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1 Introduction

A reliability assessment was performed to examine potential modes of
unsatisfactory performance during normal operating and project floods for a
reinforced concrete box culvert drainage structure and pumping plant. The
structure is located under a 10.06-m-high (33-ft) levee section and is composed
of reinforced concrete which has suffered severe structural deterioration and
exposure of reinforcement. This structure is a critical element in the river levee
system that protects a metropolitan area from both river and bayou flooding.
Loss of this structure during a project flood event would lead to high
consequences for damage because of its proximity to a densely populated area.

The box culvert drainage structure and pumping plant was built in 1935. The
existing drainage structure consists of a reinforced concrete box culvert with six
openings (two 1.65m (5 ft,5in.) x 3.38 m (11 ft, 1 in.), two 1.69 m (5 ft,
61/2in.)x3.38m(11ft,1in),and two 1.73 m (5 ft, 8in.) x 3.38 m (11 ft,

1 in.)). The primary function of the structure is to operate as a drainage outlet
for the waters and debris from the bayou into the main river system. The
structure which is 111.65 m (386 ft) long and 12.49 m (41 ft) wide was built
through the levee that protects a metropolitan area from flooding. The cross
section of the drainage structure, pumping plant, and levee is shown in Figure 1.

During periods of high water on the river, the six culverts are closed to river
flow by sluice gates located on the riverside of the structure. Flows on the
riverside can exceed 5,946.54 m¥/sec (210,000 ft¥sec) and 7,220.8 m*/sec
(255,000 ft*/sec) during 1- and 2-percent exceedence events, respectively. For
periods of high water in the bayou, the middle four sluice gates are opened on
both sides and act as gravity-fed drains while the outer two culverts are pumped
by two horizontal axial flow pumps. The outer two culvert gates on the bayou
side of the structure always remain closed because the pumps feed from the
pump house back into the roofs of the outer culverts. The condition of
simultaneously high water in both the bayou and river rarely occurs, since both
bodies have different drainage areas.

The box culvert drainage structure has the capacity to handle approximately
59.46 m*/sec (2,100 ft*/sec) with 0.3048 m (1 ft) of submerged head or 2.54-cm
(1-in.) runoff in a 24-hour period. The pumping plant was designed to add an
additional capacity of 6.29 m¥sec (222 ft*/sec). Currently, the actual pump
capacity is probably only half that, since the pumps and suction bells are severely
corroded and in poor condition. However, the flows in the bayou may
sometimes peak in excess of 141.58 m¥sec (5,000 ft¥sec) over a short duration if
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upstream diversion gates cannot be opened. Overtopping of the bayou levees
into the metropolitan areas does occur during peak flows events in the bayou.

Figure 1. Cross section of drainage structure and pumping plant

The drainage structure and pumping plant have deteriorated greatly primarily
due to age and continuous use. During the repairs and dewatering of the
structure in 1988, inspection of the inside of the culverts was possible. During
this inspection, numerous spalls of concrete and “honeycomb” pockets of
exposed reinforcement in the walls of the culvert were discovered. The
deterioration of the reinforcement in these exposed areas was so extensive that
the reinforcement could be considered completely ineffective. In addition, the
design height of the levee was originally specified to be 7.62 m (25 ft) above the
top of the structure. Since construction of the structure in 1935, the height of the
levee has been increased an additional 2.44 m (8 ft) to its present height of
10.06 m (33 ft) above the top of the structure (shown as dashed lines in
Figure 1). This has caused structural cracks (0.953 cm (3/8 in.) to 1.27 cm
(172 in.)) to develop which ran in both the transverse and longitudinal directions
of the culvert roof and walls.

The extent of the degradation of the reinforced concrete experienced during
this inspection led to serious questions regarding the safety and the structural
integrity of the project. The ability of the structure to perform satisfactorily
during a project fiood event of any duration coupled with the fact that the
structure is adjacent to the hospital facility and in a highly populated downtown
area prompted serious concern regarding the structure.

2 Chapter 1 Introduction



2 Deterministic Model

Introduction

The deterministic model developed for the drainage structure has been refined
based on the failure and collapse of an exterior wall of the six-barrel culvert
structure. The collapse of an exterior wall would allow the levee crown to
subside, disrupting the capabilities of the consolidated levee soils and creating a
zone where the levee could be breached and flooding could propagate into the
city area. A failure of the culvert during a major flood event, i.e., 1-percent
exceedence, could cause a large portion of the city to become flooded creating
large dollar costs for flood damage, and a large population at risk, especially if
the event were to occur with little or no warning.

The model utilizes the behavior of the exterior culvert wall as a simple
reinforced concrete beam which is analyzed for its capacity in both moment and
shear. This representative beam segment is subjected to lateral earth pressures,
internal water pressures, and axial loads from the soil and concrete above. The
various loadings on the beam that are used in the model are shown in Figure 2.
Figure 3 shows the elevations and dimensions of the exterior culvert. Figure 4
shows the beam, its sectional properties, and the resultant trapezoidal loading.

The deterministic model is simplified by the assumption that longitudinal
cracks exist in the top corners of the exterior wall of the culvert. These cracks
have been verified from inspection of the culvert during low water times prior to
the pooling of lock and dam downstream and from the dewatering and inspection
of the culverts in 1988. The interior culvert walls were once considered for a
performance mode, but since the force from the lateral earth pressures is much
greater than internal water pressures, the exterior walls were considered to be the
most crucial elements of the structure.

The deterministic model establishes the limit state as a capacity versus
demand relationship in both moment and shear using basic reinforced concrete
design and analysis procedures for the beam. This equation is simply expressed
for either moment or shear as

_ Capacity D
Demand

Limit State

Chapter 2 Deterministic Model



EXTERNAL LOADING ON STRUCTURE

VERTICAL EARTH PRESSURES

LATERAL
EARTH
PRESSURES

HYDROSTATIC WATER
PRESSURES

Figure 2. External loadings on culvert walls

Typically, in the design of reinforced concrete, a beam/column is first
designed to carry a design moment based on the loads that are applied to the
structure. Next, the beam/column is designed to carry the shear from those same
applied loads. If the reinforced concrete beam/column is considered to perform
unsatisfactorily in moment, the concrete beam/column does not actually collapse,
but its moment demand is greater than the moment capacity. The ability of the
reinforced concrete beam/column to carry the shear becomes the most crucial
factor. If the demand in shear is greater than the capacity of the beam/column,
the beam/column will perform unsatisfactorily and the wall will most likely
collapse.
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CULVERT DIMENSIONS
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Figure 3. Elevations and dimensions of exterior culvert
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Moment Capacity/Demand

The moment capacity for the reinforced concrete beam was determined using
equations utilized in the design of reinforced concrete structures. These
equations can be derived from reinforced concrete textbooks, e.g., MacGregor
(1992), as well as equations from the American Concrete Institute (ACI) 318-89
(ACI 1989). The use of ACI equations allows the examination of the existing
structure to be based on current design standards such that an equivalent
comparison to a newer or replacement structure can be made. Using ACI
equations, the nominal moment is modified by a strength reduction factor, ¢, to
determine the ultimate strength or capacity of the beam. This relationship is
expressed by:

Design Strength > Required Strength
or @)
d-M >M,

where
¢ = strength reduction factor
M, = nominal moment

M, = ultimate moment

This strength reduction factor was determined in accordance with ACI
Section 9.3.2.2 for axial load and axial load with flexure. The ACI 318-89 (ACI
1989) code allows the ¢ to be increased linearly from 0.70 to 0.90 as ¢P,
decreases from 0.10f | A, to zero. The equation for this can be shown as

P
¢ =09 -02- L. &)
01-f -h-d

where
P, = mean axial load (kips)
f% = compressive strength of concrete (ksi)
= height of beam (in.)
d = depth to reinforcement (in.)
The mean value for strength reduction factor for the drainage structure was

determined to be 0.83. This was based on a mean axial load of 7348.2 kg
(16.2 kips).
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The moment capacity for the column is derived utilizing equations from the
ACI 318-89 (ACI 1989) and using the Corps of Engineers computer program,
CASTR (Hamby and Price 1992), to determine ultimate moment for a singly
reinforced concrete beam subjected to axial load. This equation is derived as

6 M, =¢-085 1 ab-@d-2)-P -2 @
where
A f, + P,
a= ——-=-———-—
085-f. -b
where

A, = area of steel (in.?)

f, =yield strength of steel (ksi)

P, = axial load (kips)

f! = compressive strength of concrete (ksi)

b = width of section (in.)
and

= depth to reinforcement (in.)

h = height of section (in.)

¢ = strength reduction factor

M, = nominal moment

The demand moment was determined from using the combination of load
cases from beam tables for a uniform and triangular loading and using the Corps

of Engineers, beam-column Soil-Structure Interaction (SSI) computer program,
CBEAMC (Dawkins 1994). This equation can be represented as

M = 2w, +w,) . wa-x2 . 1/2(w, —wa)-x3
dM (2w‘z + Wb) -1 1/2(Wb - Wa) 5

= -w x+ ——2 & -x
dx 6 a {
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where

_ - b xyb? - 4ac

X =
2a

w, = distributed load at support a (Ib / in.)

w, = distributed load at support b (Ib / in.)

! =length from support a to b (in.)

where
1/2(w, - w,)
a =
l
b =-w,
2w, +w,) -1
c =

Shear Capacity/Demand

The shear capacity of the culvert wall was determined by using ACI 318-89
(ACI 1989) Equation 11-4, for shear with axial compression effects. This
equation is shown as

Nu i
V. =2 + e—o—) - b, -d (6)
¢ ( 2000 - Ag ) ‘fz v
where
Nu/Ag = positive in compression and has unit of psi
f. = compressive strength of concrete (ksi)
b, = width of section (in.)
d = depth of section (in.)
The shear demand was derived by using the combination of load cases from
beam tables for both a uniform and triangular loading and using the Corps of

Engineers beam-column SSI computer program, CBEAMC (Dawkins 1994).
This equation can be derived as
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w, -1 2(172 - L+ (w, - w,))
+
2 3

V = N

where
w, = distributed load at support a (Ib /in.)
w, = distributed load at support b (Ib / in.)

! = length from support a and b (in.)

Chapter 2 Deterministic Model



3 Probabilistic Model

Constants

The constants used in the model reflect values that were deemed capable of
being held as a constant with confidence. Primarily, these constants represented
the elevations of the levee and structure and the unit weight of water and are
summarized in Table 1.

Elevation of Top of Levee

The mean profile for the levee was determined from three profiles of the levee
recently taken at different stations on the levee at the structure. These stations
were Sta. 1254+467.98, Sta. 1253 +67.98, and Sta. 1252+67.98. The mean profile
showed an mean elevation at the crown at el 29.87 m (98 ft). The mean profile
of the levee is shown in Figure 5.

LOWER RED RIVER LEVEE PROFILES-BAYOU RAPIDES

100.00

—
//95 00
/ sobo \\ LANDSIDE
RIVERSIOE ™~
8500 _—
|1 L)o \\
80
/
] 75l00
70l
150 100 50 o 50 100

DISTANCE
———— MEAN PROFILE

Figure 5. Mean profile of river levee

Elevations and Interior Height of Culvert

The elevation of the top and the bottom of the culvert was determined to be
el 19.81 m (65 ft) and el 15.85 m (52 ft), respectively. The interior height of the
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culvert was taken as 3.38m (133 in.). The elevations and height of culvert used
as constants in the analysis are shown in Figure 3.
Unit Weight of Water

A value of 999.55 kg/m’® (62.4 pcf) was used as the constant for the unit
weight of water.

Table 1

List of Constants in Probabilistic Model

Elevation of top of levee 29.87 m (98 ft)

Elevations - top of culvert 19.81 m (65 ft)

Elevations - bottom of culvert 15.85 m (52 ft)

Interior height of culvert 3.38m (133 in.)

Unit weight of water 999.55 kg/m® (62.4 pcf)
Variables

The nine variables, their distributions types, and statistical values for their
means, p, and standard deviations, o, are summarized in Table 2. Each variable
has a particular effect on both the capacity and demand side of the limit state
equation. Each variable represents some true variability in the modeling of the
drainage structure, and this variability will account for the many likely
combinations that are possible.

Elevation of Water - River

Normal operating. The values for the elevation of the water on the river during
normal operating conditions can range from 19.5 m (64 ft) to 20.42 m (67 ft). A
uniform distribution with a mean value of 19.96 m (65.5 ft) and a standard
deviation of 0.26 m (0.866 ft) was used in the model.

2-percent exceedence event. The values for the elevation of the water on the
river during a 2-percent exceedence event can range from 25.42 m (83.4 ft) to
26.03 m (85.4 ft). A uniform distribution with a mean value of 25.73 m (84.4 ft)
and a standard deviation of 0.176 m (0.5774 ft) was used in the model.

1-percent exceedence event. The values for the elevation of the water on the
river during a 1-percent exceedence event can range from 26.55 m (87.1 ft) to
27.16 m (89.1 ft). A uniform distribution with a mean value of 26.86 m (88.1 ft)
and a standard deviation of 0.176 m (0.5774 ft) was used in the model.

Chapter 3 Probabilistic Model 11
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Elevation of Water - Bayou

Normal operating. The values for the elevation of the water on the river during
normal operating conditions can range from 19.51 m (64 ft) to 22.25 m (73 ft).
A uniform distribution with a mean value of 20.88 m (68.5 ft) and a standard
deviation of 0.792 m (2.598 ft) was used in the model.

Bayou flood event. A stage flood condition for the bayou was not analyzed for
this study since the lowest hydrostatic pressures in the culvert would occur
during normal operating events and not during a bayou flood event. A worst
case scenario of normal to flood events waters on the river side and normal
operating water in the bayou was utilized for this study.

Unit Weight of Soil

The values for the unit weight of soil in the levee were taken from borings in
the levee made in 1989. A normal distribution with a mean unit weight of
1,922.22 kg/m’ (120 pcf) with a standard deviation of 80.09 kg/m’ (5 pcf) was
determined.

At-rest Earth Pressure Coefficient

The values for the at-rest earth pressure coefficient were estimated based on
research from Brooker and Ireland (1965), Mayne, Jackson, and Kuljhawy
(1989), and Mesri (1987). To represent the uncertainty expressed in this
variable, a distribution was determined to range from 0.5 to 0.9. A uniform
distribution was used with a mean of 0.7 and a standard deviation of 0.1155.

Width of Culvert Wall

The original width of the culvert wall was designed to be 0.381 m (15 in.).
During a recent inspection in 1989, the reinforcement in the culvert walls has
become exposed and rusted. This indicates that the 0.0508-m (2-in.) cover has
eroded over the past 60 years. To model this loss of width, a uniform
distribution with a mean of 0.356 m (14 in.) and a standard deviation of 0.015 m
(0.5774 in.) was utilized.

Unit Weight of Concrete

The values for the unit weight of concrete in the structure were from tests
conducted during dewatering of the structure in 1989. A normal distribution
with a mean unit weight of 2,322.68 kg/m? (145 pcf) with a standard deviation of
80.09 kg/m’ (5 pcf) was determined.

Chapter 3 Probabilistic Model



Compressive Strength of Concrete

The values for the compressive strength of concrete in the structure from tests
conducted during dewatering of the structure in 1989. These values were also
confirmed from the specifications for the pumping plant in 1932. A normal
distribution with a mean compressive strength of 17,236.9 kPa (2,500 psi) with a
standard deviation of 3,447.4 kPa (500 psi) was used.

Area of Reinforcing Steel

The area of the reinforcing steel is directly dependent upon the amount of
cover that was lost. If the entire 5.08 cm (2-in.) cover had been removed by
erosion and the steel had been exposed, the area of the reinforcing steel would be
reduced. If the cover was not removed, the steel would be intact and the area
would still be the original area. In the Monte Carlo simulations, a correlation
coefficient of 1 was used to account for this fact.

Not exposed. The area of the reinforcing steel that was not exposed was based
on two 2.22 cm (7/8-in.) bars per metre (foot) of wall. This yielded an area for
the reinforcing steel of 7.74 cm?® (1.2 in.%). Since the type of bar was not
specified (round or square), a normal distribution of 7.74 cm?(1.2in.) with a
standard deviation of 0.645 cm? (0.1 in.?) was used.

Exposed. To account for the corrosion of the steel that has been exposed in the
structure, the area of the reinforcing steel was assumed to have a normal
distribution of 7.09 cm? (1.1 in.?) with a standard deviation of 0.645 cm*

(0.1 in.?). The variation in area could have been much larger, but without actual
measurements this range should be sufficient to model loss of area.

Yield Strength of Reinforcing Steel

The yield strength of the reinforcing steel was based on knowing that in
general two different yield strengths of steel, 275,790 kPa (36 ksi) or
248,211 kPa (40 ksi) were being used in the field. Since no information is
available from the specifications, a uniform distribution between 275,790 kPa
(36 ksi) and 248,211 kPa (40 ksi) was used. The mean value for yield strength
of 26,200 kPa (38 ksi) with a standard deviation of 7,928.97 kPa (1.15 ksi) was
used in the analysis.

Chapter 3 Probabilistic Model
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Table 2

List of Random Variables

Random Variable Distribution g o
Elevation of water - Riverside
Normal operating Uniform 19.96 m (65.5 ft) 0.26 m (0.866 ft)
2-percent exceedence event Uniform 25.73 m (84.4 ft) 0.176 m (0.5774 ft)
1-percent exceedence event Uniform 26.86 m (88.1 ft) 0.176 m (0.5774 ft)
Elevation of water - Bayou side
Normal operating Uniform 20.88 m (68.5 ft) 0.792m (2.598 ft)
1%/2% exceedence event Uniform 20.88 m (68.5 ft) 0.792 m (2.598 ft)
Bayou flood event (not analyzed for this study)
Unit weight of soil Normal 1,922.22 kg/m* (120 pcf) 80.09 kg/m° (5 pcf)
At-rest earth pressure coefficient
(Mayne, Jackson, and Kuljhawy
1989, Brooker and Ireland 1965,
Mesri 1987) Uniform 0.7 0.11555
Width of culvert wall Uniform 0.356 m (14 in.%) 0.015m (0.5774 in.)
Unit weight of concrete
Normal 2,322.68 kg/m® (145 pcf) 80.09 kg/m® (5 pcf)
Compressive strength of
concrete Normal 17,236.9 kPa (2,500 psi) 3,447.4 kPa (500 psi)
Area of reinforcing steel
Not exposed Normal 3.048cm (1.2in.3) 0.254 cm (0.1 in.%)
Exposed Normal 2.79cm (1.1in.3 0.254 cm (0.1 in.)
Yield strength of reinforcing steel | Uniform 262,001 kPa (38 ksi) 7,928.97 kPa (1.15 ksi)
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4 Definitions of Reliability
Index

Introduction

The performance functions or limit state functions introduced above for
moment and shear of the reinforced concrete beam can be defined as

Z=C-D (8)

where
Z = the safety margin
C = capacity
D = demand

Assuming that C and D are statistically independent and normally distributed
random variables, the mean, 1, and variance, 0,°, of Z can be expressed as

Hz = He ~ Hp (92)

oy = M¢ - Hp b)

The event of failure is C < D, or Z < 0. The notational probability of
unsatisfactory performance, p,, is given by

p,=P(Z<0)=®(-p,/0,) (10)

where ® is the cumulative distribution function for a standard normal variate.

The safety index, B, or the reliability index can be defined by the number of
standard deviations from the mean of Z to Z = 0. The reliability index has been
incorporated in many current design codes for steel and concrete structures

Chapter 4 Definitions of Reliability iIndex 15
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target reliability indexes have ranged from a  of 3 to 7 depending upon the
criticality of the member or connection being designed. The reliability index, j,
is shown in Figure 6 and is commonly expressed as

B =u,lo, (11)

fC‘DA E[c-D]

Bocp

v/

0 C-D

Figure 6. Normal definition of reliability index

An alternative form is to assume that the variables C and D are statistically
independent lognormal random variables and hence, lognormally distributed as
shown in Figure 7. The limit state function, Z, then becomes a normal random
variable and is expressed as

Z =In (C/D) (12)

In addition, the probability of unsatisfactory performance, p,, and the reliability,
R, can be related to the reliability index, B, as follows

p,=1-®@B)or p, =@ (-P) (13)

R=1-p, (14)
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f(In C/D)

In(C/D)

Figure 7. Lognormal definition of reliability index

First-Order Second Moment (FOSM) - Taylor
Series Finite Difference (TSFD) Method

A method used to estimate the reliability index in this report is a First-Order
Second Moment-Taylor Series Finite Difference (FOSM-TSFD) Method
(Headquarters, Department of the Army 1992). The results for the FOSM-TSFD
are shown in Table 3. This reliability method uses lognormal formulations for
the reliability index and can be expressed as

B = HinF (15)
G

InF

where

2

Mr = W[E(F]] - —2F

2

g

= 1+ F
O \Jm[ [E[F]]

Chapter 4 Definitions of Reliability Index 17
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E[F]=F(p,)

Fi’ _FiV 5
0p =y B’

Advanced Second Moment

Another FOSM reliability method called the Advanced Second Moment
(ASM) is described by Ang and Tang (1984) and Ayyub and Haldar (1984) and
was used to check for nonlinearities in the limit state equations for shear and
moment. ASM techniques are designed to find the minimum distance or
reliability index, B, to the failure surface in multivariable space. This technique
is performed using directional cosines, reduced normal variates, and iterations
about design points until the minimum value of the reliability index is reached.

The ASM method can be used to assess the reliability of a structure according
to a nonlinear performance function that may include nonnormal random
variables. Also, the performance function can be in a closed or nonclosed form
expression. Implementation of this method requires the use of efficient and
accurate numerical algorithms to deal with the nonclosed forms for performance
function. The ASM algorithm can be surmmmarized by the following steps:

a. Assign the mean value for each random variable as a starting design point
value, i.e., (X, X, ... X,)) = (X, X,,-. X).

b. Compute the standard deviation and mean of the equivalent normal
distribution for each nonnormal random variable.

c. Compute the partial derivative JZ/JX, of the performance function with
respect to each random variable evaluated at the design point as needed.

d. Compute the directional cosine, «, for each random variable at the design
point.

e. Compute the reliability index, B, by satisfying the limit state Z = 0 using a
numerical root-finding method.

J. Compute a new estimate of the design point by using the resulting
reliability index P obtained in step e.

g- Repeat steps b through f until the reliability index, P, converges within an
acceptable tolerance, 8.

Chapter 4 Definitions of Reliability Index



Monte Cario Simulations

Monte Carlo simulations (MCS) were run for comparison to the FOSM-TSFD
and ASM methods. The results showing the reliability and the probability of
unsatisfactory performance values for 20,000 simulations are shown in Table 4.
The values for the E[C] and E[D] and their deviations are also shown in
Figures 8 to 10. The results from the Monte Carlo simulations used in this report
use the formulation for reliability expressed from the guidance for Major Reha-
bilitation Reports (Headquarters, Department of Army 1994). The reliability
index, B, for a lognormal definition as shown in Figure 6 can be defined as
(Headquarters, Department of the Army 1994).

m{£LC],
_ EID] 16)

ViV

where
E [C ] = Expected value of capacity
E [D ] = Expected value of demand
V. = Coefficient of variation of capacity
Vp, = Coefficient of variation of demand

(Note: This notation for reliability index should only be used when the V, and
V, are less than 30 percent.)

Chapter 4 Definitions of Reliability Index
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5 Reliability Results

The results showing the reliability index, B, the reliability, R, and the
probability of unsatisfactory performance, p, , for the MCS, ASM, and FOSM-
TSFD methods for normal operating and 1- and 2-percent exceedence flood
events are shown in Tables 3 and 4, respectively. The spreadsheets for the
FOSM-TSFD are shown in Figures 8 through 10. The reliability indexes for the
MCS and FOSM were calculated using the lognormal definition of f§ as

expressed by Equations 13 and 14.

Table 3

FOSM-TSFD Results

Limit State 1 - Moment

Flood Event B8 R P
Normal operating -0.2222 0.4121 0.5879
2-percent exceedence -0.3864 0.3496 0.6504
1-percent exceedence -0.4503 0.3263 0.6737
Limit State 2 - Shear

Flood Event B R P
Normal operating 0.1814 0.4280 0.5720
2-percent exceedence -0.3328 0.3697 0.6303
1-percent exceedence -0.3947 0.3465 0.6535

Chapter 5 Reliability Results



Table 4
ASM and Monte Carlo Simulation Results

Limit State 1 - Moment

Flood Event B R P.
Normal operating -0.1382 0.4450 0.5550
2-percent exceedence -0.3665 0.3570 0.6430
1-percent exceedence -0.4584 0.3233 0.6767
Limit State 2- Shear

Flood Event B R P.
Normal operating -0.0893 0.4644 0.5356
2-percent exceedence -0.2935 0.3846 0.6154
1-percent exceedence -0.3785 0.3525 0.6475

Chapter 5 Reliability Results
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6 Conclusions

The results from the FOSM-TSFD, ASM, and MCS indicate a good
comparison in the reliability index estimation. The main focus from the results is
that all the reliability procedures indicate a very low reliability index (i.e.,
negative) or a high probability of unsatisfactory performance for the structure
under both normal operating and the 1- and 2-percent exceedence flood events.
These values for unsatisfactory performance would indicate that the exterior walls
of the culvert should have already performed unsatisfactorily and collapsed
during a flood event. However, the structure is still operative because a 1- or
2-percent exceedence event has not occurred since the structure was built in
1935. Similar structures have performed unsatisfactorily during high water
events. An example of the collapse of a box culvert drainage structure in a rural
area upstream of the example structure is shown in Figure 11.

Figure 11. Unsatisfactory performance of a box culvert structure
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The expected performance of this drainage structure during these flood events
can also be illustrated by examining the moment capacity of the structure under a
1-percent exceedence flood event. The probability of unsatisfactory
performance, p, , in moment was determined from the reliability analysis to be
0.6767. This number indicates that out of 1,000 structures of similar like and
condition, approximately 677 structures should perform unsatisfactorily in
moment. This leaves 323 similar structures that would perform satisfactory in
their moment capacity. Hence, there is still the possibly that the drainage
structure would not collapse during a 1-percent flood event because it has either
not failed in moment (most unlikely scenario), or has failed in moment and not in
shear (most likely scenario).

The joint probability of unsatisfactory performance in both moment and shear
can also be determined. Since the probability of unsatisfactory performance, p,,
in shear was 0.6475, the joint probability would be 0.4382(Z) or 438.2(2)
structures out of 1,000, where Z is the respective probability of a 1-percent
exceedence event. The joint probabilities for the two failure modes (moment and
shear) and for normal operating and two flood events, 1- and 2-percent
exceedence are shown in the event tree in Figure 12.

Chapter 6 Conclusions
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INITIAL
CONDITION

WHERE X,Y,Z ARE THE RESPECTIVE PROBABILITY OF EACH EVENT

SHEAR
P(U)= 0.5356
oY | e
P(U)= 0.5550
NORMAL SHEAR
OPERATING P(S)= 0.4664
™71 <= 2 PERCENT () .................
P=X
______________________ Y ——
P(S)= 0.4450 0445009 ]
MOMENT
SHEAR ;
2% <1% P(S)= 0.3846 0.2473(Y) B
FLwD ............................
r P=Y
MOMENT I
P(S)= 0.3570 | 2700 ’
SHEAR
P(U)=0.6475 0.4362Z)
MOMENT '
P(U)= 0.6767
>= 1-PERCENT
Le|  FLOOD
P=2
MOMENT
P(S)= 0.3233

Figure 12. Event Tree for joint probabilities from the Monte Carlo Simulation
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