, summarized in Table H.2. Since the depth of
cracking from the active earth pressure distribution (i.e., 9.231 ft) is so
much greater than the value assumed in the sweep-search trial wedge
solution for Pa (i.e., 0 ft), additional analyses are required.

Table H.2. Iterative results from the static sweep-search wedge analysis of a cohesive soil —

total stress.
Depth of Crack Depth of Crack
Used in Sweep Resulting from
Search Soil Phastaticmaxa PhastaticPosa Active Stress
lteration | Wedge Analysis | ca (Ib per ft of | Oatop CA-bot (Ib per ft of | Hpastatica | Distribution
No. (ft) (deg) | run wall) (psf) (psf) run wall) (ft) (ft)
1 0 45 |2000.0 -1200.0 | 1,400.0 | 7,538.5 3.590 |9.231
2 9.231 45 7538.5 -646.2 |1,400.09,578.9 4561 |6.316
3 6.316 45 16986.1 -821.1 |1,519.7 | 9,866.1 4,328 |7.015
4 7.015 45 7219.4 -779.1 |11,501.0|9,881.4 4,389 |6.834
5 6.834 45 7165.0 -790.0 |1,506.5(9,882.5 4,373 |6.880

The second sweep-search trial wedge analysis starts with an assumption of
9.231 ft for the depth of cracking, as indicated in Table H.2. A total of five
iterations are required to converge on a depth of cracking in which the
depth of crack used in the sweep search soil wedge analysis results is
consistent with the depth of cracking resulting from the active stress
distribution. In the final iteration (i.e., number 5), the net active force
corresponding to the compressive stress distribution starting 4.373 ft
below top of wall is equal to 9,882.5 Ib per ft run of wall. Note that the
sweep search active soil wedge solution for aa equal to 45 degrees is
computed to be equal to 7,165 lb per ft run of wall. These two values differ
because P4 is computed by the sweep search (active) wedge solution and
includes the contribution of tensile stresses due to cohesion in the retained
soil (e.g., refer to Equation A.31).
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