

COMPUTER-AIDED STRUCTURAL ENGINEERING (CASE) PROJECT

TECHNICAL REPORT ITL-89-5

CCHAN--STRUCTURAL DESIGN OF RECTANGULAR CHANNELS ACCORDING TO CORPS OF ENGINEERS CRITERIA FOR HYDRAULIC STRUCTURES

COMPUTER PROGRAM X0097

by

William A. Price

Information Technology Laboratory

DEPARTMENT OF THE ARMY
Waterways Experiment Station, Corps of Engineers
3909 Halls Ferry Road
Vicksburg, Mississippi 39180-6199

and

Edwin S. Alling

DEPARTMENT OF AGRICULTURE Soil Conservation Service Hyattsville, Maryland

August 1989 Final Report

Approved For Public Release; Distribution Unlimited

Prepared for DEPARTMENT OF THE ARMY
US Army Corps of Engineers
Washington, DC 20314-1000

20371196

US-CE-CProperty of the United States Government

N34 No.ITL-89-5

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

			REPORT I	OCUMENTATIO	N PAGE			Form Approved OMB No. 0704-0188
1a. REPORT	SECURITY CLASS	IFICATI	ON		1b. RESTRICTIVE MARKINGS			
Unclass:		N ALITI	IODITY					
28. SECURIT	2a. SECURITY CLASSIFICATION AUTHORITY				THE RESERVE THE PARTY OF THE PA	AVAILABILITY OF		
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE			Approved for public release; distribution unlimited					
4. PERFORMING ORGANIZATION REPORT NUMBER(S)		5. MONITORING	ORGANIZATION RE	PORT NU	IMBER(S)			
Technical Report ITL-89-5								
USAEWES, Information 6b. OFFICE SYMBOL (If applicable)		6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MO	ONITORING ORGAN	NIZATION			
	gy Laborat			CEWES-IM-DA	11/4 11 10			
NAME OF TAXABLE PARTY OF TAXABLE PARTY.	(City, State, and	Section 1	ode)		7b. ADDRESS (Cit	y, State, and ZIP C	ode)	
3909 11-1	ls Ferry R	bood			- H			7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
AND THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	g, MS 391		199					
8a. NAME OF ORGANIZ	FUNDING/SPOR	NSORIN	IG	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT	I INSTRUMENT IDE	NTIFICAT	ION NUMBER
	Corps of E	100						
8c. ADDRESS	City, State, and	ZIP Cod	de)		THE RESIDENCE OF THE PERSON NAMED IN	UNDING NUMBERS	Name and Address of the Owner, where	
Washingt	on, DC 20	314-	1000		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO.
	lude Security Cla tructural I			tangular Channe	ls According	to Corps of	Engin	eers
THE RESERVE THE PERSON NAMED IN	The second secon	ulic	Structur	es; Computer Pro	ogram X0097			
12. PERSONAL	Company of the Compan		•					
13a. TYPE OF	illiam A.;		13b. TIME CO		14. DATE OF REPO	RT (Year Month I	Day) 15	. PAGE COUNT
Final re			FROM	то	August 19			130
	NTARY NOTATI	ON			110000000000000000000000000000000000000			
Availabl 22161	e from Nat	iona	l Technic	al Information	Service, 528	5 Port Royal	l Road	, Springfield, VA
17.	COSATI C	Section and the section and th		18. SUBJECT TERMS (
FIELD	GROUP	SUB	-GROUP	Channels	Soil Conservation Service			
		-		Drainage Hydraulic stru		ructural des	ign	The state of the state of
19. ABSTRACT	(Continue on r	everse	if necessary	and identify by block no		100000		
	Mercillo della escata				y			
The computer program CCHAN (X0097) for rectangular reinforced concrete channels, and its companion program CBASIN for stilling basins, were obtained from the Soil Conservation Service (SCS) of the US Department of Agriculture for US Army Corps of Engineers (USACE) use in obtaining preliminary structural designs of important or unusual structures or complete designs of small, routine structures. These programs were adapted to Corps of Engineers criteria for hydraulic structures, and additional output information on member forces and moments was added.								
				is included in ments or supers				nformation in the ment.
The state of the s	ION/AVAILABIL	Thinks of the same			21. ABSTRACT SEC Unclassif	CURITY CLASSIFICA	ATION	
	F RESPONSIBLE			PT. DTIC USERS	22b. TELEPHONE () 22c. O	FFICE SYMBOL
DD Form 147	3, JUN 86			Previous editions are	obsolete.	SECURITY		classified

US ARMY ENGINEER VICKSBURG, MISSISSIPPI

ELECTRONIC COMPUTER PROGRAM ABSTRACT TITLE OF PROGRAM X0097--CCHAN--Structural Design of SCS Rec-PROGRAM NO. tangular Channels According to CE Criteria 713-P-R0099 PREPARING AGENCY CEWES Information Technology Laboratory AUTHOR(S) DATE PROGRAM COMPLETED STATUS OF PROGRAM Edwin S. Alling William A. Price PHASE STAGE George Henson January 1989

A. PURPOSE OF PROGRAM

To perform preliminary or complete structural designs of U-frame channels according to Technical Release No. 50, "Design of Rectangular Structural Channels"

B. PROGRAM SPECIFICATIONS

The Program uses working stress analysis in accordance with Corps of Engineers EM 1110-1-2101, "Working Stresses."

C. METHODS

D. EQUIPMENT DETAILS

CCHAN runs on MS-DOS microcomputers. It does not use graphics. A math coprocessor is not required, but will be used if installed.

E. INPUT-OUTPUT

Input is interactive, with prompting.
Output is to the screen; use <Ctrl><PrtSc> to get hard copy printout.

F. ADDITIONAL REMARKS

A user's guide is available from the Engineer Computer Programs Library, WES telephone (601) 634-2581. This user's guide includes Soil Conservation Service Technical Release No. 50.

PREFACE

The computer programs CBASIN and CCHAN were obtained by the US Army Corps of Engineers (USACE) from the Soil Conservation Service (SCS), US Department of Agriculture (USDA), for use in preliminary structural designs of important or unusual structures or complete design of routine structures.

The original program was written by Mr. Edwin S. Alling, Engineering Division, SCS, Hyattsville, MD. The program was later adapted to USACE criteria by Mr. Alling and Mr. George Henson, Structures Section, US Army Engineer District, Tulsa.

This project was a task of the U-Frame Basins and Channels Task Group of the Computer-Aided Structural Engineering (CASE) Project. Current membership of the CASE project is as follows:

Mr. Bryon Bircher, General Chairman, CEMRK-ED-D

Mr. George Henson, Chairman, CESWT-ED-DT

Mr. Bill James, now retired from CESWD-ED-TS

Mr. Scott Snover, SCS, USDA

Mr. Tom Wright, CEMRK-ED-DT

Mr. Clifford Ford, CESPL-ED-DB

Mr. Donald R. Dressler, CEEC-ED

Mr. William A. Price, CEWES-IM-DA

Mr. William A. Price, Information Technology Laboratory (ITL), coordinated the work at the US Army Engineer Waterways Experiment Station (WES) under the supervision of Mr. Paul K. Senter, Assistant Chief, ITL, and Dr. N. Radhakrishnan, Chief, ITL. The text of the report was written by Mr. Price, and Appendix A was written by Mr. Alling.

Acting Commander and Director of WES was LTC Jack R. Stephens, EN. Technical Director was Dr. Robert W. Whalin.

CONTENTS

Page

	71
PREFACE	L
CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT	3
	4
General	
PART II: DATA INPUT GUIDE	5
PART III: SPECIAL DISCUSSION OF USACE ADAPTATION	9
Flotation Criteria	9
PART IV: OUTPUT	1
APPENDIX A: SCS TECHNICAL RELEASE NO. 50 (REV. 1) "DESIGN OF RECTANGULAR STRUCTURAL CHANNELS"	1
APPENDIX B: SAMPLE CCHAN RUN FOR PRELIMINARY DESIGNS	1
APPENDIX C: SAMPLE CCHAN RUN FOR T1F CHANNEL DESIGN	1
APPENDIX D: SAMPLE CCHAN RUN FOR T3F CHANNEL DESIGN	1
APPENDIX E: SAMPLE CCHAN RUN FOR T3FV CHANNEL DESIGN	1
APPENDIX F: SAMPLE CCHAN RUN FOR T1S CHANNEL DESIGN	1

CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI (metric) units as follows:

Multiply	Ву	To Obtain
cubic yards per foot	2.508	cubic metres per metre
feet	0.3048	metres
foot-pounds per foot	4.4482	joules per metre
inches	25.4	millimetres
pounds (force) per square foot	47.88026	pascals
pounds (force) per square inch	6894.757	pascals
pounds (mass) per cubic foot	16.01846	kilograms per cubic metre
square inches	6.4516	square centimetres

THE RESIDENCE OF REPORT OF THE PERSON OF THE

ACCORDING TO CORPS OF ENGINEERS CRITERIA FOR HYDRAULIC STRUCTURES

COMPUTER PROGRAM X0097

PART I: INTRODUCTION

General

- 1. The computer program CCHAN (X0097) for rectangular reinforced concrete channels, and its companion program CBASIN for stilling basins, were obtained from the Soil Conservation Service (SCS) of the US Department of Agriculture for US Army Corps of Engineers (USACE) use in obtaining preliminary structural designs of important or unusual structures or complete designs of small, routine structures. These programs were adapted to Corps of Engineers criteria for hydraulic structures, and additional output information on member forces and moments was added.
- 2. The SCS program document is included in this report as Appendix A. Information in the main text of this report supplements or supersedes portions of the SCS document.

Capabilities

3. This program performs the calculations for structural design of rectangular cross-section structural channels in accordance with Corps of Engineers criteria for working stress design of hydraulic structures. The configurations are illustrated in Figure 1 of Appendix A, with their loading conditions shown in Fugures 2, 3, and 4 of Appendix A.

Limitations

4. Program CCHAN (X0097) accepts as input the overall geometry, water elevations, and soils parameters, with structural details as determined by the program. The user cannot change these details.

PART II: DATA INPUT GUIDE

- 5. Data are as defined for, and entered into, the original SCS program described in Appendix A--except as described below.
- 6. Data input was converted from the original SCS program's file input to on-line interactive as a part of converting from mainframe time-sharing to personal computer hardware. An additional, optional data line was added to incorporate being able to select basic structural analysis to conform to (a) the original SCS values, (b) the Corps of Engineers default values, or (c) any other values. Input prompting messages were expanded to present more recognizable help to the user. The user is led through data entry, line-by-line, as needed. Text examples shown below are as printed by the program.

ENTER FIRST HEADER LINE:

Type in the first line of title information and press the enter key. This line and the second header line may be up to 80 characters long and should provide identification of the design being executed. You will now be prompted for the second title line.

ENTER SECOND HEADER LINE:

Type in the second line of title information and press the enter key. You will now be prompted for data line three, required:

ENTER THE FOLLOWING:

Enter the data requested in the order listed, separated by at least one space. Refer to page 57 of Appendix A for detailed information on the input required. Press the enter key once all the data items have been typed and are correct. These instructions apply to all lines of numeric data.

DFLT4 DESIGN DFLT2 DFLT3 HGT DFLT1 CL WDTH HGT O=DEF O=DEF O=DEF O=DEF BKFILL PARAM CHANNEL WALL FT FT FT

Prompting Message	Appendix A Nomenclature	Appendix A Figure	
CL WDTH CHANNEL, FT	В	1,6	
HGT WALL, FT	HT	1,2,3,6	
HGT BKFILL, FT	HB	1,2,3,5,6	

DESIGN PARAM: Use zero to get four preliminary designs, one for each type of channel.

or use 1 to get final design of T1F channel.

or use 2 to get final design of T3F channel.

or use 3 to get final design of T3FV channel.

or use 4 to get final design of T1S channel.

DFLT1: Use 1 to get entry of data line four values, or 0 to use default values.

DFLT2: Use 1 to get entry of data line five values, or 0 to use default values.

DFLT3: Use 1 to get entry of data line six values, or 0 to use default values.

DFLT4: Use 1 to get entry of data line seven values, or 0 to use Corps of Engineers default values.

7. When the program prompts for an input line (DFLT#=1), the entire line of values must be entered, not just those values that are different from the defaults. Otherwise, the program will give unpredictable results by reading erroneous values for the prompted input. Data line four is used only if DFLT1 in line three was entered as 1.

WAT HT WAT HT UP HD SOIL WT SOIL WT LAT SOIL LAT SOIL SAFETY LC 2 LC 1 SLAB MOIST SAT PR RATIO PR RATIO FACTOR FT FT FT LB/CF LB/CF LC 1 LC 2 FLOAT where

Prompting Message	Default Value	Appendix A Nomenclature	Appendix AFigure
WAT HT, LC 1, FT	0.8 B	HW 1 (LC 1)	2,4,5,6
WAT HT, LC 2, FT	0.1 B	(2)	3
UP HD, SLAB, FT	*	HWP #	12
SOIL WT, MOIST, LB/CF	120.0	GMOIST	2,3
SOIL WT, SAT, LB/CF	140.0	GSAT	2,3
LAT SOIL, PR RATIO, LC 1	0.8	K01	5
LAT SOIL, PR RATIO, LC 2	0.2	K02	5
SAFETY FACTOR FLOAT	1.5	FLOATR	

^{*} HW 1 OR 0.8 of backfill height, LC 1.

[#] Used by T3F and T3FV channels.

Data line five is used only if DFLT2 in data line three was entered as 1.

MAX FOOT SPAN BETN FOUND PROJECT LONG JTS MODULUS FT FT LB/FT³

where

Prompting Message	Default Value	Appendix A Nomenclature	Appendix A Reference
MAX FOOT PROJECT, FT	0.5 B	MAXFTG	#
SPAN BETN LONG JTS, FT	*	JOINTS	
FOUND MODULUS, LB/FT3	100,000	MFOUND	TABLE 1

^{*} Used for strutted channel only, see Figure 1 of Appendix A.

Default for B =< 10 is 20.

Default for 10 < B < 20 is 2.0 B.

Default for B >= 20 is 40.

Data line five is used only if DFLT3 in data line three was entered as 1. Its data items are discussed in Table 1 of Appendix A.

COEFF	COEFF	PASSIVE
FRICTION	FRICTION	SOIL PR
SOIL-CONC	SOIL-SOIL	RATIO

where

Prompting Message	Default Value	Appendix A Nomenclature
COEFF FRICTION, SOIL-CONC	0.35	CFSC
COEFF FRICTION, SOIL-SOIL	0.55	CFSS
PASSIVE SOIL PR RATIO	*	KPASS

^{*} 1.0/K01 = 1.25 if default K01 is used.

Data line six is used only if DFLT4 in data line three was entered as 1.

CONCRETE	RATIO	ALLOWABLE	ALLOWABLE	MINIMUM
ULTIMATE	FC TO	STEEL	NET BEAR	CONCRETE
STRENGTH	F'C	· STRESS	PRESSURE	THICKNESS
PSI		PSI	PSF	IN

where

Prompting Message	Default Value	Appendix A Nomenclature	SCS Value
CONCRETE ULTIMATE STRENGTH, PSI	3000.0	FPC	4000.0
RATIO FC TO F'C	0.35	COESF	0.4
ALLOWABLE STEEL STRESS, PSI	20000.0	FSA	20000.0
ALLOWABLE NET BEAR PRESSURE, PSF	2000.0	ABP	2000.0
MINIMUM CONCRETE THICKNESS, IN	12.0	TMIN	10.0

[#] Limit of FTG, shown in Figures 4, 6, 7, 11 of Appendix A.

8. After all numeric data have been entered, and if a detailed design was requested ("DESIGN PARAM" in data line three was entered as not 0), then the program will ask the question "IS MOMENT, THRUST, SHEAR REPORT DESIRED? Enter either Y or N..." Respond with a <u>capital</u> Y if the report (shown in Appendixes C through F) is desired or with a <u>capital</u> N if it is not wanted.

PART III: SPECIAL DISCUSSION OF USACE ADAPTATION

Flotation Criteria

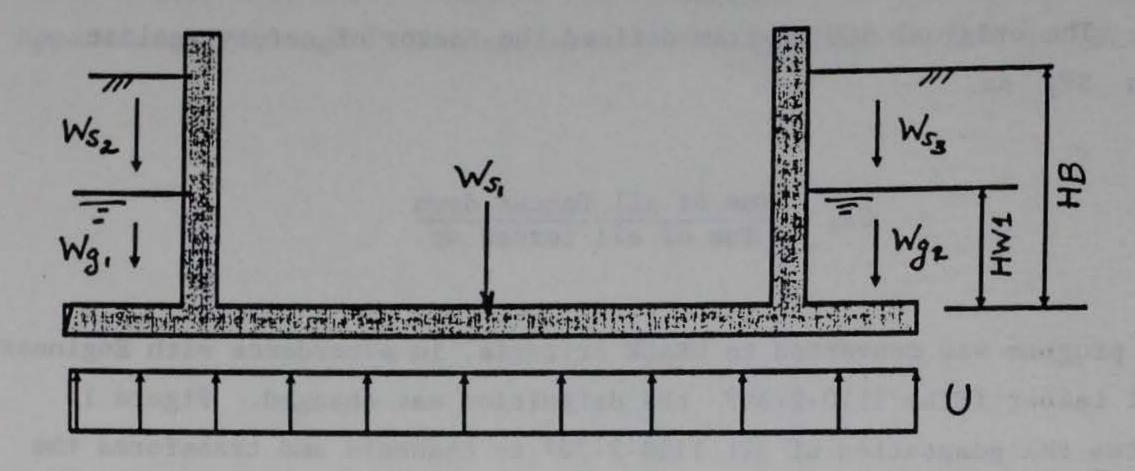
9. The original SCS program defined the factor of safety against flotation SF_{f} as

$$SF_f = \frac{Sum \text{ of all forces down}}{Sum \text{ of all forces up}}$$

When the program was converted to USACE criteria, in accordance with Engineer Technical Letter (ETL) 1110-2-307, the definition was changed. Figure 1 illustrates the adaptation of ETL 1110-2-307 to channels and transforms the resulting equation to

 $SF_f = \frac{Sum \text{ of all forces down - weight of water}}{Sum \text{ of all forces up - weight of water}}$

Concrete Cover Over Reinforcement


10. Concrete clear cover over reinforcing steel was programmed in the SCS program as being 2 in.* everywhere except for bottom steel in the bottom slab where it was programmed to be 3 in. The USACE modifications added that it would be 3 in. everywhere if the data item COESF is less than 0.38. (If COESF is greater than or equal to 0.38, then the cover is not changed from the original SCS values.)

^{*} A table of factors for converting non-SI units of measurement to SI (metric) units is presented on page 3.

FLOTATION

CHANNELS

Load Condition # 1 controls

$$SF_p = \frac{W_S + W_C + S}{U - W_g}$$
 so here $SF_f = \frac{W_S}{U - W_g}$

now

$$\begin{split} & \forall g = \forall g_1 + \forall g_2 = 2 \forall g_1 = \delta_{\omega} \cdot HW1 \cdot FTG \cdot 2 \\ & \forall s = \forall s_1 + \forall s_2 + \forall s_3 = \forall s_1 + 2 \cdot \forall s_2 \\ & = \forall s_1 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{b} \cdot HW1 \right\} \cdot FTG \cdot 2 \\ & = \forall s_1 + \left\{ \delta_{m} \cdot (HB - HW1) + (\delta_{s} - \delta_{\omega}) \cdot HW1 \right\} \cdot FTG \cdot 2 \\ & = \forall s_1 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{s} \cdot HW1 \right\} \cdot FTG \cdot 2 - \delta_{\omega} \cdot HW1 \cdot FTG \cdot 2 \\ & = \left[\forall s_1 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{s} \cdot HW1 \right\} \cdot FTG \cdot 2 \right] - \forall s_1 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{s} \cdot HW1 \right\} \cdot FTG \cdot 2 \right] - \forall s_2 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{s} \cdot HW1 \right\} \cdot FTG \cdot 2 \right] - \forall s_3 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{s} \cdot HW1 \right\} \cdot FTG \cdot 2 \right] - \forall s_3 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{s} \cdot HW1 \right\} \cdot FTG \cdot 2 \right] - \forall s_3 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{s} \cdot HW1 \right\} \cdot FTG \cdot 2 \right] - \forall s_3 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{s} \cdot HW1 \right\} \cdot FTG \cdot 2 \right] - \forall s_3 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{s} \cdot HW1 \right\} \cdot FTG \cdot 2 \right\} - \forall s_3 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{s} \cdot HW1 \right\} \cdot FTG \cdot 2 \right\} - \forall s_3 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{s} \cdot HW1 \right\} \cdot FTG \cdot 2 \right\} - \forall s_3 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{s} \cdot HW1 \right\} \cdot FTG \cdot 2 \right\} - \forall s_4 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{s} \cdot HW1 \right\} \cdot FTG \cdot 2 \right\} - \forall s_4 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{s} \cdot HW1 \right\} \cdot FTG \cdot 2 \right\} - \forall s_4 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{s} \cdot HW1 \right\} \cdot FTG \cdot 2 \right\} - \forall s_4 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{s} \cdot HW1 \right\} \cdot FTG \cdot 2 \right\} - \forall s_4 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{s} \cdot HW1 \right\} \cdot FTG \cdot 2 \right\} - \forall s_4 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{s} \cdot HW1 \right\} \cdot FTG \cdot 2 \right\} - \forall s_4 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{s} \cdot HW1 \right\} \cdot FTG \cdot 2 \right\} - \forall s_4 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{s} \cdot HW1 \right\} \cdot FTG \cdot 2 \right\} - \forall s_4 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{s} \cdot HW1 \right\} \cdot FTG \cdot 2 \right\} - \forall s_4 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{s} \cdot HW1 \right\} \cdot FTG \cdot 2 \right\} - \forall s_4 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{s} \cdot HW1 \right\} \cdot FTG \cdot 2 \right\} - \forall s_5 + \left\{ \delta_{m} \cdot (HB - HW1) + \delta_{m} \cdot HW1 \right\} \cdot FTG \cdot 2 \right\} - \langle \delta_{m} \cdot (HB - HW1) + \langle \delta_{m} \cdot (HB - HW1) +$$

and

Figure 1. ETL 1110-2-307 adapted to channels

PART IV: OUTPUT

- 11. Output consists of three parts. Each part has its own heading; the first two parts, with headings expanded and rearranged for clarity, are as in the original SCS program described in Appendix A. The third part, produced with the "Y" answer described in paragraph 8, is new.
- 12. The first part is essentially a summary of the input data. It is introduced with the printed line

DESIGN PARAMETERS

13. The second part is different for each of the five possible values for the variable DESIGN PARAM in data line three, according to the following list:

DESIGN PARAM	Channel Type		rated in endix	Appendix A Figure
0	preliminary	В	*	43 bottom
1	T1F	C	**	44
2	T3F	D	**	46
3	T3FV	E	**	48
4	T1S	F	**	50

- * Introduced with the printed line "PRELIMINARY DESIGNS FOLLOW"
- ** Introduced with the printed line "DESIGN OF SPECIFIED TYPE CHANNEL FOLLOWS" and concluded with the message "END xxx DESIGN," where xxx is the channel type.
- 14. Part three, if requested as described in paragraph 8, is introduced by the printed line

MOMENT, THRUST, SHEAR REPORT

It starts with an echo of data lines one and two. This is followed with a message referring to Figures 29, 33, 36, 39, and 40 of the SCS document in Appendix A for illustration of location codes. This is illustrated in Appendixes B through E.

APPENDIX A: SCS TECHNICAL RELEASE NO. 50 (REV. 1)
"Design of Rectangular Structural Channels"

Page numbers at top of pages are as in the original Soil Conservation Service document. Page numbers at bottom of pages in this appendix are for this document.

U. S. Department of Agriculture Soil Conservation Service Engineering Division

Technical Release No. 50 (Rev. 1) Design Unit July 1977

DESIGN OF RECTANGULAR STRUCTURAL CHANNELS

PREFACE

This technical release continues the effort to produce design aids which facilitate the attempt towards optimization of structural design. Three earlier technical releases, TR-42, TR-43, and TR-45, deal with the structural design of rectangular conduits. This technical release is concerned with the structural design of rectangular channels. Although primarily written for design engineers, the material has considerable application for planning engineers since preliminary designs of structural channels are readily available to them.

A draft of the subject technical release dated August, 1971, was sent to the Engineering and Watershed Planning Unit Design Engineers for their review and comment.

This technical release was prepared by Mr. Edwin S. Alling of the Design Unit, Design Branch at Hyattsville, Maryland. He also wrote the computer program.

TECHNICAL RELEASE NUMBER 50

DESIGN OF RECTANGULAR STRUCTURAL CHANNELS

<u>C</u>	ontents	Page
Introduction		
Incroduction		1
Types of Structural Channels		-
Type T1F Type T3F Type T3FV Type T1S		53333
Loading Conditions		3
Loading Condition No. 1 Loading Condition No. 2 Flotation Requirement Surcharge		3 5 6 6
Design Parameters		6
Primary Parameters Secondary Parameters		6
Design Criteria		8
Dualdudu Dada		_
Preliminary Designs		9
Type TlF Wall thicknesses		9
Flotation		10
Floor slab shear		11
Floor slab bearing		12
Type T3F		13
Base design		13
Pavement slab thickness		16
Type T3FV		17
Determination of joint. shea	ir	17
Design approach		19
Wall base flotation		19
Base design		19
Pavement slab thickness		19
Delta Q		20
Type TlS		21
Edge beam analyses		22
Design approach		25
Edge beam loading		25 28
Strut design		29
Edge beam design		30
Wall design	floor clab chear	32
Flotation requirements and Floor slab bearing		32

Detail Designs Floor Slab Analysis Deflection, shear, and moment Deflection, shear, and moment Deflection, shear and moment Deflection, shear, and moment Solution for Q and Mo Solution for finite beam	due to MW due to uniform loading, q	33 34 35 36 37 38
Type TlF Wall steel Floor slab steel		41 41 42
Type T3F Sliding stability of base Base slab steel Pavement slab steel		45 45 47 48
Type T3FV Shear joint requirements Base slab steel Pavement slab steel		49 49 50 51
Type TLS Wall steel Floor slab steel Edge beam steel Edge beam stirrups		53 54 54 54 55
Computer Designs Input Output Preliminary designs Detail designs Type T1F Type T3F Type T3FV Type T1S		57 57 57 58 58 58 58 58

	Figures	Page
Figure 1 Figure 3 Figure 5 Figure 5 Figure 6 Figure 7 Figure 7 Figure 8 Figure 9 Figure 10	Structural channel types. Load condition No. 1. Load condition No. 2. Flotation conditions. Thickness TB for LC#1 when HB > HW1. Flotation condition, LC#1 when HB > HW1. Bearing pressures, LC#1 when HB > HW1. Investigation of footing shears. Pavement slab flotation, type T3F. Joint shears in type T3FV channels.	4 5 5 6 9 11 14 15 16 17
Figure 19	Possible strut-to-wall connections. Edge beam loading and displacement. Type TLS frame displacements, typical loading.	18 19 21 22 22 23 25 26 27
Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 27 Figure 28 Figure 29 Figure 30	Edge beam section. Shear at top of wall; LC#l when HB > HWl, HTB < EB/12, and HWl < HT - EB/12. Shear and moment at bottom of wall, LC#l when HB > HWl. Finite length beam and loading. Uniform loading cases, infinite beams. Qo and Mo loadings, infinite beam. Corrections for indicated tensile reactions.	28 29 30 31 34 36 37 38 41 42
Figure 31 Figure 32 Figure 33 Figure 34 Figure 35 Figure 36 Figure 37 Figure 38 Figure 39 Figure 40	Determination of form of shear and moment computations. Type T3F steel layout and point locations. Sliding of type T3F retaining wall portion. Contact pressure distribution for LC#2. Type T3FV steel layout and point locations. Direct tension through shear joint for LC#2. Pavement design for LC#1, Q1 > 0. Type T1S steel layout and point locations.	43 44 56 74 90 51 54
	Edge beam loading for LC#1 when RX1 > 0. Layout of edge beam stirrups.	55 56

Figure 43 Computer output	. preliminary designs.	59
Figure 44 Computer output	The state of the s	60
Figure 45 Computer output		61
Figure 46 Computer output		62
Figure 47 Computer output		63
Figure 48 Computer output		64
Figure 49 Computer output		65
Figure 50 Computer output	, type TIS detail design.	66
Figure 51 Computer output	, type TIS detail design.	67

Tables

Table 1	Secondary parameters and default values.	
	Input values per design run.	57

THE R. L. LEWIS CO. LEWIS CO. LEWIS CO., LANSING, MICH. LANSING, MICH.

NOMENCLATURE

Not all nomenclature is listed. Hopefully, the meaning of any unlisted nomenclature may be ascertained from that shown.

= required reinforcing steel area ≡ required compressive steel area in strut ACOMP = equivalent edge beam steel area per foot width AE AG ≡ gross area of strut = required tensile steel area in TIS strut; required tensile ATENS steel through T3FV shear joint AV ≡ area of web steel, equals twice bar area ≡ distance from point A to beginning of load on infinite beam a ≡ clear width of channel B BPGR = (B + TB/12)≡ width of reinforced concrete member; distance from point A b to end of loading on infinite beam ≡ JOINTS; distance to extreme fiber ≡ direct compressive force in floor slab between walls CB ≡ direct compressive force in the footing projection CF ≡ coefficient of friction, soil to concrete CFSC ≡ coefficient of friction, soil to soil CFSS ≡ distance from point A to left end of load on infinite beam = effective depth of concrete section; diameter of reinforcing bar D = eccentricity of VNET; eccentricity of RC due to MD; modulus E of elasticity of concrete ≡ width of edge beam EB ≡ thickness of edge beam ET ≡ distance from point A to right end of load on infinite beam ≡ horizontal force acting on key wall FKEY FLOATR = safety factor against flotation ≡ footing projection FTG ≡ compressive stress in concrete f_c ≡ stress in reinforcing steel fs = GSAT - 62.4GBUOY GMOIST = moist unit weight of backfill = saturated unit weight of backfill GSAT ≡ height of backfill above top of floor slab HB = (HB - D/12)HBD

 $\begin{array}{ll} \text{HBD} &= (\text{HB} - \text{D}/12) \\ \text{HC} &= (\text{HT} - \text{EB}/12) \end{array}$

HDIFF = (HB - HWL) or (HB - HW2)

HIN = horizontal force of water in channel on retaining wall portion of channel

 $H_i \equiv components of horizontal load on the wall$

HKEY = additional lateral earth force caused by key wall

HR = sum of resisting horizontal forces on retaining wall portion

of channel = (HB + TS/12)

HT = height of wall above top of floor slab

HTB = (HT - HB)

HS

= (HT - HW1)HTW = (HWl + TS/12)HW ≡ submergence height above top of floor slab for LC#1 HWl ≡ submergence height above top of floor slab for LC#2 HW2 ≡ total horizontal loading on the wall HWALL = (HWl - D/12)HWD ≡ uplift head on pavement slab HWP **≡** moment of inertia I = (FTG + TB/24)J JOINTS = longitudinal span between transverse joints = ratio used in reinforced concrete design **■ MFOUND** K ≡ lateral earth pressure ratio for LC#1 KOl ≡ lateral earth pressure ratio for LC#2 KO2 ≡ passive lateral earth pressure ratio KPASS ≡ span of finite beam L LC#1 ≡ load condition number one LC#2 ≡ load condition number two ≡ bending moment at section under investigation M maximum acceptable footing projection MAXFTG ≡ simple moment due to PGR on B MB ≡ simple moment due to PGR on BPGR MBP = (MWALL + MFTG) MC maximum dead load moment in strut MD = equivalent edge beam moment per foot width ME ≡ modulus of the foundation MFOUND ≡ moment at junction of stem wall and footing projection due MFTG to loads on footing projection ≡ key wall design moment MKEY ≡ overturning moment about toe of retaining wall portion of M_{O} channel; ficticious moment at ends of finite beam on elastic foundation = (MBP - MB)MR ≡ resisting moment about toe of retaining wall portion of Mr channel ≡ equivalent moment, moment about axis at the tension steel Ms MSUP ≡ supplemental moment added to end of finite beam when 0 < ZPOS ≦ J ≡ simple moment due to water in channel; moment applied to MW floor slab at wall ≡ moment at junction of stem wall and footing projection due MWALL to loads on wall ≡ moment in wall at Z below top of wall MZ ≡ T/U, TIS frame constant m ≡ direct force at section under investigation N = assumed direct compressive force in pavement slab due to NSHT water in channel ≡ concentrated load applied to floor slab at wall NW ≡ direct force brought by the wall to the floor slab of TIS NWALL channel

```
= RC/RX
NX
       = RC/RY
NY
NZ
n
P
       ≡ bearing (contact) pressure at toe of retaining wall base
Pl
Pll
P2
```

≡ direct force in wall at Z below top of wall

≡ 1/U, TIS frame constant

≡ intergranular bearing pressure; foundation pressure

≡ Pl for LC#1

= bearing (contact) pressure at heel of retaining wall base

PALLOW = maximum allowable bearing (contact) pressure

PB ≡ uniform loading on floor slab between walls

PD ≡ bearing (contact) pressure at D from face of support

PF ≡ bearing (contact) pressure at face of support; uniform load-

ing on footing portions of floor slab

PFTG ≡ overburden pressure on footing projection

PGR ≡ gross pressure on TIS floor slab

≡ uniform loading causing shear in floor slab PS

PUP ≡ uplift pressure on bottom of slab Pt ≡ temperature and shrinkage steel ratio

≡ shear transmitted across the joint between pavement slab and

retaining wall base of T3FV channel

≡ Q for LC#1 QI

≡ ficticious shear at ends of finite beam on elastic foundation QSUP ≡ supplemental shear added to end of finite beam when

O < ZPOS ≦ J

≡ uniform loading on infinite beam q

R = ratio of downward forces on channel to the uplift forces

≡ maximum compressive force in strut maximum RC

RS ≡ edge beam reaction provided by strut

≡ RS for LC#1 RS1

≡ maximum tensile force in strut RT

≡ edge beam loading; correction factor for long column buckling RX

about X axis

≡ RX for LC#1 RXI

RXIMAX = maximum value of any RXI RXIMIN = minimum value of any RXI

= correction factor for long column buckling about Y axis RY

maximum allowable spacing of reinforcing steel S

≡ width of strut SB ≡ thickness of strut ST

maximum allowable spacing of steel at Z below top of wall SZ

≡ thickness of section under investigation; displacement at top T

of TIS frame with struts removed

≡ thickness of bottom of wall at floor slab TB

TKEY ≡ thickness of key wall

≡ thickness of pavement slab TP

≡ thickness of floor slab or base slab TS

≡ thickness of top of wall TT ≡ thickness of frame at y t

≡ displacement at top of TlS frame due to unit loads U

≡ flexural bond stress in concrete u

viii ≡ shear force at section under investigation V ≡ shear force at D from face of support VD ≡ buoyant weight of soil beneath retaining wall base in depth ZKEY VE ≡ shear force at face of support VF

≡ sum of vertical forces including uplift VNET

≡ shear carried by web steel VPR

≡ shear in wall at Z below top of wall VZ

≡ shear stress in concrete V

≡ width of a retaining wall portion of T3F or T3FV channel W

≡ overall width of channel WO

≡ bearing pressure at end of pavement slab WP

≡ WP for LC#1 WPl

≡ reaction at top of wall WRT

≡ toe length of T3F and T3FV walls; reference edge beam X coordinate

= (X - D/12)XD = (X + TB/12)XF

≡ width of pavement slab between retaining wall bases XP

≡ distance from point A to element of load on infinite beam X ≡ displacement; distance from center of retaining wall base Y to point under investigation

= (W/2 - XD)YD = (W/2 - XF)YF

≡ displacement at load point in alternate method of edge beam Yo analysis

≡ displacement at Z from end in actual edge beam YX

≡ displacement at Z from end in alternate method of edge beam YZ anaylsis

≡ distance from mid-depth of edge beam to point under considera-У tion in frame

≡ distance from VNET to toe of retaining wall portion of channel; distance from edge of finite beam to point A

≡ depth of key wall below retaining wall base ZKEY

≡ distance from end of finite beam to point of zero reactive ZPOS pressure

 $\equiv (\frac{n}{4EI})^{1/4}; (\frac{5184K}{E(TS)^3})^{1/4}$ β

≡ a length parameter in theory of beams on elastic foundations BL

= additional shear required to produce equal vertical displace-AQ ments each side of joint

≡ incremental length along axis of frame Δs

δ ≡ vertical displacement

δъ ≡ vertical displacement of retaining wall base at joint between pavement slab and retaining wall base

≡ vertical displacement of pavement slab at joint between paveδp ment slab and retaining wall base

 $\zeta(x)$ ≡ functional relation in theory of beams on elastic foundations $\theta(\mathbf{x})$ ≡ functional relation in theory of beams on elastic foundations $\phi(\mathbf{x})$ = functional relation in theory of beams on elastic foundations $\psi(\mathbf{x})$ ≡ functional relation in theory of beams on elastic foundations Σο

≡ required perimeter of reinforcing steel

≡ coefficient relating Q to bearing pressure at end of pavement slab

TECHNICAL RELEASE NUMBER 50

DESIGN OF RECTANGULAR STRUCTURAL CHANNELS

Introduction

This work is concerned with the structural design of reinforced concrete rectangular channels. It assumes these structural channel designs will be obtained from computers although the basic approach is independent of computer usage. The material presented herein applies to components such as rectangular lined channels through urban areas, chute spillway channels, rectangular flumes, and elements of stilling basins.

A computer program was written in FORTRAN for IRM 360 equipment to perform this design task. The program operates in two modes. It will execute rapid preliminary designs to aid the designer in selecting the type of structural channel he desires to use in final design. The program will also execute the detail design of the specified channel. Concrete thicknesses and distances are determined and required steel areas and spacings are evaluated. Actual steel sizes and layouts are not determined, these are the prerogative of the designer.

This work documents the criteria and procedure used in the computer program, explains the input data required to obtain a design, and illustrates computer output for preliminary and detail designs. At the present time designs may be obtained by requests to the

Head, Design Unit Engineering Division Soil Conservation Service Federal Center Building Hyattsville, Maryland 20782.

The input information discussed under the section, "Computer Designs, Input" must be provided for each design run desired.

Types of Structural Channels

Four structural channel types are treated herein. All are assumed symmetrical about the channel centerline in both construction and loading. Each channel is designed for the two loading conditions described in the next section and each must satisfy flotation (uplift) requirements. See Figure 1 for definition sketches. Any one of the four types may be most advantageous for a particular set of design conditions. Because of the large number of parameters involved, it is not always readily apparent which type will be best in a given situation.

Type TIF

In this type, the walls and floor slab constitute a reinforced concrete U-shaped rigid frame. The cantilever walls are integral with the floor slab.

Type T3F

In this type, the walls are designed as reinforced concrete cantilever retaining walls. The most advantageous toe length, X, is determined in the design. The pavement slab between the retaining wall bases, is independent of the bases except for any thrust imposed on it by the retaining wall bases.

Type T3FV

This is similar to type T3F except that the joints between the pavement slab and the retaining wall bases are designed to transmit shear forces and the slab is monolithic between these two shear joints. Thus in type T3FV the pavement slab and retaining wall base deflect equally at the joints.

Type T1S

This is similar to type TlF except that two reinforced concrete struts are provided in each longitudinal span between transverse joints. The struts are located at the first interior quarter points of the longitudinal span. Edge beams are provided along the tops of the channel walls. Thus the walls are not simple cantilevers from the base as with the other types, instead they are supported by the edge beam and strut system and by the floor slab.

Loading Conditions

Two loading conditions are considered in the design of structural channels. Parameter values should be selected so that these loading conditions reflect extremes of probable conditions.

Load Condition No. 1

In this loading the channel is empty. The backfill is submerged to a height, HWI, above the top of the floor slab. The backfill is naturally drained, i.e., moist, above HWI. Load condition No. 1 is meant to

Revised 7/77

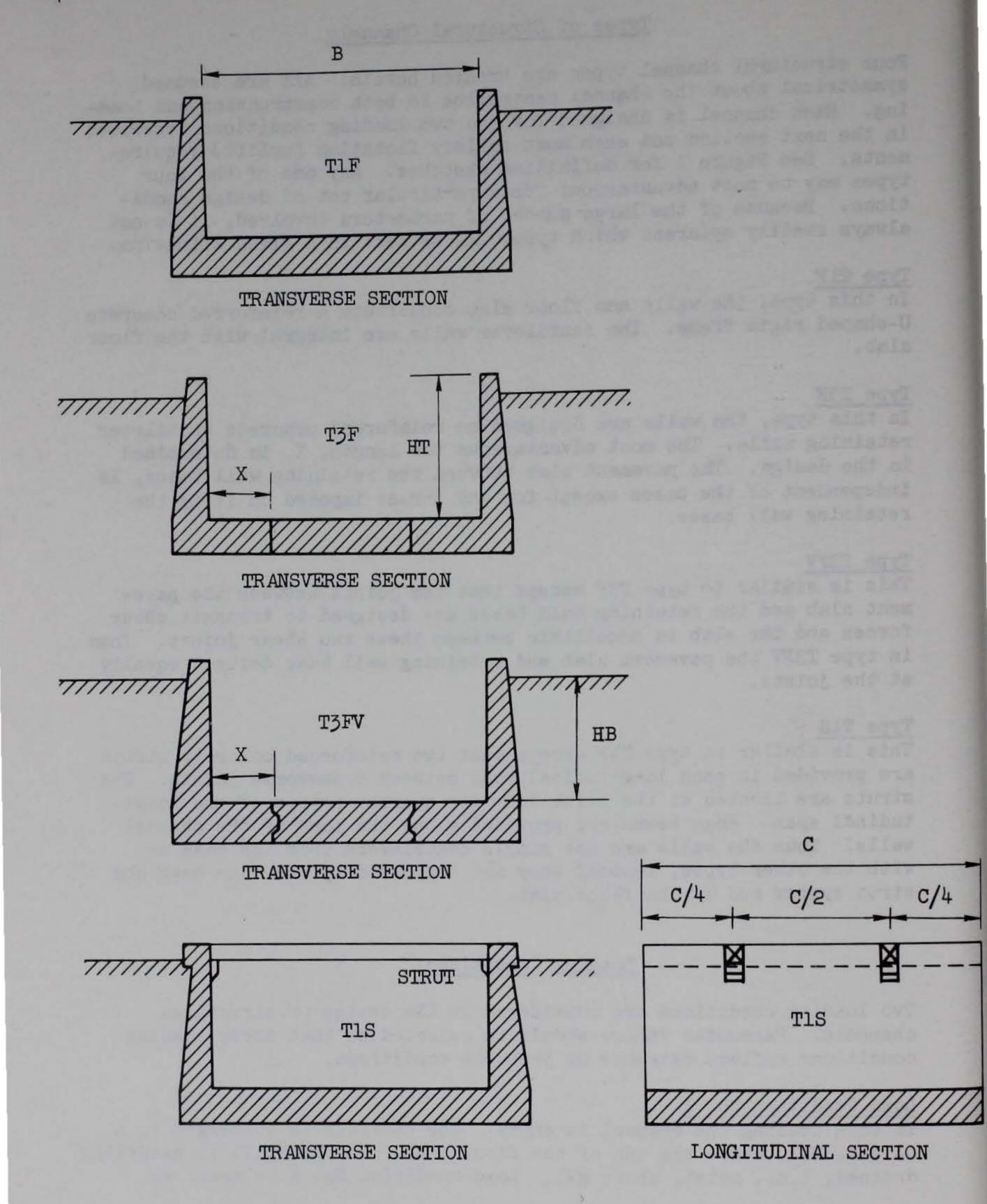


Figure 1. Structural channel types.

represent conditions following a rapid lowering of the water surface in the channel, but before the water table in the backfill has lowered significantly from a high level. Thus this loading should maximize: lateral soil load, lateral water load, and uplift. The lateral pressure ratio, KOl, should be taken as high as can reasonably be expected.

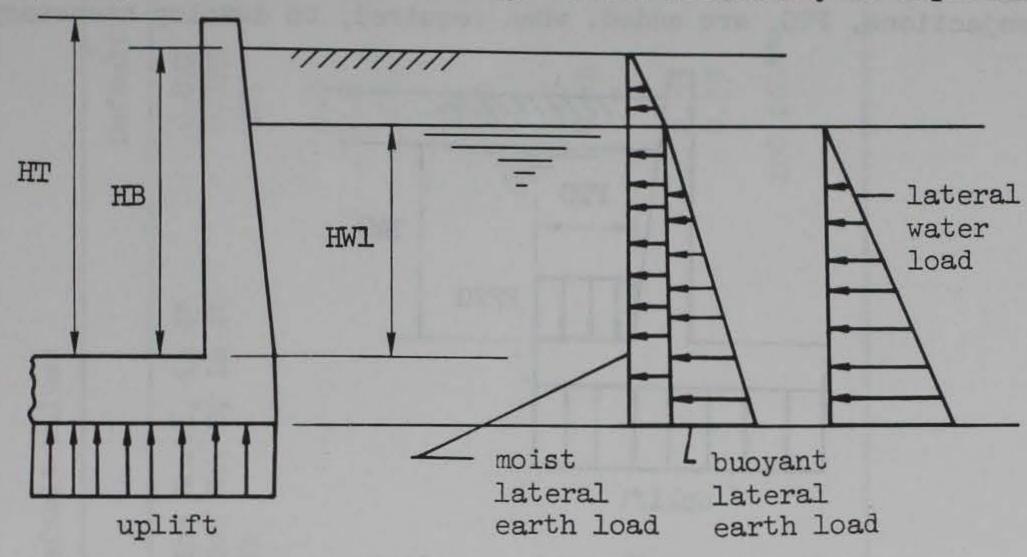


Figure 2. Load condition No. 1.

Load Condition No. 2

In this loading the channel is full of water to the top of the wall and the backfill is submerged to a height, HW2, above the top of the floor slab. Load condition No. 2 is meant to represent conditions following a rapid raising of the water surface in the channel, but before the water table in the backfill has raised significantly from a low level. Thus this loading should minimize lateral soil load, lateral external water load, and uplift. The lateral pressure ratio, KO2, should be taken as low as can reasonably be expected.

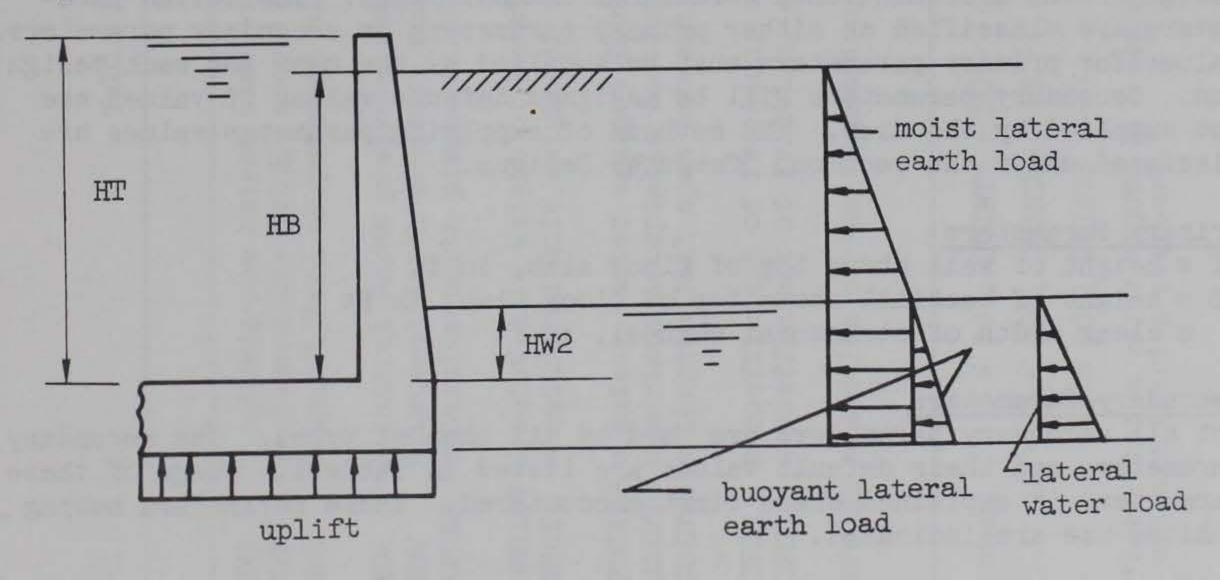


Figure 3. Load condition No. 2.

Flotation Requirement
The total weight of the structural channel plus all downward forces acting on it must exceed the uplift forces by a suitable safety factor under all conditions of loading. The most critical case is load condition No. 1. The flotation safety factor, FLOATR, is selected by the user. Footing projections, FTG, are added, when required, to develop necessary

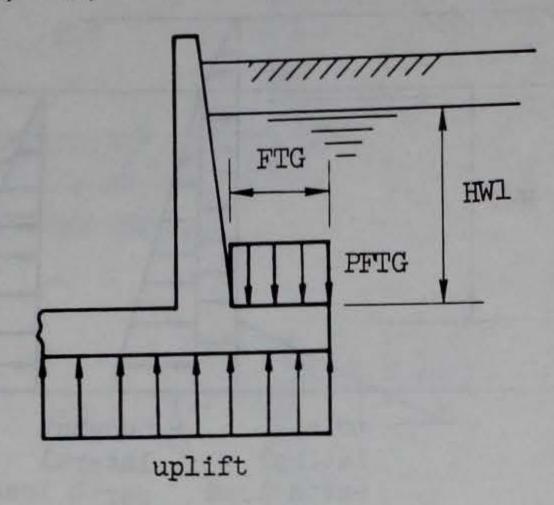


Figure 4. Flotation conditions.

additional downward forces.

Surcharge

Because of the wide variety of possible surcharge loads, surcharge is not included herein as a specific loading. The effects of surcharge can be duplicated to some extent by arbitrarily increasing lateral pressure ratios, unit soil weights, or backfill heights. Increasing unit soil weights or backfill heights should be done cautiously when the surcharge is applied only intermittently.

Design Parameters

There are some seventeen independent design parameters involved in the design of the aforementioned structural channel types. The design parameters are classified as either primary parameters or secondary parameters. Values for primary parameters must be supplied by the user for each design run. Secondary parameters will be assigned default values if values are not supplied by the user. The methods of supplying parameter values are discussed under the section, "Computer Designs."

Primary Parameters

HT = height of wall above top of floor slab, in ft

HB = height of backfill above top of floor slab, in ft

B = clear width of structural channel, in ft

Secondary Parameters

Not all secondary parameters are used by all channel types. The secondary parameters and their default values are listed in Table 1. Usage of these parameters is explained where first encountered. Those parameters having limited use are indicated.

Revised 7/77

Table 1. Secondary parameters and default values

	Parameter	Default	Usage
HW1 HW2 HWP	≡ submergence height above top of floor slab, load condition No. 1, in ft ≡ submergence height above top of floor slab, load condition No. 2, in ft ≡ uplift head on pavement slab, load condition No. 1, in ft	0.8HB 0.1HB HWl	T3F,T3FV
KO1 KO2 KPASS	<pre>≡ lateral earth pressure ratio, load condition No. 1 ≡ lateral earth pressure ratio, load condition No. 2 ≡ passive earth pressure ratio</pre>	0.8 0.2 1/KOl	T3F
GMOIST GSAT	≡ moist unit weight of backfill, in pcf ≡ saturated unit weight of backfill, in pcf	120 140	
MAXFTG	<pre></pre>	1.5 0.5B *	TlS
CFSC CFSS	<pre>≡ coefficient of friction, soil to concrete ≡ coefficient of friction, soil to soil</pre>	0.35	T3F T3F
MFOUNI) ≡ modulus of the foundation, in pcf	100,000**	TIF,TIS T3FV

^{*} when $B \le 10$: JOINTS = 20

^{10 &}lt; B < 20 : JOINTS = 2B

 $B \ge 20 : JOINTS = 40$

^{**}note that a value MFOUND = 1 essentially produces a design corresponding to "rigid body mechanics," i.e. uniform bearing pressure.

Design Criteria

Materials Class 4000 concrete and intermediate grade steel are assumed.

Working Stress Design
Design of sections is in accordance with working stress methods. The allowable stresses in psi are

	-				W-12	1600
Extreme fiber	stress i	in	flexure	1c		1000
Cl 17/hD*				v	=	70

Flexural Bond
$$u = 3.4\sqrt{f_c'/D}$$
 tension top bars
$$u = 4.8\sqrt{f_c'/D}$$
 other tension bars

Steel in tension in compression, axially loaded columns
$$f_s = 20,000$$
 $f_s = 16,000$

Minimum Slab Thicknesses Walls Bottom slabs 10 inches

Temperature and Shrinkage Steel The minimum steel ratios are for unexposed faces for exposed faces pt = 0.001 pt = 0.002

Slabs more than 32 inches thick are taken as 32 inches.

Web Reinforcement

The necessity of providing some type of stirrup or tie in the slabs be-

- (1) limiting the shear stress, as a measure of diagonal tension, so that web steel is not required, and
- (2) providing sufficient effective depth of sections so that compression steel is not required for bending.

Cover for Reinforcement

Steel cover is everywhere 2 inches except for outside steel in bottom slabs where cover is 3 inches.

Steel Required by Combined Bending Moment and Direct Force
Required area determined as explained on pages 31 - 34 of TR-42, "Single
Cell Rectangular Conduits - Criteria and Procedures for Structural Design."

Spacing Required by Flexural Bond
Spacing determined as explained on page 47 of TR-42.

Spacing of Reinforcement

The maximum permissible spacing of any reinforcement is 18 inches.

*Shear sometimes critical at D from face, sometimes at face, see page 17 of TR-42.

Preliminary Designs

Trial concrete thicknesses are determined for various critical dimensions and preliminary concrete volumes are computed during the preliminary design phase of structural channel design. These quantities may be increased during detail design if computations for required steel areas and spacings indicate thicknesses are inadequate. Assumptions, criteria, and procedures for the several channel types are discussed below. Topics applicable to more than one channel type are presented once when first encountered.

Type TlF

Preliminary design of type TIF channels proceeds in an orderly manner. First, required wall thickness at the bottom of the wall, TB, is determined. Then, the channel is checked for flotation and footing projections, FTG, are provided if required. Finally, the floor slab thickness is increased for shear or bearing if necessary.

<u>Wall thicknesses</u>. The wall thickness at the top of the wall, TT, is set at 10 inches. The thickness at the bottom of the wall, TB, is selected as the largest thickness required by: shear for load condition No. 1 (LC#1), moment and direct force for LC#1, shear for LC#2, or moment and direct force for LC#2. Illustrative computatations for a possible case of LC#1 follow.

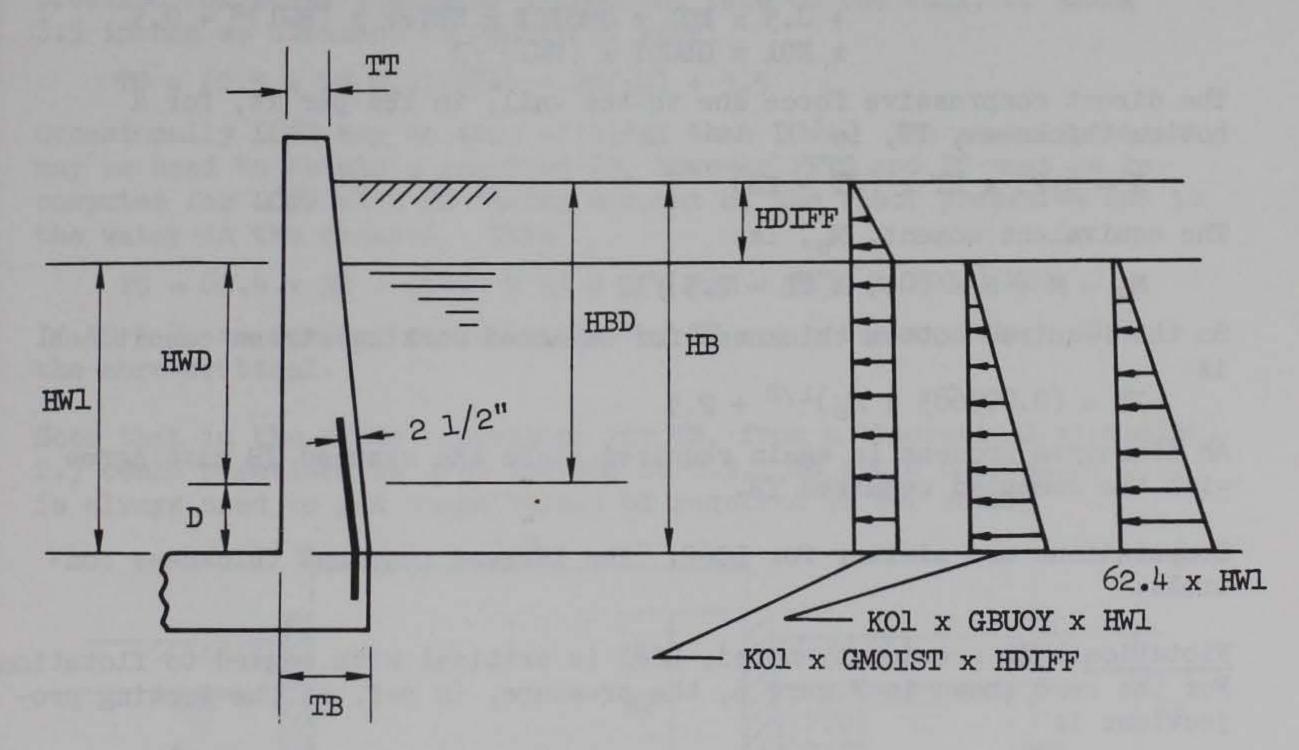


Figure 5. Thickness TB for LC#1 when HB > HW1.

Revised 7/77

Let HDIFF = HB - HW1

For any effective depth, D, in inches, let

HWD = HWl - D/12

HBD = HB - D/12

Then the shear, in lbs per ft, at D from face for case shown is:

$$V = 31.2 \times (HWD)^2 + KO1 \times GMOIST \times HDIFF \times (0.5 \times HDIFF + HWD) + 0.5 \times KO1 \times GBUOY \times (HWD)^2$$

where GBUOY = GSAT - 62.4 is the buoyant weight of the backfill, in pcf

So
$$D = \frac{V}{Vb} = \frac{V}{70 \times 12} = \frac{V}{840}$$

An iterative process is required since the assumed D must agree with the computed required D. When the correct value of D is obtained, the thickness, T, at D from the face is

$$T = D + 2.5$$

and the thickness, TB, as required by shear is

$$TB = 10 + (T - 10) \times HT/(HT - D/12).$$

The bending moment at the bottom of the wall is, in ft lbs per ft

$$M = 10.4 \times (HWl)^3 + 0.5 \times KOl \times GMOIST \times (HDIFF)^2 \times (HDIFF/3 + HWl) + 0.5 \times KOl \times GMOIST \times HDIFF \times (HWl)^2 + 0.5 \times KOl \times GBUOY \times (HWl)^3/3$$

The direct compressive force due to the wall, in 1bs per ft, for a bottom thickness, TB, is

$$N = 6.25 \times HT \times (TT + TB)$$

The equivalent moment, Ms, is

$$M_s = M + N \times (0.5 \times TB - 2.5)/12$$

So the required bottom thickness for balanced working stress conditions is

$$TB = (0.003683 \times M_s)^{1/2} + 2.5$$

An iterative process is again required since the assumed TB must agree with the computed required TB.

Computations are similar for LC#2. The largest required thickness controls.

Flotation. As previously noted, LC#1 is critical with regard to flotation. For the case shown in Figure 6, the pressure, in psf, on the footing projections is

PFTG = GMOIST x HDIFF + GSAT x HW1

the uplift pressure, in psf, for a floor slab thickness, TS, in inches, is

$$PUP = 62.4 \times (HW1 + TS/12)$$

the overall width of the channel, in ft, is

$$WO = B + 2(FTG + TB/12)$$

Hence the ratio, R, of the downward forces on the channel to the up-

$$R = \frac{2(N + PFTG \times FTG) + 12.5 \times TS \times WO}{PUP \times WO}$$

where $N = 6.25 \times HT \times (TT + TB)$.

This ratio must not be less than the flotation safety factor, FLOATR.

The initial value of TS is TS = TB + 1 and the initial value of FTG is zero. If $R \le FLOATR$, then FTG is set at 1.0, if again $R \le FLOATR$, then FTG is incremented by 0.2 ft and another attempt is made. This process is continued, if necessary, until FTG = MAXFTG, then TS is incremented by 1.0 inch until TS = TB + 10. If the flotation criteria is still unsatisfied, the design is abandoned, and a cancellation message is given.

Floor slab shear. Shear will sometimes govern the required thickness of the floor slab. For load condition No. 1 the compressive wall forces and the pressure on the footing projections are the only loads producing shear in the floor slab. The uniform loading, in psf, causing shear is

$$PS = 2(N + PFTG \times FTG)/WO$$

The required floor slab thickness due to shear is obtained from an expression for shear stress at D from the face of the wall, or using 3.5 inches as distance to center of steel

$$TS = (0.5 \times PS \times B)/(840 + PS/12) + 3.5$$

Occasionally LC#2 may be more critical than LC#1. The same expression may be used to obtain a required TS, however PFTG and PS must be recomputed for LC#2 with PS taking account of the floor pressures due to the water in the channel. Thus

$$PS = 62.4 \times HT - (62.4 \times HT \times B + 2(N + PFTG \times FTG))/WO.$$

If PS ≤ 0, no further computations for TS are necessary since LC#l is the more critical.

Note that in the above expression for TS, from a theoretical viewpoint, 2.5 could sometimes be used instead of 3.5. To avoid confusion, 3.5 is always used to get these values of required TS for shear.

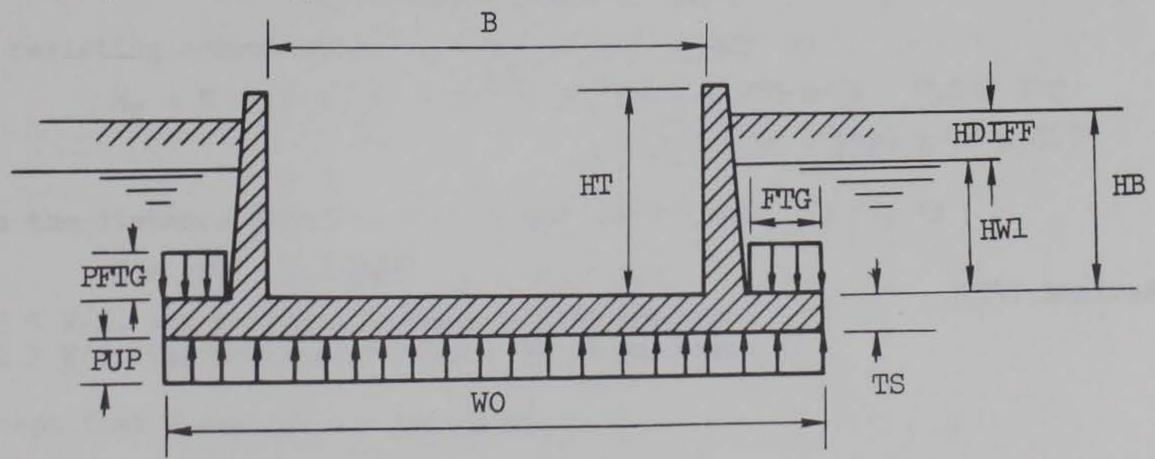


Figure 6. Flotation condition, LC#1 when HB > HW1.

Floor slab bearing. As explained at the end of the section, "Detail Designs, Floor Slab Analysis," it is sometimes necessary to increase the floor slab thickness to eliminate negative displacements under the center of the floor slab. The theory involved is somewhat complex, its presentation is delayed until detail designs are discussed.

Revised 7/77

Type T3F

The preliminary design of type T3F channels includes the design of many trial configurations. The toe length, X, varies from B/2 to 0.* The design having the least concrete volume is taken as best. Determination of TT and TB is the same as type TlF. For a particular value of X, the flotation requirements for the retaining wall portion is the same as type TlF, that is, if B is temporarily taken as B = 2X, the same relations apply. This provides an initial value for FTG. In type T3F designs, FTG is the heel length of the retaining wall base.

Base design. The maximum allowable bearing pressure, that is, contact or intergranular pressure, is taken as 2000 psf in excess of the intergranular pressure that would exist at the elevation of the bottom of the base slab if the structural channel were not present. The line of action of the reaction (sum of all vertical forces including uplift) must lie within the middle third of the base. Each design for a particular X must satisfy the above criteria. If this requirement is not satisfied with the initial value of FTG, the footing projection is incremented and another trial is made. This is repeated, if necessary, up to FTG = MAXFTG.

A possible case of LC#1 is used for illustration. Let, in ft

HDIFF = HB - HW1

HS = HB + TS/12

HW = HWl + TS/12

W = X + TB/12 + FTG

Then, in psf

PFTG = GMOIST x HDIFF + GSAT x HWl

PALLOW = 2000 + GMOIST x HDIFF + GBUOY x HW

PUP = $62.4 \times HW$

The sum of the vertical forces in lbs per ft, is

 $VNET = N + PFTG \times FTG + (12.5 \times TS - PUP) \times W$

The overturning moment, in ft lbs per ft, about 0 at the bottom of the toe is $M_0 = 10.4 (HW)^3 + 0.5 \times KOl \times GMOIST \times (HDIFF)^2 \times (HDIFF/3 + HW)$

+ 0.5 x KOl x GMOIST x HDIFF x $(HW)^2$

+ 0.5 x KOl x GBUOY x $(HW)^3/3$.

The resisting moment about the same moment center is

 $M_r = N \times (X + (TT + TB)/48) + PFTG \times FTG \times (W - 0.5 \times FTG) + (12.5 \times TS - PUP) \times W^2 \times 0.5$

Thus the distance from the end of the toe to VNET, in ft, is

$$Z = (M_r - M_o)/VNET$$

If Z < W/2, the bearing pressure, Pl is maximum. If Z > W/2, the bearing pressure, P2 is maximum.

*except that X may not exceed 40 ft

Now, in ft, the eccentricity of VNET, is

$$E = W/2 - Z$$

If |E| > W/6, the shape of the pressure diagram is unacceptable. If

$$\frac{\text{VNET}}{\text{W}}(1 + 6 \times |\text{E}|/\text{W}) > \text{PALLOW}$$

the maximum bearing pressure is too high.

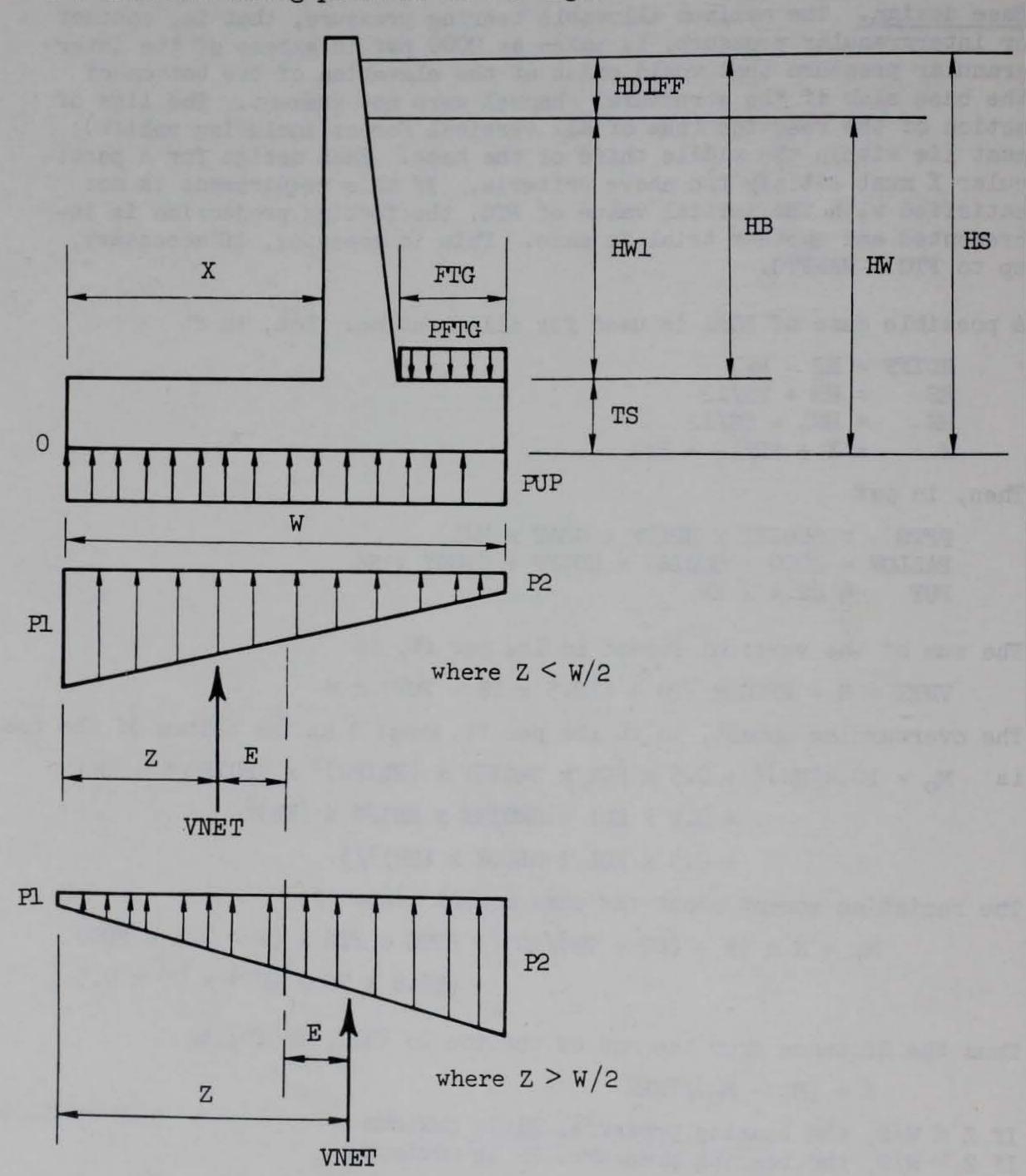


Figure 7. Bearing pressures, LC#1 when HB > HW1.

When bearing and pressure distribution requirements are satisfied, base thicknesses required for shear are determined. For IC#1, shear is investigated in the toe at distance D from the face of the support and in the heel at the face of the support. Several situations are possible in determining shear in the toe at D from the wall. Figure 8 illustrates one possibility in which X > D and Z < W/2.

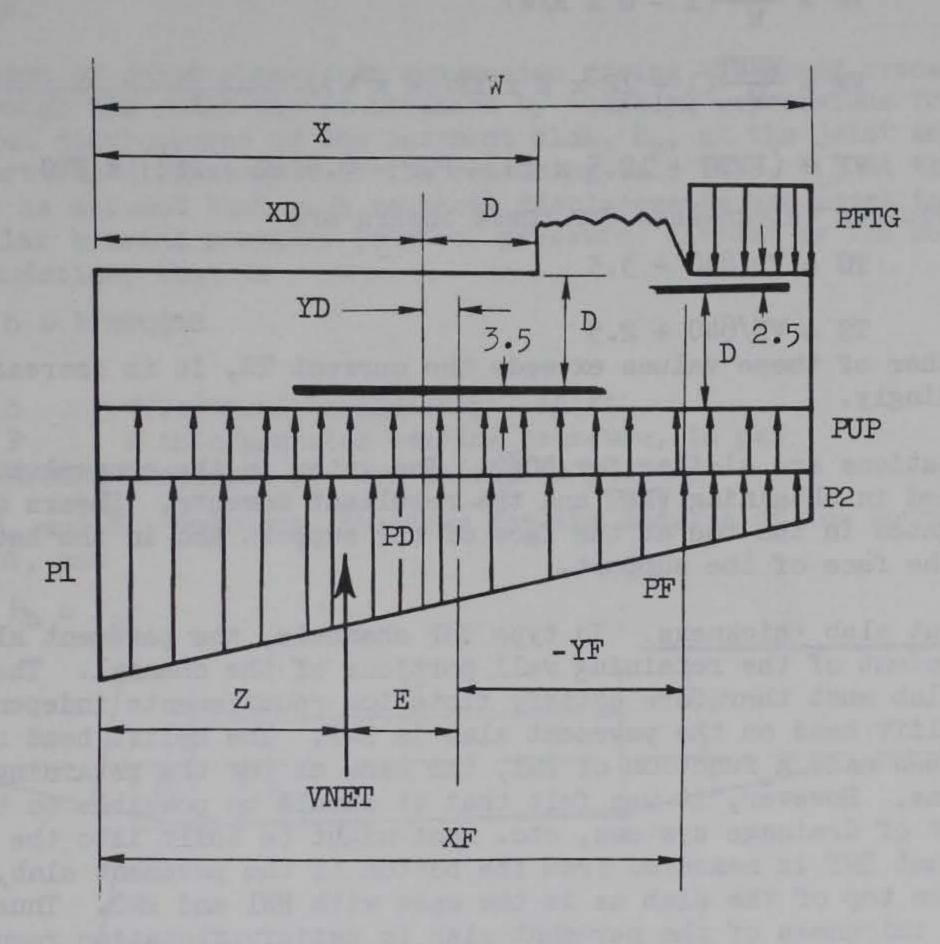


Figure 8. Investigation of footing shears.

Now
$$D = TS - 3.5$$

$$XD = X - D/12$$

$$YD = W/2 - XD$$
Then, in psf
$$P1 = \frac{VNET}{W}(1 + 6 \times E/W)$$

$$PD = \frac{VNET}{W}(1 + 12 \times E \times YD/(W \times W))$$
So the shear, in 1bs per ft, at D from the face is
$$VD = (0.5(P1 + PD) + PUP - 12.5 \times TS) \times XD$$

To get the shear in the heel at the face of the support, let

$$XF = X + TB/12$$

then

$$YF = W/2 - XF$$

then

$$P2 = \frac{VNET}{W}(1 - 6 \times E/W)$$

and

$$PF = \frac{VNET}{W}(1 + 12 \times E \times YF/(W \times W))$$

So

$$VF = (PFTG + 12.5 \times TS - PUP - 0.5(P2 + PF)) \times FTG$$

The required thicknesses for these shears are

$$TS = VD/840 + 3.5$$

and

$$TS = VF/840 + 2.5$$

If either of these values exceeds the current TS, it is increased accordingly.

Computations are similar for LC#2. The water in the channel must be included in obtaining VNET and the resultant moments. Shears are investigated in the toe at the face of the support and in the heel at D from the face of the support.

Pavement slab thickness. In type T3F channels, the pavement slab is independent of the retaining wall portions of the channel. The pavement slab must therefore satisfy flotation requirements independently. The uplift head on the pavement slab is HWP. The uplift head could have been made a function of HWI, the same as for the retaining wall portions. However, it was felt that it should be possible to take account of drainage systems, etc. that might be built into the pavement. Note that HWP is measured from the bottom of the pavement slab, not from the top of the slab as is the case with HWI and HW2. Thus the required thickness of the pavement slab to satisfy flotation requirements is, in inches,

$$TP = 62.4 \times HWP \times FLOATR/12.5$$

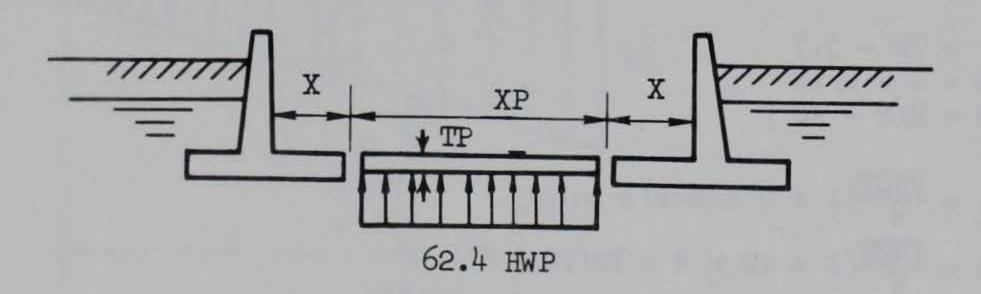


Figure 9. Pavement slab flotation, type T3F.

Type T3FV

The preliminary design of each type T3FV channel for a particular toe length, X, is similar to that for type T3F channels with one important exception. The joint between the pavement slab and the retaining wall base is designed to transmit shear from one structural component to the other. Thus the pavement slab and the retaining wall base are forced to deflect equally at the joint. Note that the joint is structurally a hinge, that is, it will transmit shears and direct forces, but not moments.

Determination of joint shear. An expression giving the shear transmitted through the joint may be obtained by equating expressions for the vertical displacement of the pavement slab, δ_p , at the joint and for the vertical displacement of the retaining wall base, δ_b , at the joint. It is assumed that such vertical displacements are equal to the intergranular bearing pressure (contact pressure) divided by the modulus of the foundation, that is

 $\delta = P/MFOUND$

where

δ = vertical displacement, in ft

P = intergranular bearing pressure, in psf

MFOUND = modulus of foundation, in pcf

Equating δ_p and $\delta_b,$ note that the term for the modulus of the foundation cancels out, and

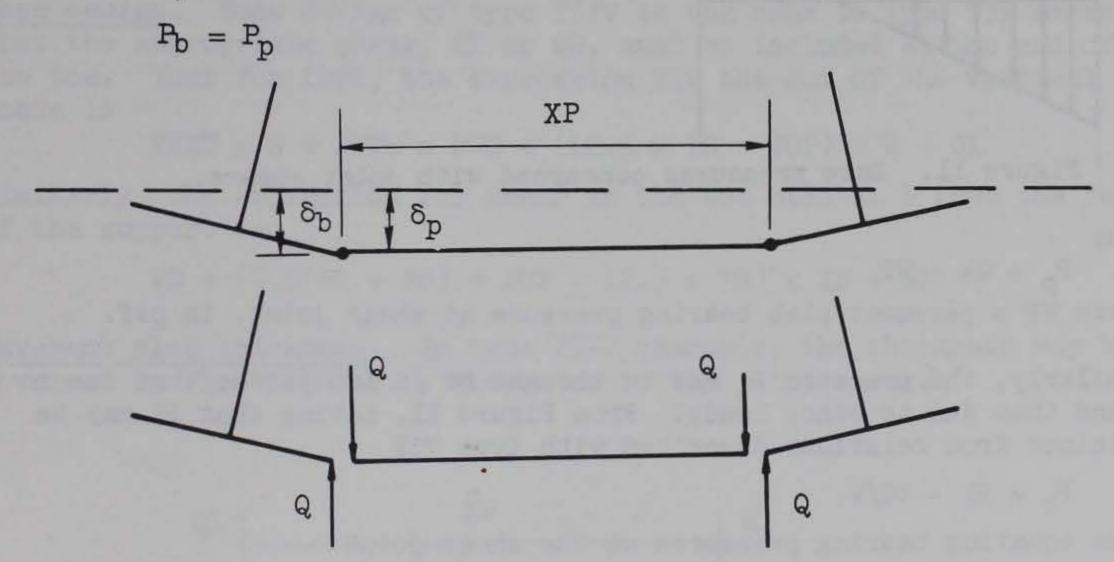
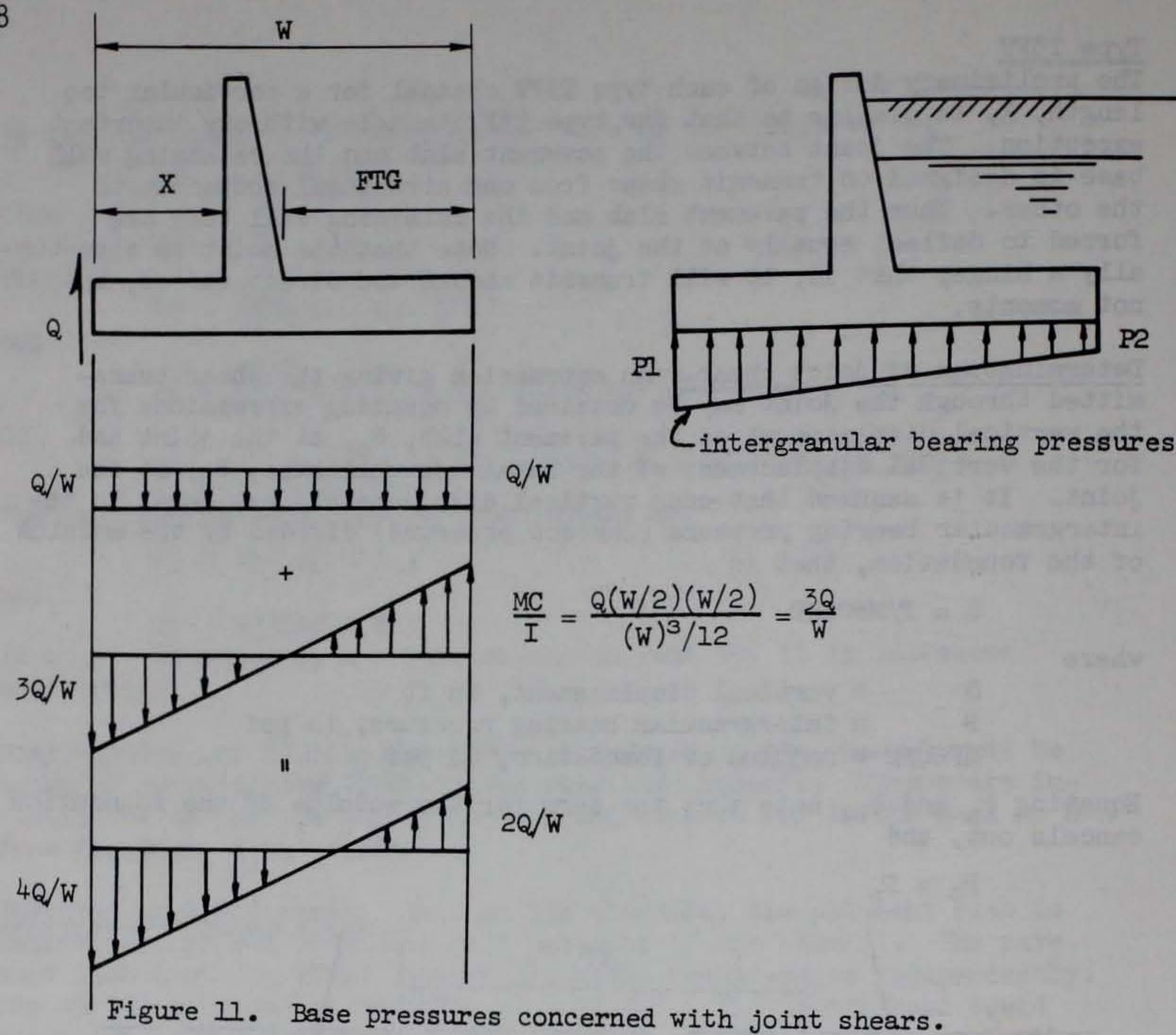


Figure 10. Joint shears in Type T3FV channels.


The pressure P_p , in psf, may be considered as that due to Q plus that due to any other loads on the pavement slab. If the pavement slab is treated as a "rigid body," the pressure due to Q is 2Q/XP. This leads to computed values of Q that are larger than actual values. If the pavement slab is treated as an "elastic body," the pressure due to Q is Q\(\lambda\), where \(\lambda\) is given below. See "Floor Slab Analysis," pages 33 - 38 for development of similar theory and definition of terms.

$$\lambda = 2\beta(\frac{\cosh \beta \ell + \cos \beta \ell}{\sinh \beta \ell + \sin \beta \ell}), \text{ in per ft}$$

 $\beta = (5184 \times K/(E \times (TP)^3)^{1/4}, \text{ in per ft}$

 $\beta l = \beta x XP$

Thus

$$P_D = Q\lambda + WP$$

where WP = pavement slab bearing pressure at shear joint, in psf.

Similarly, the pressure P_b may be thought of in two parts, that due to Q and that due to other loads. From Figure 11, noting that Pl may be obtained from relations described with type T3F

$$P_b = P1 - 4Q/W$$

Thus equating bearing pressures at the shear joint

$$Q\lambda + WP = Pl - 4Q/W$$
 or, in lbs per ft

$$Q = (P1 - WP)(\frac{1}{\lambda + 4/W})$$

This expression for Q may be thought of in two rather different ways. First, as presented, in which Pl and WP are independent of Q, so that the value of Q obtained from the expression is the true, total value of Q transmitted across the joint. Alternately, if Pl and WP are computed for loads which include an assumed value of Q, the value of Q obtained from the expression is the additional, or ΔQ required to produce equal vertical displacements. Both concepts are used in the design of type T3FV channels.

Revised 7/77

Design approach. Determination of TT and TB is the same as type TlF. For each value of X, the design cycles, starting with initial values of Ql and Q2 (for IC#l and IC#2) set equal to zero and continuing until the design stabilizes at constant values of FTG, TS, TP, Ql, and Q2. That is, for Ql = Q2 = 0, the design obtains the required FTG, TS, and TP. Then new Ql and Q2 are computed using the just determined dimensions, next new values of FTG, TS, and TP are obtained. Then new Ql and Q2 values are computed, etc. The design usually quickly converges to correct values.

Wall base flotation. The wall base flotation is treated separately from pavement slab flotation, but each must account for Ql. Refering to Figure 6 and the flotation expressions under type TlF and letting B be taken temporarily as B = 2X, if Ql acts upward on the wall base then

$$R = \frac{2 \times (N + PFTG \times FTG) + 12.5 \times TS \times WO}{PUP \times WO + 2 \times Q1}$$

if Ql is negative, that is, acts downward on the wall base then

$$R = \frac{2 \times (N + PFTG \times FTG) + 12.5 \times TS \times WO - 2 \times QL}{PUP \times WO}$$

R can not be less than FLOATR. Thus a minimum value of FTG corresponding to the current value of Ql may be obtained.

Base design. Base design of type T3FV is the same as type T3F except that the appropriate shear, Ql or Q2, must be included at the end of the toe. Thus for LC#1, the expression for the sum of the vertical loads is

$$VNET = N + PFTG \times FTG + (12.5 \times TS - PUP) \times W - Q1$$

Similarly, the expression for shear in the toe slab at D from the face of the support is

$$VD = (0.5(P1 + PD) + PUP - 12.5 \times TS) \times XD + Q1$$

Pavement slab thickness. In type T3FV channels, the thickness may be governed by flotation or by shear due to the joint shear.

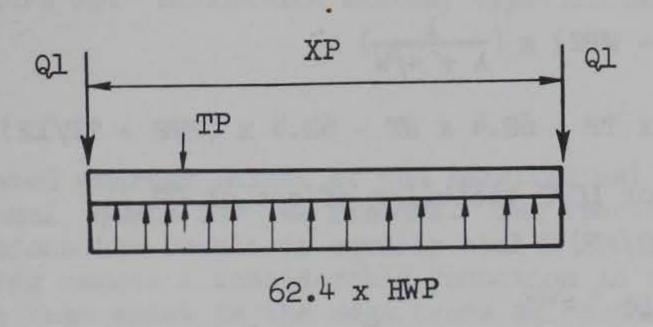


Figure 12. Pavement slab flotation, type T3FV.

If Ql acts downward on the pavement slab, then required thickness for flotation is

$$TP = \frac{FLOATR \times 62.4 \times HWP \times XP - 2 \times Ql}{12.5 \times XP}$$

If, however, Ql is negative, that is, acts upward on the pavement slab, then

$$TP = \frac{FLOATR \times (62.4 \times HWP \times XP - 2 \times Q1)}{12.5 \times XP}$$

Shear within the pavement slab is only caused by the transmitted joint shear, either LC#1 or LC#2 may control. LC#1 is used for illustration. Let

then, assuming a uniform loading due to Ql of 2V/XP, the effective depth required is

$$DP = V/(840 + 2V/(12 \times XP))$$

If Q1 > 0, then

$$TP = DP + 2.5$$

If Q1 < 0, then

$$TP = DP + 3.5$$

The largest of the computed required thicknesses governs.

Delta Q. The computations indicated above, result in a new set of values for FTG, TS, and TP corresponding to a particular set of values of Ql and Q2. The delta Q values are obtained as previously explained. For LC#1

$$\triangle Ql = (Pll - WPl) \times (\frac{1}{\lambda + 4/W})$$

where

WP1 =
$$12.5 \times TP - 62.4 \times HWP + Ql_{old}\lambda$$

Pll is Pl for LC#1 including effect of Qlold

SO

$$Ql_{new} = Ql_{old} + \Delta Ql$$

Similarly

$$\Delta Q2 = (P12 - WP2) \times (\frac{1}{\lambda + 4/W})$$

where

$$WP2 = 12.5 \times TP + 62.4 \times HT - 62.4 \times (HW2 + TP/12) + Q2_{old}\lambda$$

Pl2 is Pl for LC#2 including effect of Q2old

then if $(WP2 + 2 \times \Delta Q2/XP) > 0$

$$Q2_{\text{new}} = Q2_{\text{old}} + \Delta Q2$$

however, if $(WP2 + 2 \times \Delta Q2/XP) < 0$, then Q2 is limited to

$$Q2 = -(12.5 \times TP + 62.4 \times HT - 62.4 \times (HW2 + TP/12)) \times XP/2$$

These new Ql and Q2 values are used in the next design cycle.

Type TlS

The design of type TIS channels is considerably more complex than any of the previous channel types presented. One of the problems involves the determination of the magnitude and distribution of the support provided the walls by the edge beams. Strut locations were selected at

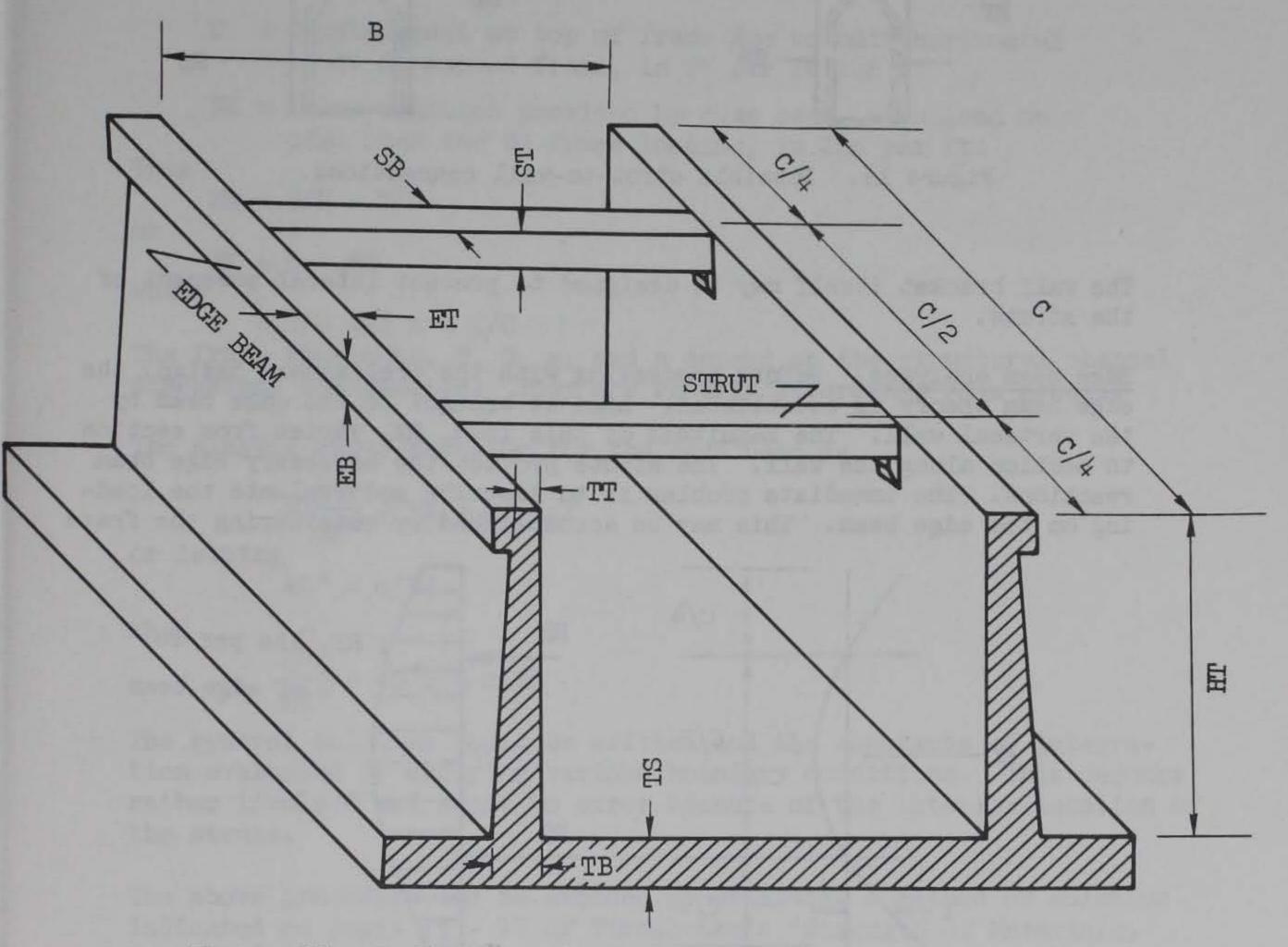


Figure 13. Definition sketch, type TIS channel.

the indicated quarter points of the longitudinal span between transverse channel joints for two reasons. The spacing is architecturally pleasing since the result is equally spaced struts in a long channel. Such spacing causes a considerable reduction in the maximum moments and shears that exist in the edge beams as compared to those that would exist if the struts were placed at the ends of the longitudinal spans. The struts require positive connections to the walls to prevent accidental dislodgement from the supporting wall brackets and because often the strut force will be direct tension rather than direct compression.

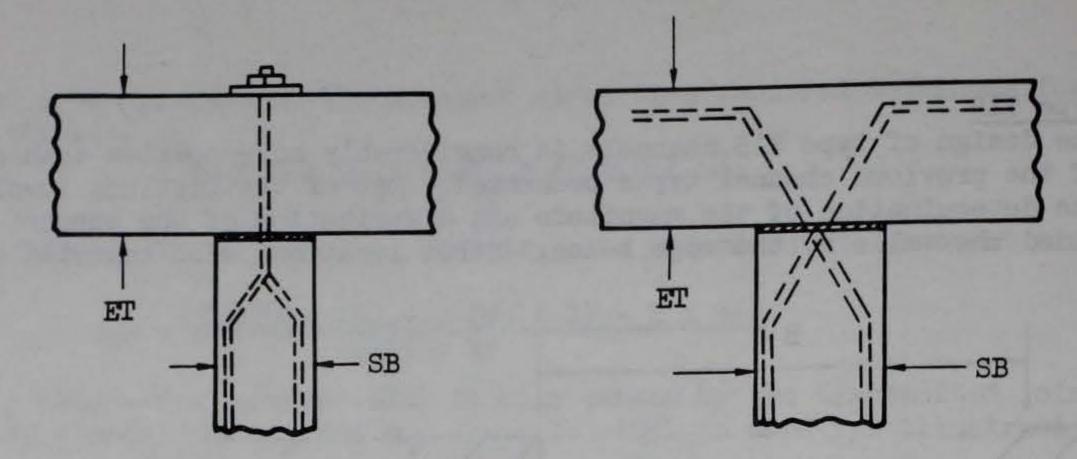


Figure 14. Possible strut-to-wall connections.

The wall bracket itself may be designed to prevent lateral movement of the struts.

Edge beam analyses. Before proceeding with the preliminary design, the edge beam theory is established. Load is brought to the edge beam by the vertical wall. The magnitude of this load, RX, varies from section to section along the wall. The struts provide the necessary edge beam reactions. The immediate problem is to describe and evaluate the loading on the edge beam. This may be accomplished by considering the frame

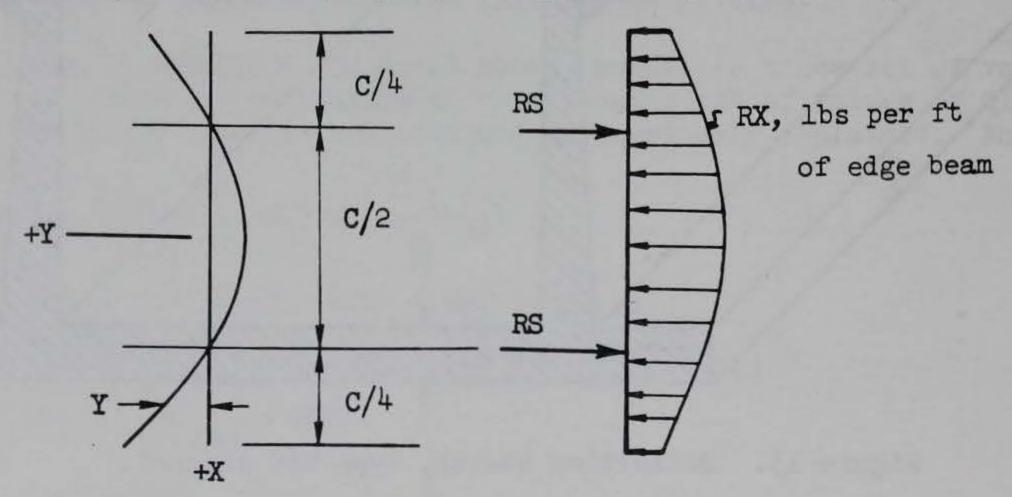


Figure 15. Edge beam loading and displacement.

displacements occuring at a typical vertical section in the channel.

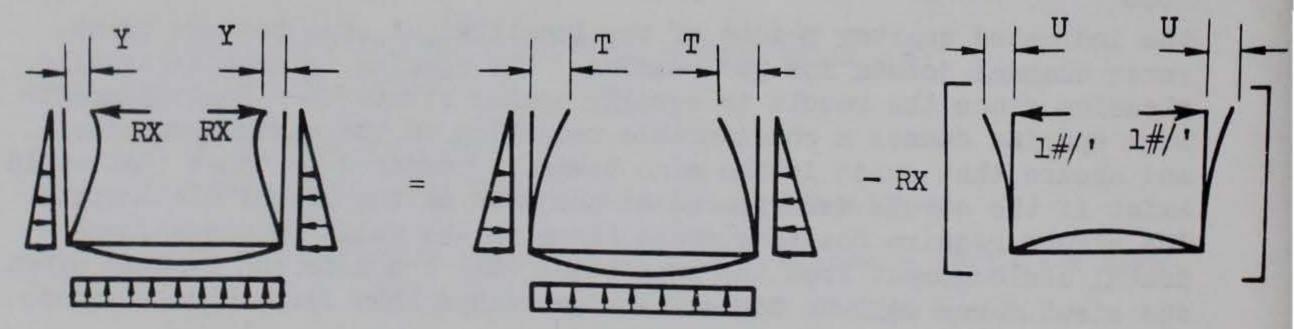


Figure 16. Type TIS frame displacements, typical loading.

The displacement at the top of the frame is $Y = T - U \times RX$ where

≡ displacement at top of frame, also displacement of the edge beam, in ft

≡ displacement at top of frame with struts removed, in ft

≡ displacement at top of frame due to unit horizontal loads at top of frame, in ft per 1b per ft

RX = frame reaction provided by edge beam, also load on edge beam due to frame loading, in 1bs per ft.

Thus

$$RX = T/U - Y/U$$

or

$$RX = m - nY$$

where

$$m = T/U$$
 and $n = 1/U$

The frame constants, T, U, m, and n depend on the structural channel dimensions and loading. They are readily determined when needed.

The elastic curve equation for the edge beam is

$$EI\frac{d^{4}Y}{dX^{4}} = RX = m - nY$$

or letting
$$4\beta^{4} = n/EI$$

then

$$\frac{d^4Y}{dX^4} + 4\beta^4Y = m/EI$$

The general solution could be written and the constants of integration evaluated by applying various boundary conditions. This becomes rather involved and prone to error because of the interior location of the struts.

The above procedure can be avoided by utilizing a method of solution indicated on pages 15 - 17 of Timoshenko's "Strength of Materials, Part II," for the somewhat similar problem shown in Figure 17.

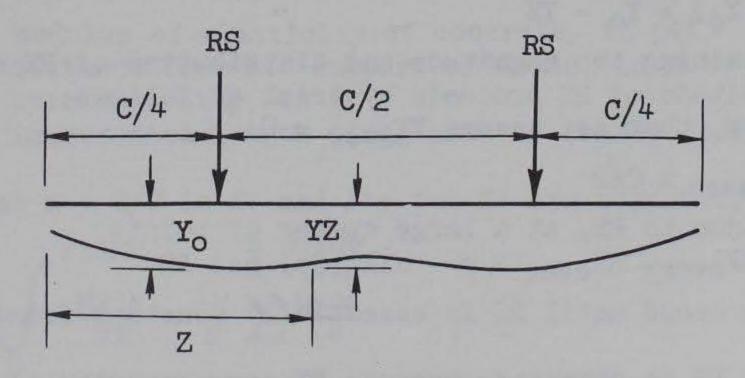


Figure 17. Alternate method of solution for edge beam analyses.

Let

$$\phi(\beta Z) = e^{-\beta Z}(\cos \beta Z + \sin \beta Z)$$

$$\psi(\beta Z) = e^{-\beta Z}(\cos \beta Z - \sin \beta Z)$$

$$\theta(\beta Z) = e^{-\beta Z}\cos \beta Z$$

$$\xi(\beta Z) = e^{-\beta Z}\sin \beta Z$$

Then solve for Qo and Mo from the simultaneous equations

$$\frac{Q_{o}}{4\beta} \left[1 + \psi(\beta C) \right] + \frac{M_{o}}{2} \left[1 + \theta(\beta C) \right] + \frac{RS}{4\beta} \left[\psi(3\beta C/4) + \psi(\beta C/4) \right] = 0$$

$$-\frac{Q_{o}}{2} \left[1 - \theta(\beta C) \right] - \frac{M_{o}\beta}{2} \left[1 - \phi(\beta C) \right] + \frac{RS}{2} \left[\theta(3\beta C/4) + \theta(\beta C/4) \right] = 0$$

Having Qo and Mo, then for any Z, the deflection YZ, is

$$YZ = \frac{RS \times \beta}{2n} \left[\phi(\beta\{|C/4 - Z|\}) + \phi(\beta\{|3C/4 - Z|\}) \right]$$

$$+ \frac{Q_0\beta}{2n} \left[\phi(\beta Z) + \phi(\beta \{C - Z\}) \right]$$

$$+ \frac{M_0\beta^2}{n} \left[\zeta(\beta Z) + \zeta(\beta \{C - Z\}) \right]$$

This expression finds the deflections due to symmetrical loads, RS, acting on a finite length beam. To convert to the edge beam problem note that $YX)_{X=C/4}=0$, or let $YX=YZ-Y_{O}$ where

$$Y_{o} = \frac{RS \times \beta}{2n} \left[1 + \phi(\beta C/2) \right] + \frac{Q_{o}\beta}{2n} \left[\phi(\beta C/4) + \phi(3\beta C/4) \right] + \frac{M_{o}\beta^{2}}{n} \left[\zeta(\beta C/4) + \zeta(3\beta C/4) \right]$$

The sign of the deflections must also be changed to agree with the coordinate orientation shown in Figure 15.

Thus

$$YX = -(YZ - Y_O) = Y_O - YZ$$

The process of obtaining the magnitude and distribution of RX and of obtaining the magnitude of RS proceeds by trial as follows:

Let RXaver = m, that is, assume YXaver = 0

Then RS = $RX_{aver} \times C/2$

Evaluate YX, due to RS, at a large number of points Compute new YXaver, RXaver = m - nYXaver, and RS

Repeat this process until RS is essentially constant from one cycle to the next.

When constant RS is obtained, compute RX corresponding to each YX, that is,

$$RX = m - nYX$$

Design approach. As with most statically indeterminate systems, sizes and dimensions must be known or assumed before the system can be analyzed. Thus an initial set of trial dimensions is needed. Values for this initial set could simply be guessed, or some approximate methods could be used to obtain them. The latter is used herein. However, the approximations are not discussed separately here since what is more important is an understanding of a typical design cycle or iteration.

Design cycles are repeated as often as necessary to obtain a stable set of dimensions. Each cycle uses current forces to obtain new dimensions from which new forces are computed, etc., repeatedly. One design cycle is described below, assuming a set of trial dimensions is already available.

Edge beam loading. The first step in obtaining RX and RS values is to evaluate U and n = 1/U, in ft per 1b/ft and 1b/ft per ft respectively. These values depend solely on the dimensions of the frame. U is computed as

FRAME $\frac{1}{2}$ FRAME $\frac{1}{2}$ FRAME $U = \frac{1}{2} \int \frac{\text{Myds}}{\text{EI}} = \frac{1}{E} \sum \frac{\text{My}\Delta s}{\text{I}} = \frac{12}{E} \sum \frac{y^2 \Delta s}{t^3}$

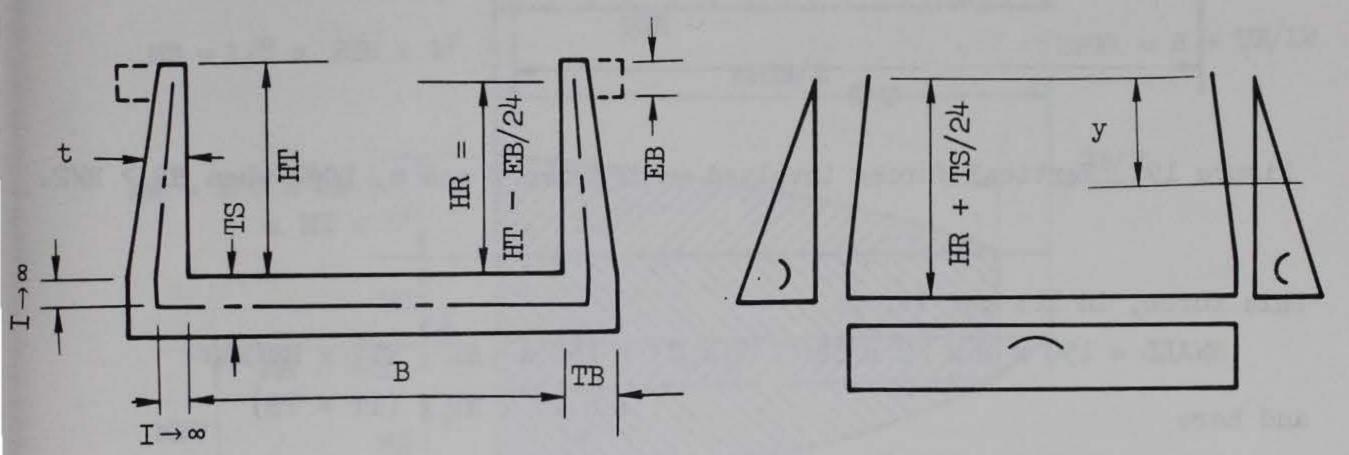


Figure 18. Evaluation of frame U and n.

where

E = modulus of elasticity of concrete, in psf

y = distance from mid-support of frame, in ft

t = thickness at y, in ft

 $\Delta s \equiv incremental length along axis of frame, in ft$

Next, T and m = T/U in ft and lbs per ft are computed. T is computed as

FRAME
$$T = \frac{1}{2} \int \frac{Myds}{EI} = \frac{12}{E} \sum \frac{My\Delta s}{t^3}$$

where the terms are as previously defined and

M = average moment over the length Δs , in ft lbs per ft

LC#2 is used for illustration. LC#1 is similar, but without the effects

of water in the channel. Figure 19 indicates the vertical forces involved. The struts have been removed, but their effective weight is included in the force NWALL.

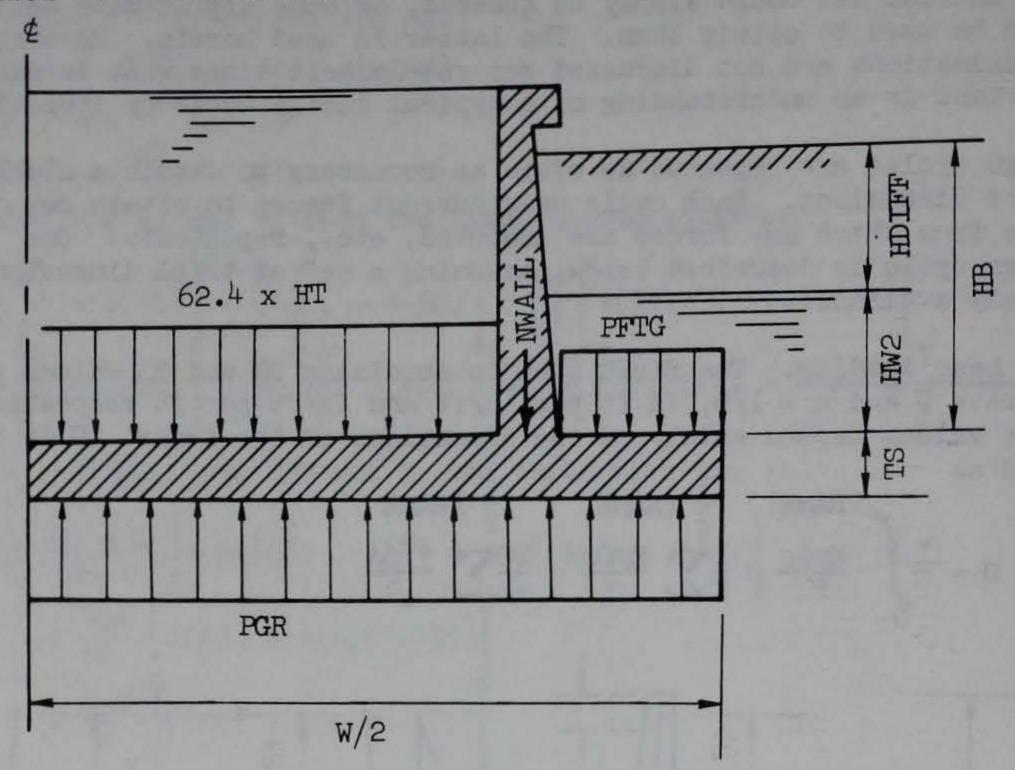


Figure 19. Vertical forces involved with frame T and m, LC#2 when HB > HW2.

This force, in lbs per ft, is $NWALL = 150 \times B \times ST \times SB/(144 \times C) + 150 \times (ET - TT) \times EB/144$ and here $+ 6.25 \times HT \times (TT + TB)$

PFTG = GMOIST x HDIFF + GSAT x HW2

so that PGR, which includes uplift, in psf, is

PGR = (2 x (NWALL + PFTG x FTG) + 12.5 x TS x W + 62.4 x HT x B)/W - 12.5 x TS

The summation for T over the wall portion of the frame is readily made. Wall moments due to external lateral loads produce a positive displacement, T, while wall moments due to internal water produce a negative displacement. The components of loads and moments involved in the summation for T over the floor portion of the frame are indicated in Figure 20. The summation may be said to include only the clear distance B/2 since I is assumed to approach infinity at the joints.

A concentrated moment is brought to the floor slab at the junction of wall stem and footing projection. This moment, MC, is the sum of two moments MWALL and MFTG. MWALL is the moment due to the loads acting on the wall stem. MFTG is due to the loads on the footing projection

and is

With reference to Figure 20, the summation for one half of the floor

$$T_f = (12/E) \times (MC - MR + 2 \times (MW - MB)/3) \times (HR + TS/24) \times 0.5 \times B/(TS/12)^3$$

where moments are in ft lbs per ft and other terms are as previously defined. Thus the frame displacement constants, ml for LC#1, m2 for LC#2, and n are determined.

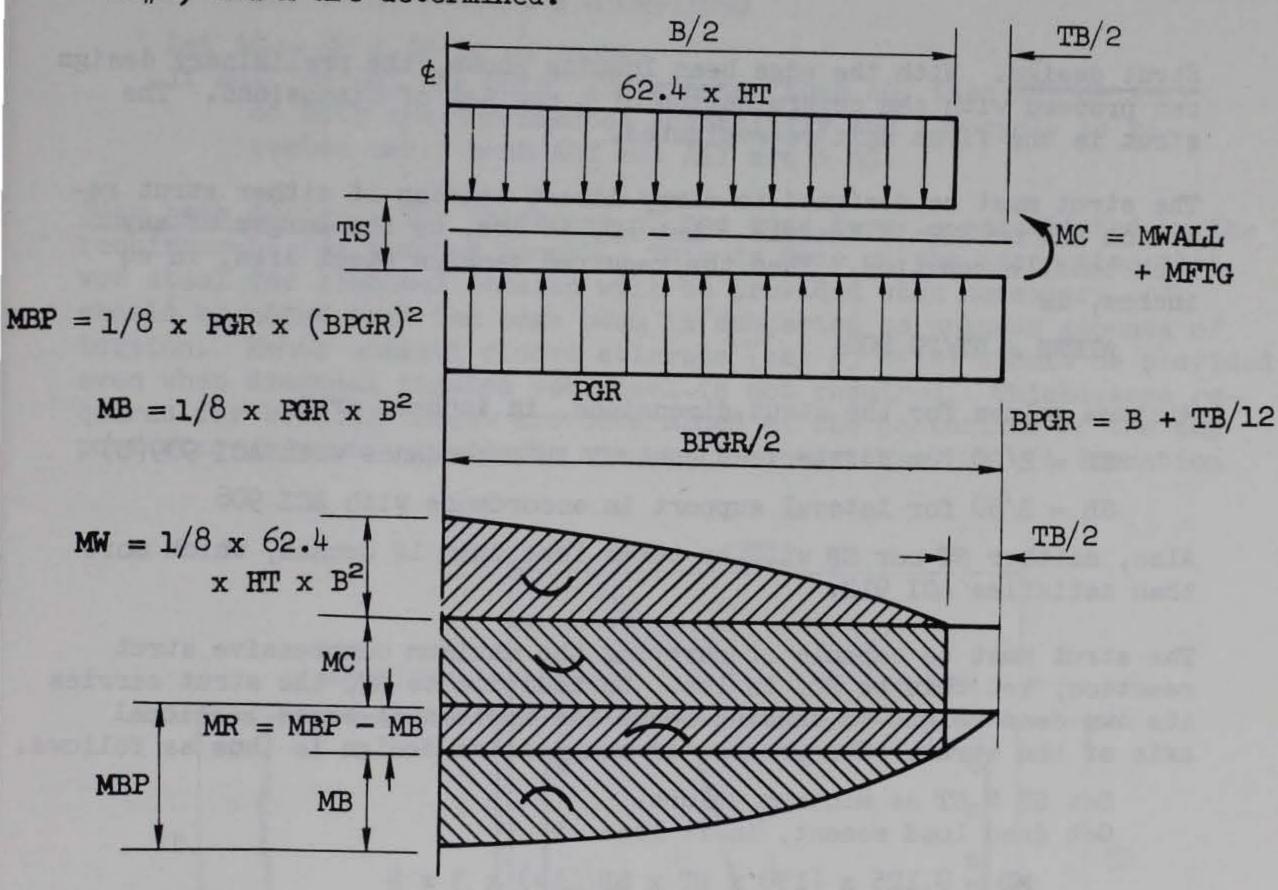
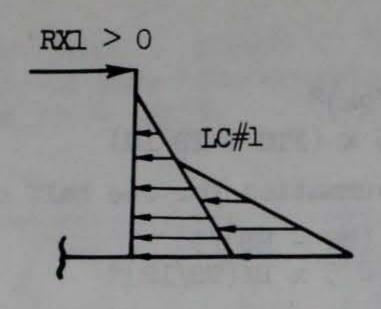



Figure 20. Floor slab loads and moments for frame T and m.

With the frame constants known, the edge beam loadings, RX, and the strut forces, RS, can be computed for LC#1 and LC#2 as outlined at the end of the section, "Edge beam analysis." In these computations the stiffness of the edge beam is reflected by the term β which is, per ft

 $\beta = (\frac{n}{4EI})^{1/4} = 12(\frac{3n}{E \times EB \times (ET)^3})^{1/4}$

RX values are found for a large but finite number of points along the edge beam span. The signs of RX1 and RX2 are adjusted so that a positive RX has the meaning shown in Figure 21. It is possible to have values of RX1, RS1, RX2, and RS2 of either sense, that is, positive or negative.

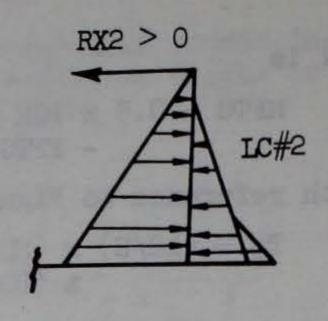


Figure 21. Sense of positive edge beam loading.

Strut design. With the edge beam loading known, the preliminary design can proceed with the determination of a new set of dimensions. The strut is the first unit re-evaluated.

The strut must be designed to carry direct tension if either strut reaction RS1 or RS2 is tensile. Let RT, in 1bs, be the larger of any such tensile reaction. Then the required tension steel area, in sq inches, is

ATENS = RT/20,000

Minimum values for the strut dimensions, in inches, are

ST = B/20 for deflections control in accordance with ACI 909(b)

SB = B/50 for lateral support in accordance with ACI 908

Also, neither ST nor SB will be taken less than 12 inches, which more than satisfies ACI 912.

The strut must be capable of carrying the maximum compressive strut reaction, let this be RC, in lbs. In addition to RC, the strut carries its own dead weight in bending about the horizontal cross sectional axis of the strut. The process of compressive design is thus as follows.

Set SB & ST at minimum values.

Get dead load moment, in ft lbs:

 $MD = 0.125 \times (150 \times ST \times SB/144) \times B \times B$

Get eccentricity of RC due to MD, in inches

 $E = 12 \times MD/RC$

Get correction for long column by ACI Eq. (9-3)

 $RX = 1.07 - 0.008 \times (12 \times B)/(0.3 \times ST) \le 1.0$ = 1.07 - 0.32 x B/ST \le 1.0

Get direct compression for short column

NX = RC/RX

Take NX, see page 32 of TR-42, as larger of NX or NX x 0.64 x (1.+ 4 x E/ST)

Take compressive steel area, ACOMP, in sq inches, as larger of ATENS or 0.01 x ST x SB, in accordance with ACI 913(a)

Find required gross area of column, AGX in sq inches, from ACI Eq. (14-1) and ACI 1403

 $AGX = (NX - 13600 \times ACOMP)/850$

Get correction for long columns

RY = $1.07 - 0.32 \times B/SB \le 1.0$

Get direct compression for short columns

NY = RC/RY

Find required gross area of column

 $AGY = (NY - 13600 \times ACOMP)/850$

Let $AG = ST \times SB$ in sq inches

If AGX, or AGY, or both, are greater than AG, then ST, or SB, or both are incremented accordingly and the cycle is repeated until both AGX and AGY are ≤ AG.

Edge beam design. The thickness of the edge beam is established by the requirements for bending moment. This is done on the assumption that web steel for diagonal tension will be provided when necessary. It should be noted that the edge beam is subjected to unknown amounts of torsion. Hence nominal closed stirrups (say #3 @ 12) should be provided even when diagonal tension web steel is not required. Thicknesses required for bending moment are determined at the centerline of the support since moments at midspan are small by construction. A summation

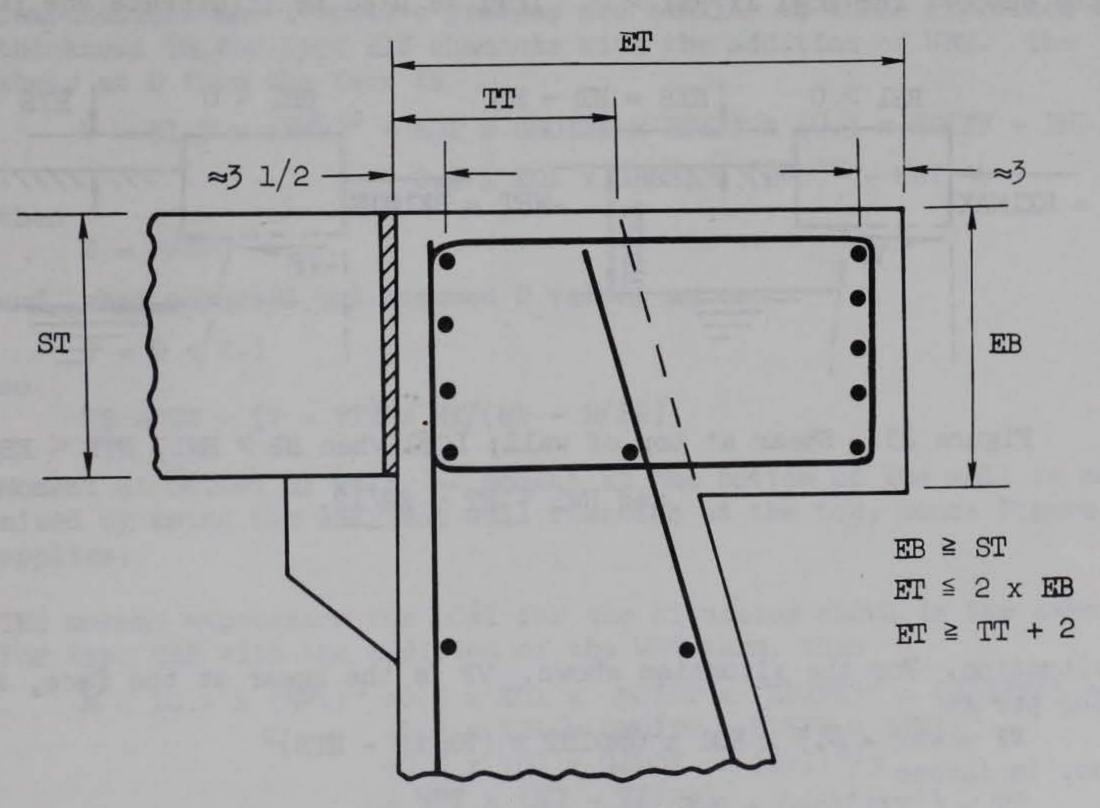


Figure 22. Edge beam section.

process is used to obtain the various shears and moments of interest because the loading curves assume various shapes.

Initially EB is set equal to ST. The maximum thickness required for bending is determined. If ET, so obtained, is more than twice EB, EB is incremented and another solution is made for ET. Next the maximum thickness which would be required for shear, assuming no web steel, is computed. If this thickness is more than that required for bending, web steel is required. Required web steel is calculated during detail design. Shears are investigated both left and right of the centerline of the support. When the strut reaction is compressive, shears are assumed critical at D from the faces of the support. When the strut reaction is tensile, shears immediately adjacent to the centerline are assumed critical.

Wall design. The wall must be designed for the most critical conditions that exist at any section along the wall between transverse channel joints. As noted, the edge beam provides a variable support to the wall. In order to control the most critical loadings on the wall during design, the maximum and minimum RX values are found for each load condition. These are RXIMAX, RXIMIN, RX2MAX, and RX2MIN respectively. Required wall thicknesses are found for shear at the top of the wall just below the edge beam, shear at the bottom of the wall, and moment at the bottom of the wall. Moment near midheight of the wall, of opposite sign to the moment at the bottom of the wall, often exists but is usually of smaller magnitude than the moment at the bottom.

Shear at top of wall, below edge beam. -- The maximum required thickness must be found for both load conditions. Shear is assumed critical at the face of the support, although an argument could be made for D from the support for LC#l if RSl > 0. LC#l is used to illustrate one possible

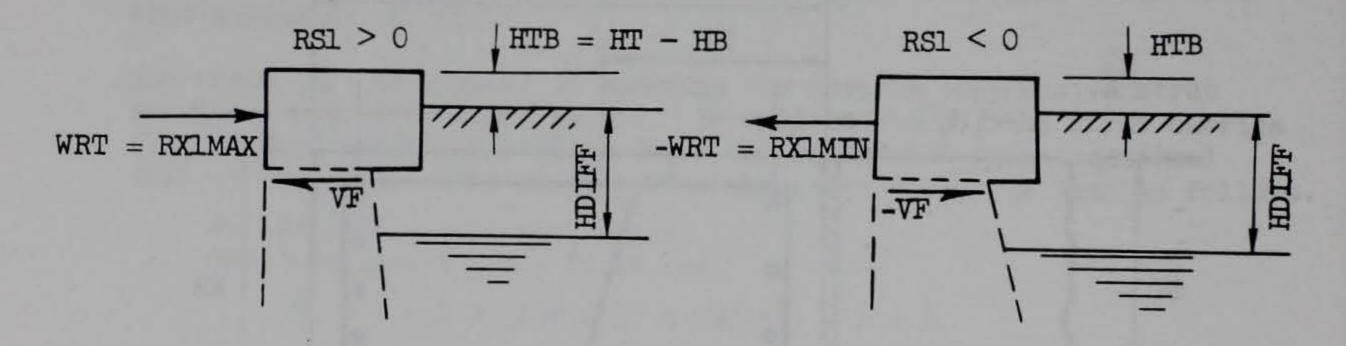


Figure 23. Shear at top of wall; LC#1 when HB > HW1, HTB < EB/12, and HW1 < HT - EB/12.

situation. For the situation shown, VF is the shear at the face, in 1b lbs per ft

 $VF = WRT - 0.5 \times KOl \times GMOIST \times (EB/12 - HTB)^2$ so, in inches

TT = (|VF|)/840 + 2.5

This is the thickness required at the face of the edge beam. Thus TT, projected to the top of the edge beam, could be taken somewhat smaller when TB > TT. This refinement is considered unwarrented since at this time the required TB is unknown.

Shear at bottom of wall. -- Shear is critical at D from the face of the support for LC#1 and at the face for LC#2. Since the shear at bottom of the wall is to be maximized, the wall reaction at the top, WRT, is set equal to the minimum edge beam loading. LC#1 is used for illustration.

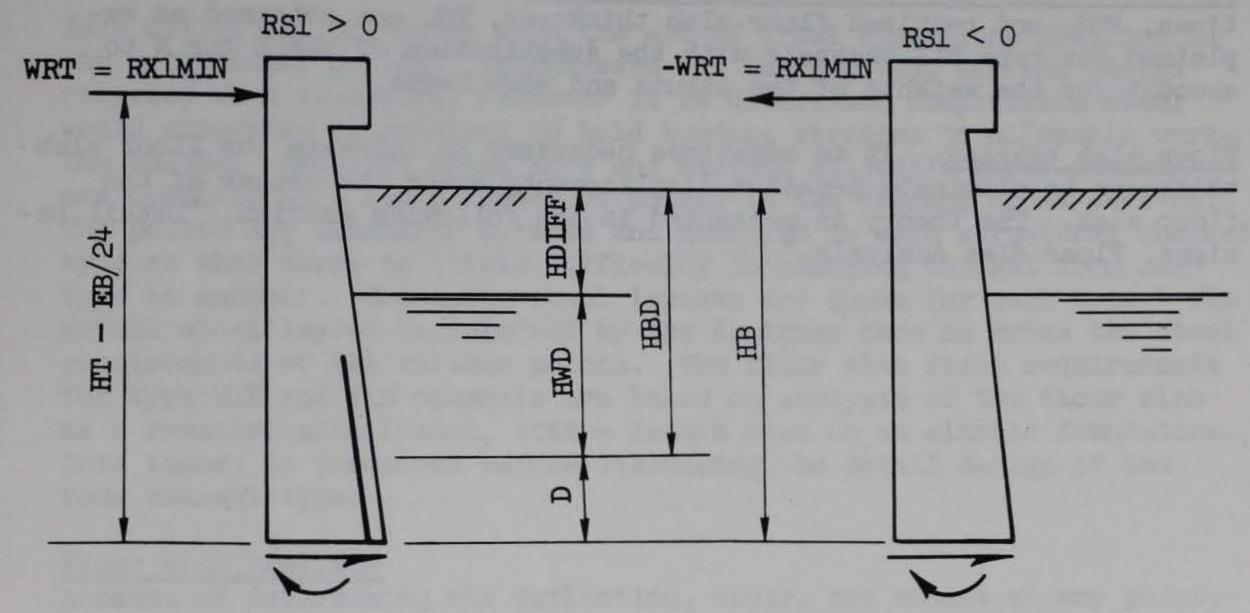


Figure 24. Shear and moment at bottom of wall, LC#1 when HB > HW1.

Computations and iterative process are similar to those explained for thickness TB for type TlF channels with the addition of WRT. The shear at D from the face is

$$V = 31.2 \times (HWD)^2 + KO1 \times GMOIST \times HDIFF \times (0.5 \times HDIFF + HWD)$$

+ 0.5 x KO1 x GBUOY x (HWD)² - WRT

then

$$D = V/840$$

and, when computed and assumed D values agree

$$T = D + 2.5$$

SO

$$TB = TT + (T - TT) x. HT/(HT - D/12)$$

Moment at bottom of wall. -- Moment at the bottom of the wall is maximized by using the smallest wall reaction at the top, hence Figure 24 applies.

The moment expression for LC#1 for the situation shown is the same as for type T1F with the addition of the WRT term, thus

$$M = 10.4 \times (HWl)^3 +0.5 \times KOl \times GMOIST \times (HDIFF)^2 \times (HDIFF/3 + HWl) +0.5 \times KOl \times GMOIST \times HDIFF \times (HWl)^2 +0.5 \times KOl \times GBUOY \times (HWl)^3/3 - WRT \times (HT - EB/24)$$

The direct compressive force is NWALL as given under "Edge beam loading." The equivalent moment, $M_{\rm S}$, thus is

$$M_s = M + NWALL \times (0.5 \times TB - 2.5)/12$$

The iterative process for TB then proceeds as explained for type TlF channels.

Flotation requirements and floor slab shear. Required footing projections, FTG, and required floor slab thickness, TS, are obtained as explained for type TlF channels with the substitution of NWALL for N to account for the weights of the struts and edge beams.

Floor slab bearing. It is sometimes necessary to increase the floor slab thickness to eliminate negative displacements under the center of the floor slab. The theory is presented in the following section, "Detail Designs, Floor Slab Analysis."

Detail Designs

With the exception of the steel in the edge beams of type TIS channels, detail design is concerned with the determination of requirements for transverse steel, not longitudinal steel.

Fach detail design begins with the set of trial dimensions obtained in the preliminary design. Thicknesses are incremented, and the design recycled when necessary, whenever it is determined compression steel would otherwise be required to hold bending stresses to allowable working values. Required steel area and maximum allowable steel spacing are computed at a large number of points in the channel cross section. The points are similarly located and numbered in each structural channel type so that there is little difficulty in changing thought from one type to another. Schematic steel layouts are shown for each type. The actual steel layout is selected by the designer once he knows the steel requirements at the various points. The floor slab steel requirements for type T1F and T1S channels are based on analysis of the floor slab as a symmetrically loaded, finite length beam on an elastic foundation. This theory is presented before discussing the detail design of the four channel types.

Floor Slab Analysis

A means of determining the deflection, shear, and moment at any point, A, in the slab is required. This may be done by starting with the elastic curve equation

$$EI\frac{d^4Y}{dX^4} = P = -KY$$

or letting

$$4\beta^4 = K/EI$$

then

$$\frac{d^4Y}{dX^4} + 4\beta^4Y = 0$$

where

K = MFOUND = modulus of foundation, in pcf

E modulus of elasticity of concrete, in psf

P = foundation pressure, in psf

I moment of inertia, in ft4 per ft

 $\equiv (5184 \times K/(E \times (TS)^3))^{1/4}$, in per ft

TS = floor slab thickness, in inches

The modulus of the foundation, MFOUND, is also known by such names as: coefficient of subgrade reaction, subgrade modulus, coefficient of settlement, and modulus of subgrade reaction. Rather than work through the solution of the differential equation, it is easier to utilize various known solutions for infinite beams and to obtain the desired results by superposition. In Figure 25, solutions for (a) and (b) may be obtained by the procedure previously presented for the edge beam analysis. Loadings (c) and (d) require further development.

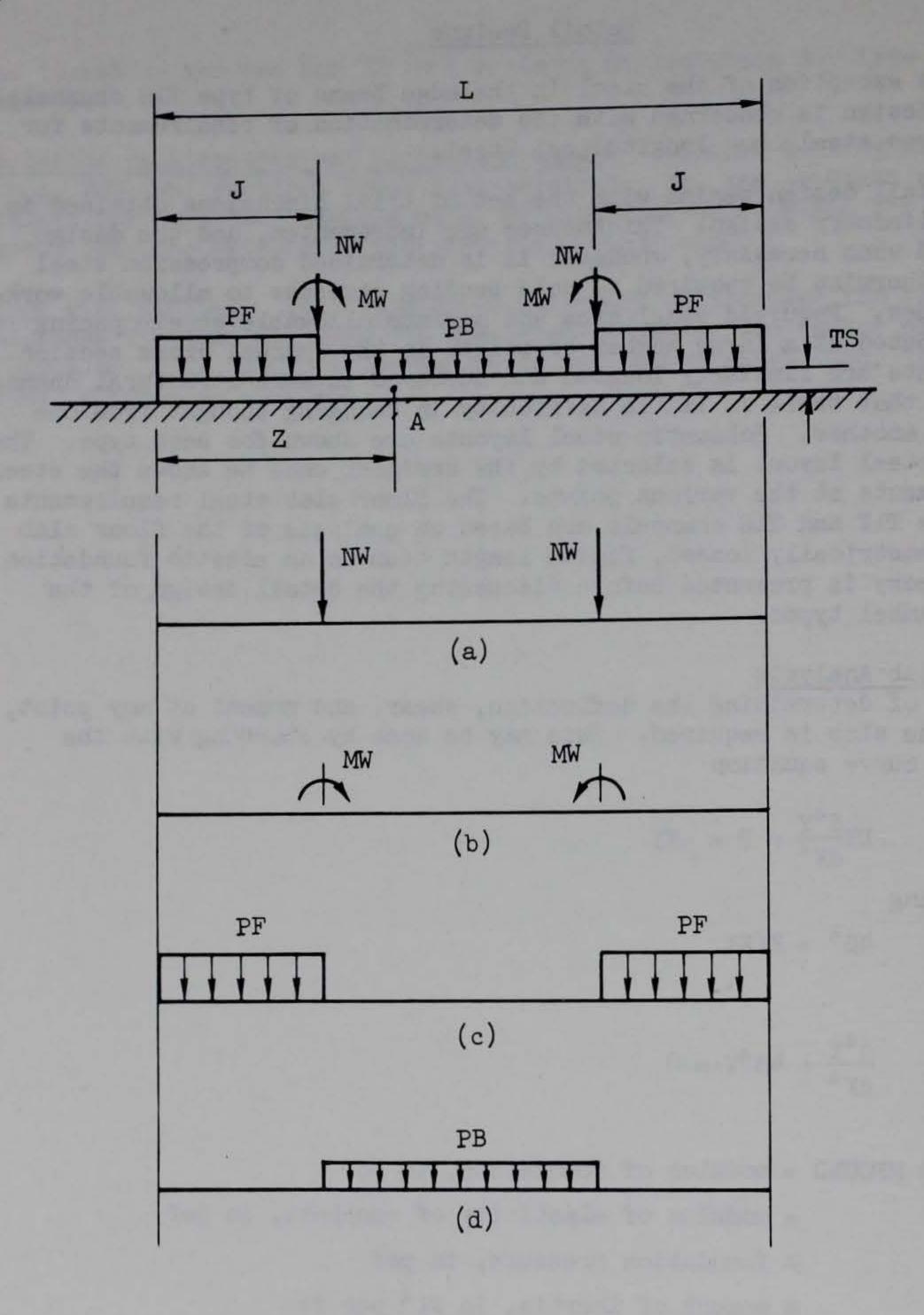


Figure 25. Finite length beam and loadings.

Deflection, shear, and moment due to NW. Expressions for deflection, shear, and moment are needed when the point A assumes various locations. Let YA, VA, and MA be these quantities in ft, lbs per ft, and ft lbs per ft respectively.

When A is at the left end of the beam, i.e.
$$Z = 0$$

$$YA = \frac{NW \times \beta}{2K} \left[\phi(\beta J) + \phi(\beta \{L - J\}) \right]$$

$$VA = \frac{NW}{2} \left[\Theta(\beta J) + \Theta(\beta \{L - J\}) \right]$$

$$MA = \frac{NW}{4\beta} \left[\psi(\beta J) + \psi(\beta \{L - J\}) \right]$$

When A is between the left end of the beam and the load, i.e., $0 \le Z \le J$

$$YA = \frac{NW \times \beta}{2K} \left[\Phi(\beta\{J - Z\}) + \Phi(\beta\{L - J - Z\}) \right]$$

$$VA = \frac{NW}{2} \left[\Theta(\beta \{J - Z\}) + \Theta(\beta \{L - J - Z\}) \right]$$

$$MA = \frac{NW}{4\beta} \left[\psi(\beta\{J-Z\}) + \psi(\beta\{L-J-Z\}) \right]$$

When A is between the two loads, i.e., $J \le Z \le (L - J)$

$$YA = \frac{NW \times \beta}{2K} \left[\phi(\beta\{Z - J\}) + \phi(\beta\{L - J - Z\}) \right]$$

$$VA = \frac{NW}{2} \left[-\Theta(\beta\{Z - J\}) + \Theta(\beta\{L - J - Z\}) \right]$$

$$MA = \frac{NW}{4B} \left[\psi(\beta\{Z - Z\}) + \psi(\beta\{L - J - Z\}) \right]$$

Deflection, shear, and moment due to MW. Expressions for deflection, shear, and moment due to the moment, MW, brought to the floor slab by the wall follow.

When
$$Z = 0$$

$$YA = -\frac{MW \times \beta^2}{K} \left[\zeta(\beta J) - \zeta(\beta \{L - J\}) \right]$$

$$VA = -\frac{MW \times \beta}{2} \left[\phi(\beta J) - \phi(\beta \{L - J\}) \right]$$

$$MA = -\frac{MW}{2} \left[\Theta(\beta J) - \Theta(\beta \{L - J\}) \right]$$

When
$$0 \le Z \le J$$

$$YA = -\frac{MW \times \beta^2}{K} \left[\zeta(\beta\{J-Z\}) - \zeta(\beta\{L-J-Z\}) \right]$$

$$VA = -\frac{MW \times \beta}{2} \left[\phi(\beta\{J - Z\}) - \phi(\beta\{L - J - Z\}) \right]$$

$$MA = -\frac{MW}{2} \left[\Theta(\beta \{J - Z\}) - \Theta(\beta \{L - J - Z\}) \right]$$

When $J \leq Z \leq (L - J)$

$$YA = \frac{MW \times \beta^2}{K} \left[\zeta(\beta\{Z - J\}) + \zeta(\beta\{L - J - Z\}) \right]$$

$$VA = -\frac{MW \times \beta}{2} \left[\Phi(\beta \{Z - J\}) - \Phi(\beta \{L - J - Z\}) \right]$$

$$MA = \frac{MW}{2} \left[\Theta(\beta \{Z - J\}) + \Theta(\beta \{L - J - Z\}) \right]$$

Deflection, shear, and moment due to uniform loading, q. Before terms for the uniform loadings PB and PF can be obtained, solutions for uniform loads must be established. These are obtained by integrating the corresponding expressions for a concentrated load. Refer to Timoshenko, pages 6 and 7 for similar material.

Without proof:

$$\int \theta(\beta X) dX = -\frac{1}{2\beta} \psi(\beta X)$$

$$\int \zeta(\beta X) dX = -\frac{1}{2\beta} \phi(\beta X)$$

$$\int \theta(\beta X) dX = -\frac{1}{\beta} \theta(\beta X)$$

$$\int \psi(\beta X) dX = +\frac{1}{\beta} \zeta(\beta X)$$

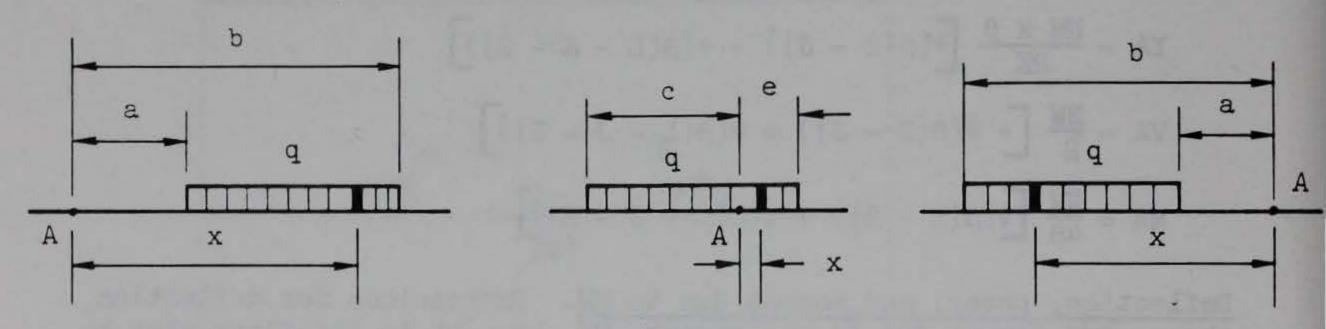


Figure 26. Uniform loading cases, infinite beams.

When A is to left of loading, noting that dN = qdX

$$YA = \int_{0}^{b} \frac{\beta q}{2K} \phi(\beta X) dX - \int_{0}^{a} \frac{\beta q}{2K} \phi(\beta X) dX = \frac{q}{2K} \left[\Theta(\beta a) - \Theta(\beta b) \right]$$

similarly

$$VA = \frac{q}{4\beta} \left[\psi(\beta a) - \psi(\beta b) \right]$$

$$MA = \frac{q}{4\beta^2} \left[-\zeta(\beta a) + \zeta(\beta b) \right]$$

When A is within the loading

$$YA = \int_{0}^{\beta} \frac{\theta q}{2K} \phi(\beta X) dX + \int_{0}^{\beta} \frac{\theta q}{2K} \phi(\beta X) dX = \frac{q}{2K} \left[2 - \theta(\beta C) - \theta(\beta E) \right]$$

$$VA = \frac{q}{4\beta} \left[\psi(\beta C) - \psi(\beta E) \right]$$

$$MA = \frac{q}{4\beta^{2}} \left[\zeta(\beta C) + \zeta(\beta E) \right]$$

When A is to be the right of loading

YA =
$$\frac{q}{2K} \left[\Theta(\beta a) - \Theta(\beta b) \right]$$

VA = $\frac{q}{4\beta} \left[- \psi(\beta a) + \psi(\beta b) \right]$

MA = $\frac{q}{4\beta^2} \left[- \zeta(\beta a) + \zeta(\beta b) \right]$

Expressions for deflection, shear, and moment due to PB and PF can be found from the above terms upon correct substitution of PB, PF, L, J, and Z for q, a, b, c, and e.

Deflection, shear, and moment due to Q_0 and M_0 . The end shears and moments, Q_0 and M_0 , must be applied to the infinite beam in order to convert the problem to a finite length beam, these cause deflections, shears, and moments within the beam.

Figure 27. Qo and Mo loadings, infinite beam.

When
$$Z = 0$$

$$YA = \frac{Q_0 \beta}{2K} \left[1 + \phi(\beta L) \right] + \frac{M_0 \beta^2}{K} \zeta(\beta L)$$

$$VA = -\frac{Q_0}{2} \left[1 - \theta(\beta L) \right] - \frac{M_0 \beta}{2} \left[1 - \phi(\beta L) \right]$$

$$MA = \frac{Q_0}{4\beta} \left[1 + \psi(\beta L) \right] + \frac{M_0}{2} \left[1 + \theta(\beta L) \right]$$

When
$$0 \le Z \le L$$

$$YA = \frac{Q_0 \beta}{2K} \left[\Phi(\beta Z) + \Phi(\beta \{L - Z\}) \right] + \frac{M_0 \beta^2}{K} \left[\xi(\beta Z) + \xi(\beta \{L - Z\}) \right]$$

$$VA = \frac{Q_0}{2} \left[\Theta(\beta Z) - \Theta(\beta \{L - Z\}) \right] - \frac{M_0 \beta}{2} \left[\Phi(\beta Z) - \Phi(\beta \{L - Z\}) \right]$$

$$MA = \frac{Q_0}{4\beta} \left[\Psi(\beta Z) + \Psi(\beta \{L - Z\}) \right] + \frac{M_0}{2} \left[\Theta(\beta Z) + \Theta(\beta \{L - Z\}) \right]$$

Solution for Q_0 and M_0 . The required values for Q_0 and M_0 are computed from the simultaneous equations obtained by setting the sum of the shears and the sum of the moments at the end of the finite length beam, due to all loads, equal to zero. The necessary terms, for the various shears and moments, are given above.

Solution for finite beam. With Q_O and M_O known, expressions for the deflection, shear, and moment may be written for any point, A, in the beam. Different expressions will result depending on whether $0 \le Z \le J$ or $J \le Z \le (L - J)$. As one example, the expression for moment, in ft lbs per ft, at A when Z > J is

$$\begin{split} \text{MA} &= \frac{Q_{0}}{4\beta} \quad \left[\psi(\beta Z) + \psi(\beta \{ L - Z \}) \right] \\ &+ \frac{M_{0}}{2} \left[\theta(\beta Z) + \theta(\beta \{ L - Z \}) \right] \\ &+ \frac{NW}{4\beta} \left[\psi(\beta \{ Z - J \}) + \psi(\beta \{ L - J - Z \}) \right] \\ &+ \frac{MW}{2} \left[\theta(\beta \{ Z - J \}) + \theta(\beta \{ L - J - Z \}) \right] \\ &+ \frac{PB}{4\beta^{2}} \left[\zeta(\beta \{ Z - J \}) + \zeta(\beta \{ L - J - Z \}) \right] \\ &+ \frac{PF}{4\beta^{2}} \left[-\zeta(\beta \{ L - J - Z \}) + \zeta(\beta \{ L - Z \}) \right] \\ &+ \frac{PF}{4\beta^{2}} \left[-\zeta(\beta \{ L - J - Z \}) + \zeta(\beta \{ L - Z \}) \right] \end{split}$$

Note that a host of problems, in addition to the immediate one of channel floor slab, can be solved by this procedure, e.g., combined footings.

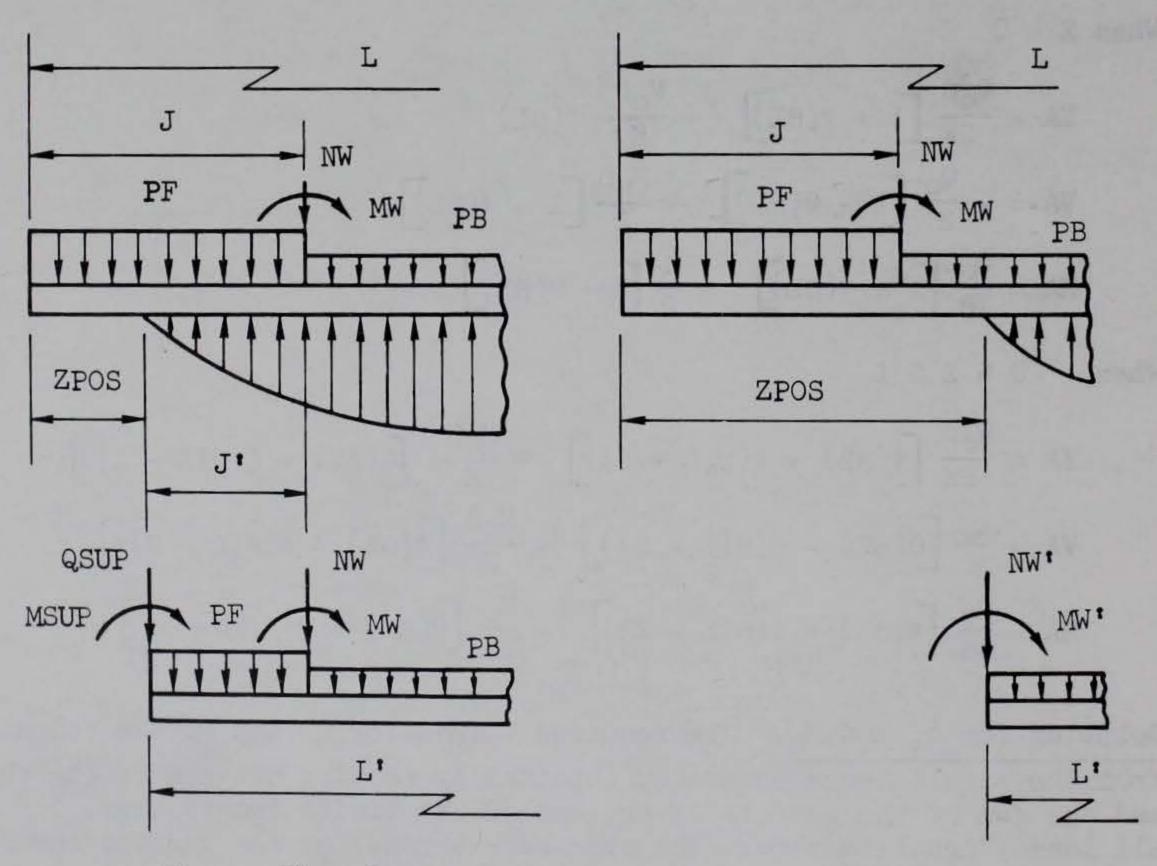


Figure 28. Corrections for indicated tensile reactions.

Sometimes negative deflections, indicating tensile reactive pressures, are encountered. If this occurs, the solution is considered incorrect since this technical release is meant for structural channels on yielding foundations and tensile bearing pressures can not exist with earth foundations. Negative deflections may occur at either the ends of the beam or at and near the center of the channel.

If negative deflections are encountered at the ends of the beam, a correct solution is obtained by modifying the effective loading and dimensions of the finite length beam as indicated in Figure 28. Assume a solution is attempted, then let the distance from the end of the beam to the point of zero reactive pressure be ZPOS. If ZPOS = 0, the solution is correct. If 0 < ZPOS ≦ J, add the cantilever shear and moment, QSUP and MSUP, to the system. Change J to J', and L to L'. Solve this beam for a new ZPOS. If ZPOS > J, change NW to NW', MW to MW', J to 0.0 and L to L'. NW' and MW' are the statical cantilever equivalents of the forces and moments within the distance ZPOS. Solve this beam for a new ZPOS. The next solution will yield another ZPOS, etc. ZPOS values so found, will approach zero, that is, the series is convergent and may be stopped when desired.

If negative deflections are encountered at and near the center of the channel, a correct solution can be obtained by increasing the weight and stiffness of the floor slab so that negative displacements are eliminated.* Therefore, when the analysis indicates tensile bearing pressures under the center of the channel, the slab thickness is incremented and a new, smaller required footing width is determined corresponding to the incremented slab thickness. The design is then recycled using the new TS and FTG. This check and subsequent recycling, when necessary, occur during preliminary design of type TlF and TlS channels. The problem is usually only encountered with relatively wide channels.

*An alternate approach to obtaining a solution for TlF and TlS floor slabs, when negative center displacements are encountered, is to revert to "rigid body mechanics." That is, assume the floor slab is a rigid beam subjected to uniform distribution of bearing pressure, rather than an elastic beam. This can be done by using a very low value of MFOUND as MFOUND = 1. Structurally, the assumption of uniform bearing results in larger center moments than any other admissible distribution of bearing for these slabs. Some reasons why "rigid body mechanics" is often not the best approach are:

- It may result in a greater slab thickness than is required by elastic theory.
- b. It will result in a greater steel requirement than is required by elastic theory.
- c. It may cause moment of opposite sign to the maximum moment to be missed. Elastic theory often shows the existance of such moments near the ends of the span.
- d. It does not produce positive contact between floor slab and foundation at all points.

If "rigid body mechanics" is used, detail designs rather than preliminary designs should be run. This is true because the slab thickness must often be increased during detail design to hold bending stresses to allowable limits.

Type TlF

Steel areas and spacings are determined for the twenty two points defined in Figure 29. Both LC#1 and LC#2 are investigated. Steel area for temperature and shrinkage is computed and will sometimes control.

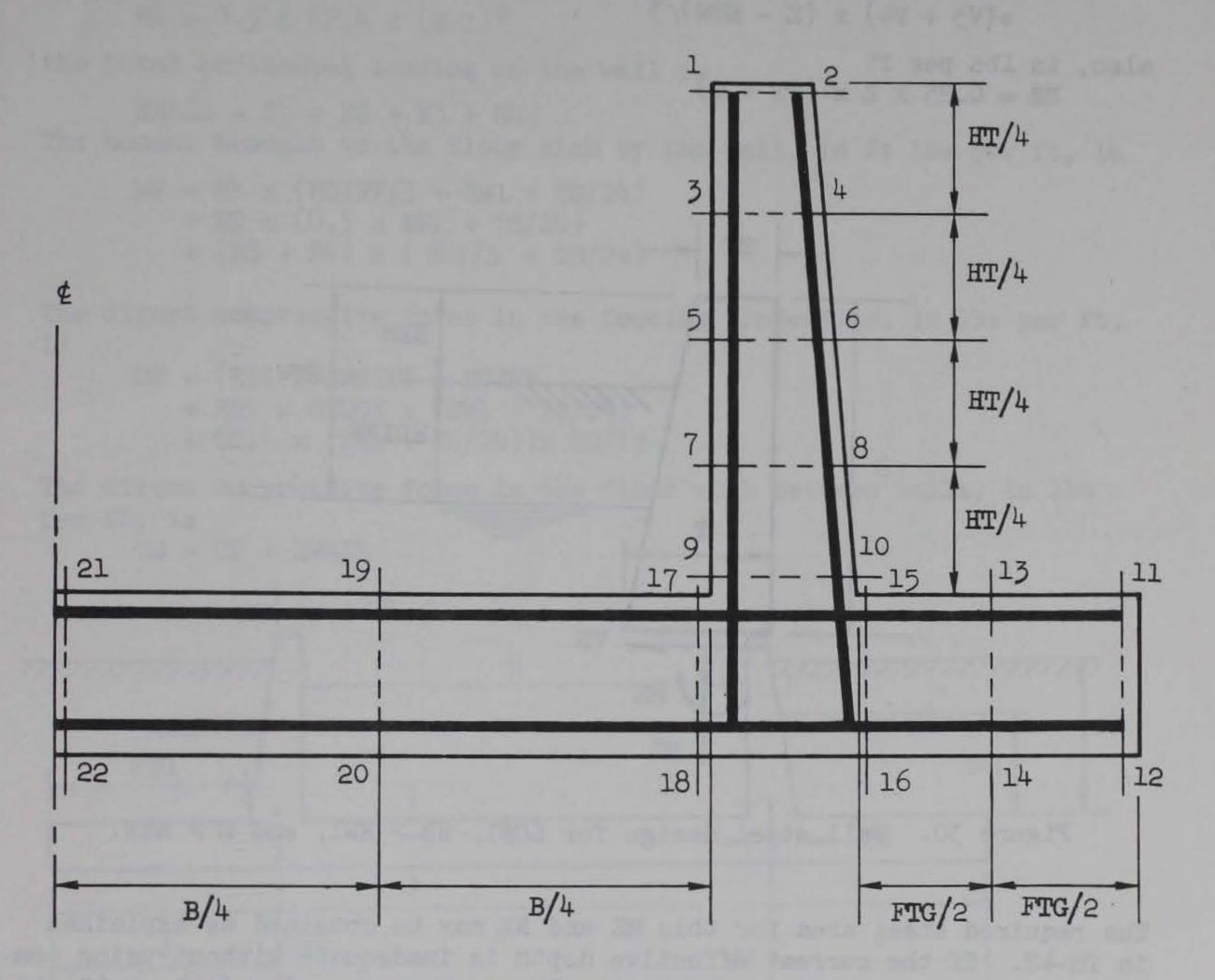


Figure 29. Type TlF steel layout and point locations.

Wall steel. IC#1 determines the steel required at the even numbered points in the wall. IC#2 determines the steel at the odd numbered points. One case of IC#1 is used for illustration. The section under consideration is located at distance, Z, from the top of the wall.

For the case illustrated, the following components of shear, in 1bs per ft, are computed

 $V1 = 0.5 \times GMOIST \times KO1 \times (HDIFF)^2$

V2 = GMOIST x KOl x HDIFF x (Z - HTW)

 $V3 = 0.5 \times GBUOY \times KOl \times (Z - HTW)^2$

 $V4 = 0.5 \times 62.4 \times (Z - HTW)^2$

then
$$VZ = V1 + V2 + V3 + V4$$
 and, in ft lbs per ft $MZ = V1 \times (HDIFF/3 + Z - HIW) + V2 \times (Z - HIW)/2 + (V3 + V4) \times (Z - HIW)/3$ also, in lbs per ft $NZ = 6.25 \times Z \times (TT + T)$

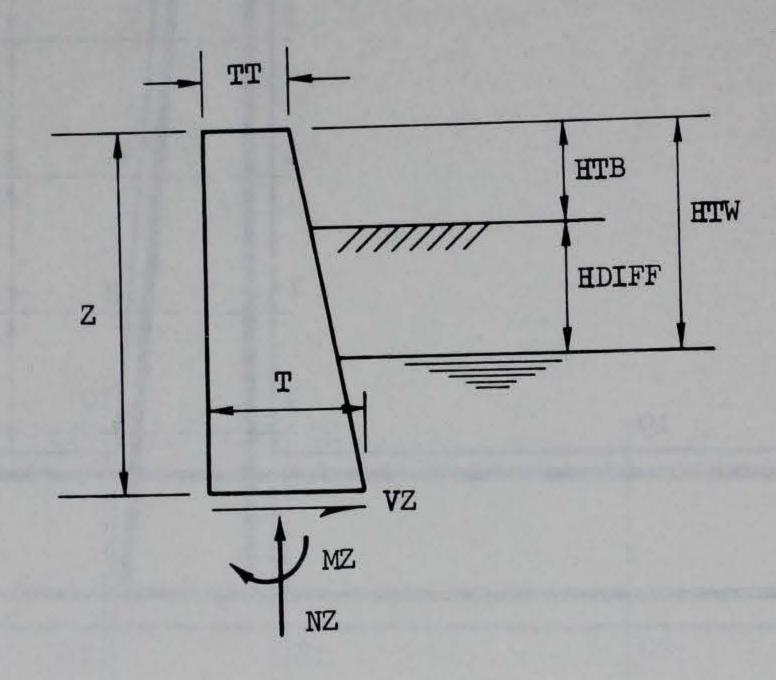


Figure 30. Wall steel design for LC#1, \cdot HB > HW1, and Z > HTW.

The required steel area for this MZ and NZ may be obtained as explained in TR-42. If the current effective depth is inadequate without using compression steel, the bottom thickness, TB, is incremented and the wall steel design is begun again. This process is repeated, as necessary, until TB exceeds its original value by 10 inches. When the effective depth is adequate, the required maximum allowable spacing, in inches, is given by

$$SZ = 10,015 \times (T - 2.5)/VZ$$

as explained in TR-42.

Floor slab steel. The floor slab analysis developed earlier is used to obtain shear and moment values from which steel requirements are determined at the various points in the slab. Either IC#l or IC#2 may govern the steel at a particular point. One case of IC#l is used to illustrate the computation of the load components on the floor slab.

The vertical wall loading, in lbs per ft, is $NW = 6.25 \times HT \times (TT + TB)$

The various horizontal components of loading on the wall, in lbs per ft,

 $HL = 0.5 \times GMOIST \times KO1 \times (HDIFF)^2$

H2 = GMOIST x KO1 x HDIFF x HW1

 $H3 = 0.5 \times GBUOY \times KOl \times (HW1)^2$

 $H^4 = 0.5 \times 62.4 \times (HW1)^2$

the total horizontal loading on the wall is

HWALL = H1 + H2 + H3 + H4.

The moment brought to the floor slab by the wall, in ft lbs per ft, is

 $MW = HL \times (HDIFF/3 + HW1 + TS/24)$ + $H2 \times (0.5 \times HW1 + TS/24)$ + $(H3 + H4) \times (HW1/3 + TS/24)$

The direct compressive force in the footing projection, in 1bs per ft, is

 $CF = (KOl \times GMOIST \times HDIFF + KOl \times GBUOY \times (HWl + TS/24) + 62.4 \times (HWl + TS/24)) \times TS/12$

The direct compressive force in the floor slab between walls, in 1bs per ft, is

CB = CF + HWALL

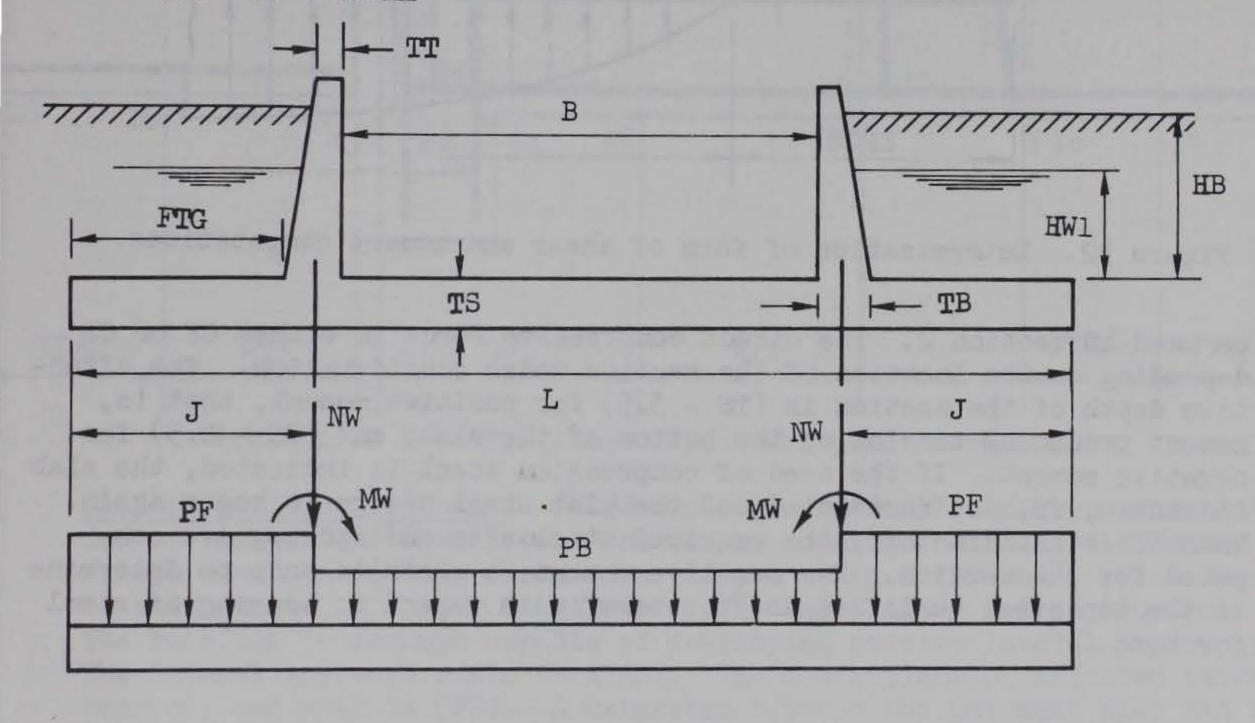


Figure 31. Floor slab analyses and loading for LC#1 when HB > HW1.

The uniform loadings on the floor slab, in psf, are

 $PB = 12.5 \times TS - 62.4 \times (HW1 + TS/12)$

PF = PB + GMOIST x HDIFF + GSAT x HWl

The floor flab deflections are analyzed and the effective loading and dimensions are modified, in accordance with previous discussion, if negative deflections are discovered at the ends of the slab.

The form of the computations for shear and moment at a particular section in the floor slab depends on whether, or not, the effective span has been modified and if so, on the location of the particular section relative to the point of zero reactive pressure. If the section is outside the region of compressive reactive pressures, shear and moment are computed by statics. If the section is within the region of compressive reactive pressures, shear and moment are computed by the finite length, elastic beam relations previously developed. For example, in Figure 32 statical relations would be used at section 1, and elastic beam relations would

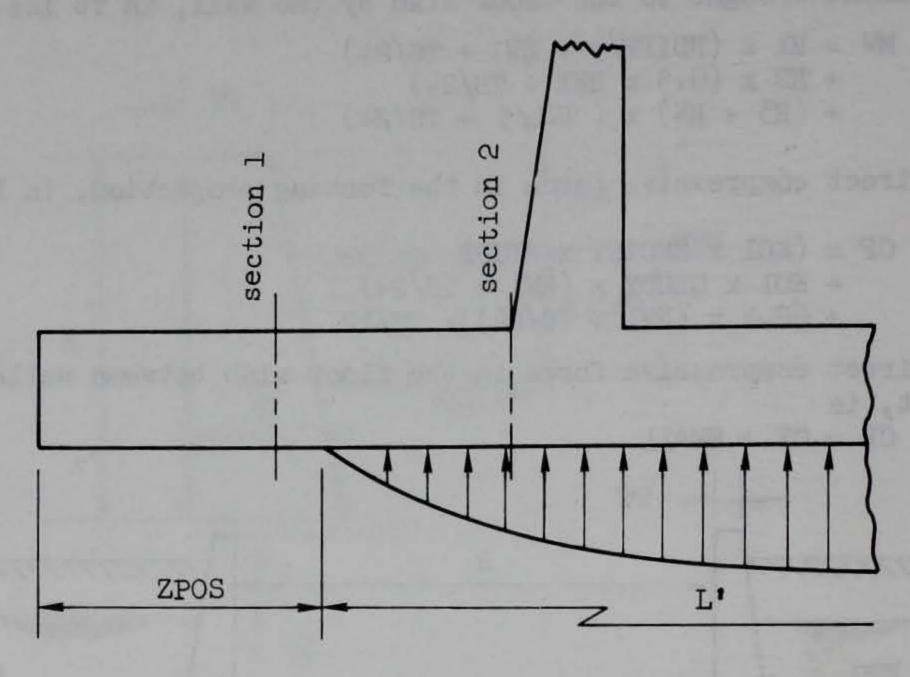


Figure 32. Determination of form of shear and moment computations.

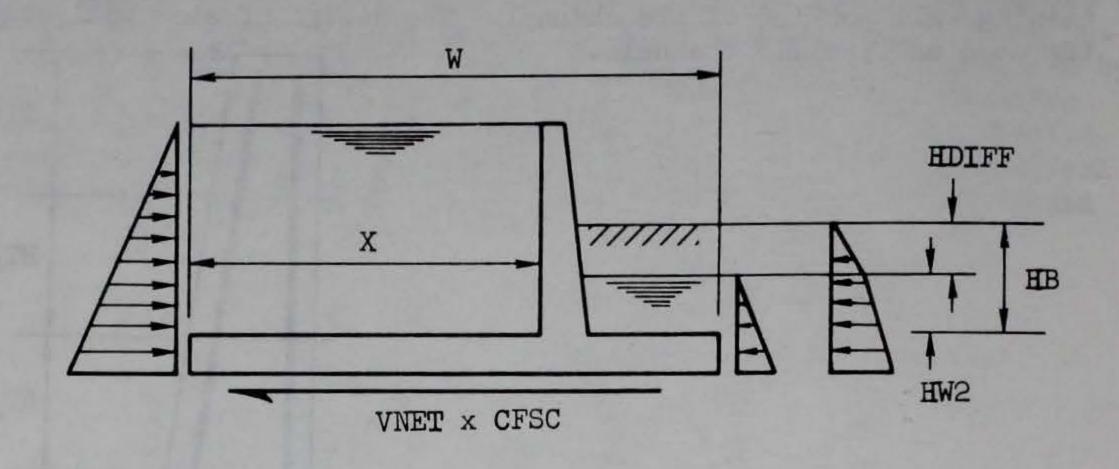
be used at section 2. The direct compressive force is either CF or CB depending on the location of the section under consideration. The effective depth of the section is (TS - 3.5) for positive moment, that is, moment producing tension on the bottom of the slab, and (TS - 2.5) for negative moment. If the need of compression steel is indicated, the slab thickness, TS, is incremented and the slab steel design is begun again. When TS is satisfactory, the required steel area and spacing are computed for the section. For negative moment, a check is made to determine if the top steel qualifies as "top bars" with regard to spacing of steel for bond.

Steel areas and spacings are determined for the thirty points defined in Figure 33. A cut-off or key wall is designed at the end of the toe when necessary to ensure adequate stability against sliding of the retaining wall portion of the channel. The design of stem wall steel is the same as type TLF channels.

the same as type TIF channels. HT/4HT/4HT/4HT/49 10 27 19 28 24 26 18 20 14 1 16 29 FTG/2 FTG/2 X/2 XP/2X/2 XP/2

Figure 33. Type T3F steel layout and point locations.

Sliding stability of base. IC#2 produces critical conditions for sliding of the retaining wall portions of the channel. Often the base develops adequate sliding resistance without using a key wall. This check is made first. A factor of safety against sliding of 1.5 is required. The backfill is assumed capable of developing passive lateral pressures. The lateral pressure ratio is KPASS. The coefficient of friction between concrete and soil is CFSC. A waterstop between the pavement slab and the base is assumed effective at the elevation of the bottom of the base slab, thus the horizontal force due to the water in the channel, in lbs per ft, is


 $HIN = 0.5 \times 62.4 \times (HT + TS/12)^2$

For the case shown by Figure 34, the maximum external lateral forces, in 1bs per ft, are

 $HI = 0.5 \times GMOIST \times KPASS \times (HDIFF)^2$

H2 = GMOIST x KPASS x HDIFF x (HW2 + TS/12)

 $H3 = 0.5 \times GBUOY \times KPASS \times (HW2 + TS/12)^2$ $H4 = 0.5 \times 62.4 \times (HW2 + TS/12)^2$

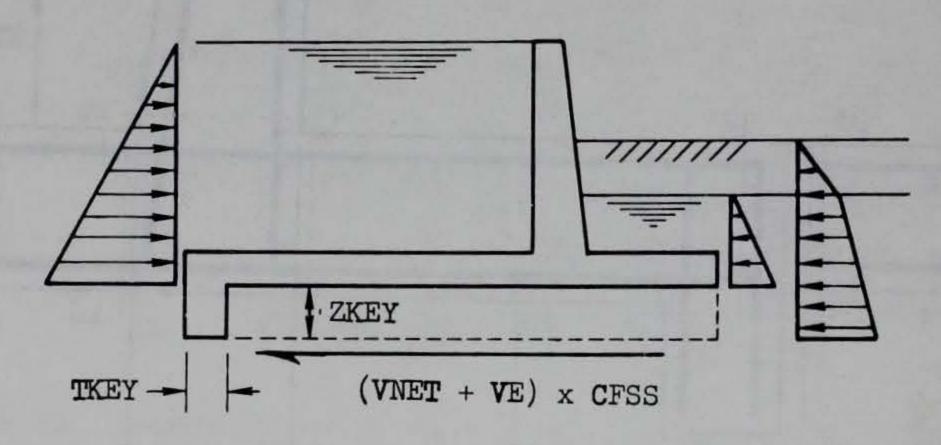


Figure 34. Sliding of type T3F retaining wall portion.

The algebraic sum of the vertical forces acting on the base portion, in lbs per ft, is

The sum of the resisting horizontal forces, in lbs per ft, is

$$HR = H1 + H2 + H3 + H4 + VNET x CFSC$$

If

HR/HIN ≥ 1.5

the base does not require a key wall. If

HR / HIN < 1.5

a key wall is required. The depth of the key wall is set initially at 1.0 ft; it will be incremented as necessary to obtain an adequate sliding safety factor. The key wall causes an additional lateral force, in lbs per ft, of

HKEY = (KPASS x GMOIST x HDIFF + KPASS x GBUOY x (HW2 + TS/12 + 0.5 x ZKEY)) x ZKEY and an additional vertical force, in 1bs per ft, taken as

VE = GBUOY x ZKEY x W

Now

$$HR = HL + H2 + H3 + H4 + HKEY + (VNET + VE) x CFSS$$

where CFSS is the coefficient of friction of soil to soil (equals tangent of angle of internal friction).

If

HR/HIN ≥ 1.5

the current ZKEY is adequate. If

ZKEY must be incremented and another check made. Note that vertical and lateral water forces are not included in the depth ZKEY. Although present, they cancel and hence do not effect the ratio of resisting to sliding forces.

With ZKEY known, the thickness, TKEY, of the key wall is determined as follows. The force acting on the key wall over the depth, ZKEY, is very uncertain. It is taken, in lbs per ft, as

$$FKEY = ((VNET + VE) \times CFSS + HKEY)/1.5$$

Thus, on taking shear critical at the face of the support, the required thickness, in inches, is

TKEY =
$$FKEY/840 + 3.5$$

The moment at the face of the support of the key wall is taken, in ft lbs per ft, as

$$MKEY = FKEY \times ZKEY/2$$

hence the required steel area at point 30 may be determined. The required spacing at point 30, in inches, is

$$S(30) = 10,015 \times (TKEY - 3.5)/FKEY$$

Base slab steel. Bearing pressures at the toe and heel of the base slab, Pl and P2, are computed as described under the preliminary design of type T3F channels. A possible resultant pressure diagram for LC#2

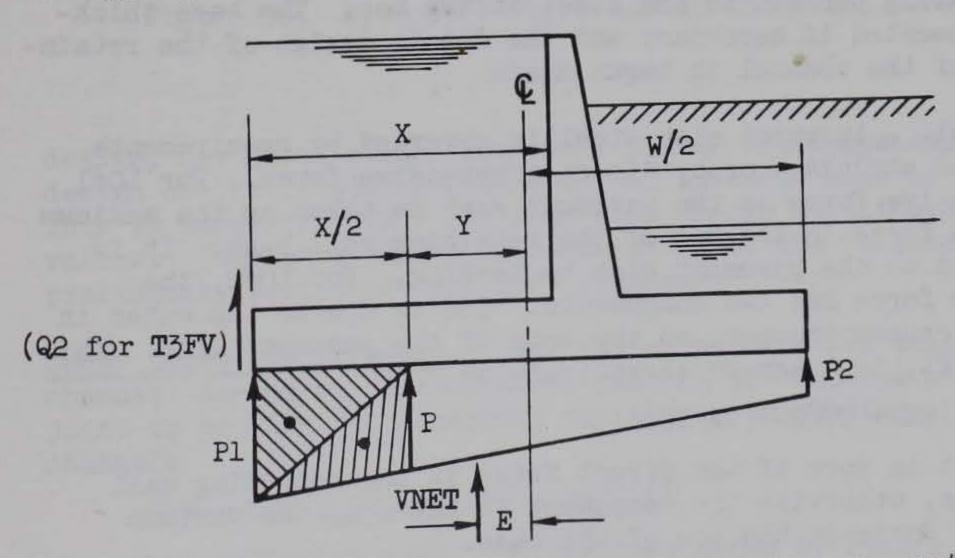


Figure 35. Contact pressure distribution for LC#2.

is shown in Figure 35. Shear, moment, and direct force are computed at the various selected sections. For example at X/2 in the toe for LC#2

$$P = (VNET/W)(1 + 12 \times E \times Y/(W \times W))$$

then the components of shear, in lbs per ft, are

 $V1 = 0.5 \times P1 \times (X/2)$

 $V2 = 0.5 \times P \times (X/2)$

 $V3 = (-62.4 \times HT - 12.5 \times TS + 62.4 \times (HW2 + TS/12)) \times (X/2)$

so the total shear on the section is

VS = V1 + V2 + V3.

The moment on the section, in ft lbs per ft, is

$$MS = V1 \times (2/3) \times (X/2) + V2 \times (1/3) \times (X/2) + V3 \times (X/2)$$

Components of the direct force, in 1bs per ft, are

 $HI = 0.5 \times GMOIST \times KO2 \times (HDIFF)^2$

 $H2 = GMOIST \times KO2 \times HDIFF \times (HW2 + TS/12)$

 $H3 = 0.5 \times GBUOY \times KO2 \times (HW2 + TS/12)^2$

 $H4 = 0.5 \times 62.4 \times (HW2 + TS/12)^2$

 $H5 = 0.5 \times 62.4 \times (HT)^2$

If a key wall is used, the direct force on the section for LC#2 is taken as

NS = HL + H2 + H3 + H4 - H5

When the load condition is LC#1 or if there is no key wall, the frictional force is assumed uniformly distributed along the base. Hence the direct force, with no key wall, is

$$NS = (X/2)(H1 + H2 + H3 + H4 - H5)/W$$

If the moment, MS, is positive the steel area and spacing pertain to the steel at the bottom of the slab at this section. If MS is negative, the steel area and spacing pertain to the steel at the top. The base thickness, TS, is incremented if necessary and the detail design of the retaining wall portion of the channel is begun again.

Pavement slab steel. Pavement slab steel is governed by requirements for temperature and shrinkage or by direct compressive force. For IC#1 the direct compressive force in the pavement slab is taken as the maximum direct compressive force in the toe of the retaining wall base. It is assumed transferred to the pavement slab by bearing. For IC#2, the direct compressive force has two components. One is due to the water in the channel which causes pressure on the ends of the pavement slab. This force, in lbs per ft, is taken conservatively as

$$NSHT = 62.4 \times (HT + TP/24)(TP/12)$$

The other component is zero if the direct force in the retaining wall base toe is tension, otherwise the component is taken as the maximum direct compression force in the toe of the base.

Type T3FV

Steel areas and spacings are determined for the twenty eight points defined in Figure 36. The design of the stem wall is the same as type TIF channels. The remaining detail design must take account of the shear transmitted between the retaining wall bases and the pavement slab. If any thickness TB, TS, or TP, is incremented during detail

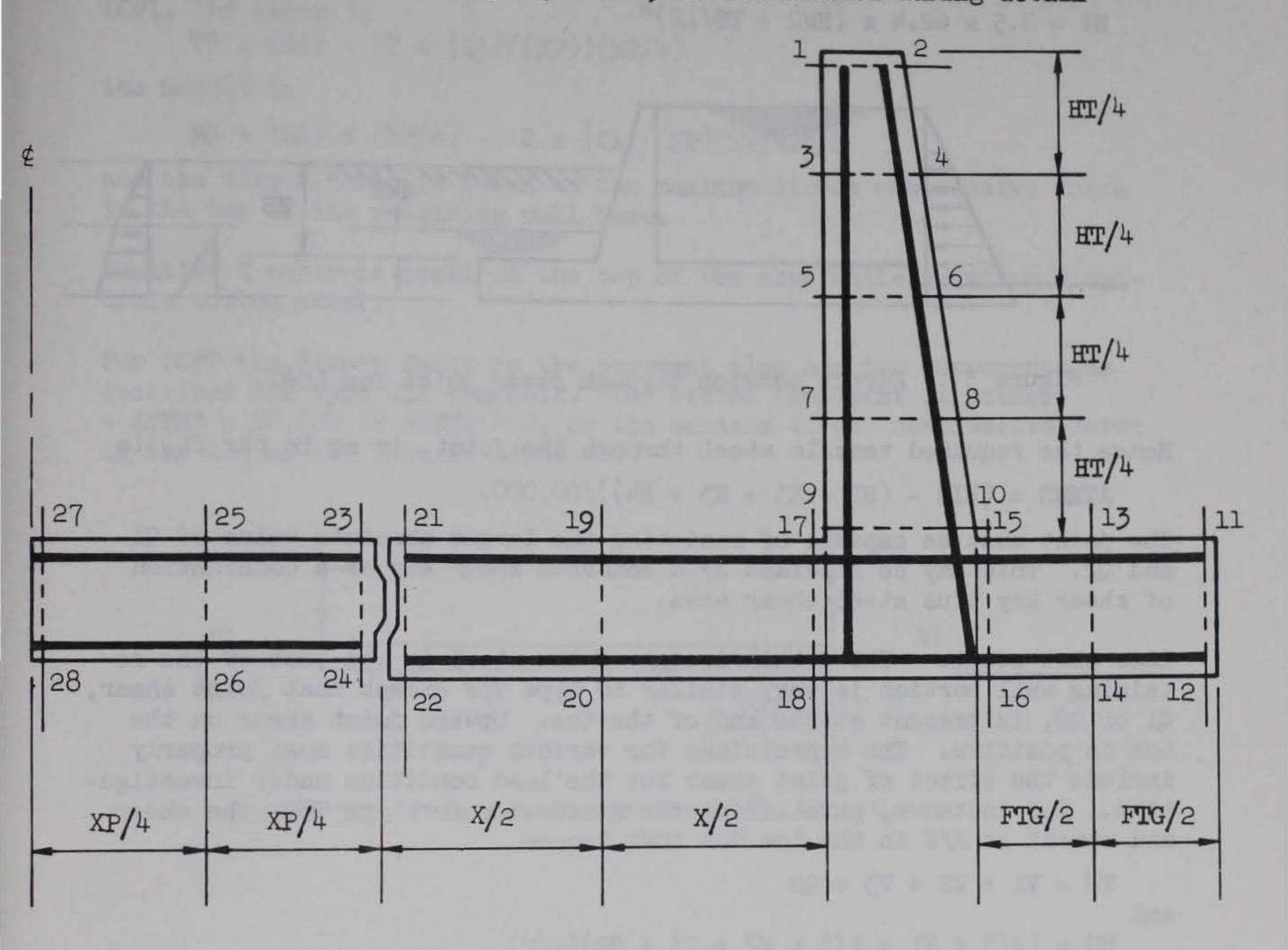


Figure 36. Type T3FV steel layout and point locations.

design, new joint shear values, Q1 and Q2 are computed and the detail design of the retaining wall base and pavement slab is performed again. This is necessary since any dimension change invalidates current Q values. The new Q values are determined by the relations given under preliminary design of type T3FV channels.

Shear joint requirements. Instead of using a key wall, type T3FV channels depend on tension steel passing through the mid-depth of the joint to provide the necessary resistance to sliding. As with type T3F channels

 $HIN = 0.5 \times 62.4 \times (HT + TS/12)^2$

the other lateral forces, for the case shown by Figure 37, are

 $HI = 0.5 \times GMOIST \times KO2 \times (HDIFF)^2$

 $H2 = GMOIST \times KO2 \times HDIFF \times (HW2 + TS/12)$

 $H3 = 0.5 \times GBUOY \times KO2 \times (HW2 + TS/12)^2$

 $H4 = 0.5 \times 62.4 \times (HW2 + TS/12)^2$

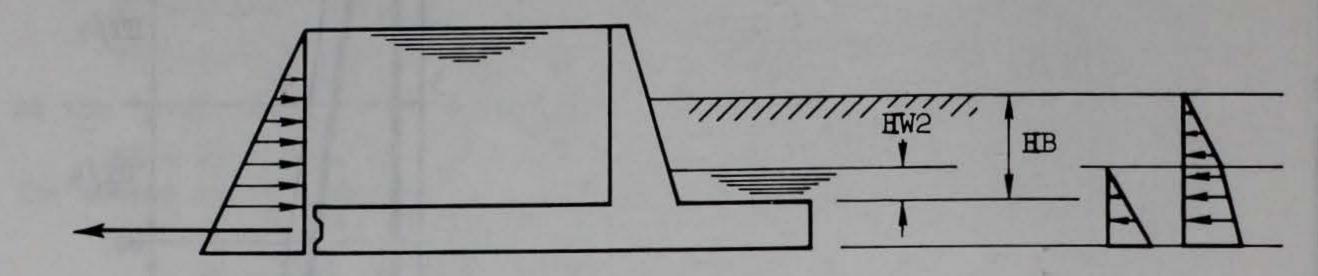


Figure 37. Direct tension through shear joint for LC#2.

Hence the required tensile steel through the joint, in sq in per ft, is ATENS = (HIN - (HI + H3 + H3 + H4))/20,000.

The joint must be capable of resisting the larger absolute value of Q1 and Q2. This may be provided by a concrete shear key or a combination of shear key plus steel shear area.

Base slab steel. The detail design of the steel in the base of the retaining wall portion is very similar to type T3F except that joint shear, Q1 or Q2, is present at the end of the toe. Upward joint shear on the toe is positive. The expressions for various quantities must properly include the effect of joint shear for the load condition under investigation. For instance, paralleling the discussion for type T3F, the shear and moment at X/2 in the toe for IC#2 become

$$VS = V1 + V2 + V3 + Q2$$
 and

 $MS = (2/3 \times V1 + 1/3 \times V2 + V3 + Q2)(X/2).$

The expression for direct force on the section depends on whether the joint between the base slab and pavement slab requires tensile steel through it or not. If tension steel is not required, a frictional force is assumed uniformly distributed along the base. If tension steel is required, no frictional force along the base is assumed. Hence NS is either

$$NS = (X/2)(H1 + H2 + H3 + H4 - H5)/W$$

or

$$NS = HL + H2 + H3 + H4 - H5$$

If the shear joint requires tension steel, then the required steel area for points (21) and (22), in sq in per ft, is taken as

$$A(21) = A(22) = -0.5 \times NS/20,000$$

The steel spacing at points (21) and (22), is governed by the signs and absolute magnitudes of Q1 and Q2. Positive Q determines spacing at point (22) whereas negative Q determines spacing at point (21).

Pavement slab steel. The pavement slab of type T3FV channels is subject to bending moment and to shear due to the transfer of joint shears. The pavement slab is assumed to act as a uniformly loaded, simple span between joints. The uniform loading is $2 \times |Q|/(XP)$. Thus at XP/4 for LC#1, the shear is

$$VS = |Q1| - (2 \times |Q1|/(XP))(XP/4)$$

the moment is

$$MS = |Q1| \times (XP/4) - 2 \times |Q1|/(XP)(XP/4)^2/2$$

and the direct force is taken as the maximum direct compressive force in the toe of the retaining wall base.

Positive Q controls steel on the top of the slab while negative Q controls bottom steel.

For LC#2 the direct force in the pavement slab has two components as described for type T3F channels. The second component is either - ATENS x 20,000 if ATENS > 0, or the maximum direct compressive force in the toe of the base if ATENS = 0.

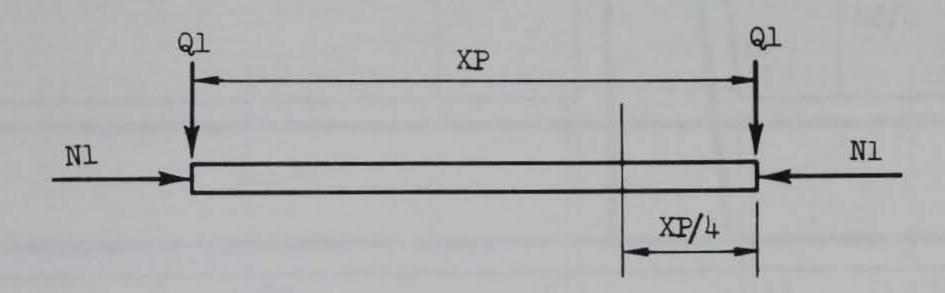
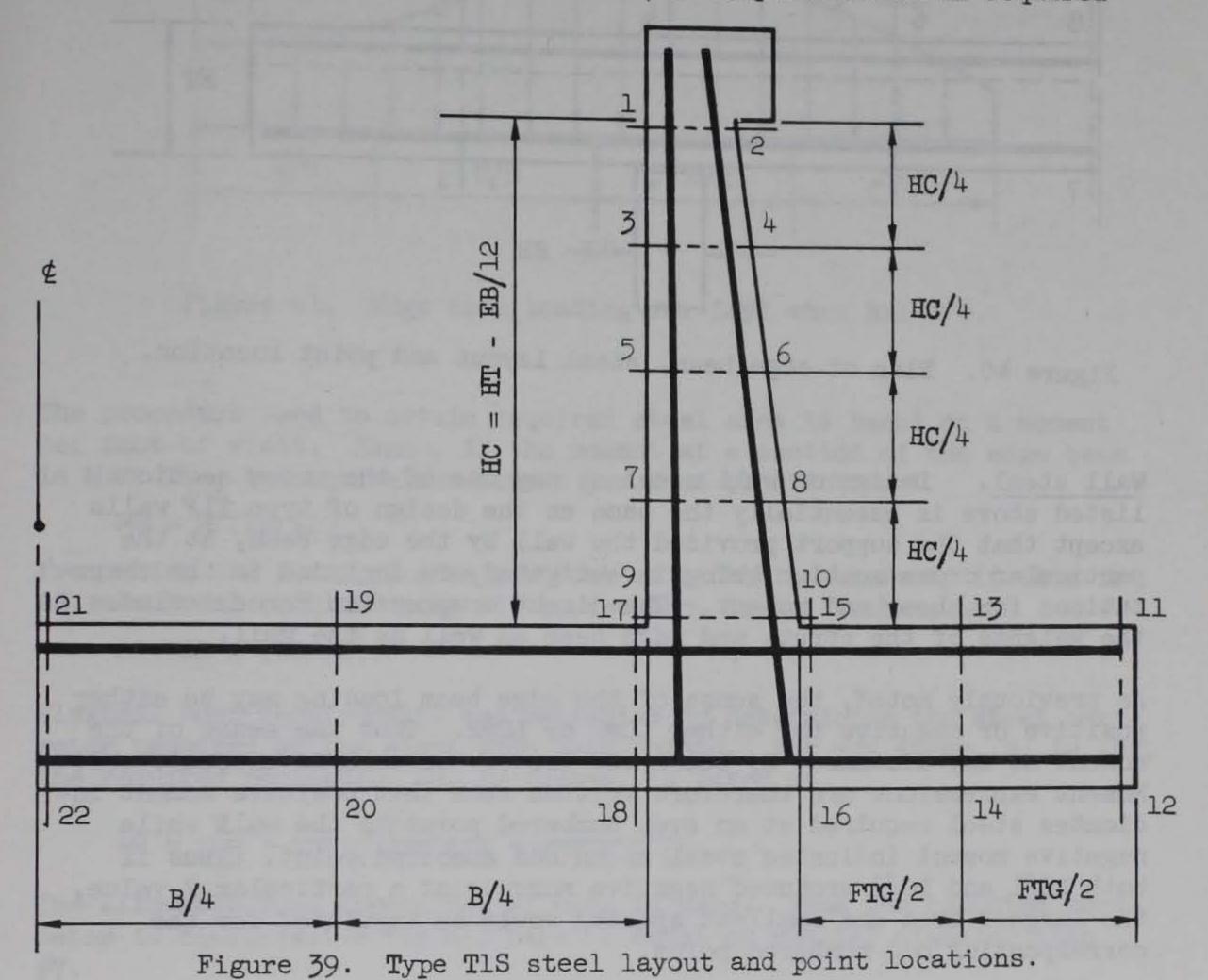



Figure 38. Pavement design for LC#1, Q1 > 0.

Type TlS

Steel areas and spacings are determined for the twenty two points, on the wall and floor slab, defined in Figure 39. Steel areas and required perimeters are also determined for the eight points, on the edge beam, defined in Figure 40. Tension and/or compression steel required

in the struts is determined during preliminary design.

Wall and floor slab steel requirements are determined at five cross sections along the longitudinal span between transverse channel joints. These five sections are (1) the sections immediately adjacent to the transverse channel joints, (2) the sections at the struts, and (3) the section mid way between the struts. Rather than list all five (three because of symmetry) sets of steel requirements, one composite set is reported. This set consists of the maximum required area and minimum allowable spacing corresponding to each of the twenty two points in the composite section.

Whenever, in the process of detail design, it is necessary to increment either TB, TS, or ET, new edge beam loads are computed, new struts are designed, and the detail design is begun again. This is necessary since any dimension change alters existing spans, loads, and relative stiffnesses, all of which affect edge beam loading.

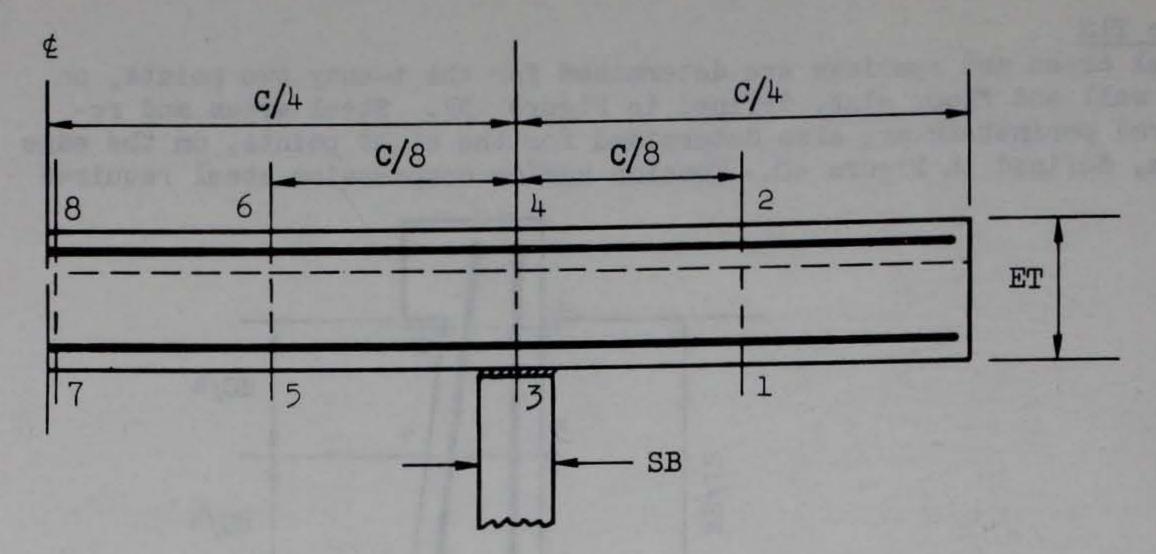


Figure 40. Plan of edge beam, steel layout and point location.

Wall steel. Design of wall steel at any one of the cross sections listed above is essentially the same as the design of type TIF walls except that the support provided the wall by the edge beam, at the particular cross section being investigated, is included in the computations for shear and moment. The direct compression force includes the weights of the struts and edge beam as well as the wall.

As previously noted, the sense of the edge beam loading may be either positive or negative for either LC#l or LC#2. Thus the sense of the moment at any distance, Z, below the top of the wall is unpredictable. Moment expressions are therefore written such that positive moment indicates steel required at an even numbered point in the wall while negative moment indicates steel at an odd numbered point. Thus if both LC#l and LC#2 produced negative moments at a particular Z value, the largest area and smallest spacing would be tabulated for the corresponding odd numbered point.

Floor slab steel. The design of floor slab steel at any cross-section is essentially the same as the design of type TIF floor slabs. It is only necessary to modify the expressions for MW, NW, and HWALL, see page 42, to include the effects of edge beam loadings and weights. Assume a positive edge beam loading, RXI, in 1bs per ft, is added to Figure 31. Then the term -RXI x (HT - EB/24 + TS/24) is added to the expression for MW and the term -RXI is added to the expression for HWALL. The value of RXI is that at the particular cross section under investigation. The term 150(ET - TT) x EB/144 plus a term accounting for strut weight is added to the expression for NW. With these changes, the analysis proceeds as described for type TIF channel floor slabs.

Edge beam steel. A summation process is used to obtain the shears and moments at the one-eighth points of the edge beam span. Either load condition can produce moments of either sense at any section of the span. Hence an approach similar to that indicated for the wall steel is used here to determine critical steel requirements at the odd and even numbered points shown in Figure 40.

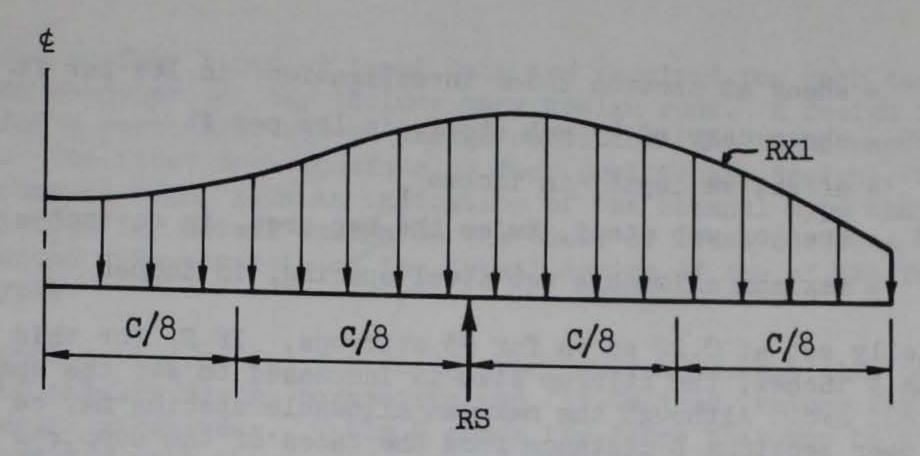


Figure 41. Edge beam loading for LC#1 when RX1 > 0.

The procedure used to obtain required steel area is based on a moment per foot of width. Hence, if the moment at a section of the edge beam is M ft lbs, the equivalent moment per foot of width is

$$ME = M/(EB/12)$$

from which the required area per foot of width is obtained, if this is AE, the total required area at the section, in sq. inches, is

$$A = AE \times (EB/12)$$
.

Flexural bond requirements are satisfied by determining the steel perimeter required at the eight edge beam points. For any shear, V, in lbs, the required perimeter, Σo , in inches, is taken as

$$\Sigma_0 = \frac{V}{ujD} = \frac{V}{347 \times 7/8 \times D} = \frac{V}{303.6 \times D}$$

The allowable bond stress for #7 bars is used. Thus the computed perimeter is conservative for all bars of equal or smaller diameter than #7.

Edge beam stirrups. When edge beam web steel is required for diagonal tension, the maximum shear stress is not allowed to exceed $3\sqrt{f_c^*} = 190$ psi. EB may need to be incremented, and ET recomputed, to hold the shear stress to this limit. Maximum allowable spacing of the web steel is then the smallest of:

$$S = D/2$$
 ACI 1206(a)
 $S = AV/(0.0015 \times EB)$ ACI 1206(b)
 $S = 200000 \times AV \times D/VRP$ ACI 1203

in which

$$VRP = V - 70 \times EB \times D$$

where

V = shear at section under investigation, in lbs per ft

VPR = shear carried by web steel, in lbs per ft

D = effective depth, in inches

AV = area of web steel, twice the bar area, in sq inches

S = maximum allowable web steel spacing, in inches

AV is initially set at 0.22 sq in for #3 stirrups. If S, for this area, is less than 4 inches, the stirrup size is increased to #4, the spacing is recomputed, etc. Although the maximum allowable spacing may be computed at either sections D distance from the faces of the supports or the section at the centerline of the support, the spacing is conservatively reported as that at D from the faces.

The web steel layout may be selected by consideration of a diagram similar to that of Figure 42. The ordinates of the diagram are required values of AV/S. They may be assumed to vary linearly from zero to a maximum over the supports. The ordinate at D from the faces of the strut is obtained from the required stirrup size and spacing computed above.

Figure 42. Layout of edge beam stirrups.

Input

From one to four lines of input data are required for each design run. A given computer job may include many design runs. A design run is made for a particular set of design conditions and takes one of two forms. The first form consists of four preliminary designs, one for each channel type, plus an indication of the channel type that might be selected for detail design on the basis of least concrete volume. The second form consists of the detail design of one of the four channel types.

The input data provided per design run consists essentially of values for the primary design parameters and, if desired, values for the secondary design parameters. Table 2 shows the lines that may be provided per run together with the specific parameters contained on the four lines.

Table 2. Input values per design run

B HWl	HT HW2	HB HWP	DESIGN	DEFAULT	1	DEFAULT KO1	2	DEFAULT KO2	3	FLOATR
MAXFTG	JOINTS	MFOUND	GNOISI	COAL		VOT		NUZ		FLOAIN
CFSC	CFSS	KPASS								

The first line contains the primary parameters B, HT, and HB and is always required. If DESIGN = 0, the four preliminary designs are performed. If DESIGN = 1, 2, 3, or 4, then the detail design of type TlF, T3F, T3FV, or TlS is performed. (If desired, the Design Unit can run the detail design of the structural channel type indicated from the preliminary designs. However, it will often be a better procedure if the concerned designer will take a critical look at the preliminary design results before a detail design is run.)

If DEFAULT 1 > 0, the next line of input data must be provided, it contains values for HWl through FLOATR as indicated. If DEFAULT 1 = 0, this line of input data must not be included, default values for the eight parameters will be provided by the computer.

If DEFAULT 2 > 0, the next line containing values for MAXFTG, JOINTS, and MFOUND must be provided. If DEFAULT 2 = 0, default values will be used and the line must be omitted, similarly for DEFAULT 3 and the line containing CFSC, CFSS, and KPASS.

Thus the number of lines of data that must be provided per design run will vary depending on whether the default values are satisfactory or whether the user wishes to supply some or all of the secondary parameter values. Note that although various lines may be omitted, those supplied must be complete and in the order indicated.

Output
The output for each design run, whether preliminary designs or a detail design, gives the parameter values assumed for that run. These parameters are listed and identified at the beginning of the design.

Preliminary designs. Preliminary design results are listed in the order TlF, T3F, T3FV, and TlS, see Figure 43. Output values consist of distances, thicknesses, and concrete volumes in cubic yards per longitudinal foot of channel. The thicknesses and distances, in inches and feet, may be identified by reference to various figures:

for type T1F see Figures 5 and 6 for type T3F see Figures 5, 7, and 9 for type T3FV see Figures 5, 7, and 9 for type T1S see Figure 13.

Detail Designs. The output for the detail design of any channel type includes three segments: a repeat of the preliminary design results, a similar output giving final dimensions (this will often be identical to the preliminary design values), and a listing of steel requirements giving required area and maximum allowable spacing in sq. in. per ft and inches.

Type TlF. - See Figures 44 and 45 for output examples, see Figure 29 for the steel locations listed.

Type T3F. - See Figures 46 and 47 for output examples, see Figure 33 for the steel locations listed. Note that a key wall is required in Figure 47, the required depth of the wall is given in ft and the required thickness of the wall is given in inches.

Type T3FV. - See Figures 48 and 49 for output examples, see Figure 36 for the steel locations listed. Note that the shear forces transmitted across the shear joint are given in 1bs per ft for LC#1 and LC#2. The tension steel area, in sq inches per ft, through the joint is also given.

Type TlS. - See Figures 50 and 51 for output examples, see Figures 39 and 40 for wall and edge beam steel locations. Required strut steel areas, in sq inches, are given for tension and compression. Required edge beam web steel is given by bar size and spacing in inches. Required edge beam longitudinal steel areas, in sq inches, and perimeters, in inches, are given for eight locations.

RECTANGULAR STRUCTURAL CHANNEL
CROSS SECTION DESIGN
ELASTIC ANALYSIS AND WORKING STRESS DESIGN ARE USED

SPECIAL DESIGN PREPARED BY THE DESIGN UNIT AT HYATTSVILLE. HD.

EXAMPLE SPECIAL DESIGNS FOR STRUCTURAL CHANNEL TECHNICAL RELEASE
JOAN FOR ESA ----- 7/77

		DESTEN	PARAMET	FOC					
R-	24.00			CANADA CONTRACTOR OF THE PARTY	1927 1977				
		701-	12.00	K01=	0.80	FLOATR=	1.50	MFOUND=	100000.
	15.00	U#5=	1.50	K02=	0.20	JOINTS=	40.00	GMOIST=	
HB=	15.00	HWP=	12.00	The second secon	1.25	MAXFTG=		CONTROL PARTICION	140.
				CFSC=	0.35	CFSS=		0341-	140.
		PRELIM	INARY DE	SIGNS FO	LLOW				
		TYPE TI	F STRUC	TURAL CH	ANNEL -	TRIAL VAL	HEC		
TT=	10.00	TA=	19.00	TS-	24 00	FTG PROJ	LUES		
	1	E DE COMPANIE		13-	24.00	FIG PROJ	=10.60	QUANT=	5.015
		TYPE TO	F STRUC	TURAL CH	ANNEL -	TRIAL VAL	UES		
X=	10.00	TP=	90.00	XP=	4.00		-0-3		
TT=	10.00	T8=	19.00	TS=	20.00	FTG PROJ	9.00	QUANT=	5.084
									M11222
900	120 5000	TYPE TO	BFV STRU	CTURAL CI	HANNEL	- TRIAL V	ALUES		
	3.00	TPE	32.00	XP=	18.00				
TT=	10.00	TB=	19.00	TS=	20.00	FTG PROJ	=11.60	QUANT=	5.208
		TYPE TI	S STRUC	TURAL CH	ANNE! -	TRIAL VAL	1156		
SR=	12.00	ST=	15-00	FRE	15.00	ET=	26 00		
		TR=	21.00	TS=	22.00	FTG PROJ	-10.40	QUANT=	
107					22.00	FIG FROS	-10.40	GUANIE	4.990
					742: 022 Tes	AND THE PARTY NAME OF THE			
			* * * *	• • • •		• • • • •			
TYPE	TIS STR	UCTURAL (CHANNEL	MIGHT BE	SELECT	ED FOR DE	TAIL DE	SIGN. QUA	NT= 4.990
HEER	*******		[ND PRELI	MINARY	DESIGNS =	******	********	

RECTANGULAR STRUCTURAL CHANNEL CROSS SECTION DESIGN ELASTIC ANALYSIS AND WORKING STRESS DESIGN ARE USED

SPECIAL DESIGN PREPARED BY THE DESIGN UNIT AT HYATTSVILLE. MD. FOR

EXAMPLE SPECIAL DESIGNS FOR STRUCTURAL CHANNEL TECHNICAL RELEASE

JOAN FOR ESA ----- 7/77

		DESIGN	PARAMET	ERS					
8=	24.00	HW]=	0.0	K01=	0.80	FLOATR=	1.50	MFOUND=	100000
HT=	16.00	HMS=	0.0	K02=	0.20	JOINTS=	40.00	GMOIST=	120
H8=	15.00	HWP=	0.0	KPASS=	1.25	MAXFTG=	12.00	GSAT=	140
212				CFSC=		CFSS=	0.55		
		PRELIMI	NARY DE	SIGNS FO	LLOW				
						TRIAL VAL			
TT=	10.00	TR=	18.00	. TS=	19.00	FTG PROJ	- 0.0	QUANT=	2.966
						TRIAL VAL	UES		
X=	12.00			XP=	0.0	SCHOOL STREET	21 22	NAME OF THE OWNER, WHEN	
TT=	10.00	T8=	18.00	TS=	19.00	FTG PROJ	= 2.80	QUANT=	3.294
		TYPE T3	FV STRU	CTURAL CI	HANNEL	- TRIAL V	ALUES		
X=	6.00	TP=	11.00	XP=	12.00			12112002	2. 2.2.2
	10.00	TR=	18.00	TS=	19.00	FTG PROJ	= 4.40	QUANT=	3.186
		TYPE TI	S STRUC	TURAL CH	ANNEL -	TRIAL VA	LUES		
SR-	12.00	ST=	15.00	ER=	15.00	ET=	23.00	100000000000000000000000000000000000000	a areas
	10.00		12.00		13.00	FTG PROJ	= 0.0	QUANT=	2.285
50EV 1725									

TYPE TIS STRUCTURAL CHANNEL MIGHT BE SELECTED FOR DETAIL DESIGN. QUANT= 2.285

Figure 43. Computer output, preliminary designs.

RECTANGULAR STRUCTURAL CHANNEL
CROSS SECTION DESIGN

ELASTIC ANALYSIS AND WORKING STRESS DESIGN ARE USED

SPECIAL DESIGN PREPARED BY THE DESIGN UNIT AT HYATTSVILLE, MD. FOR

EXAMPLE SPECIAL DESIGNS FOR STRUCTURAL CHANNEL TECHNICAL RELEASE JOAN FOR ESA ----- 2/29/72

B= 24.00 HT= 16.00 HB= 15.00	DESIGN PARAMETERS HW1= 0.0 K01= 0.80 HW2= 0.0 K02= 0.20 HWP= 0.0 KPASS= 1.25 CFSC= 0.35		MFOUND= 100000. GMOIST= 120. GSAT= 140.
	DESIGN OF SPECIFIED TYPE FOLL	ows	
TT= 10.00	TYPE TIF STRUCTURAL CHANNEL - TB= 18.00 TS= 19.00		QUANT= 2.966
TT= 10.00	TYPE TIF STRUCTURAL CHANNEL - TB= 18.00 TS= 20.00		QUANT= 3.049
WALL	STEEL REQUIREMENTS		
	A(1) = 0.24 A(2) = 0.24	S(1)= 18.00 S(2)= 18.00	
	A(3) = 0.29 A(4) = 0.14	S(3)= 18.00 S(4)= 18.00	
	A(5)= 0.34	S(5)= 18.00	
	A(6) = 0.27 A(7) = 0.55	S(6)= 18.00 S(7)= 18.00	
	A(8) = 0.99	S(7)= 18.00 S(8)= 18.00	
	A(9)= 1.17	S(9)= 18.00	
BASE	A(10)= 2.31	S(10)= 14.37	
	A(11) - A(16) DO NOT EXIST	SINCE FTG=0	
	A(17) = 1.45	S(17) = 18.00	
	A(18) = 2.16 A(10) = 1.47	S(18)= 18.00	
	A(19) = 1.47 A(20) = 1.33	S(19) = 18.00 S(20) = 18.00	
	A(21)= 1.34	S(20) = 18.00 S(21) = 18.00	
	A(22) = 0.90	S(22) = 18.00	

Figure 44. Computer output, type TIF detail design.

====== END T1F DESIGN ========

RECTANGULAR STRUCTURAL CHANNEL CROSS SECTION DESIGN ELASTIC ANALYSIS AND WORKING STRESS DESIGN ARE USED

SPECIAL DESIGN PREPARED BY THE DESIGN UNIT AT HYATTSVILLE, MD.

EXAMPLE SPECIAL DESIGNS FOR STRUCTURAL CHANNEL TECHNICAL RELEASE
JOAN FOR ESA ----- 7/77

	DESIGN PARAMETERS		
R= 24.00	Hw1= 12.00 KO1= 0.80	FLOATR= 1.50	MEDIND- 100000
HT= 16.00	HW2= 1.50 KO2= 0.20		MFOUND= 100000.
HB= 15.00	HWP= 12.00 KPASS= 1.25	JOINTS= 40.00	
	CFSC= 0.35		GSAT= 140.
	DESIGN OF SPECIFIED TYPE FOLL	OWS	THE NAME OF STREET
	TYPE TIF STRUCTURAL CHANNEL -	TOTAL VALUES	
TT= 10.00	TB= 19.00 TS= 24.00		QUANT= 5.015
			3.015
10 00	TYPE TIF STRUCTURAL CHANNEL -	DETAIL DESIGN	
TT= 10.00	TR= 19.00 TS= 24.00	FTG PROJ=10.60	QUANT= 5.015
	STEEL REQUIREMENTS		
WALL	SIEEL MEGOTHEMENTS		
Note that the second se	A(1) = 0.24	S(1) = 18.00	
	A(2) = 0.24	S(2) = 18.00	
		5(3) = 18.00	
	A(4)= 0.15	5(4)= 18.00	
	A(5) = 0.35	5(5)= 18.00	
	A(6) = 0.27	S(6) = 18.00	
	A(7) = 0.52	S(7) = 18.00	
	A(8) = 1.05	S(8) = 18.00	
	A(9) = 1.08	S(9) = 18.00	
	A(10) = 2.50	S(10) = 12.86	
BASE			
	A(11) = 0.29	S(11) = 18.00	
	A(12) = 0.29	S(12) = 18.00	
	A(13) = 0.29	S(13) = 18.00	
	A(14) = 0.29	S(14) = 18.00	
	A(15) = 0.84	S(15) = 18.00	
	A(16) = 0.40	S(16) = 18.00	
	A(17) = 0.72	S(17) = 18.00	
	A(18) = 0.39	S(18) = 18.00	
	A(19) = 0.82	S(19) = 18.00	
	A(20) = 0.29	5(20) = 18.00	
	A(21) = 0.80	5(21) = 18.00	
	A(22) = 0.29	5(22) = 18.00	

Figure 45. Computer output, type T1F detail design.

RECTANGULAR STRUCTURAL CHANNEL CROSS SECTION DESIGN ELASTIC ANALYSIS AND WORKING STRESS DESIGN ARE USED

SPECIAL DESIGN PREPARED BY THE DESIGN UNIT AT HYATTSVILLE, MD.

EXAMPLE SPECIAL DESIGNS FOR STRUCTURAL CHANNEL TECHNICAL RELEASE JOAN FOR ESA ----- 2/29/72

B= 24.00 HT= 16.00 HB= 4.00	DESIGN PARAMETE HW1= 0.0 HW2= 0.0 HWP= 0.0	K01= 0.80 K02= 0.20 KPASS= 1.25 CFSC= 0.35	FLOATR = 1.50 JOINTS = 40.00 MAXFTG = 12.00 CFSS = 0.55	MFOUND= 100000. GMOIST= 120. GSAT= 140.
	DESIGN OF SPECI	FIED TYPE FOLL	ows	
			TRIAL WALUES	
X= 10.00	TYPE T3F STRUCT	XP= 4.00	TRIAL VALUES	
TT= 10.00	TB= 16.00		FTG PROJ= 4.60	QUANT= 3.092
	TVDE TTE 07010T		DETAIL DECLOS	
X= 10.00	TYPE T3F STRUCT		DETAIL DESIGN	
TT= 10.00	TB= 16.00		FTG PROJ= 4.60	QUANT= 3.265
	CTEEL DEGULDENE			
WALL	STEEL REQUIREME	NIS		
",,,,,	A(1)= 0.24		S(1)= 18.00	
	A(2) = 0.24		S(2) = 18.00	
	A(3) = 0.28 A(4) = 0.28		S(3) = 18.00 S(4) = 18.00	
	A(5) = 0.28		S(5)= 18.00	
	A(6) = 0.31		S(6)= 18.00	
	A(7) = 0.94		S(7) = 18.00	
	A(8) = 0.35		S(8)= 18.00	
	A(9) = 2.08		S(9)= 17.34	
DACE	A(10) = 0.19		S(10) = 18.00	
BASE	A(11)= 0.20		C(11) - 10 00	
	A(12) = 0.20		S(11) = 18.00 S(12) = 18.00	
	A(13) = 0.20		S(13)= 18.00	
	A(14) = 0.20		S(14)= 18.00	
	A(15) = 0.20		S(15)= 18.00	
	A(16) = 0.65		S(16)= 18.00	
	A(17) = 1.75		S(17)= 18.00	
	A(18) = 0.20		S(18)= 18.00	
	A(19) = 0.70		S(19)= 18.00	
	A(20) = 0.20		S(20)= 18.00	
	A(21) = 0.41		S(21) = 18.00	
	A(22)= 0.20		S(22) = 18.00	
KEY	WALL			
	DEPTH= 2.00			
	THICK= 14.00			
	A(29) = 0.17 A(30) = 0.50		S(29) = 18.00	
PAVE	A(30)= 0.50 MENT SLAB		S(30)= 12.87	
	A(23) = 0.26		S(23)= 18.00	
	A(24) = 0.13		S(24) = 18.00	
	A(25) = 0.26		S(25) = 18.00	
	A(26) = 0.13		S(26)= 18.00	
	A(27) = 0.26 A(28) = 0.13		S(27)= 18.00	
	A(28) = 0.13		S(28)= 18.00	

Figure 46. Computer output, type T3F detail design.

```
RECTANGULAR STRUCTURAL CHANNEL
CROSS SECTION DESIGN
ELASTIC ANALYSIS AND WORKING STRESS DESIGN ARE USED
```

SPECIAL DESIGN PREPARED BY THE DESIGN UNIT AT HYATTSVILLE, MD.

JOAN FOR ESA ----- 2/29/72

```
DESIGN PARAMETERS
 B = 24.00
                HW1= 12.00
                                 KO1= 0.80
                                                                MFOUND= 100000.
                                              FLOATR = 1.50
HT= 16.00
                HW2= 1.50
                                 K02 = 0.20
                                           JOINTS = 40.00
                                                                GMOIST=
                                                                            120.
HB= 15.00
                HWP= 12.00
                               KPASS= 1.25
                                               MAXFTG= 12.00
                                                                  GSAT=
                                                                            140.
                                CFSC= 0.35
                                                 CFSS= 0.55
              DESIGN OF SPECIFIED TYPE FOLLOWS
              TYPE T3F STRUCTURAL CHANNEL - TRIAL VALUES
 X = 10.00
                 TP= 90.00
                                  XP= 4.00
TT= 10.00
                 TB= 19.00
                                  TS= 20.00
                                             FTG PROJ= 9.00
                                                                 QUANT= 5.084
              TYPE T3F STRUCTURAL CHANNEL - DETAIL DESIGN
 X = 10.00
                 TP= 90.00
                                  XP= 4.00
TT= 10.00
                 TB= 19.00
                                  TS= 20.00 FTG PROJ= 9.00
                                                                QUANT= 5.084
              STEEL REQUIREMENTS
        WALL
                 A(1)=
                          0.24
                                              S(1) = 18.00
                 A(2) = 0.24
                                              S(2) = 18.00
                 A(3) =
                          0.29
                                              S(3) = 18.00
                                              S( 4)= 18.00
                 A( 4)=
                          0.15
                 A(5) =
                                              S(5) = 18.00
                          0.35
                          0.27
                 A(6) =
                                              S(6) = 18.00
                 A(7) =
                                              S(7) = 18.00
                          0.52
                          1.05
                                              S(8) = 18.00
                    8)=
                                              S(9) = 18.00
                 A( 9)=
                          1.08
                 A(10) =
                                              S(10) = 12.86
                          2.50
        BASE
                 A(11) = 0.24
                                              S(11) = 18.00
                                              S(12) = 18.00
                 A(12)=
                          0.24
                                              S(13) = 18.00
                 A(13) =
                          0.28
                                              S(14) = 18.00
                 A(14)=
                          0.24
                                              S(15) = 16.43
                          1.31
                 A(15) =
                                              S(16) = 18.00
                 A(16)=
                          0.58
                                              S(17)= 18.00
                          0.71
                 A(17) =
                                              S(18) = 18.00
                          1.47
                 A(18) =
                                              S(19) = 18.00
                          0.48
                 A(19) =
                                              S(20) = 18.00
                 A(20) =
                          0.27
                                              S(21)= 18.00
                          0.48
                 A(21) =
                                              S(22) = 18.00
                          0.24
                 A(22) =
        KEY WALL NOT REQUIRED
        PAVEMENT SLAB
                                              S(23) = 18.00
                          0.77
                 A(23) =
                                              S(24) = 18.00
                          0.38
                 A(24) =
                                              S(25) = 18.00
                         0.77
                 A(25) =
                                              S(26) = 18.00
                          0.38
                 A(26) =
                                              S(27) = 18.00
                          0.77
                 A(27) =
                                              S(28) = 18.00
                        0.38
                 A(28) =
```

Figure 47. Computer output, type T3F detail design.

======= END T3F DESIGN =======

RECTANGULAR STRUCTURAL CHANNEL

CROSS SECTION DESIGN

ELASTIC ANALYSIS AND WORKING STRESS DESIGN ARE USED

SPECIAL DESIGN PREPARED BY THE DESIGN UNIT AT HYATTSVILLE, MD.

EXAMPLE SPECIAL DESIGNS FOR STRUCTURAL CHANNEL TECHNICAL RELEASE
JOAN FOR ESA ----- 7/77

		J	UAN FOR ESA		,,,,			
		DESIGN PAR	AMETERS					
R=	24.00	HW1= 0.		= 0.80	FLOATR:	= 1.50	MFOUND=	100000.
	16.00	HW2= 0.		2= 0.20	JOINTS:	= 40.00	GMOIST=	120.
	15.00	HWP= 0.		= 1.25	COLUMN TOWNS TO THE PARTY OF TH		GSAT=	140.
			CFSC	= 0.35	CFSS:	= 0.55		
		2551611 05	COCCIETED I	VDE ENL	OME			
		DESIGN OF	SPECIFIED T	TPE FULL	.0 4 5			
		TYPE TSEV	STRUCTURAL	CHANNEL	- TRIAL	VALUES		
X =	6.00		OU XF					
TT=	10.00	TR= 18.	on TS	5= 19.00	FTG PRO	J= 4.40	QUANT=	3.186
		TYPE TREV	STRUCTURAL	CHANNEL	- DETAIL	DESIGN		
X =	6.00		00 XF			TIT MAY		
	10.00		00 TS		FTG PRO.	J= 4.40	QUANT=	3.186
400.	A STREET		100000000000000000000000000000000000000	144 137				
		STEEL KEQU	IKEMENTS					
	WALL				61 11-	10.00		
		A(1)=			S(1)= 1 S(2)= 1			
		A(2)=			S(3) = 1			
		A(3)=						
		A(4)= A(5)=	0.14		S(4)= 1 S(5)= 1			
		A(6)=	0.27		5(6)=			
		A(7)=	0.55		S(7) = 1			
		A(8)=	0.99		5(8)=			
		A(9)=	1.17		S(9) =			
		A(10)=	2.31		S(10) = 1			
	BASE							
		A(11)=	0.23		5(11)=	18.00		
		A(12)=	0.23		5(12)=	18.00		
		A(13)=	0.23		5(13)=			
		A(14)=	0.23		5(14)=			
		A(15)=	0.59		S(15) = 1			
		A(16)=	0.36		5(16)=	18.00		
		A(17)=	1.05		S(17)= 1	18.00		
		A(18)=	1.56		S(18) = 1			
	30	A(19)=	0.57		5(19)=			
		A(20)=	0.40		5(20)=	18.00		
		A(21)=	0.46		5(21)=	18.00		
		A(22)=	0.23		S(22) = 1	18.00		
	SHEAR	CONNECTIO	N					
			NSION STEEL	AREA=	0.31			
			ORCE FOR LO			•03		
			ORCE FOR LO					
	PAVEN	MENT SLAB	HILLIE	1000		32337		
		A(23)=	0.26		S(23) = 1	18.00		
		A(24)=	0.13		5(24)=			
		A(25)=	0.42		5(25)=	18.00		
		A(26)=	0.78		5(26)=	18.00		
		A(27)=	0.71		S(27) = 1	18.00		
		A(28)=	0.99		S(28) = 1	18.00		

Figure 48. Computer output, type T3FV detail design.

65

RECTANGULAR STRUCTURAL CHANNEL
CROSS SECTION DESIGN
ELASTIC ANALYSIS AND WORKING STRESS DESIGN ARE USED

SPECIAL DESIGN PREPARED BY THE DESIGN UNIT AT HYATTSVILLE, MD.

EXAMPLE SPECIAL DESIGNS FOR STRUCTURAL CHANNEL TECHNICAL RELEASE
JOAN FOR ESA ----- 7/77

```
DESIGN PARAMETERS
               HW1= 12.00
 B= 24.00
                               KO1= 0.80 FLOATR= 1.50 MFOUND= 100000.
HT = 16.00
               HW2= 1.50
                               K02 = 0.20
                                            JOINTS= 40.00
                                                            GMOIST=
                                                                       120.
HB= 15.00
               HWP= 12.00
                             KPASS= 1.25
                                            MAXFTG= 12.00
                                                             GSAT=
                                                                       140.
                             CFSC= 0.35
                                            CFSS= 0.55
             DESIGN OF SPECIFIED TYPE FOLLOWS
             TYPE T3FV STRUCTURAL CHANNEL - TRIAL VALUES
X = 3.00
                TP= 32.00
                              XP= 18.00
                TB= 19.00
TT= 10.00
                               TS= 20.00 FTG PROJ=11.60
                                                           QUANT= 5.208
             TYPE T3FV STRUCTURAL CHANNEL - DETAIL DESIGN
                TP= 32.00 XP= 18.00
X = 3.00
TT= 10.00
               TB= 19.00 TS= 20.00 FTG PROJ=11.60 QUANT= 5.208
             STEEL REQUIREMENTS
        WALL
                A(1) = 0.24
                                           S(1) = 18.00
                A( 2) = 0.24
                                           S( 2) = 18.00
                A(3) = 0.29
                                           5(3)= 18.00
                A ( 4) =
                       0.15
                                           S(4) = 18.00
                A( 5)=
                       0.35
                                           S(5) = 18.00
                       0.27
                A( 6)=
                                           S(6) = 18.00
                A( 7)=
                       0.52
                                           5( 7) = 18.00
                A( 8)=
                       1.05
                                           S(8) = 18.00
                A( 9)=
                       1.08
                                           S(9) = 18.00
                       2.50
                A(10) =
                                            S(10) = 12.86
        BASE
                A(11) = 0.24
                                            S(11) = 18.00
                A(12) = 0.24
                                            5(12) = 18.00
                A(13) =
                       0.32
                                            5(13) = 18.00
                A(14)=
                                            S(14) = 18.00
                        0.40
                        1.74
                A(15)=
                                            S(15) = 14.25
                        1.14
                                            S(16) = 18.00
                A(16)=
                A(17)=
                                            S(17) = 18.00
                       0.48
                       0.53
                                            S(18) = 16.85
                A(18)=
                A(19)=
                                           S(19) = 18.00
                       0.48
                                           S(20) = 18.00
                A(20)=
                       0.24
                                            S(21) = 18.00
                A(21)=
                       0.48
                A(22) = 0.24
                                           S(22) = 18.00
        SHEAR CONNECTION
                REQD TENSION STEEL AREA=
                                          0.31
                SHEAR FORCE FOR LC NO.1= 6.5370E+03
                SHEAR FORCE FOR LC NO.2= -1.7764E+03
        PAVEMENT SLAB
                                           5(23) = 18.00
                A(23) = 0.77
                                           5(24) = 18.00
                A(24) = 0.38
                                           S(25) = 18.00
                A(25) = 0.77
                                           5(26) = 18.00
                A(26) = 0.38
                                           S(27) = 18.00
                A(27) = 0.77
                                           5(28) = 18.00
                A(28) = 0.38
```

Figure 49. Computer output, type T3FV detail design.

RECTANGULAR STRUCTURAL CHANNEL
CROSS SECTION DESIGN
ELASTIC ANALYSIS AND WORKING STRESS DESIGN ARE USED

SPECIAL DESIGN PREPARED BY THE DESIGN UNIT AT HYATTSVILLE, MD.

EXAMPLE SPECIAL DESIGNS FOR STRUCTURAL CHANNEL TECHNICAL RELEASE JOAN FOR ESA ----- 2/29/72

B= 24.00 HT= 16.00 HB= 15.00	DESIGN PARAMETERS HW1= 0.0 K01= 0.8 HW2= 0.0 K02= 0.2 HWP= 0.0 KPASS= 1.2 CFSC= 0.3	0 JOINTS = 40.00 5 MAXFTG = 12.00	MFOUND= 100000. GMOIST= 120. GSAT= 140.
	DESIGN OF SPECIFIED TYPE F	OLLOWS	
	TYPE TIS STRUCTURAL CHANNE	I - TRIAL VALUES	
SB= 12.00 TT= 10.00	ST= 15.00 EB= 15.	00 ET = 23.00 00 FTG PROJ = 0.0	QUANT= 2.285
	TYPE TIS STRUCTURAL CHANNE	L - DETAIL DESIGN	
SB= 12.00 TT= 10.00	ST= 15.00 EB= 15. TB= 12.00 TS= 13.	00 ET= 23.00	QUANT= 2.285
	STEEL REQUIREMENTS		
WALL	A(1) = 0.24 A(2) = 0.12 A(3) = 0.86	S(1)= 18.00 S(2)= 18.00 S(3)= 18.00	
	A(4) = 0.67	S(4)= 18.00	
	A(5) = 1.11 A(6) = 0.95	S(5)= 18.00 S(6)= 18.00	
	A(7)= 0.56	S(7)= 18.00	
	A(8) = 0.84	S(8) = 18.00	
	A(9) = 0.29 A(10) = 1.04	S(9)= 18.00 S(10)= 11.46	
BASE		No. of the last of	
	A(11) - A(16) DO NOT EX	IST SINCE FTG=0	
	A(17) = 0.31	S(17)= 18.00	
	A(18) = 1.04	S(18)= 18.00	
	A(19) = 0.42 A(20) = 0.16	S(19)= 18.00 S(20)= 18.00	
	A(21) = 0.39	S(21)= 18.00	
	A(22)= 0.16	S(22)= 18.00	
STRU	T STEEL		
	REQD TENSION STEEL AREA REQD COMPRES STEEL AREA		
EDGE	BEAM STEEL		
	STIRRUPS REQUIRED, USE NO. 3 AT 9.7 IN. C	C	
	AT D DISTANCES FROM FA		
	A(2)= 1.02	P(1) = 1.75 P(2) = 2.10	
	A(3) = 3.64	P(3)= 3.56	
	A(4) = 4.41	P(4)= 4.28	
	A(5) = 0.72 A(6) = 0.86	P(5)= 1.86 P(6)= 2.23	
	A(7) = 3.54	P(6)= 2.23 P(7)= 0.0	
	A(8) = 2.77	P(8) = 0.0	

Figure 50. Computer output, type TLS detail design.

END TIS DESIGN ----

RECTANGULAR STRUCTURAL CHANNEL
CROSS SECTION DESIGN
ELASTIC ANALYSIS AND WORKING STRESS DESIGN ARE USED

SPECIAL DESIGN PREPARED BY THE DESIGN UNIT AT HYATTSVILLE, MD.

EXAMPLE SPECIAL DESIGNS FOR STRUCTURAL CHANNEL TECHNICAL RELEASE JOAN FOR ESA ----- 2/29/72

```
DESIGN PARAMETERS
 B = 24.00
               HW1 = 12.00
                                KO1 = 0.80
                                              FLOATR = 1.50
                                                              MFOUND= 100000.
HT = 16.00
               HW2= 1.50
                                KO2= 0.20
                                              JOINTS = 40.00
                                                              GMOIST=
                                                                          120.
HB= 15.00
               HI/P= 12.00
                              KPASS= 1.25
                                              MAXFTG= 12.00
                                                                GSAT=
                                                                          140.
                               CFSC= 0.35
                                                CFSS= 0.55
             DESIGN OF SPECIFIED TYPE FOLLOWS
             TYPE TIS STRUCTURAL CHANNEL - TRIAL VALUES
SB= 12.00
                 ST= 15.00
                                 EB= 15.00
                                                  ET = 26.00
TT= 10.00
                TB = 21.00
                                 TS= 22.00 FTG PROJ=10.40
                                                              QUANT= 4.990
             TYPE TIS STRUCTURAL CHANNEL - DETAIL DESIGN
SB= 12.00
                ST= 15.00
                                 EB= 15.00
                                                  ET= 26.00
TT= 10.00
                TB= 21.00
                                 TS= 22.00 FTG PROJ=10.40
                                                              QUANT= 4.990
             STEEL REQUIREMENTS
        WALL
                 A(1) = 0.26
                                             S(1) = 18.00
                 A(2) = 0.17
                                             S(2) = 18.00
                A(3)=
                        0.32
                                             S(3) = 18.00
                A(4) =
                        0.93
                                             S(4) = 18.00
                A(5)=
                        0.38
                                             S(5) = 18.00
                A(6) =
                        1.25
                                             S(6) = 18.00
                 A(7) =
                         0.44
                                             S(7) = 18.00
                 A(8)=
                        1.55
                                             S(8) = 18.00
                 A(9)=
                        0.50
                                             S(9) = 18.00
                 A(10) =
                        2.83
                                             S(10) = 13.30
        BASE
                 A(11) = 0.26
                                             S(11) = 18.00
                 A(12) =
                                             S(12) = 18.00
                        0.26
                 A(13) =
                        0.26
                                             S(13) = 18.00
                                             S(14) = 18.00
                 A(14) =
                        0.26
                 A(15) =
                        1.05
                                             S(15) = 18.00
                                             S(16) = 18.00
                 A(16) = 0.26
                 A(17) = 0.53
                                             S(17) = 18.00
                 A(18) = 0.83
                                             S(18) = 17.34
                                             S(19) = 18.00
                 A(19) = 0.75
                 A(20) = 0.26
                                             S(20) = 18.00
                                             S(21) = 18.00
                A(21) = 0.94
                                             S(22) = 18.00
                 A(22) = 0.26
        STRUT STEEL
                 REQD TENSION STEEL AREA = 3.70
                 REQD COMPRES STEEL AREA = 0.0
        EDGE BEAM STEEL
                STIRRUPS REQUIRED, USE AT LEAST
                     NO. 3 AT 6.6 IN. CC
                 AT D DISTANCES FROM FACES OF STRUTS
                                             P(1) = 2.46
                 A(1) = 1.18
                                             P(2) = 0.0
                A(2) = 0.0
                                             P(3) = 5.38
                A(3) = 5.24
                                             P(4) = 0.0
                A(4) = 0.0
                                             P(5) = 2.83
                A(5) = 0.72
                                             P(6) = 0.0
                A(6) = 0.0
```

P(7) = 0.0

P(8) = 0.0

Figure 51. Computer output, type TLS detail design.

A(7) = 0.0

A(8) = 4.71

APPENDIX B: SAMPLE CCHAN RUN FOR PRELIMINARY DESIGNS

* CORPS PROGRAM * X0097 *

* MICRO VERSION * 89/02/01 *

EXAMPLE Special Design for Structural Channels
ENTER SECOND HEADER LINE
Rerun of "Joan for ESA" sample runs in SCS Technical Release
ENTER THE FOLLOWING
CL WDTH HGT HGT DESIGN DFALT1 DFALT2 DFALT3 DFALT4
CHANNEL WALL BKFILL PARAM O=DEF O=DEF O=DEF
FT FT FT
24 16 15 0 0 0 0 1
ENTER THE FOLLOWING

CONCRETE	RATIO	ALLOWABLE	ALLOWABLE	MINIMUM
ULTIMATE	FC TO	STEEL	NET BEAR	CONCRETE
STRENGTH	F'C	STRESS	PRESSURE	THICKNESS
PSI		PSI	PSF	IN
4000	0.4	20000.	2000.0	10.0

*

CCHAN

CORPS OF ENGINEERS, CASE PROJECT MODIFIED SOIL CONSERVATION SERVICE PROGRAM - RECTANGULAR CHANNEL

Example Special Design for Structural Channels Rerun of "Joan for ESA" sample runs in SCS Technical Release

DESIGN PARAMETERS

CL WIDTH	HEIGHT	HEIGHT	WATER HT	WATER HT	UPLIFT HD
CHANNEL	WALL	BKFILL	LC 1	LC 2	ON SLAB
(FT)	(FT)	(FT)	(FT)	(FT)	(FT)
B	HT	HB	HW1	HW2	HWP
24.00	16.00	15.00	12.00	1.50	12.00
LAT SOIL	LAT SOIL	PASSIVE	SAFETY	SPAN BETN	MAX FOOT
PR RATIO	PR RATIO	SOIL PR	FACTOR	LONG JTS	PROJECT
LC 1	LC 2	RATIO	FLOATION	(FT)	(FT)
KO1	KO2	KPASS	FLOATR	JOINTS	MAXFTG
.80	.20	1.25	1.50	40.00	12.00
FOUND MODULUS (LBS/FT**3) MFOUND 100000.00	WT SOIL MOIST (LB/CF) GMOIST 120.00	WT SOIL SAT (LB/CF) GSAT 140.00	COEFF FRICTION S-CONC CFSC .35	COEFF FRICTION SOIL-S CFSS .55	
CONCRETE ULTIMATE STRENGTH PSI FPC 4000.00	RATIO FC TO F'C COESF .40	SI	RESS FI	LLOWABLE ET BEAR RESSURE PSF ABP 00.00	MINIMUM CONCRETE THICKNESS IN TMIN 10.00

PRELIMINARY DESIGNS FOLLOW

TYPE T1F STRUCTURAL CHANNEL - TRIAL VALUES

THICK TOP	THICK BOT	THICK	FTG	
OF WALL	OF WALL	FL SLAB	PROJECT	QUANT
(IN)	(IN)	(IN)	(FT)	(CY/FT)
TT	TB	TS		
10.00	19.00	20.00	8.00	4.10

TYPE T3F STRUCTURAL CHANNEL - TRIAL VALUES

TOE LENGTH (FT)	THICK PAVEMT (IN) TP	WIDTH PAVEMT (FT)		
11.00	90.00	XP 2.00		
THICK TOP	THICK BOT	THICK	FTG	
OF WALL (IN)	OF WALL (IN)	FL SLAB	PROJECT (FT)	QUANT (CY/FT)
TT 10.00	TB 19.00	TS 20.00	7.40	4.45

TYPE T3FV STRUCTURAL CHANNEL - TRIAL VALUES

TOE LENGTH (FT) X 3.00	THICK PAVEMT (IN) TP 26.00	WIDTH PAVEMT (FT) XP 18.00		
THICK TOP OF WALL (IN) TT	THICK BOT OF WALL (IN) TB	THICK FL SLAB (IN) TS	FTG PROJECT (FT)	QUANT (CY/FT)
10.00	19.00	20.00	9.20	4.58

TYPE TIS STRUCTURAL CHANNEL - TRIAL VALUES

WIDTH STRUT (IN)	THICK STRUCT (IN)	WIDTH EDGE BM (IN)	THICK EDGE BM (IN)	
SB	ST	EB	ET	
12.00	15.00	15.00	25.00	
THICK TOP	THICK BOT	THICK	FTG	
OF WALL	OF WALL	FL SLAB	PROJECT	QUANT
(IN)	(IN)	(IN)	(FT)	CY/FT)
TT	TB	TS		
10.00	19.00	20.00	7.80	4.24

TYPE TIF STRUCT CHANNEL MIGHT BE SELECTED FOR DETAIL DESIGN, QUANT= 4.097

APPENDIX C: SAMPLE CCHAN RUN FOR T1F CHANNEL DESIGN

CCHAN -- SOIL CONSERVATION SERVICE PROGRAM STRUCHAN ADAPTED TO CORPS OF ENGINEERS CRITERIA BY CASE PROJECT ***************

* CORPS PROGRAM * X0097 *

* MICRO VERSION * 89/02/01 *

ENTER FIRST HEADER LINE

Example Special Design for Structural Channels

ENTER SECOND HEADER LINE

Rerun of "Joan for ESA" for detailed design

ENTER THE FOLLOWING

CL WDTH HGT HGT DESIGN DFALT1 DFALT2 DFALT3 DFALT4 CHANNEL WALL BKFILL PARAM 0=DEF 0=DEF 0=DEF

FT FT FT

24.

16. 15. 1 1 0 0

ENTER THE FOLLOWING

CONCRETE	RATIO	ALLOWABLE	ALLOWABLE	MINIMUM
ULTIMATE	FC TO	STEEL	NET BEAR	CONCRETE
STRENGTH	F'C	STRESS	PRESSURE	THICKNESS
PSI		PSI	PSF	IN
4000	0.4	20000	2000	10

IS MOMENT, THRUST, SHEAR REPORT DESIRED ? Enter either Y or N

MTV WILL BE OUTPUT

CCHAN

CORPS OF ENGINEERS, CASE PROJECT MODIFIED SOIL CONSERVATION SERVICE PROGRAM - RECTANGULAR CHANNEL

Example Special Design for Structural Channels Rerun of "Joan for ESA" for detailed design

DESIGN PARAMETERS

CL WIDTH	HEIGHT	HEIGHT	WATER HT	WATER HT	UPLIFT HD
CHANNEL	WALL	BKFILL	LC 1	LC 2	ON SLAB
(FT)	(FT)	(FT)	(FT)	(FT)	(FT)
B	HT	HB	HW1	HW2	HWP
24.00	16.00	15.00	12.00	1.50	12.00
LAT SOIL PR RATIO LC 1 KO1 .80	LAT SOIL	PASSIVE	SAFETY	SPAN BETN	MAX FOOT
	PR RATIO	SOIL PR	FACTOR	LONG JTS	PROJECT
	LC 2	RATIO	FLOATION	(FT)	(FT)
	KO2	KPASS	FLOATR	JOINTS	MAXFTG
	.20	1.25	1.50	40.00	12.00
FOUND MODULUS (LBS/FT**3) MFOUND 100000.00	WT SOIL MOIST (LB/CF) GMOIST 120.00	WT SOIL SAT (LB/CF) GSAT 140.00	COEFF FRICTION S-CONC CFSC .35	COEFF FRICTION SOIL-S CFSS .55	
CONCRETE ULTIMATE STRENGTH PSI FPC 4000.00	RATIO FC TO F'C COESF .40	ST ST PS	RESS P	LLOWABLE ET BEAR RESSURE PSF ABP 00.00	MINIMUM CONCRETE THICKNESS IN TMIN 10.00

DESIGN OF SPECIFIED TYPE CHANNEL FOLLOWS

TYPE TIF STRUCTURAL CHANNEL - TRIAL VALUES

OF WALL	OF WALL	THICK FL SLAB	FTG PROJECT	QUANT
(IN)	(IN)	(IN)	(FT)	(CY/FT)
TT	TB	TS		55705604774.5
10.00	19.00	20.00	8.00	4.10

TYPE TIF STRUCTURAL CHANNEL - DETAIL DESIGN

THICK TOP OF WALL (IN) TT	THICK BOT OF WALL (IN) TB	THICK FL SLAB (IN) TS	FTG PROJECT (FT)	QUANT (CY/FT)
10.00	19.00	20.00	8.00	4.10

STEEL REQUIREMENTS IN WALL

HEIGHT ABOVE BASE (FT)	AREA REQD INSIDE (IN**2)	MAX SPACING (IN)	AREA REQD OUTSIDE (IN**2)	MAX SPACING (IN)
16.00	. 24	18.00	.24	18.00
12.00	. 29	18.00	. 15	18.00
8.00	.35	18.00	. 27	18.00
4.00	.52	18.00	1.05	18.00
.00	1.08	18.00	2.46	12.78

STEEL REQUIREMENTS IN BASE HEEL PORTION

DIST FROM WALL (FT)	TOP FACE (IN**2)	MAX SPACING (IN)	AREA REQD BOT FACE (IN**2)	MAX SPACING (IN)
8.00	. 24	18.00	.24	18.00
4.00	. 24	18.00	.24	18.00
.00	. 87	18.00	. 48	18.00

TOE PORTION

DIST	AREA REOD	MAX	AREA REGD	MAX
FROM WALL	TOR FACE	SPACING	BOT FACE	SPACING
(FT)	(IN**2)	(IN)	(IN**2)	(IN)
.00	.83	18.00	.91	16.97
6.00	.74	18.00	.24	18.00
12.00	. 64	18.00	. 24	18.00

MOMENT, THRUST, SHEAR REPORT

Example Special Design for Structural Channels Rerun of "Joan for ESA" for detailed design

TYPE TIF STRUCTURAL CHANNEL

MOMENT, THRUST, SHEAR RESULTANTS AT STEEL DETERMINATION SECTIONS CONSULT FIGS. 29,33,36,39,&40 OF REFERENCE DOCUMENT FOR LOCATIONS. TABULATED MOMENT CAUSES TENSION IN STEEL AT INDICATED LOCATION. DIRECT COMPRESSION IS POSITIVE, DIRECT TENSION IS NEGATIVE.

LOCATION	LOAD	EFFECTIVE DEPTH IN	BENDING MOMENT FT-LBS/FT	DIRECT THRUST LBS/FT	SHEAR FORCE LBS/FT
WALL			THE COUNTY	LD3/11	LB3/F1
1	1	.00	0.	0.	0.
2	1	.00	0.	0.	0.
3	1	.00	0.	0.	0.
4	1	9.75	432.	556.	432.
5	1	.00	0.	0.	0.
6	1	12.00	5792.	1225.	2580.
7	1	.00	0.	0.	0.
8	1	14.25	23726.	2006.	6719.
9	1	.00	0.	0.	0.
10	1	16.50	62202.	2900.	12851.
1	2	.00	0.	0.	0.
2	2	.00	0.	0.	0.
3	2	9.75	558.	556.	391.
4	2	.00	0.	0.	0.
5	2	12.00	3953.	1225.	1409.
6	2	.00	0.	0.	0.
7	2	14.25	12647.	2006.	3041.
8	2	.00	0.	0.	0.
9	2	16.50	29068.	2900.	5227.
10	2	.00	0.	0.	0.

BASE					
11	1	17.50	0.	3142.	0.
12	1	.00	0.	0.	0.
13	1	17.50	5932.	3142.	3090.
14	1	.00	0.	0.	0.
15	1	17.50	25603.	3142.	6828.
16	1	.00	0.	0.	0.
17	1	.00	0.	0.	0.
18	1	16.50	33604.	15993.	9676.
19	1	17.50	6784.	15993.	4062.
20	1	.00	0.	0.	0.
21	1	17.50	18447.	15993.	0.
22	1	.00	0.	0.	0.
11	2	.00	0.	0.	0.
12	2	16.50	0.	843.	0.
13	2	.00	0.	0.	0.
14	2	16.50	4301.	843.	1892.
15	2	.00	0.	0.	0.
16	2	16.50	12987.	843.	2165.
17	2	17.50	19317.	-4384.	473.
18	2	.00	0.	0.	0.
19	2	17.50	17036.	-4384.	730.
20	2	.00	0.	0.	0.
21	2	17.50	14389.	-4384.	0.
22	2	.00	0.	0.	0.

=========== END OF MOMENT, THRUST, SHEAR REPORT ============

Stop - Program terminated.

APPENDIX D: SAMPLE CCHAN RUN FOR T3F CHANNEL DESIGN

ENTER FIRST HEADER LINE
Sample run for DESIGN = 2
ENTER SECOND HEADER LINE
V, M, S report selected
ENTER THE FOLLOWING
CL WDTH HGT HGT DES

CL WDTH HGT HGT DESIGN DFALT1 DFALT2 DFALT3 DFALT4
CHANNEL WALL BKFILL PARAM 0=DEF 0=DEF 0=DEF

FT FT FT

16 24 ENTER THE FOLLOWING SAFETY LAT SO LAT SOIL WAT HT WT SOL WT SOL UP HD WAT HT FACTOR PR RAT PR RATIO SAT SLAB MOIST LC 2 LC 1 FLOAT LC 2 LB/CF LC 1 LB/CF FT FT 1.5 0.2 0.8 140 120 0 0 ENTER THE FOLLOWING

> MUMINIM ALLOWABLE RATIO ALLOWABLE CONCRETE CONCRETE NET BEAR STEEL FC TO ULTIMATE THICKNESS PRESSURE STRESS STRENGTH F'C IN PSF PSI PSI 10 2000 20000 0.4 4000

IS MOMENT, THRUST, SHEAR REPORT DESIRED ? Enter either Y or N

MTV WILL BE DUTPUT

Y

CCHAN

CORPS OF ENGINEERS, CASE PROJECT MODIFIED SOIL CONSERVATION SERVICE PROGRAM - RECTANGULAR CHANNEL

Sample run for DESIGN = 2 V, M, S report selected

DESIGN PARAMETERS

CL WIDTH CHANNEL (FT) B 24.00	HEIGHT WALL (FT) HT 16.00	HEIGHT BKFILL (FT) HB 4.00	WATER HT LC 1 (FT) HW1 .00	WATER HT LC 2 (FT) HW2 .00	UPLIFT HD ON SLAB (FT) HWP .00
LAT SOIL PR RATIO LC 1 KO1 .80	LAT SOIL PR RATIO LC 2 KO2 .20	PASSIVE SOIL PR RATIO KPASS 1.25	SAFETY FACTOR FLOATION FLOATR 1.50	SPAN BETN LONG JTS (FT) JOINTS 40.00	MAX FOOT PROJECT (FT) MAXFTG 12.00
FOUND MODULUS LBS/FT**3) MFOUND 0000.00	WT SOIL MOIST (LB/CF) GMOIST 120.00	WT SOIL SAT (LB/CF) GSAT 140.00	COEFF FRICTION S-CONC CFSC .35	COEFF FRICTION SOIL-S CFSS .55	
CONCRETE ULTIMATE STRENGTH PSI FPC 4000.00	RATIO FC TO F'C COESF .40	ST ST P	TEEL N RESS F SI SA	LLOWABLE RESSURE PSF ABP	MINIMUM CONCRETE THICKNESS IN TMIN 10.00
	• 3000	20000	* 1. T.	100000	10.00

DESIGN OF SPECIFIED TYPE CHANNEL FOLLOWS

TYPE T3F STRUCTURAL CHANNEL - TRIAL VALUES

TOE	THICK	WIDTH		
LENGTH	PAVEMT	PAVEMT		
(FT)	(IN)	(FT)		
X .	TP	XF		
10.00	11.00	4.00		
THICK TOP	THICK BOT	THICK	FTG	
OF WALL	OF WALL	FL SLAB	PROJECT	QUANT
(IN)	(IN)	(IN)	(FT)	(CY/FT)
TT	TB	TS		
10.00	16.00	17.00	4.60	3.09

TYPE T3F STRUCTURAL CHANNEL - DETAIL DESIGN

TOE	THICK	WIDTH		
LENGTH	PAVEMT	PAVEMT		
(FT)	(IN)	(FT)		
X	TP	XP		
10.00	11.00	4.00		
THICK TOP	THICK BOT	THICK	FTG	
OF WALL	OF WALL	FL SLAB	PROJECT	QUANT
(IN)	(IN)	(IN)	(FT)	(CY/FT)
TT	TB	TS		
10.00	16.00	17.00	4.60	3.26

STEEL REQUIREMENTS IN WALL

HEIG		REA REQD	MAX SPACING	AREA REQD	MAX SPACING
		(IN**2)	(IN)	(IN**2)	(IN)
16	.00	.24	18.00	.24	18.00
12	2.00	. 28	18.00	.28	18.00
8	3.00	.31	18.00	.31	18.00
4	.00	.94	18.00	.35	18.00
	.00	2.04	17.23	.19	18.00

STEEL REQUIREMENTS IN BASE HEEL PORTION

DIST FROM WALL	AREA REOD	MAX SPACING	BOT FACE	MAX SPACING
(FT)	(IN**2)	(IN)	(IN**2)	(IN)
4.60	.20	18.00	.20	18.00
2.30	.20	18.00	. 20	18.00
.00	.20	18.00	. 65	18.00

TOE PORTION

DIST FROM WALL	AREA REQD	MAX SPACING	BOT FACE	MAX SPACING
(FT)	(IN**2)	(IN)	(IN**2)	(IN)
.00	1.75	18.00	.20	18.00
5.00	.70	18.00	.20	18.00
10.00	. 41	18.00	.20	18.00

KEY WALL

DEPTH= 2.00 FT THICK= 14.00 IN

INSIDE AS= .17 IN**2 MAX SPA= 18.00 IN OUTSIDE AS= .50 IN**2

MAX SPA= 12.79 IN

PAVEMENT SLAB

FROM WALL (FT)	AREA REQD TOP FACE (IN**2)	MAX SPACING (IN) 18.00	AREA REQD BOT FACE (IN**2)	MAX SPACING (IN) 18.00
10.00 11.00 12.00	.26	18.00	.13	18.00 18.00

MOMENT, THRUST, SHEAR REPORT

Sample run for DESIGN = 2 V, M, S report selected

TYPE T3F STRUCTURAL CHANNEL

MOMENT, THRUST, SHEAR RESULTANTS AT STEEL DETERMINATION SECTIONS CONSULT FIGS. 29,33,36,39,&40 OF REFERENCE DOCUMENT FOR LOCATIONS. TABULATED MOMENT CAUSES TENSION IN STEEL AT INDICATED LOCATION. DIRECT COMPRESSION IS POSITIVE, DIRECT TENSION IS NEGATIVE.

LOCATION	LOAD	EFFECTIVE	BENDING	DIRECT	SHEAR
NUMBER	CONDITION	DEPTH	MOMENT	THRUST	FORCE
		IN	FT-LBS/FT	LBS/FT	LBS/FT
WALL				ETHAL TRAI	
1	1	.00	0.	0.	0.
2	1	.00	0.	0.	0.
3	1	.00	0.	0.	0.
4	1	9.00	0.	538.	0.
5	1	.00	0.	0.	0.
6	1	10.50	0.	1150.	0.
7	1	.00	0.	0.	0.
8	1	12.00	0.	1838.	0.
9	1	.00	0.	0.	0.
10	1	13.50	1024.	2600.	768.
1	2	.00	0.	0.	0.
2	2	.00	0.	0.	0.
3	2	9.00	666.	538.	499.
4	2	.00	0.	0.	0.
5	2	10.50	5325.	1150.	1997.
6	2	.00	0.	0.	0.
7	2	12.00	17971.	1838.	4493.
8	2	.00	0.	0.	0.
9	2	13.50	42342.	2600.	7795.
10	2	.00	0.	0.	0.

BASE					
11	1	00			
12	1	.00	0.	0.	0.
13	1	13.50	0.	669.	0.
14	1	.00	0.	0.	0.
15	1	13.50	469.	461.	364.
16	1	.00	0.	0.	0.
17	1	13.50	1476.	254.	468.
18	•	.00	0.	0.	0.
19	•	13.50	3644.	902.	1552.
20	-	14.50	118.	451.	159.
21	1	.00	0.	0.	0.
22		.00	0.	0.	0.
11	1	.00	0.	0.	0.
12	2	.00	0.	0.	0.
	2	13.50	0.	214.	0.
13	2	.00	0.	0.	0.
14	2	13.50	3665.	214.	3072.
15	2	.00	0.	0.	0.
16	2	13.50	13602.	214.	5455.
17	2	14.50	33653.	-7581.	4561.
18	2	.00	0.	0.	0.
19	2	14.50	11125.	-7581.	3908.
20	2	13.50	2829.	-7581.	3908.
21	2	14.50	0.	-7581.	0.
22	2	13.50	0.	-7581.	0.
				, 001.	
PAVEMENT					
23	1	8.50	0.	1437.	0.
24	1	.00	0.	0.	0.
25	1	8.50	0.	1437.	0.
26	1	.00	0.	0.	0.
27	1	8.50	0.	1437.	0.
28	1	.00	0.	0.	0.
23	2	8.50	0.	941.	o.
24	2	.00	0.	0.	0.
25	2	8.50	o.	941.	o.
26	2	.00	0.	0.	o.
27	2	8.50	o.	941.	0.
28	2	.00	0.	0.	
				•	0.
KEYWALL					
29	1	.00	0.	0.	0.
30	1	.00	0.	0.	0.
29	2	.00	0.	o.	0.
30	2	10.50	8168.	0.	8168.
	C P. PLUI	•			

Stop - Program terminated.

APPENDIX E: SAMPLE CCHAN RUN FOR T3FV CHANNEL DESIGN

ENTER FIRST HEADER LINE Rerun of sample ENTER SECOND HEADER LINE DESIGN = 3 ENTER THE FOLLOWING

HGT CL WDTH DESIGN DFALT1 DFALT2 DFALT3 DFALT4 HGT CHANNEL PARAM 0=DEF WALL BKFILL O=DEF O=DEF FT FT 15 16 24 0 0 ENTER THE FOLLOWING

> RATIO ALLOWABLE ALLOWABLE MUMINIM CONCRETE CONCRETE FC TO STEEL NET BEAR ULTIMATE STRESS F'C PRESSURE THICKNESS STRENGTH PSF IN PSI PSI 10 2000 20000 0.4 4000

IS MOMENT, THRUST, SHEAR REPORT DESIRED ? Enter either Y or N

MTV WILL BE OUTPUT

CCHAN

CORPS OF ENGINEERS, CASE PROJECT MODIFIED SOIL CONSERVATION SERVICE PROGRAM - RECTANGULAR CHANNEL

Rerun of sample DESIGN = 3

TOE

THICK

DESIGN PARAMETERS

CL WIDTH CHANNEL (FT) B 24.00	HEIGHT WALL (FT) HT 16.00	HEIGHT BKFILL (FT) HB 15.00	WATER HT LC 1 (FT) HW1 12.00	WATER HT LC 2 (FT) HW2 1.50	UPLIFT HD ON SLAB (FT) HWP 12.00
LAT SOIL PR RATIO LC 1 KO1 .80	LAT SOIL PR RATIO LC 2 KO2 .20	PASSIVE SOIL PR RATIO KPASS 1.25	SAFETY FACTOR FLOATION FLOATR 1.50	SPAN BETN LONG JTS (FT) JOINTS 40.00	MAX FOOT PROJECT (FT) MAXFTG 12.00
FOUND MODULUS (LBS/FT**3) MFOUND 100000.00	WT SOIL MOIST (LB/CF) GMOIST 120.00	WT SOIL SAT (LB/CF) GSAT 140.00	COEFF FRICTION S-CONC CFSC .35	COEFF FRICTION SOIL-S CFSS .55	
CONCRETE ULTIMATE STRENGTH PSI FPC 4000.00	RATIO FC TO F'C COESF .40	ST ST PS	RESS PE	LOWABLE ET BEAR RESSURE PSF ABP 00.00	MINIMUM CONCRETE THICKNESS IN TMIN 10.00

DESIGN OF SPECIFIED TYPE CHANNEL FOLLOWS

TYPE T3FV STRUCTURAL CHANNEL - TRIAL VALUES

LENGTH	PAVEMT	PAVENT		
(FT)	(IN)	(FT)		
X	TP	XP		
3.00	26.00	18.00		
THICK TOP	THICK BOT	THICK	FTG	
OF WALL	OF WALL	FL SLAB	PROJECT	QUANT
(IN)	(IN)	(IN)	(FT)	(CY/FT)
TT	TB	TS		
10.00	19.00	20.00	9.20	4.58

WIDTH

TYPE TOFY STRUCTURAL CHANNEL - DETAIL DESIGN

I UE.	IHITCK	MIDIH		
LENGTH	PAVEMT	PAVEMT		
(FT)	(IN)	(FT)		
X	TF	XF'		
3.00	26.00	18.00		
THICK TOP	THICK BOT	THICK	FTG	
OF WALL	OF WALL	FL SLAB	PROJECT	QUANT
(IN)	(IN)	(IN)	(FT)	(CY/FT)
TT	TB	TS		
10.00	19.00	20.00	9.20	4.58

STEEL REQUIREMENTS IN WALL

HEIGHT ABOVE BASE (FT)	AREA REQD INSIDE (IN**2)	MAX SPACING (IN)	AREA REQD OUTSIDE (IN**2)	MAX SPACING (IN)
16.00	. 24	18.00	.24	18.00
12.00	. 29	18.00	. 15	18.00
8.00	.35	18.00	. 27	18.00
4.00	.52	18.00	1.05	18.00
.00	1.08	18.00	2.46	12.78

STEEL REQUIREMENTS IN BASE HEEL PORTION

DIST FROM WALL	AREA REOD	MAX SPACING	AREA REGD BOT FACE	MAX
(FT)	(IN**2)	(IN)	(IN**2)	(IN)
9.20	. 24	18.00	.24	18.00
4.60	.33	18.00	.32	18.00
.00	1.61	13.11	. 99	18.00

TOE PORTION

DIST FROM WALL	AREA REOD	MAX	AREA REDD BOT FACE	MAX SPACING
(FT)	(IN**2)	(IN)	(IN**2)	(IN)
.00	.48	18.00	.62	15.53
1.50	. 48	18.00	.24	18.00
3.00	. 48	18.00	. 24	18.00

SHEAR CONNECTION

REOD TENSION STEEL AREA = .31 SHEAR FORCE FOR LC NO.1= 7.1891E+03 SHEAR FORCE FOR LC NO.2= -2.3925E+03

PAVEMENT SLAB

DIST FROM WALL (FT)	AREA REQD TOP FACE (IN**2)	MAX SPACING (IN)	AREA REQD BOT FACE (IN**2)	MAX SPACING (IN)
3.00	.62	18.00	.31	18.00
7.50	.62	18.00	.33	18.00
12.00	.62	18.00	. 41	18.00

MOMENT, THRUST, SHEAR REPORT

Rerun of sample DESIGN = 3

TYPE T3FV STRUCTURAL CHANNEL

MOMENT, THRUST, SHEAR RESULTANTS AT STEEL DETERMINATION SECTIONS CONSULT FIGS. 29,33,36,39,&40 OF REFERENCE DOCUMENT FOR LOCATIONS. TABULATED MOMENT CAUSES TENSION IN STEEL AT INDICATED LOCATION. DIRECT COMPRESSION IS POSITIVE, DIRECT TENSION IS NEGATIVE.

LOCATION NUMBER	LOAD	EFFECTIVE DEPTH	BENDING MOMENT	DIRECT	SHEAR
		IN	FT-LBS/FT	LBS/FT	LBS/FT
WALL					
1	1	.00	0.	0.	0.
2	1	.00	0.	0.	0.
3	1	.00	0.	0.	0.
4	1	9.75	432.	556.	432.
5	1	.00	0.	0.	0.
6	1	12.00	5792.	1225.	2580.
7	1	.00	0.	0.	0.
8	1	14.25	23726.	2006.	6719.
9	1	.00	0.	0.	0.
10	1	16.50	62202.	2900.	12851.
1	2	.00	0.	0.	0.
2	2	.00	0.	0.	0.
3	2	9.75	558.	556.	391.
4	2	.00	0.	0.	0.
5	2	12.00	3953.	1225.	1409.
6	2	.00	0.	0.	0.
7	2	14.25	12647.	2006.	3041.
8	2	.00	0.	0.	0.
9	2	16.50	29068.	2900.	5227.
10	2	.00	0.	0.	0.

12 1 .00 0. 0.).).
12 1 .00 0. 0.).
15 1 17.50 11293. 3142. 485°	
4.4	٥.
15 1 17.50 44228. 3142. 9410	
	0.
	٥.
18 1 16.50 26680. 15993. 1057	
	0.
20 1 16.50 12070. 15993. 889	9.
The contract of the contract o	0.
22 1 16.50 0. 15993. 718	9.
	0.
	0.
	0.
14 2 16.50 9004. 843. 335	0.
	0.
16 2 16.50 25622. 843. 331	0.
17 2 17.50 77154384. 251	0.
18 2 .00 0. 0.	0.
19 2 17.50 38134384. 263	52.
20 2 .00 0. 0.	0.
21 2 17.50 04384. 239	72.
22 .00 0. 0.	0.
PAVEMENT	
23 1 23.50 0. 15993. 71	39.
24 1 .00 0. 0.	0.
25 1 23.50 24263. 15993. 35	75.
26 1 .00 0. 0.	0.
27 1 23.50 32351. 15993.	0.
28 1 .00 0. 0.	0.
23 2 .00 0. 0.	0.
24 2 22.50 03825. 23	92.
25 2 .00 0. 0.	0.
	96.
27 2 .00 0. 0.	0.
28 2 22.50 107663825.	0.

============ END OF MOMENT, THRUST, SHEAR REPORT ==============

Stop - Program terminated.

APPENDIX F: SAMPLE CCHAN RUN FOR T1S CHANNEL DESIGN

* Done *

47;30;0mC:\UFRAME\CHANNELS>43;30;3m

47;30;0mC:\UFRAME\CHANNELS>43;30;3mx0097

ENTER FIRST HEADER LINE
Rerun sample, DESIGN = 4
ENTER SECOND HEADER LINE
V, M, S report selected
ENTER THE FOLLOWING

DESIGN DFALT1 DFALT2 DFALT3 DFALT4 HGT HGT CL WDTH Ø=DEF Ø=DEF Ø=DEF WALL BKFILL PARAM Ø=DEF CHANNEL FT FT FT 0 15 24 16

ENTER THE FOLLOWING LAT SO SAFETY LAT SOIL WT SOL WT SOL UP HD WAT HT WAT HT FACTOR PR RAT PR RATIO MOIST SAT LC 2 LC 1 SLAB FLOAT LC 2 LC 1 LB/CF LB/CF FT FT FT 1.5 0.2 Ø.8 140. 120. (3) ENTER THE FOLLOWING

> MINIMUM ALLOWABLE ALLOWABLE RATIO CONCRETE CONCRETE NET BEAR STEEL FC TO ULTIMATE THICKNESS PRESSURE STRESS F'C STRENGTH IN PSF PSI PSI 10 2000 20000 4000

IS MOMENT, THRUST, SHEAR REPORT DESIRED ? Enter either Y or N

MTV WILL BE OUTPUT

Y

CCHAN

CORPS OF ENGINEERS, CASE PROJECT MODIFIED SOIL CONSERVATION SERVICE PROGRAM - RECTANGULAR CHANNEL

Rerun sample, DESIGN = 4 V, M, S report selected

DESIGN PARAMETERS

CL WIDTH CHANNEL (FT) B 24.00	HEIGHT WALL (FT) HT 16.00	HEIGHT BKFILL (FT) HB 15.00	WATER HT LC 1 (FT) HW1	WATER HT LC 2 (FT) HW2 .ØØ	UPLIFT HD ON SLAB (FT) HWP .ØØ
LAT SOIL PR RATIO LC 1 KO1 .80	LAT SOIL PR RATIO LC 2 KO2 .20	PASSIVE SOIL PR RATIO KPASS 1.25	SAFETY FACTOR FLOATION FLOATR 1.50	SPAN BETN LONG JTS (FT) JOINTS 40.00	MAX FOOT PROJECT (FT) MAXFTG 12.00
FOUND MODULUS (LBS/FT**3) MFOUND 100000.00	WT SOIL MOIST (LB/CF) GMOIST 120.00	WT SOIL SAT (LB/CF) GSAT 140.00	COEFF FRICTION S-CONC CFSC .35	COEFF FRICTION SOIL-S CFSS .55	
CONCRETE ULTIMATE STRENGTH PSI FPC 4000.00	RATIO FC TO F'C COESF .40	ST ST FS	TEEL N RESS F SI SA	LLOWABLE ET BEAR RESSURE PSF ABP ØØ.ØØ	MINIMUM CONCRETE THICKNESS IN TMIN 10.00

DESIGN OF SPECIFIED TYPE CHANNEL FOLLOWS

TYPE TIS STRUCTURAL CHANNEL - TRIAL VALUES

WIDTH	THICK	WIDTH	THICK	
STRUT	STRUCT	EDGE BM	EDGE BM	
(IN)	(IN)	(IN)	(IN)	
SB	ST	EB	ET	
12.00	15.00	15.00	23.00	
THICK TOP	THICK BOT	THICK	FTG	
OF WALL	OF WALL	FL SLAB	PROJECT	QUANT
(IN)	(IN)	(IN)	(FT)	CY/FT)
TT	TB	TS		
10.00	12.00	13.00	.00	2.29

TYPE TIS STRUCTURAL CHANNEL - DETAIL DESIGN

WIDTH	THICK	WIDTH	THICK	
STRUT	STRUCT	EDGE BM	EDGE BM	
(IN)	(IN)	(IN)	(IN)	
SB	ST	EB	ET	
12.00	15.00	15.00	23.00	
THICK TOP OF WALL (IN) TT 10.00	THICK BOT OF WALL (IN) TB 12.00	THICK FL SLAB (IN) TS 13.00	FTG PROJECT (FT)	QUANT CY/FT) 2.29

STEEL REQUIREMENTS IN WALL

HEIGHT ABOVE BASE (FT) 14.75 11.06 7.38	AREA REQD INSIDE (IN**2) .24 .86 1.10	MAX SPACING (IN) 18.00 18.00	AREA REQD OUTSIDE (IN**2) .12 .67 .95	MAX SPACING (IN) 18.00 18.00
7.38 3.69				561.0001.0001.0001.0001
.00	.56	18.00	.84 1.Ø4	18.00 11.39

STEEL REQUIREMENTS IN BASE

HEEL PORTION

A(11) - A(16) DO NOT EXIST SINCE FTG=Ø

TOE PORTION

DIST	AREA REOD	MAX	AREA REQD	MAX
FROM WALL	TOP FACE	SPACING	BOT FACE	SPACING
(FT)	(IN**2)	(IN)	(IN**2)	(IN)
.00	.31	18.00	1.02	18.00
6.00	. 40	18.00	.16	18.00
12.00	.36	18.00	. 16	18.00

STRUT STEEL

REQD TENSION STEEL AREA = 2.15 REQD COMPRES STEEL AREA = 2.15

EDGE BEAM STEEL

STIRRUPS REQUIRED, USE AT LEAST NO. 3 AT 9.8 IN. CC AT D DISTANCES FROM FACES OF STRUTS

DIST FR STRUT (FT)	AREA REQD INSIDE (IN**2)	PRMETR REQD (IN)	AREA REQD OUTSIDE (IN**2)	PRMETR REQD (IN)
-5.00	.85	1.75	1.02	2.10
.90	3.60	3.56	4.32	4.28
5.00	.72	1.86	.86	2.23
10.00	3.51	.00	2.77	. 00

MOMENT, THRUST, SHEAR REPORT

Rerun sample, DESIGN = 4 V, M, S report selected

TYPE TIS STRUCTURAL CHANNEL

MOMENT, THRUST, SHEAR RESULTANTS AT STEEL DETERMINATION SECTIONS
CONSULT FIGS. 29,33,36,39,840 OF REFERENCE DOCUMENT FOR LOCATIONS.
TABULATED MOMENT CAUSES TENSION IN STEEL AT INDICATED LOCATION.
DIRECT COMPRESSION IS POSITIVE, DIRECT TENSION IS NEGATIVE.

LOCATION	LOAD	EFFECTIVE	BENDING	DIRECT	SHEAR
NUMBER	CONDITION	DEFTH	MOMENT	THRUST	FORCE
		IN	FT-LBS/FT	LBS/FT	LBS/FT
WALL					
1	1	7.66	1690.	361.	27Ø1.
2	1	.00	ø.	Ø.	Ø.
3	1	8.12	10684.	839.	1960.
4	1	.00	Ø.	Ø.	Ø.
5	1	8.58	14539.	1339.	87.
6	1	.00	Ø.	Ø.	Ø.
7	1	9.04	8440.	1861.	3439.
8	1	.00	Ø.	Ø.	Ø.
9	1	.00	de la g.	ø.	Ø.
100	1	9.50	15612.	2403.	8303.
1	2	.00	Ø.	Ø.	Ø.
2	2	7.66	1352.	361.	2148.
3	2	.00	ø.	Ø.	Ø.
4	2	8.12	8463.	839.	1622.
5	2	. ØØ	Ø.	o. In	enera Ø.
6	2	8.58	12670.	1339.	573.
7	2	.00	Ø.	Ø.	Ø.
8	2	9.04	12046.	1861.	998.
9	2	.00	ø.	ø.	ø.
100	2	9.50	4667.	2403.	3091.

BASE					
11	1	.00		SPORTS.	
12	1	.00	ø.	Ø.	Ø.
13	1	.00	ø.	ø.	Ø.
14	1	.00	ø.	Ø.	Ø.
15	1	.00	ø.	ø.	ø.
16	1		ø.	ø.	Ø.
17	1	.00	ø.	ø.	ø.
18	1	.ØØ 9.5Ø	Ø.	ø.	Ø.
19	1	.00	18897.	9936.	2451.
20	i	9.50	Ø.	Ø.	ø.
21	1	10.50	5051.	9936.	1748.
22	i	.00	1311.	9750.	ø.
11	2	.00	Ø.	ø.	ø.
12	2	.00	Ø.	ø.	ø.
13	2	.00	ø.	ø.	ø.
14	2	.00	ø.	ø.	Ø.
15	2		ø.	ø.	ø.
16	2	.00	ø.	ø.	Ø.
17	2	.00	Ø.	ø.	ø.
18	2	10.50	802.	-2824.	2065.
19	2	9.50	1862.	-2655.	2125.
20		10.50	5213.	-2824.	51.
21	2	.00	ø.	Ø.	Ø.
22	2	10.50	4535.	-2824.	ø.
22	2	.00	Ø.	ø.	Ø.
EDGE BEA	M				
LOCATION	LOAD	EFFECTIVE	BENDING	DIRECT	SHEAR
NUMBER	CONDITION	DEPTH	MOMENT	THRUST	FORCE
		IN	FT-LBS	LBS	LBS
1	1	.00	ø.	ø.	ø.
2	1	20.00	31637.	Ø.	12750.
3	1	.00	ø.	ø.	Ø.
4	1	20.00	128287.	Ø.	25668.
5	1	.00	ø.	Ø.	ø.
6	1	20.00	26911.	Ø.	13522.
7	1	19.50	101544.	ø.	Ø.
8	1	.00	Ø.	ø.	Ø.
1	2	19.50	25695.	ø.	10355.
2	2	.00	ø.	Ø.	ø.
3	2	19.50	104191.	ø.	20847.
4	2	. ØØ	ø.	ø.	ø.
5	2	19.50	21857.	Ø.	10982.
6	2	.00	ø.	Ø.	ø.
7	2	.00	Ø.	Ø.	ø.
В	2	20.00	82471.	ø.	ø.
	Control of the last of the las		THE PERSON NAMED IN		

============ END OF MOMENT, THRUST, SHEAR REPORT ===========

top - Frogram terminated.

WATERWAYS EXPERIMENT STATION REPORTS PUBLISHED UNDER THE COMPUTER-AIDED STRUCTURAL ENGINEERING (CASE) PROJECT

	Title	Date
Technical Report K-78-1	List of Computer Programs for Computer-Aided Structural Engineering	Feb 1978
Instruction Report O-79-2	User's Guide: Computer Program with Interactive Graphics for Analysis of Plane Frame Structures (CFRAME)	Mar 1979
Technical Report K-80-1	Survey of Bridge-Oriented Design Software	Jan 1980
Technical Report K-80-2	Evaluation of Computer Programs for the Design/Analysis of Highway and Railway Bridges	Jan 1980
Instruction Report K-80-1	User's Guide: Computer Program for Design/Review of Curvi- linear Conduits/Culverts (CURCON)	Feb 1980
Instruction Report K-80-3	A Three-Dimensional Finite Element Data Edit Program	Mar 1980
Instruction Report K-80-4	A Three-Dimensional Stability Analysis/Design Program (3DSAD) Report 1: General Geometry Module Report 3: General Analysis Module (CGAM) Report 4: Special-Purpose Modules for Dams (CDAMS)	Jun 1980 Jun 1982 Aug 1983
Instruction Report K-80-6	Basic User's Guide: Computer Program for Design and Analysis of Inverted-T Retaining Walls and Floodwalls (TWDA)	Dec 1980
Instruction Report K-80-7	User's Reference Manual: Computer Program for Design and Analysis of Inverted-T Retaining Walls and Floodwalls (TWDA)	Dec 1980
Technical Report K-80-4	Documentation of Finite Element Analyses Report 1: Longview Outlet Works Conduit Report 2: Anchored Wall Monolith, Bay Springs Lock	Dec 1980 Dec 1980
Technical Report K-80-5	Basic Pile Group Behavior	Dec 1980
Instruction Report K-81-2	User's Guide: Computer Program for Design and Analysis of Sheet Pile Walls by Classical Methods (CSHTWAL) Report 1: Computational Processes Report 2: Interactive Graphics Options	Feb 1981 Mar 1981
Instruction Report K-81-3	Validation Report: Computer Program for Design and Analysis of Inverted-T Retaining Walls and Floodwalls (TWDA)	Feb 1981
Instruction Report K-81-4	User's Guide: Computer Program for Design and Analysis of Cast-in-Place Tunnel Linings (NEWTUN)	Mar 1981
Instruction Report K-81-6	User's Guide: Computer Program for Optimum Nonlinear Dynamic Design of Reinforced Concrete Slabs Under Blast Loading (CBARCS)	Mar 1981
Instruction Report K-81-7	User's Guide: Computer Program for Design or Investigation of Orthogonal Culverts (CORTCUL)	Mar 1981
Instruction Report K-81-9	User's Guide: Computer Program for Three-Dimensional Analysis of Building Systems (CTABS80)	Aug 1981
Technical Report K-81-2	Theoretical Basis for CTABS80: A Computer Program for Three-Dimensional Analysis of Building Systems	Sep 1981
Instruction Report K-82-6	User's Guide: Computer Program for Analysis of Beam-Column Structures with Nonlinear Supports (CBEAMC)	Jun 1982
Instruction Report K-82-7	User's Guide: Computer Program for Bearing Capacity Analysis of Shallow Foundations (CBEAR)	Jun 1982

(Continued)

WATERWAYS EXPERIMENT STATION REPORTS PUBLISHED UNDER THE COMPUTER-AIDED STRUCTURAL ENGINEERING (CASE) PROJECT

(Continued)

	Title	Date
Instruction Report K-83-1	User's Guide: Computer Program With Interactive Graphics for Analysis of Plane Frame Structures (CFRAME)	Jan 1983
Instruction Report K-83-2	User's Guide: Computer Program for Generation of Engineering Geometry (SKETCH)	Jun 1983
Instruction Report K-83-5	User's Guide: Computer Program to Calculate Shear, Moment, and Thrust (CSMT) from Stress Results of a Two-Dimensional Finite Element Analysis	Jul 1983
Technical Report K-83-1	Basic Pile Group Behavior	Sep 1983
Technical Report K-83-3	Reference Manual: Computer Graphics Program for Generation of Engineering Geometry (SKETCH)	Sep 1983
Technical Report K-83-4	Case Study of Six Major General-Purpose Finite Element Programs	Oct 1983
Instruction Report K-84-2	User's Guide: Computer Program for Optimum Dynamic Design of Nonlinear Metal Plates Under Blast Loading (CSDOOR)	Jan 1984
Instruction Report K-84-7	User's Guide: Computer Program for Determining Induced Stresses and Consolidation Settlements (CSETT)	Aug 1984
Instruction Report K-84-8	Seepage Analysis of Confined Flow Problems by the Method of Fragments (CFRAG)	Sep 1984
Instruction Report K-84-11	User's Guide for Computer Program CGFAG, Concrete General Flexure Analysis with Graphics	Sep 1984
Technical Report K-84-3	Computer-Aided Drafting and Design for Corps Structural Engineers	Oct 1984
Technical Report ATC-86-5	Decision Logic Table Formulation of ACI 318-77, Building Code Requirements for Reinforced Concrete for Automated Con- straint Processing, Volumes I and II	Jun 1986
Technical Report ITL-87-2	A Case Committee Study of Finite Element Analysis of Concrete Flat Slabs	Jan 1987
Instruction Report ITL-87-1	User's Guide: Computer Program for Two-Dimensional Analysis of U-Frame Structures (CUFRAM)	Apr 1987
Instruction Report ITL-87-2	User's Guide: For Concrete Strength Investigation and Design (CASTR) in Accordance with ACI 318-83	May 1987
Technical Report ITL-87-6	Finite-Element Method Package for Solving Steady-State Seepage Problems	May 1987
Instruction Report ITL-87-3	User's Guide: A Three Dimensional Stability Analysis/Design Program (3DSAD), Report 1, Revision 1: General Geometry Module	Jun 1987
Instruction Report ITL-87-4	User's Guide: 2-D Frame Analysis Link Program (LINK2D)	Jun 1987
Technical Report ITL-87-4	Finite Element Studies of a Horizontally Framed Miter Gate Report 1: Initial and Refined Finite Element Models (Phases A, B, and C), Volumes I and II Report 2: Simplified Frame Model (Phase D) Report 3: Alternate Configuration Miter Gate Finite Element Studies—Open Section	Aug 1987
	Report 4: Alternate Configuration Miter Gate Finite Element Studies—Closed Sections	

WATERWAYS EXPERIMENT STATION REPORTS PUBLISHED UNDER THE COMPUTER-AIDED STRUCTURAL ENGINEERING (CASE) PROJECT

(Concluded)

	Title	Date
Technical Report ITL-87-4	Finite Element Studies of a Horizontally Framed Miter Gate Report 5: Alternate Configuration Miter Gate Finite Element Studies—Additional Closed Sections Report 6: Elastic Buckling of Girders in Horizontally Framed Miter Gates Report 7: Application and Summary	Aug 1987
Instruction Report GL-87-1	User's Guide: UTEXAS2 Slope-Stability Package; Volume I, User's Manual	Aug 1987
Instruction Report ITL-87-5	Sliding Stability of Concrete Structures (CSLIDE)	Oct 1987
Instruction Report ITL-87-6	Criteria Specifications for and Validation of a Computer Program for the Design or Investigation of Horizontally Framed Miter Gates (CMITER)	Dec 1987
Technical Report ITL-87-8	Procedure for Static Analysis of Gravity Dams Using the Finite Element Method — Phase Ia	Jan 1988
Instruction Report ITL-88-1	User's Guide: Computer Program for Analysis of Planar Grid Structures (CGRID)	Feb 1988
Technical Report ITL-88-1	Development of Design Formulas for Ribbed Mat Foundations on Expansive Soils	Apr 1988
Technical Report ITL-88-2	User's Guide: Pile Group Graphics Display (CPGG) Post- processor to CPGA Program	Apr 1988
Instruction Report ITL-88-2	User's Guide for Design and Investigation of Horizontally Framed Miter Gates (CMITER)	Jun 1988
Instruction Report ITL-88-4	User's Guide for Revised Computer Program to Calculate Shear, Moment, and Thrust (CSMT)	Sep 1988
Instruction Report GL-87-1	User's Guide: UTEXAS2 Slope-Stability Package; Volume II, Theory	Feb 1989
Technical Report ITL-89-3	User's Guide: Pile Group Analysis (CPGA) Computer Group	Jul 1989
Technical Report ITL-89-4	CBASINStructural Design of Saint Anthony Falls Stilling Basins - According to Corps of Engineers Criteria for Hydraulic * Structures; Computer Program X0098	Aug 1989
Technical Report ITL-89-5	CCHANStructural Design of Rectangular Channels According to Corps of Engineers Criteria for Hydraulic Structures; Computer Program X0097	Aug 1989