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CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI)
UNITS OF MEASUREMENT

U. S. customary units of measurement used in this report can be converted
to metric (SI) units as follows:

Multiply By To Obtain
cubic inches 16.38706 cubic centimetres
inches 25.4 millimetres
inches per second 25.4 millimetres per second
miles per hour (U. S. 1.609344 kilometres per hour
statute)
square inches 6.4516 square centimetres
square inches per 6.4516 square centimetres per
second second



FREQUENCY RESPONSE CHARACTERISTICS OF MILITARY VEHICLES

PART I: INTRODUCTION

Background

1. Driver safety standards and the design specifications of new
electronic and optical equipment for vehicles require estimates of the
values of the acceleration components expected to occur at a point on a
vehicle when it crosses an obstacle or other terrain feature at a given
speed. The electronic and optical equipment have shock and vibration
criteria that are expressed by maximum acceleration tolerances. The
driver tolerance is generally expressed as a limit on the power absorbed
which in turn can be related to acceleratinn.l’z These criteria limit
the speed at which a vehicle can cross obstacles and other terrain
features.

2. A dynamical model of a vehicle is generally required to predict
the acceleration components at a point on a vehicle as it runs over a
specified terrain. This model consists of a combination of spring-mass-
damper elements that are assembled to approximate as closely as possible
the measured dynamic response of wheel and track laying vehicles. Many
models of this type have been developed and used with varying degrees of
succ:ess.3’4 Within the limits of this formalism the predicted dynamic
response of a vehicle will always be model dependent. In order to repre-
sent as closely as possible the actual interaction of a vehicle with
terrain features it is of value to develop a model independent method for
predicting the dynamical response of vehicles. Such a method can be
developed to predict the root mean square (RMS) values of the acceleration
components at a point on the vehicle.

3. It is possible to represent the RMS acceleration of a point on

a vehicle as an integral of the acceleration power spectrum over all

frequencies. The power spectrum of a time dependent or space depen-
dent quantity gives the amount of power associated with each constituent

temporal or spatial frequency component of the Fourier representation of



the physical quantity.8’9 The time history of the acceleration of a
point on a vehicle has a corresponding acceleration power spectrum which
depends on the temporal frequencies, while the spatial variations of
terrain features has an associated power spectrum which depends on the
spatial frequencies. The frequency response signature for the accelera-
tion components of a vehicle is the ratio of the acceleration power spec-
trum to the power spectrum of the terrain elevation variations. All of
the dynamical characteristics of a vehicle are contained in its frequency
response signatures, so that if these signatures are obtained empirically

they can serve as a model independent representation of the dynamical

response of a vehicle.

Objectives

4. The basic objective of this report is the development of a

semiempirical, model independent, method of predicting the dynamical
response of a vehicle as it crosses an obstacle or other terrain feature.
The specific objectives of this study are (Figure 1):

a. The employment of Fourier analysis to describe the fre-
quency content of various obstacle profiles and the fre-
quency content of the measured dynamic response of a
vehicle.

I&

The development of a method for determining the frequency
response signatures of a vehicle from the acceleration
time histories measured at a point on a vehicle as it
crosses an obstacle of known profile.

Scope

5. The following specific work was done (Figure 2):

a. A catalog of Fourier transforms was developed for several
basic obstacle shapes.

b. The fast Fourier transform (FFT) was used to determine the
Fourier spectrum of the acceleration time history measured
at a point on a vehicle as it crosses an obstacle of known

profile.

c. Dimensionless acceleration frequency response signatures
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were defined and a numerical calculation was done for an
M114 track vehicle.



PART II: FOURIER SPECTRUM REPRESENTATIONS OF OBSTACLE
SHAPES AND OF THE DYNAMIC RESPONSE OF VEHICLES

Introductory Remarks

6. In order to determine the frequency response signatures of
vehicles from obstacle crossing tests it is necessary to have both the
Fourier representation of the measured dynamic response of the vehicle
and the Fourier representation of the shape of the cross section of the
obstacle. The chaotic nature of the measured vertical acceleration at
the drivers seat generally requires that a computer algorithm be used
to determine the Fourier series representation. On the other hand the
relatively simple shapes of obstacle cross sections allows analytical
techniques to be used for determining the Fourier series representation
of the obstacle geometry. This part of the report calculates the Fourier
spectral representations of the obstacle shapes that will be used for
the determination of the vehicle frequency response signatures,

7. The geometrical shapes of actual obstacles expected to be en-
countered on a battlefield can be approximated by several basic geometric
shapes--semicircle, rectangle, trapezoid and triangle. Fourier trans-
form and series representations of these basic shapes are easily obtained

10,11 The vertical acceleration at

by standard analytical techniques.
the drivers seat is generally measured as a function of time as a vehicle
passes over an obstacle. The Fourier spectrum of the acceleration time
history is obtained using the fast Fourier transform (FFT)

algorithm.?’lz’13

The ratio of the acceleration Fourier spectrum to the
obstacle shape Fourier spectrum essentially determines the vehicle's

frequency response signature.

Fourier Transform Representation of Obstacle Shapes

8. The Fourier transform representation can be used to describe
a single obstacle of finite extent. Fourier transforms are easier to

calculate if the shape of the obstacle cross section is symmetrical about



a vertical axis. If the axis of evaluation of a symmetrical obstacle is
taken to be the axis of symmetry the Fourier transform reduces to the

Fourier cosine transform (Figure 3). If the axis of symmetry of a

91 92 93 Q4

Snmatial Frequency, 9

Figure 3. Typical Fourier cosine transform

symmetrical obstacle is not chosen as the axis of representation or if
the obstacle is asymmetrical, both Fourier cosine and Fourier sine trans-

g L w [ l
forms are required. The Fourier cosine transform pairs are written as

FE(k) = \th(.s) cos k&dE (1)
(8

h(g) = J-E:sz(k) o REEE (2)
(8]

where

h(&)
h
Fc(k)

height of obstacle cross section

Fourier cosine transform of obstacle shape

k = wave number = 2m/\ where )\ = spatial wavelength
components

10



Defining the spatial frequency as { = 1/A vyields the following rela-
tion k = 2nQ .

complex Fourier transform is used

where

9. For the case of an asymmetrical obstacle shape the following

10

1% () e s fh(x)eikx
V21 J
h h h,, . 16%(k)
= 1)(k) + il (k) = I (k)e'
h(z) = f]: e
=
- \[gf Ih(k) cos (kx - ¢h)dk
O
Ih(k) o f h(x) cos kxdx
& 2 J

0o

Ih(k) A fh(x) sin kxdx
% V2m

Il
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(3)

(4)

(5)

(6)

(7)



B g
h -1 Is(k)
¢ (k) = tan b (8)
-IC (k) -
and where
Ih(k) = complex Fourier transform
Ig(k) = real part of Ih(k)
h “h
Is(k) = imaginary part of I (k)
h : “h
I (k) = magnitude of I (k)
¢h(k) = phase angle of the complex Fourier transform Ih(k)

10. For the special case of a symmetrical obstacle of length
2LD , with the origin of the axis chosen at the left edge of the obstacle

and the symmetry axis at L0 , the Fourier transform components are

given in Appendix A

I"(k) = F'(k) cos KL_ 9)
(k) = F)(k) sin kL_ (10)
(%) = IFZ(R)‘ (11)

6" (k) = kL_ + n (12)

For a symmetrical obstacle with the origin of the axis chosen to be at

the axis of symmetry the Fourier transform is obtained as

h S | +
Io(K) = F (k) (13)

I:(k) _ (14)

12



1™(k) = |F:(k)‘

¢h(k) = nn

which is just the Fourier cosine transform.

1l1. The dynamical response (acceleration) of several military
vehicles encountering obstacles has been measured for basic obstacle
shapes including the semicircle, rectangle and trapezoid. Therefore
the Fourier transforms of several basic symmetrical and asymmetrical

obstacles have been evaluated in Appendix A and are tabulated below:

Semicircle (Figure 4a)

2\| 2J, (kR)
h 2 TR 1
b ki) ? (4 )[ kR ]

IZ(k) = F:(k) cos kR
1:(k) = FZ(k) e taikn
1%(k) = ‘Fﬂ(k)~

Rectangle (Figure 4b)

F:(k) = \J%Tah(éiiaka)
(k) = Fr(K) cos ka
I(k) = Fh(k) sin ka
" (k) = ‘Fz(k)l

13

(15)

(16)



T T M T

R R 25 > g
2L, = 2R Syt e
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a. Semicircle b. Rectangle
/]" l\ "
i ¢ | -
b d d b 2S b B 2s
2L0 = 2(a + b) el = 20
2L = 2(a + b + s) 2L = 2(b # s)
c. Symmetrical trapezoid d. Symmetrical triangle
A
"
t o
X, P .
a a C 25
2L = 2(a + c)

e. Double rectangle

Figure 4. Symmetrical obstacle shapes
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Symmetrical trapezoid (Figure 4c)

oo - T D ey
(k) = FA(k) cos k(a + b)

12(k) - Fg(k) sfn KA+ B)

1" (k) = \Fﬂ(k))

Symmetrical triangle (Figure 4d)

oo - |Z () E8ss)

I:(k) = F:(k) cos kb
IZ(k) . F:(k) 3in kb
(k) = \Fg(k>|

Double rectangle (Figure 4e)

Fo (k) = \['12?_ [hla(SiEaka) ! hz“(SiEcL;;/z) f08 Kia = C/Z)]
1P (k) = FL(k) cos k(a + c)

1"(k) = Fo(K) sin k(a + )

1" (k) = |F2(k)|

15



Asymmetrical trapezoid (Figure 5a)

h h (b + e)
IC(D) s lal 5 ]

V27
h l h e\ sin ke/2 kb(sin kb/2 2
Ic(k) T e sin k(éa + b + é) ke/2 =E 3 Kb/ 2 )
: V2mn a
IZ(k) = —l““%[%libkb ~ (éli ?3/2) cos k(éa + bﬂ+-§)]
Y21 ©
2
1 h in kb/2 in k ;’2 sin kb/2\/sin ke/2 b + e
SOR 7 K \/(S kb/2 ) i {5 ke/2 2( kb/2 )( ke/2 ) i k[?a T ]
h
$ (0) =0
-
I (k)
$O 0k} = Ean :
I (k)

Right angle trapezoid (Figure 5b)

I

12(0) By +-9)

/w2
2
Ao L AT _ kb(sin kb/2
Ic(k) = = k[sul k(2a + b) 2( Kb/ 2 ) ]
h __1 hj|sin kb
Is(k) = = k[ 5 - cos k(2a + b)]
h N h sin kb/2 sin kb/2
I (k) = k *J; + ( ) ) 2 Kb/ 2 ) cos k(2a + b/2)
h
(k)
@h(k) = tan_l E
.Ic(k)_
6"(0) = 0

16



2L
2L

d.

2L
2L

24 e 25

b+ e + 2a

I

b+ e+ 2(a + s)

Asymmetrical trapezoid

= bt e

=b+ e + 2s

Asymmetrical triangle

h
b 2a 25_ﬂ
2L0 = b + 2a
2L =b + 2(a + s)
b. Right angle trapezoid

@ ZS "
2LD = e
2L =e + 2s

Right triangle

Figure 5. Asymmetrical obstacle shapes
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Asymmetrical triangle (Figure 5c)

h h b +
IC(D) - ( 2 )
V21
h _ sin ke/2 kb [sin kb/2 2
Ic(k) = = sin (b + e/2) ke/2 = 75 b/ 2
21k
IZ(k) ¥ -0 [%lﬁbkb = (?1Ee$;/2) cos k(b + e/2ﬂ
Y21k
2 2
h h in kb/2 in ke/2 1 kb/2\[(sin ke/2 b+e
R \/(g 15/ ) * (é =T ) =y )( ke/2 ) ( 2 )

Y21k

Right triangle (Figure 5d)

h h b
o) w=—=

V2
h h kbfsin kb/2\°
IM(k) = sin kb - 2( £ )
£ Y21k
Ig(k) = =i (ﬁiibkb - CcOoSs k?)

Y21k

. 2 |
(k) = B E.+-(§1Eb$gf2) -2 51Eb$g/2) cos-E%]
Y21k

Fourier Series Representation of Obstacle Shapes

12. A Fourier series representation of an obstacle cross section
can be obtained from the calculated Fourier transform. Fourier series
are defined only for periodic functions and therefore to obtain a Fourier
series representation of an obstacle shape, the cross section must be
taken to be one of an infinite set of obstacles which repeat in a period

2. . The period 2L can be selected arbitrarily except that it must be

18



taken larger than the width of the obstacle cross section (Figures 4

and 5). The Fourier series can then be written as

e

+ 2 (Ah cos k x + Bh sin k x) (17)
n n n n

n=1

where the Fourier coefficients are given by

=

h

A = h(x) cos knxdx o 0 X 2. 3. s (18)

1
n L

J
rd

L
1 - —
n ok fh(x) sin knxdx n= 1. 2. 35 e (19)
-L
and where the wave number k_ is given by
nm
kn = s (20)

The values of these coefficients depend on the position chosen for the

axis used to describe the shape function h(x)
13. The Fourier series can also be written in the following form

AE
h(x) =-—% + Ci CoOS (EEE - ¢ ) {21)

n=]1

where

c:l = \KA:)Z + (B:)z (22)

19




An = C_ cos ¢n (23)
h :
Bn = C_ sin ¢n (24)
h
B
¢h = tan_l = (25)
n h
An

For the special case of a symmetrical obstacle cross section with the
axis for the representation of h(x) chosen to be the axis of symmetry,

the Fourier cosine series can be used as follows

ah - h

0 nmx

h(x) = —§-+ a_ cos 3 (26)

n=1
where
L
h 2 nnx

B E[h(x) cos —¢ dx (27)

0

for N =10, L, 2, 3,
14. For a symmetrical obstacle of length 2Lo with the coordinate
axis chosen at the left hand edge of h(x) , the Fourier series coeffi-

cients are obtained from Equations 18, 19, and 27 to be

Ah = ah cos k L (28)
n n no
by
Bn = i sin knLo (29)
o R B

20



g =k L (31)

h | . :
where a_1s given by Equation 27. For the case of a symmetrical ob-
stacle with the axis of representation of h(x) taken to be the axis of

symmetry, the Fourier coefficients are given by

h h

B = (32)
B" = 0 (33)
c) = | (34)
o0 = 0 (35)

which is the Fourier cosine series of Equations 26 and 27.
15. A simple relationship exists between the Fourier transform

functions and the Fourier series coefficients for obstacles of period

2L . The Fourier series coefficients can be obtained by making the re-
placements v2m - L and k ~ kn . With these replacements it follows
10

from Equations 1-27 that™ :

ah igifpzckh) (36)
AY = @ 1% (k) (37)
3 = 721 fhey (38)
c? - —"%_1 1" (k) (39)



h
I (k)
¢2 = tan-l E = (40)
I (k)
Nk o

Fourier Spectrum Representation of the
Dynamic Response of a Vehicle

16. A frequently measured quantity in vehicle ride quality studies
is the time history of the vertical acceleration produced at the driver's
seat when the vehicle encounters an obstacle. This dynamic response is
generally irregular and chaotic, and numerical methods must be used for
a Fourier analyses. The FFT algorithm is well suited for obtaining the
Fourier series coefficients for the measured acceleration time history.
The corresponding Fourier transforms can then be calculated in terms of
the Fourier series coefficients. The Fourier transforms and Fourier
series of the dynamic response will now be written out explicitly because
these quantities appear in the definition of the frequency response
signatures that are calculated in Part III.

17. The Fourier transform pairs that describe the acceleration,

velocity, and displacement at the driver's seat can be written as

a(t) = Lj’Ia(uu)e_'ltm:f.flm (41)
Vo oL,

v(t) = < ¥ flv(w)e-1Mtdm (42)
am J

d(t) = L‘/‘Id(w)e-lu"tdw (43)
/o J.

where
a(t) = time history of the vertical acceleration

22



v(t) =
d(t) =

time history of the velocity

time history of the displacement

The Fourier transforms are then written as

where

12 (w)
1V (w)
1%(w)

w

1304 = -Lfa(n)ei“tdt (44)
V21 -

iv(m) _— fv(t)eimtdt (45)
JEF‘_m

e [d(t)eimtdt (46)
)

complex Fourier transform of the acceleration at the
driver's seat

complex Fourier transform of the velocity at the driver's
seat

complex Fourier transform of the displacement at the
driver's seat

2nf = angular frequency

18. The complex Fourier transforms can be written aslo’ll
La a a a i a( )
1%(w) = I2() +1iI°@) = 12@)e™® (47)
= v v i¢" (w)
I"(w) = I, (W) + 1l (w) = I (w)e (48)
-d d d d 14% ()
I (w) = Ic(w) - iIs(m) =1 (w)e (49)

23



where

17 (w) =*4L—~/ﬂa(t) cos wtdt

SRR -8

a 1 :

Is(w) = — [a(t) sin wtdt
/7w J

Iz(w) ks [v(t) cos wtdt
/m J

I:(m) — ]V(t) sin wtdt
V2n J_

1V (w) = \/(Iz)z + (I:)Z
7
v P -1 S

¢ (w) = tan -——Iz)

Ig(m) . [d(t) coa e
)

24

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)



oo

fd(t) sin wtdt (59)

—-_

12 () =
T

17 () = \/(12)2 4 (12)2 (60)

Id

$ %00 = tat - s (61)

I
o

A

19. The corresponding Fourier series representations of the time

histories of the dynamical response at the driver's seat are written as

A2 o
a(t) = —% a3 Z (Ai cos mnt + Bi sin mnt)
n=1
(62)
= z Cicos (mt-d}a)
n=0
Al
e, (Av cos w t + B sin w_t)
v(t) = — n n n n
n=]1
(63)

o0
v v
Z Cn cos (mnt - ¢n)

n=0

25



A

mlo”n

d(t) -

Il

(&d cos w. t + Bd sin w E)
n n n n

o0

n=1

(64)

o

d d
C%lcos (@nt - ¢n)

n=0

where

W = nm

5 /T

2T = period chosen to represent the time history
The relationship between the Fourier series representation and the
Fourier transform representation of the dynamic response of the vehicle

is given by

AsV.d V2n a,v,d
An = *Er'lc (wn) (65)

Adyyd V27 a,v,d

Bn = *Er-ls (mn) (66)
a,vsd _ V2m a,v,d

Cn = —Tr-I (mn) (67)
Qbi’v’d = ¢3,V,d(mn) (68)

Either Fourier representation can be obtained from the other, so that
the representation easiest to obtain from the measured data can always
be used to determine the alternate representation.

20. Generally only the time history of the acceleration at the
drivers seat is measured, but the velocity and displacement time histo-
ries can be obtained by numerical integration with proper choice of
initial conditions. The measured acceleration time history is generally

very complicated and chaotic, and an accurate determination of the
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Fourier transforms by direct integration is expensive and time consuming.
Therefore an alternative method for calculating the Fourier transforms

or series is required. A rapid and inexpensive method of calculating

the Fourier series coefficients is given by the fast Fourier transform
(FFT).

21. The FFT is a mathematical procedure for rapidly determining

the Fourier series of a specified function.12’13

n
2 pairs of data points tj . a(tj) from which half that number of

. = : a -
Fourier coefficient pairs Aj $ B? are determined. The accuracy of

The algorithm requires

the calculated Fourier series coefficients improves as the number of data
points describing the function increases. The Fourier transforms can
then be estimated in terms of the Fourier series coefficients by using
Equations 65-68.

22, The vehicle frequency signature that is calculated in Part III
is essentially a comparison (ratio) of the Fourier representation of a
vehicle response to the Fourier representation of an obstacle shape.
These Fourier representations must be compatible in the sense that both
must be either Fourier transforms or Fourier series. Also, the half-
period L of the Fourier series representation of an obstacle shape
must be related to the half-period T of the Fourier series representa-
tion of an acceleration time history by the equation L = uT where

u = vehicle steed which is assumed to be constant. From Equations 39

and 67 it follows that

Ca,v,d Ia,v,d(m )

£ —— =u = L (69)
i I (k)
n n

Equation 69 is basic to the calculation of the frequency response signa-

tures done in Part I1lI.
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PART III: VEHICLE FREQUENCY RESPONSE SIGNATURES

Introductory Remarks

23. The frequency response signature of a vehicle, which will be
defined and calculated here, is essentially the ratio of the power spec-
trum of the acceleration response of a vehicle to the power spectrum of
the terrain feature producing the acceleration response. The accelera-
tion response of a vehicle generally has three components that are asso-
ciated with the heaving, pitching, and rolling motion of the vehicle, so
that three distinct frequency spectrum signatures are required for a
complete description of each vehicle. Knowledge of the frequency re-
sponse signatures makes possible the prediction of the vehicle response
to any terrain features.

24, Model dependent expressions for the frequency response signa-
tures have already appeared in the literature, and in principle these
signatures are vehicle characteristics that depend on the dynamical re-
sponse parameters of a vehicle and on the geometry of the vehicle-ground

3

contact area. This part of the report gives a model independent
method of determining the frequency response signatures from the accel-
eration time histories measured at a point on a vehicle as it crosses an

obstacle of known shape.

Calculation of the Frequency Response Signatures

Definitions and terms

25. The vehicle frequency response signatures are dimensionless
functions that relate the dynamic response of a vehicle to the terrain
elevations that produce the response. The frequency content of the ter-
rain elevation variations can be described by a frequency spectrum analy-
sis using power spectra.s’s’9 Obstacles can be handled in a similar
fashion and have the advantage that their Fourier spectra are easily
calculated. A simple relationship exists between the power spectrum and

the Fourier amplitudes of elevation variations, so that the power spectra
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associated with the Fourier spectra of Part II are easily calculated.
26. The power spectrum describes the frequency content of the
variations of a physical quantity in such a way that the integral of the
POWEr spectrum over all frequencies is related to the root mean square
(RMS) of the physical variable.5’7’9’10 For instance, for a terrain

elevation such as an obstacle

2
E’n =[ Ph(Q)dQ =fPh(f)df (70)

where

“h

Ph(Q) = power spectrum of the obstacle profile expressed in terms
of the spatial frequency

RMS of the obstacle profile

Ii

Ph(f) power spectrum of the obstacle profile expressed in terms

of the time frequency

and where the time frequency is related to the spatial frequency by
f = uf (71)

where u equals the horizontal speed of the vehicle which is assumed to
be constant during transit of the obstacle. From Equations 70 and 71

it follows that
Ph(ﬁ) = uPh(f) (72)

27. A complete description of the dynamic response of a vehicle
includes the time histories of the acceleration, velocity, and displace-
ment of a point on the vehicle during transit of the obstacle. In prac-
tice only the three components of the acceleration are measured. How-
ever, for completeness the frequency response signatures of the

acceleration, velocity, and displacement will be considered. The fre-

quency spectrum signatures relate the power spectra of the dynamic

29



response

of the vehicle to the power spectrum of the obstacle profile

and are defined as follows:

2 - X 4
Ea -[Pa(f)df L‘[ (2nf) Sa(f)Ph(f)df (73)
0 0
22 = P (£)dT = (2wf)28 (£)P, (£)df (74)
v ' v h :
0 0
2 =
Xy _[ P, (f)df :[Sd(f)Ph(f)df (75)
0 o)
where
Za = RMS of the acceleration of a point on the vehicle for one
of the three modes of motion
Zv = RMS of the velocity of a point on the vehicle for one of
the three possible modes of motion
Ly = RMS of the displacement of a point on the vehicle for one
of the three possible modes of motion
Pa(f) = power spectrum of the acceleration modes
Pv(f) = power spectrum of the velocity modes
Pd(f) = power spectrum of the displacement modes
Sa(f) = acceleration frequency response signatures
Sv(f) = velocity frequency response signatures
Sd(f) = displacement frequency response signatures

o0 00

Because the acceleration, velocity, and displacement each has three com-

ponents,

there are in principle nine frequency response signatures. In

practice only the three acceleration frequency response signatures are

measured.
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Frequency response signa-
tures for acceleration,
velocity and displacement

28. From Equations 72-75 it follows that the frequency response

signatures are given by

Pa(f) uPa(f)
Sa(f) = 7 = i (76)
(27 f) Ph(f) (2nf) Ph(Q)

Pv(f) uP (f)
5_(£) = > = ; (77)
(27f) Ph(f) (21f) Ph(Q)
P (f) uP_(f)
Sd(f) = - = - (78)

Ph(f) Ph(ﬂ)

For the purpose of numerical calculations it is necessary to express the
power spectra in Equations 76-78 in terms of Fourier amplitudes which
are obtained from a frequency spectrum analysis of the obstacle profile
and the measured time histories of the dynamical vehicle response.

29. The power spectrum of a function is related to the square of

the magnitude of the Fourier transform of the function as follows

2
P_(f) = f_]1%(w) | (79)
L 2
B () = f0|1 (w) | (80)
2 2
B (£) = fDII (w) | . (81)
) 2
P (@) = a_|T"(K)] (82)
where
= 2nf
= 2180
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The Fourier transforms were calculated in Part II. The constants f
and QD are chosen for normalization purposes and are related by
fD = uQG corresponding to Equation 71. The value of f0 is taken from
the measured duration of the time history 2T as fo = 1/(2T)
30. From Equations 76-82 it follows that the frequency response

signatures can be written as

2 a
s_(w) =% Ih(“)] (83)
w I (k)
2
2 v
s (w) = & [T (84)
% 0 1" (k)
2 [ i
B e = il (85)
I (k)
where w and k are releated by w = uk . Therefore the dimensionless

frequency response signatures can be expressed in terms of the ratios
of the Fourier transforms of the vehicle response to the Fourier trans-
form of the obstacle profile.

31. The frequency response signatures can be rewritten in terms

of transmission functions which are defined as follows

S_(w) = T () (86)
8 (W) = T2(w) (87)
v Vv
S (W) = T% () (88)
d d

where

Ta(m) acceleration transmission function

Tv(m)

velocity transmission function

32



Td(m) = displacement transmission function

which are found from Equations 83-85 to be

a
Ta(m) L T vl

- (89)
m2 Ih(k)
Vv
T (u) =3 1 (0) (90)
v w Ih(k)
d
T,(w) = ) (91)
I (k)

32. Because the dynamic response time histories of a point on a
vehicle are very complex it is more convenient to use the Fourier series
coefficients as calculated in Part II by the FFT rather than the Fourier
transforms to calculate the frequency response signatures. The connec-
tion between the Fourier series coefficients and the Fourier transforms
is given by Equation 69 and when this is combined with Equations 83-91

and . nt/T the following results are obtained

2
4 [c®
_ (T -
s, = (%) |5 | = Taw (92)
Cl'l
2
2. fc
Sy n) _ gl
Sv(n) _(E?) b Tv(n) (93)
n
cd 3
N i o TR 4
n
where
r \2 Ca
.25 = b
CI'I
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T Cn
Tv(n) = ar K (96)
@
n
C
Td(n) = (97)
C
n
for n=1, 2, 3, ... . For n = o0 the frequency response signatures
are by definition equal to
Sa(o) = Sv(o) = Sd(o) =1 (98)
Ta(o) = Tv(ﬂ) = Td(o) = 1 (99)

Table 1 gives the dimensions of all the physical quantities that appear

in this report.

33. From Equations 62-64 and w = nn/T it follows that
n
)
Ta(n) = Tv(n) = Td(n) =-EE (100)
n

This follows from the assumption that the acceleration, velocity and
displacement of a point on the vehicle can all be expanded as Fourier
series with a common period 2T as shown in Equations 62-64.

34. Having obtained Sa . Sv and Sd from response data for a
vehicle on a test obstacle, it is now possible to predict the RMS wvalues
of acceleration, velocity and displacement that are expected to occur
at a point in the vehicle when it crosses another obstacle of known pro-

file. This is done using Equations 73-75 where now the power spectrum

P, () = Ph(Q)fu refers to the new obstacle. The new power spectrum is
obtained using Equation 82 and the Fourier transform of the new obsta-

cle profile. 1In this way the RMS dynamical response of a vehicle can be
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predicted for any obstacle or any terrain elevation variation without

having a specific dynamical model for the vehicle. Only the empirical

frequency response signatures of a vehicle are required to predict the

RMS dynamical response on any type of terrain. This is true only within

the limits of the validity of the assumption that the acceleration,
velocity, and displacement of a point on the vehicle can be written as

Fourier series in the form given in Equations 62-64.

Model Description for the Frequency
Response Signatures

35. In order to obtain a better understanding of the meaning of
the frequency response signatures, their values for a simple vehicle-
ground contact model is presented. Theoretical model-dependent expres-
sions for the frequency spectrum signatures have already appeared in the

literature and are as follows

0 _F ASW(A) wheels
B B | e (101)
4 ad asw(a) track
2 _F Asw(z) wheels
gow Ju. 452 (102)
v g asw(z) track
S % T |2 e ¥ wheels or track (103)
d dd
where
]Tdd‘ = magnitude of the displacement-displacement transmission
function for vehicle
e-F = low pass filter associated with the contact length of a
wheel or track
ASW(a) = curvature spectral window function for wheeled vehicle
asw(a) = curvature spectral window function for track
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(2)

ASW = slope spectral window function for wheeled vehicle

asw(z) = slope spectral window function for track

36. Equations 101-103 show that in principle the frequency re-
sponse signatures are independent of the obstacle profile and depend
only on the geometric and dynamic characteristics of the vehicle. The
dynamic characteristics enter through the displacement-displacement
transmission function, while the geometry of the vehicle-obstacle con-
tact area enters through the low pass filter associated with the spectral
window functions and the low pass filter associated with the ground-
vehicle contact 1ength.8’9 For a very small vehicle-ground contact
length the frequency response spectra in Equations 101-103 reduce to
the square of the dynamic transmission function.8’9

37. The contact length between the vehicle and the obstacle is
very small (about 12 in.*) for the case of a vehicle crossing the small-
sized obstacles that were used to obtain the experimental acceleration
time histories treated in this report. This is true for both track and

wheeled vehicles because the obstacles used for the tests are about

12 in. wide. For this case it follows from Equations 101-103 that

2
5. =8 =5, = led[ (104)
and the conditions for the validity of Equations 100 and 62-64 are
satisfied. It follows that

Ta = ITddI (105)
and the empirical values of the effective transmission function should
be an accurate measure of the displacement-displacement transmission

function for a vehicle.

Numerical Results

38. A numerical example of the theoretical procedures developed

in this report will now be presented. The vertical acceleration time

* A table of factors for converting U. S. customary units of measurement
to metric (SI) units is presented on page 3.
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history at the drivers seat of an M114 track vehicle crossing a 6-in.

radius semicircular obstacle at a speed u = 5.2 mph = 91.5 in./sec

will be used to determine the transmission function from which the fre-
quency response signature follows trivially as its square. The time
history of the vertical acceleration at the drivers seat appears in
Figure 6.

39. The Fourier series representation of the acceleration time
history Cz was obtained from a measured period of 2T = 1.55 sec wusing
an FFT computer program and appears in Figure 7. The Fourier series
representation of a 6-in. radius semicircular obstacle CE was obtained
for a period 2L = 2uT = 141.825 in. using the analytical expression
for the Fourier transform that appears in the table of transforms com-
bined with Equation 39, and appears in Figure 8. The transmission func-
tion for the vehicle was then calculated using Equation 95 and the

results appear in Figure 9.
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Figure 6. Acceleration time history for M114 track vehicle crossing a 6-in.
semicircle obstacle at 5.2 mph
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PART IV: CONCLUSIONS AND RECOMMENDATIONS

Conclusions

40. This report develops a formalism for calculating the fre-

quency response signatures of a vehicle from the acceleration time

history that is measured at a point on a vehicle as it crosses an obsta-

cle of known profile. The formalism uses the Fourier series representa-

tions of both the obstacle shape and the measured acceleration time

history.

41. The study of the dynamic response of vehicles to obstacles

produced the following conclusions:

d.

| o

Ie!

A nondimensional vehicle characteristic called the fre-
quency response signature can be defined and calculated
as being proportional to the square of the ratio of the
Fourier spectrum of the measured acceleration to the
Fourier spectrum of the shape of the obstacle.

The acceleration frequency response signatures are a
measure of three distinct effects (1) the dynamic trans-
mission function which includes the effects of the mass,
elastic spring and damping parameters of the vehicle

(2) the low pass filtering effect of the track or wheel
ground-contact length (3) the low pass filtering effect
of the curvature spectral window function for the vehicle
which accounts for the curvature of the obstacle over

the contact length.

A brief numerical study showed that the characteristic
resonance peak of the vehicle displacement-displacement
transmission function can be determined from an accelera-
tion time history measured at a point on a vehicle as it
crosses an obstacle of known shape.

Recommendations

42. The study of the empirical determination of the frequency

response signatures for vehicles produced several recommendations that

will be helpful for the design of new vehicles. It is recommended

that the following work be done:

d.

Frequency response signatures should be determined
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o

for a series of wheel and tracked vehicles and used
to extract the effective damping and spring constants
for these vehicles.

The frequency response signatures should be deter-
mined for a series of vehicle speeds in order to
examine the effects of nonlinear suspension systems.



10‘
1k,

12,

13.
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Table 1

Dimensions of Physical Quantities

Physical Quantity

Obstacle profile height h(x)

Displacement at a point on vehicle d(t)
Velocity at a point on vehicle v(t)
Acceleration at a point on vehicle a(t)
Fourier transform of obstacle profile Ih(k)
Fourier transform of displacement Id(f)
Fourier transform of velocity Iv(f)

Fourier transform of acceleration Ia(f)
Fourier coefficients of obstacle profile CE
Fourier coefficients of displacement Ci
Fourier coefficients of velocity CE
Fourier coefficients of acceleration Ci
Power spectrum of obstacle profile Ph(ﬂ)
Power spectrum of displacement Pd(f)

Power spectrum of velocity Pv(f)

Power spectrum of acceleration Pa(f)

Time period of acceleration 2T

Space period of obstacle 2L = 2uT

Obstacle length 2LD

Units

in.
in.
in./sec
in./sec
in.2
in. sec
in.
in./sec
in.
in.
in./sec
in./sec

in.3

2

in. sec
N
in. /sec

in.zfsec

secC

in.

in.




APPENDIX A: CALCULATION OF FOURIER TRANSFORMS
OF OBSTACLE SHAPES

1. This appendix gives a sketch of the calculations used to deter-

mine the Fourier transforms of the basic obstacle shapes considered in

this report. The problem is to calculate the Fourier cosine and sine

transforms defined as

oo

h

Ic — . fh(x) cos kxdx (Al)
)

IZ i [h(}:) sin kxdx (A2)
V2

—

where h(x) equals the height profile of the obstacle. The vehicle is
assumed to be moving from left to right, so that the left edge of the
obstacle is encountered first and it is at this point that the accelera-
tion response time history of the vehicle begins. Therefore the origin
of the axis is placed at the left edge of the obstacle. For an obstacle

of length 2L0 the integrals in Equations Al and A2 can be written as

o1
O
Wi
I = h(x) cos kxdx (A3)
< ior
O
o1
(8]
1‘; - J——f bila) sin kxdy (A4)
or A

where x equals the coordinate measured from the left edge of the
obstacle.
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2., It is helpful to introduce the following coordinate

transformation
X = Lo + £ (AS5)

Then the integrals in Equations A3 and A4 can be written as

L
Ih - i f h(E)(cos kKL cos k& - sin kL sin k&)dg (A6)
C ’/i_' O O
-
L
0O
10 ki f h(g)(sin kL cos ki + cos kL_ sin kE)de (A7)
S ‘/2— O O
il 7
O

If the obstacle is symmetrical the sine integrals in Equations A6 and A7

vanish and the cosine integrals are symmetric so that

L
o)
2
Ic = coS kLo \/;[ h(&) cos k&dE (A8)
(8]

-

L
0
Ih = gsin kL ‘Wg h(£) cos kE&dE (A9)
s o N
o
which can be rewritten as
h _ _h
Ic = Fc cos kLO (A10)
B B
IS = Fc sin kLG (A1l)

A2



3 0 )
where Fc is the Fourier cosine transform defined as

L
0
h 2
Fc = J’;fh(i) cos kEAE (A12)
0

Therefore for symmetrical obstacles it is only necessary to calculate

the Fourier cosine tranform Fh because 12 and IZ follow automati-

C
cally from Equations Al0 and All. For asymmetrical obstacles both I:

and I: must be calculated separately.

3. The following parts of this appendix gives the evaluation of
the Fourier transforms of some basic obstacle shapes. Symmetrical obsta-

cles are treated first and then their asymmetrical counterparts are

considered.

Symmetrical Obstacles

Semicircular obstacle (Figure 4a)

4. The semicircle is described by LD = R and

hee) = RV1 - £2/R2 (A13)

for |£[ < R , where £ 1is measured from the symmetry axis. The func-

tion is symmetrical and the Fourier cosine transform is given as

R
F:(k) . \/%IRV1 ~ £%/R* cos kEdE (A14)
(8]
The substitution n = £/R gives

1
F:(k) - ERz-[ Vl - n2 cos (kRn)dn (A15)
0
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But

from the table in Sneddon's booklo it follows that

1
J. (kR)
\/gf Vl - n2 cos (an)dn = @ lkR (Al6)
)

where Jl(kR) equals the first order Bessel function. Then it follows

that the Fourier transform of the semicircle is

For

For

and

J, (kR)
h . iy AR
Fc(k) = R 1}2 R (A17)

2J. (kR)
- )| ]

small kR one has Jl(kR) v kR/2 , so that
¥ k) = JE R = 0.62666R" (A18)
¢ 2 2
large kR
/ 2
Jl(kR) av KR C°S (kR - 31/2) (A19)
the Fourier transform is obtained from Equation Al7 to be

h m R 2
Fc(k) - J;E \’m cos (kR - 31/2) (A20)

The zeros of Jl(kR) are given in the references and are determined by
Jl(knﬂ) = 0 (A21)

which gives
knR = T (A22)
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where rn equals the n'th root of the first order Bessel function. The

roots of Jl are tabulated in the literature and the first few are as
follows

r, = 3.8317 (A23)
r2 = 7.0156 (A24)
r, = 10.1735 (A25)

Therefore the values of k , Q , and A for the roots are

|
=B
k_ R (A26)
rn
QH ¥ 2mR (A27)
_ 2mR
A = —-—rn (A28)

Rectangular obstacle (Figure 4b)

5. The rectangle is described by h(f) = h for 0 < £ < a where
E 1is measured from the axis as symmetry, and the Fourier cosine trans-

form for this symmetrical obstacle with LD = a 1is

a
h .
F (k) = \/ ﬂfh cos kEdE
O
= h __2_ sin (1(3) (Azg)
m k

f2 sin (ka)
T (ah)[ ka ]

The zeros occur at

A5




k a = nn (A30)

The values of k, © 4, and A at the roots are

_on
kn =~ a (A31)
n
or Qn =iss (A32)
_ 2a
A =22 (A33)

Symmetrical trapezoid (Figure 4c)

6. The symmetrical trapezoid is described by the following func-
tions with the origin of coordinates chosen at the axis of symmetry and

1. =383 4+Db
(0]
h 0 < < a
h(§) = . (A34)

.% (a+b-¢) a<t<a+hb

where the coordinate £ 1is measured from the symmetry axis. The

Fourier cosine transform is given by

a a+b
FE(k)=J§]hcosk£d£+J§[%(a+b—£) cos kEdE
0 a

= \JEH—E— [cos ka = cos k(a + b)] (A35)
] bk2

|2 b sin k(a + b/2) sin (kb/2)
"\E(EJ'z)h[ k(a + b/2) ][ kb/?2 ]

The limit b » 0 reproduces the results for the rectangle shown in

case 2.
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Symmetrical triangle (Figure 4d)

7. The case of the symmetrical triangle can be obtained from the
symmetrical trapezoid by taking a = 0 . From the result in case 3 for

the symmetrical trapezoid it follows that the symmetrical triangle is

obtained with a = 0 to be

2
TN Lz_ bh\[sin (kb/2)
F k) == ( 2)[ Kb/ 2 ] LA36)

and the obstacle half-length is LD = b .

Double rectangle (Figure 4e)

8. The double rectangle obstacle can be represented as follows

h s [ R
(E) = (A37)

h A< E<a+g

where
£ = coordinate measured from the symmetry axis
L. = a<c
0

The Fourier cosine transform is

a atc
h " ’2 Lg
Fc(k) = ?[hl cos kEdE + = [ h2 cos kEdE
0 a
2 sin ka sin k(a + ¢)  sin ka] A38
2k ' lhl Ry [ k Kk {A38)

2 sin ka sin kec/2 + a5
= [Fla T==+ hyc 5 opd k(a + c/2)

For ¢ = 0 this reduces to case 2 of the rectangle of height hl ,

while for a = 0 it reduces to case 2 of the rectangle of height h2 :
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Asymmetrical Obstacles

Asymmetrical trapezoid (Figure 5a)

9. The origin of the axis is taken at the left edge of the obsta-
cle whose total length is 2L0 = 2a + b + e . The equations defining

the shape of the obstacle are

h
E‘x a<x<bD>
h(x) = h b<x< 2a+b (A39)
h
= (2a + b + e - %) 2a+b <x <2a+b+e

The .cosine component of the Fourier transform is

b 2a+b

C=—[—1_—_f%xcnskx+—l‘——'/_ h cos kxdx
2T
(A40)
2a+b+e
ped 2 (2a +b+e-x) cos kxdx
/2 2a+b

After some algebra the cosine component is found to be

2
h _ 1 'k e\(sin ke/2\ _ kb {sin kb/2
IC “ﬁ__k [sin k(éa + b + é)( ke /2 ) 5 Kb/ 2 ] (A41)

The sine component of the Fourier transform is given by

b 2a+b
__l__[%x sin kxdx+"-l'- [ h sin kxdx
T van Wiy
(A42)
2a+b+e
1 h
4+ — E—(Za + b + e - x) sin kxdx
v2n 2a+b
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Some algebra gives the sine component of the Fourier transform as

' 1% [sin kb (sin ke/Z)
] = — — - cos k(ﬁa 4+ b +-E) (A43
S /ﬂ k kb ke/2 2 )

The magnitude of the Fourier transform is then obtained as

2 2
h h h
e J@Y - (@)
(A44)
__1 h sin kb/2 (éin ke/2 sin kbfz sin ke!Z (b +
Jig-k'ﬁ kb/2 ) ke/2 ) 2\ "% /2 ( ke/z ) cos k|2a + 5=

Note Equation A44 is symmetric under interchange of the variables

b and e .

Right angle trapezoid (Figure 5b)

10. The right angle trapezoid can be obtained as a special case
of the general asymmetrical trapezoid by taking e = 0 1in case |

The results are

2
Ih =‘_l_-g[%in k(2a + b) - kg (si;b$2/2) ] (A45)
€ Var
Ih =-—l—-% [si:bkb - cos k(2a + b)] (A46)
> Von

F o ———————

2
Ih . __1__%\/1 it (sin kb/Z) of 2(sin kb/2 . k(Za + _g) (A4LT)

kb/2 kb/2

ggymmetrical triangle (Figure 5c)

11. The asymmetrical triangle can be obtained as a special case
of the general asymmetrical trapezoid by taking a =0 1in the results

of case 1. The results are

A9



I: ¥ /;;k [%in k(ﬁ +-§)(51EE$;/2) . kg (Siibﬁgfz)z]

Ih'
s

e e |
27k

Right triangle

(Figure 5d)

J(ﬂin kb['? (sin ke/2 2 _ 2(51n kb!’E)(sin ke!Z) k(b + e)
kb/2 ke/2 kb/2 knj2 J °F° 2

(A48)

(A49)

(A50)

12. The Fourier transform of the right triangle can be obtained

as a special case of the asymmetrical triangle (case 3) by taking either

=0 or e =
vehicle or not.

d.

—

| o

0 depending on whether the right angle faces the moving

Right angle facing vehicle (b = 0)

o, B (ke)(%in ke/2)2
C ok 2 ke/2

0)

Right angle facing away from vehicle (e

h h _ kb fsin kb/2 2
I = sin kb - 5 kb/2
¢ V2mk

h h (sin kb

1 =
kb

S - COS kb)
Y21k .

Al0

(A51)

(A52)

(A53)

(A54)

(A55)



V21k

sin kb/2
V1 +( kb/2

All

-

sin kb

kb

(A56)





