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Preface

The work herein was performed in the Hydraulics Laboratory of the U.S.
Army Engineer Waterways Experiment Station (WES) as part of an
investigation into sediment disposal in the James River for the U.S. Army
Engineer District, Norfolk (NAO). This report presents the results of the
three-dimensional numerical modeling work.

The work was conducted from November 1992 to April 1993 under the
direction of the following personnel: Messrs. F. A. Herrmann, Jr., Chief of the
Hydraulics Laboratory; R. A. Sager, Assistant Chief of the Hydraulics
Laboratory; W. H. McAnally, Chief of the Estuaries Division, Hydraulics
Laboratory; D. R. Richards, Chief of the Estuarine Simulation Branch,
Estuaries Division; and Project Manager R. A. Evans, Jr., Estuarine Simulation
Branch.

Mr. Evans prepared this report, and Messrs. Richards and McAnally, and
Dr. R. C. Berger, Estuaries Division, assisted in the analysis of the results.

Mr. Mark Hudgins, NAO, served as the District’s project coordinator.

At the time of publication of this report, Director of WES was Dr. Robert
W. Whalin. Commander was COL Bruce K. Howard, EN.

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval for the use of such commercial products.



Conversion Factors,
Non-Sl to Sl Units of
Measurement

Non-SI units of measurement used in this report can be converted to SI units
as follows:

Multiply By To Obtain

cubic feet per second 0.02831685 cubic meters per second
feet 0.3048 meters

pounds (force)-second per square foot 47.88026 pascals-second

pounds (mass) per square foot 4.882428 kilograms per square meter




1 Introduction

ObjeCtive

Several dredged material disposal alternatives are being investigated by the
Norfolk District (CENAO) for the Lower James River. They include, but are
not limited to: (1) offshore disposal, (2) creation of wetland disposal islands,
and (3) disposal into the deep trough at the entrance of the James River.
CENAO has a thorough knowledge of offshore disposal issues and is currently
conducting in-house investigations into the wetland island disposal alternatives.
The third option, deep trough disposal, is much more difficult to evaluate due
to the three-dimensional (3-D) nature of currents in the James River entrance.
The objective of this study is to determine if disposal of dredged materials in
the James River Deep Trough was feasible.

Approach

Due to the stratified nature of the lower James River estuary and the need
to represent bed velocity and shear stress, a three-dimensional numerical
model, RMA-10, was used to predict the hydrodynamics. Although the
original scope of work required a limited resolution flume-like schematic
model, a more detailed flume-like schematic model which incorporated more
of the geographical features and a better representation of the tidal prism of the
James River was used. While this model will give more accurate results than
the limited resolution flume-like schematic model, it remains a flume-like
schematic model and the results should be judged as such.

Several numerical model meshes were constructed to test different
conditions. A Base geometry was made which consisted of prototype sizes
and depths, with more detail in the area of the Deep Trough. Figure 1 shows
the model boundary superimposed on the James River region. Note the
location of the Deep Trough at the entrance. Natural bottom elevations in the
Deep Trough exceed -85 feet MLLW. Three Plan geometries were constructed
which consisted of changing the bottom elevations in the Deep Trough to
simulate different levels of dredge material fill. The Plan geometry depths are
shown in Table 1.
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Table 1

Plan Geometry Depths

Plan

Deep Trough Depth (MLLW)

1

-60

-70

[ [

-80

Chapter 1 Introduction



2 Hydrodynamic Model
Validation

Tidal stations, major tributaries and major freshwater inflows are shown in
Figure 1. Note that the model has two tidal boundaries, one in the Chesapeake
Bay, the other in the Atlantic Ocean. The elements of the model were divided
into 15 material types based on depth, location, and whether the elements were
two- or three-dimensional. Table 2 lists the hydraulic material types and
associated hydraulic parameters. Note that material types 6, 11, and 12 are
listed as boundary elements. Hydraulic constants for these types were adjusted
to control the instability near the boundaries. Elements with no 3-D layers are
2-D. The number of layers corresponds to the number of elements in the
vertical. Since the boundary conditions for these boundaries were not known
and were difficult to define, large eddy viscosity values had to be used. These
values are numerically rather than physically based but will not compromise
results near the deep trough due to the large distance from the boundaries. It
should be noted that the Manning's n values are generally higher than one
would expect from previous 2-D modeling experience. This is a result of the
3-D hydrodynamic code using the near bed velocity to calculate shear stress,

not a vertically averaged velocity.

Figure 2 shows the area of interest (the Deep Trough) with locations of
velocity stations. The stations JG-xx-yy correspond approximately to velocity
stations on the Chesapeake Bay Physical Model. The stations T1, T2, T3, TS,
and TN are in locations in or near the Deep Trough. |

The 3-D numerical model, RMA-10, was run for a total of 24.3 tidal cycles
with a repetitive M, tide (period = 12.42 hours) for a total of 303 hours (12.74
days). Using the Base geometry, a single simulation of 253 hours was made
as a spin-up to create hotstart conditions for the model. This hotstart was used
with the Base and Plan geometries to generate 50 hours of simulation. Only
the last 25 hours of these results were used in the validation and plan
comparison in order to minimize the effects of the hotstart conditions. The
tidal amplitude for the last 50 hours of the simulation was 4.2 feet. The
salinity concentrations at the Chesapeake Bay and Atlantic Ocean boundaries
were 22 and 25 ppt, respectively. Freshwater inflow at the upper end of the
James River was set at 9,181 cfs. These boundary conditions are greatly
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Table 2
Hydraulic Constants L de- b
Deep

Materlal Range Eddy Viscosity Number of

Type ft Ib-gec/ft* Manning's n 3-D Laﬁra
-1_ 0-6 750 0.030 1

2 6-18 650 0.030 1

3 18- 30 500 0.025 1

4 30 - 45 450 0.025 1

5 > 45 250 0.025 2

6 Boundary 2200 0.050 1

7 0-6 500 0.025 0

8 6-18 450 0.025 0

) 18 - 30 300 0.020 0

10 30 - 45 300 0.018 0

11 Boundary 4000 0.060 1

12 Boundary 3000 0.055 1

13 6-18 2500 0.040 1

14 18 - 30 1800 0.035 1

15 > 30 1600 0.035 1

simplified representations of real conditions that were necessary to conduct this
limited scope study.

Since this is primarily a flume-like schematic model, the numerical results
in the vicinity of the Deep Trough were the only results considered in the
validation of the model. Figure 3 shows the numerical model predicted tide
for Old Pt. Comfort and Newport News, with the physical model tide ranges.
A comparison of tide ranges between the numerical and physical models shows

a difference of approximately 0.12 feet for Old Pt. Comfort and 0.30 feet for
Newport News.

Figures 4 through 6 show the numerical model surface and bottom
velocities for the three physical model stations nearest to the Deep Trough.
The dashed lines indicate the maximum flood and ebb velocities measured in
the physical model for the same locations. The numerical model results are in
fair agreement with the physical model results, with the best agreement being
in the Deep Trough at station JG-01-03. Figure 7 shows the tide ranges
predicted by the numerical model and compared to the physical model for
three stations in the upper part of the model. Overall, velocities in the
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numerical model are too small compared to the physical model. There are two
reasons for this. First, due to the schematization of the James, large amounts
of intertidal areas were not included, resulting in a smaller tidal prism and,
therefore, smaller velocities. Second, vertical mixing appeared to be greater in
the numerical model, reducing surface currents which would have been
affected by a larger salinity gradient. These are somewhat related, but are not
considered fatal flaws due to the limited expectations for a modeling effort of
this level.

Figures 8 through 11 present the surface and bottom velocities for the Base
and Plan geometries at three stations in the vicinity of Old Pt. Comfort.
Figures 12 through 15 present the surface and bottom velocities for the Base
and Plan geometries at three stations in the vicinity of Newport News.

Figures 16 through 23 show the surface and bottom velocities at locations
in the trough (T1, T2, and T3) and both north and south of the trough (TN and
TS, respectively). These also show very small changes in the velocities due to
the various plans.

Chapter 2 Hydrodynamic Model Validation



3 Shear Stress Analysis

Shear stress along the bottom was computed using the following formula:

T =12 pfu
with

1 = shear stress, 1b/sq ft

p = water density, 1.935 slugs
f_ = current friction factor, 0.007
u = water velocity, ft/sec

Based on information provided by the Norfolk District, typical sediment
size to be disposed in the trough will be approximately 0.2 mm (fine sand).
The critical shear stress (t,) for quartz spheres of this size is approximately
0.005 1b/sq ft. This study examined scour patterns for two values of critical
shear stress. Areas where the critical shear stress equalled or exceeded
0.008 1b/sq ft at any time during the last two tidal cycles were examined. This
value is very conservative and erosion is most probable for such a high value.
However, this value may only occur at maximum ebb and flood and may not
be representative of a significant portion of the tidal cycle. In fact, this value
was not exceeded for a significant portion of the tidal cycle. The second value
of critical shear stress, 0.006 1b/sq ft, was used to develop scour patterns. But
these pattemns represent areas where the shear stress exceeded 0.006 1b/sq ft at
least 33 percent of the time. While 0.006 1b/sq ft is a less conservative
estimate of critical shear stress than 0.008 1b/sq ft, it still exceeds the value of
0.005 1b/sq ft given for quartz spheres.

Figures 24 through 27 show regions with shear stress greater than or equal
to 0.008 1b/sq ft during some point in the last two tidal cycles of the
simulations for the Base and Plan geometries. Note that all show regions of
potential scour coincident with the Deep Trough. Figure 28 shows Plan 1
results superimposed on the Base results. Since Plan 1 is the most drastic

change in geometry, it should show the most deviation from the Base. This
figure shows very little change.

Figures 24 through 28 show only that, at some times in the tidal period, the
shear stress will be large enough for scour to occur. However, they give no
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indication of the amount of time that critical shear stress will be equalled or
exceeded. Figures 29 through 33 show the regions in which shear stress
exceeds 0.006 1b/sq ft at least 33 percent of the time. It is believed that these
give a better estimate of scour potential. However, as shown in Figures 24
through 28, there appears to be no significant change in the scour pattemns.
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4 Conclusion

The 3-dimensional hydrodynamic model RMA-10 and a schematized model
mesh, with average boundary conditions, was used to simulate water velocities
and elevations of the lower James River. It is concluded that dredge material
disposed in the Deep Trough is not likely to remain without protective
armoring. This determination was made by calculating the bottom shear stress
using the near-bottom water velocities and comparing with a conservative
critical shear stress value. For each plan tested, water velocities were
sufficient to cause scouring during parts of the tidal cycle. However, if a
mildly dispersive site was desired, these results indicate that it could be
feasible to use the Deep Trough as a disposal area without protective armoring,.
More accurate results will require a more detailed 3-D model mesh and,
perhaps, a 3-D sedimentation model.

Chapter 4 Conclusion
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Figure 8. Pt. Comfort surface and bottom velocities, Base
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Figure 9. Pt. Comfort surface and bottom velocities, Plan 1




PT. COMFORT JG-01-01, Plan 2 Geometry

3 —= — — =
—&— Surface
. 2q w—=s——  Bottom
a i
O 1
iz !
5 0:
.3._-5 14
>m
¥ <]
'3-:| = 3 e s 5 ~ = =
270 275 280 285 290 295 300 305 3_10
Time, hours
PT. COMFORT JG-01-02, Plan 2 Geometry
25 —&—  Surface
A 1 T ——_Bottom
u L] E
23 1. ity =
EE: :
& 0
"8_,: :
ep— -1 1
Sd@
vV .23
'3 ————y— e e e e e ———— e ————— T == 7 — v
270 275 280 285 290 295 300 305 310
Time, hours
PT. COMFORT JG-01-03, Plan 2 Geometry
3 H H -_‘ - o e
i ; 5 : H
2 3 ’ : —®&— Surface
A ] ; = Bottom
(5 : i
5] 1 H
2k | |
A5 0 5 :
= : i
ngﬁ '1 E a S
> : \ %
v 23 - f
: ;
71 1 SIS SRR E S RS T e e S SE—
270 275 280 285 290 295 300 305 310
Time, hours

Figure 10. Pt. Comfort surface and bottom velocities, Plan 2




PT. COMFORT JG-01-01, Plan 3 Geometry
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Figure 11. Pt. Comfort surface and bottom velocities, Plan 3
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Figure 12. Newport News surface and bottom velocities, Base




NEWPORT NEWS JG-02-01, Plan 1 Geometry
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Figure 13. Newport News surface and bottom velocities, Plan 1
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NEWPORT NEWS JG-02-01, Plan 3 Geometry
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Figure 15. Newport News surface and bottom velocities, Plan 3
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Figure 16. Base condition surface and bottom velocities, Stations T1-T3
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Figure 17. Base condition surface and bottom velocities, Stations TN and TS



Trough Station T1, Plan 1 Geometry
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Figure 18. Plan 1 surface and bottom velocities, Stations T1-T3




Trough Station TN, Plan 1 Geometry
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Figure 19. Plan 1 surface and bottom velocities, Stations TN and TS




Trough Station T1, Plan 2 Geometry
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Figure 20. Plan 2 surface and bottom velocities, Stations T1-T3



Trough Station TN, Plan 2 Geometry
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Figure 21. Plan 2 surface and bottom velocities, Stations TN and TS




Trough Station T1, Plan 3 Geometry
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Figure 22. Plan 3 surface and bottom velocities, Stations T1-T3
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Figure 23. Plan 3 surface and bottom velocities, Stations TN and TS
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Figure 24. Base geometry - areas where 1 2 0.008 Ib/sq ft during the tidal cycle
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Figure 25. Plan 1 geometry - areas where 1t 2 0.008 Ib/sq ft during the tidal cycle
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Figure 26. Plan 2 geometry - areas where t = 0.008 lb/sq ft during the tidal cycle
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Figure 27. Plan 3 geometry - areas where 1 2 0.008 Ib/sq ft during the tidal cycle
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Figure 28. Base versus Plan 1 geometry - areas where t 2 0.008 Ib/sq ft during the tidal cycle
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Figure 29. Base geometry region which scours at least 33 percent of the time
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Figure 30. Plan 1 geometry region which scours at least 33 percent of the time
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Figure 32. Plan 3 geometry region which scours at least 33 percent of the time
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