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1 INTRODUCTION 

The design of gravity retaining walls in an earthquake-prone 

environment is usually based upon static analysis using an 

equivalent seismic coefficient. This can be a suitable approach, 

provided that the seismic coefficient is determined from a 

rational analysis of actual dynamic behavior. However, the use of 

seismic coefficients in current practice is largely empirical and 

sometimes inconsistent, leading to designs that may be either 

excessively conservative or unsafe. 

In 1969, Richards and Elms presented a rational method for 

the selection of a suitable seismic coefficient, based upon the 

concept of an allowable permanent displacement. This approach is 

generally compatible hoth with the design philosophy used to 

design gravity retaining walls against static loads and with that 

used to design many other structures against earthquake loads. 

Richards and Elms utilized an analogy between the behavior of a 

gravity retaining wall and that of a block sliding on a plane, 

which is an oversimplification of the actual behavior of a wall­

backfill system. Consequently, they suggested the use of a 

liberal safety factor, which to some extent takes into account the 

effects of these oversimplifications and other uncertainties in 

the analysis. 

The work described in this report improves upon and extends 

the Richards-Elms approach to design by considering corrections to 

the simple sliding block analogy, and by introducing a rational 

basis for the selection of a suitable safety factor for use in the 
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approach. The essence of the proposed method is the following 

expression for prediction of the residual displacement experienced 

by a gravity retaining wall during an earthquake: 

( 1. 1) 

where dRw is the predicted residual displacement 

aRv is the mean (expected) residual displacement for a 

sliding block exposed to ground motion characterized by 

a small number of parameters (such as peak acceleration 

A and peak velocity V). 

R
211 

is a deterministic term accounting for a specific 

kinematic deficiency in the single sliding block model. 

Q is a term accounting for the unpredictable details in 

the random nature of future earthquake shaking. 

R~ is a term accounting for the uncertainty in the 

parameters characterizing the backfill, wall and 

foundation soil. 

M is a term accounting for other, and as yet, poorly 

understood deficiencies of the simple sliding block 

model. 
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The scope of this report is restricted to gravity retaining 

walls with granular backfills ·subjected to earthquakes, where soil 

liquefaction is not of importance. It also primarily deals with 

the translational mode of retaining wall movements, treating 

rotational movements as a secondary concern. Chapter 2 presents 

an overview of the complex nature of the dynamic retaining wall 

problem, and Chapter 3 discusses the conventional approach to 

design. Subsequent chapters treat and discuss each of the 

individual terms in Equation 1.1 in detail. 

It should be noted that further research and development 

remains to be done to render the basic Richards-Elms procedure 

completely satisfactory. Nevertheless, based on the present 

knowledge summarized in this report, an improved design procedure 

is presented in Chapter 9. 
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2- GENERAL FEATURES OF DYNAMIC BEHAVIOR 

2.1 COMPLEX BEHAVIOR AND SIMPLIFIED MODELS 

Analysis of the behavior of gravity retaining walls during 

earthquake loading is a complex soil-structure interaction problem 

potentially involving plastic deformations and large strains. 

Even with the use of numerical procedures, such as the finite 

element method, it is not presently feasible nor possible to 

simulate all the phenomenon that would occur. As in all branches 

of engineering, simplified models with various approximations and 

assumptions are necessary to make complex problems more tractable, 

particularly for purposes of design. 

Various simplified models, useful for engineering design of 

retaining walls, will be presented in subsequent chapters of this 

report. In this chapter, the intent is to illustrate and examine 

the complexities of retaining wall behavior, and to highlight some 

of the major aspects of the problem that have been considered in 

the simplified models. However, more importantly, the phenomena 

that have not been considered in the simplified models are also 

identified, to provide a basis for judging the limitations of the 

models. 

A general overview of retaining wall behavior is presented 

here, based on a review of field observations, laboratory model 

experiments, and the results of a relatively sophisticated finite 

element model. Further aspects of some particular details of 

these observations and data will be discussed, as necessary, in 

subsequent chapters. 
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2.2 FIELD OBSERVATIONS 

Many reports of retaining wall movements during earthquakes 

are available in the literature. Useful summaries of these data 

have been presented by Seed and Whitman (1970), the Japan Society 

of Civil Engineers- JSCE (1977), and by Mayes and Sharpe (1981). 

Aside from the cases where liquefaction was a cause of 

failure, three types of retaining wall movements have been 

observed, as schematically illustrated in Fig. 2.1. These are: 

• Outward translations of the wall 

• Rotations about the base of the wall 

• Rotations about the top of the wall 

Most cases of movement involve a combination of translation 

and rotation. Rotations about the top of the wall appear t o be 

restricted to retaining walls forming part of bridge abutment 

structures. Mayes and Sharpe (1981) suggest that rotation about 

the top occurs only after outward motion of the wall brings the 

top into contact with and restraint by the superstructure. 

However, the pattern of overall bridge movement in some cases 

indicate that inertia forces from the superstructure may actually 

havepushed the top of the wall into the backfill (Evans, 1971). 

In the simplified methods presented in subsequent chapters, 

only the translational mode of movement is c o nsidered in analysis. 

This is because translational movements are more analytically 

tractable than rotational movements, but it is also an obvi ous 

disadvantage of the methods, since it is rare that purely 

translational movements of walls have been observed. Some 

analytical work on rotational modes of movement has been reported 
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by Nadim (1980), but the results are of a preliminary nature. 

Settlements of the backfill behind a wall generally accompany 

outward movements of the wall. Evans (1971) reports fill settle­

ments of the order of 10% to 12% of the fill height. Such orders 

of magnitude of downwards movements of the backfill associated 

with outwards movement of the wall are consistent with the concept 

of the development of a wedge of soil failing along a plane behind 

the wall. 

It has been observed that movements are not always associated 

with damage or failure. Evans (1971) noted that of the 39 bridges 

examined in the vicinity of the 1968 Inangahua earthquake in New 

Zealand, 23 showed measureable movement (without damage), and only 

15 were damaged. This is an important concept which is used by 

Richards and Elms (1979) in the proposed design method. 

Designing to limit the amount of outward movement is a 

rational method to avoid failure not only for the translational 

mode, but perhaps also for rotational modes of failure. In the 

case of bridge abutments, if the amount of translation is 

restricted so that contact and restraint by the bridge 

superstructure is avoided, then the likelihood of rotational 

movements about the top of the retaining wall is greatly reduced. 

2.3 MODEL EXPERIMENTS 

Tests have been performed by a number of investigators using 

small scale models of earth retaining structures subjected to 

dynamic base motion. Reviews and summaries of the various results 

from these experiments have been reported by Seed and Whitman 
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(1970), and more recently by Nadim (1982). Generally, the 

experiments that have been performed can be classified into two 

groups: 

• Experiments primarily concerned with the measurement of 

dynamic earth pressures and/or structural response. 

• Experiments to measure the movements of retaining walls 

and observe general failure patterns during shaking. 

The first group, involving experiments to measure dynamic 

earth pressure, has had limited success in the comparison of 

results with theoretical solutions, in particular the 

Mononobe-Okabe equation. Specific details of these comparisons 

with theory will be discussed in Chapter 3. It has generally been 

observed that the distribution of earth pressure does not increase 

linearly with depth as in the case for static pressures. Also, 

the location of the resultant of the total force is usually 

located above the lower third point along the height of the wall. 

Several of these experiments involved model walls that were fixed 

or restrained, and subsequently did not correspond to true field 

conditions. 

The second group of experiments are generally closer in their 

simulation of actual field conditions. Murphy (1960) conducted 

tests on a model gravity retaining wall made of solid rubber 

shaken with sinusoidal base motion with a period of 1.48 seconds. 

Figure 2.2 shows the sequence of failure of the retaining wall. 

Although the wall weight is improperly scaled and there are 

undoubtedly frictional effects (i.e. model against glass 

container), several significant behavioral features can be noted: 



FIG. 2.2 
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(a) Before starting test 

of gravity wall. 

(b) Condition of gravity 

wall after 1 minute 

of vibration. 

(c) Condition of gravity 

wall after 2~ minutes 

of vibration. 

MODEL TEST SHOWING ROTATIONAL MODE OF FAILURE 
(FROM MURPHY, 1960). 

Note: Scale is marked in inches. 
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• The formation of a single predominant failure plane in the 

backfill, along which slip occurs. 

• A significant amount of backfill settlement. 

• The occurrence of distortional shear strains in the 

backfill failure wedge. 

• The plastic deformation of the soil in the area near the 

toe of the wall as a result of wall rotation. 

Lai (1979) performed a series of experiments using L-shaped 

model retaining walls approx. 12.6 inches (320 rom) high with a 

base width of 8.7 inches (220 rom). The model walls were made of 

aluminum, and additional steel plates could be secured to the base 

of the wall to vary the total weight of the wall. The dynamic 

excitation was provided by a shaking table which could simulate 

both periodic and earthquake excitations. 

A photograph of one of Lai's model tests after failure is 

shown in Fig. 2.3. In contrast to the rotational failures, 

translational movements produce very little distortional strain in 

the failing backfill soil wedge, and can be approximated as a 

rigid body motion. However, plastic deformations of the soil at 

the toe of the soil wedge must occur in the process of movement. 

Similar to the result shown for rotational failure, Lai noted the 

formation of a single predominant failure plane, though other 

planes developed in the failing wedge with larger movements. 

Also, there is clear evidence that increasing the weight of the 

wall leads to flatter inclinations of the failure plane. 
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FIG. 2. 3 MODEL TEST SHOWING TRANSLATIONAL MODE OF 
FAILURE (FROM LAI, 1979). 

Note: Scale is marked in ern. 
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Typical measurements of acceleration and relative displace­

ment of the model wall obtained by Lai (1979) are shown in Fig. 

2.4. The first feature to note is that the total slip of the 

model retaining wall does not occur in a single movement (i.e., 

catastrophically), but rather occurs in a stepwise fashion as a 

series of smaller incremental displacements. During the time 

intervals when slip is not occurring, the acceleration of the 

model wall follows closely the input base acceleration. The 

occurrence of slip is associated with wall accelerations that are 

less than the peak base motions, and there appears to be a 

critical acceleration at which slip starts to occur. Also, slip 

occurs in only the direction away from the backfill, implying that 

passive pressures are more than sufficient to resist wall 

movements into the backfill. 

A problem common to all model tests is the lack of similitude 

in stresses and loads from using small scale models. In part, 

this scaling problem can be alleviated by conducting tests in a 

centrifuge, as has been reported by Ortiz, et al. (1981) and by 

Bolton and Steedman (1982) in their experiments on model retaining 

walls. Currently, there is an extensive research program on 

retaining walls being carried out at the Cambridge University 

Centrifuge facility, but the results of those model tests are not 

available to the writers at the time of publication of this 

report. It is almost certain that these series of tests will 

provide further insight into retaining wall behavior, and may 

change some of the conclusions stated here. 
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2.4 FINITE ELEMENT RESULTS 

Though even sophisticated finite element analyses are 

simplified models of actual behavior, they can nevertheless offer 

insight into physical processes that are difficult to observe or 

measure experimentally. The finite element idealization of a 

retaining wall used in a study by Nadim (1982) is shown in Fig. 

2.5. The material properties of this model are linearly elastic, 

except for the essentially rigid-plastic elements at the base of 

the wall, at the wall-soil interface, and along a preselected 

failure plane through the backfill. This model is able to account 

for elastic deformation of the backfill as well as for the 

development of a Coulomb-type failure wedge. 

A typical set of results, obtained using 3 cycles of 

sinusoidal motion at the base of the grid, is shown in Fig. 2.6. 

There are three intervals (marked "slip'' on the figure) during 

which the wall slides upon the base. In these intervals, the 

shear force at the base of the wall is constant and the thrust 

between backfill and wall is relatively low. On the other hand, 

the maximum thrusts from the backfill occur at times when no slip 

is occurring, and when the base shear resistance is fairly low. 

An explanation for the lack of direct correlation between the 

earth pressure force and the amount of wall slippage (at any given 

time) is illustrated in Fig. 2.7. Here, the finite element model 

is further idealized as a lumped mass system consisting of two 

masses and axial and lateral-shear springs. A unique feature 

imagined for one of the axial springs (labeled 'B') is its ability 

to transmit compressive forces, but not tension. The analog of 
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the earth pressure thrust is the force in the spring (labeled 'A') 

connecting the two masses representing the wall and the backfill 

wedge. 

If the ground is suddenly accelerated to the right and slip 

occurs as in Fig. 2.7(c), a force would develop in the spring 'A' 

because of differences in the inertia forces between the two 

masses and differences in the stiffness of the shear springs. 

However, there would be no force in the spring 'B', and so the 

force in the spring 'A' would be fairly small, and perhaps even 

slightly tensile. On the other hand, when a sudden acceleration 

is applied to the left as in Fig. 2.7(d), the force in spring 'B' 

is activated to resist the inertia forces of the two masses. As a 

result, slip movements do not occur, but a relatively large force 

would be present in spring 'A', the analog of the earth pressure. 

The above arguments have tried to explain in only a purely 

intuitive fashion the complex nature of forces and displacements 

in a elastic-plastic retaining wall model. However, the major 

point of emphasis as it applies to gravity wall design is that 

there is not a clear direct correlation between the maximum earth 

pressure force and the amount of relative displacement that 

occurs. Focusing too much upon the forces exerted by the backfill 

may lead to meaningless results, and it is more essential think in 

terms of displacements in design. 

The location of the resultant dynamic earth pressure force 

was observed to vary with time in a complex manner in the finite 

element model. Parametric studies using a finer mesh model (than 

that shown in Fig. 2.5), indicated that the time variation of the 
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location of the earth pressure depended on factors such as the 

elastic modulus of the backfill and the frequency and amplitude of 

the input ground motion. 

Another feature observed in the finite element model is the 

amplification of ground motions due to the elastic properties of 

the wall and backfill. Since the system is elastic, a natural 

frequency of vibration can be associated with the retaining wall 

and the soil. If the input ground motion due to an earthquake has 

a central frequency near the natural frequency, effects similar to 

resonance will tend to amplify the maximum ground acceleration, 

and cause larger displacements of the retaining wall. 
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3- CONVENTIONAL DESIGN 

3.1 GENERAL CONCEPTS 

Gravity retaining walls are typically designed using a static 

equivalent earthquake coefficient. This coefficient is used to 

evaluate the static plus dynamic force exerted on the wall by the 

backfill, and should also be used to calculate the inertia force 

due to the wall. A schematic of these forces is shown in Fig. 

3.1, along with definitions and notation for the seismic 

coefficients. Having found these forces, conventional static 

design procedures are followed, which means ensuring that the 

weight of the wall, shear resistance on the base of the wall and 

passive resistance at the toe are sufficient (with appropriate 

safety factors) to resist sliding, overturning and bearing 

capacity failure. 

In concept, the use of a seismic coefficient (also called the 

pseudo-static method of analysis), is equivalent to a static 

tilting of the problem at an angle * computed as: 

where NH - the horizontal seismic coefficient 

NV - the vertical seismic coefficient 

(3-1) 

with positive (+) inertia force directions as noted in Fig. 3.1. 

Figure 3.2 illustrates this concept for a simple case where NV = 0. 
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FIG. 3.1 SCHEMATIC OF STATIC EQUIVALENT SEISMIC 
COEFFICIENTS AND EARTHQUAKE INERTIA FORCES 
FOR CO~NENTIONAL DESIGN. 
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As can be readily seen, a logical conclusion from this 

interpretation of the angle, W is that Y can not exceed the angle 

of repose (~) for cohesionless flat backfill (Richard and Elms, 

1979). Since the steepest slope that can be formed is at the 

angle of repose, Y > ~would correspond to an impossible non-

equilibrium condition. Similarly, for a backfill inclined at 

angle i, 'If would be restricted to have values less than ~i. 

Physically, as Y increases, the critical angle of the failure 

plane becomes flatter, unt i 1 at W = ~i, the failure plane becomes 

parallel to the backfill slope. 

3.2 EVALUATING DYNAMIC EARTH PRESSURE 

3.2.1 Mononobe-Okabe Equation 

Although retaining wall seismic stability analyses c a n be 

performed by assuming several trial slip planes of failure in the 

backfill (as in slope stability analysis), usually earth pressures 

are calculated using some version of the Mononobe-Okabe equation 

(Mononobe, 1929 and Okabe, 1926). In its complete form, the 

equation is written as: 

(3.2.a) 

where 

KAE - ------~~~--~~~~ 

/sin (~+ o) sin (~ - 'l' -i ) 
c o s '11 co s 20 co s ('¥+ 0 +o ) 1 + 

T ~ ~ 1 co s (i- 8) co s ('l'+B+o ) 

2 

(3.2.b) 
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PAE is the combined active static and dynamic thrust, and the 

other quantities in the equation are: 

y - unit weight of the backfill 

H - height of the backfill 

$ - angle of internal friction of the backfill 

6 - angle of friction between the backfill and the wall 

~ - angle of inclination of the back of the wall (with 

respect to vertical) 

i - angle of inclination of the backfill 

The above variables are illustrated in Fig. 3.3. NV and ~ are as 

previously defined (Eqn. 3.1). 

Figure 3.4 provides various charts of the quantity KAE or 

KAE cos 6 plotted against the horizontal seismic coefficient NH. 

KAE cos 6 represents the horizontal component of the dynamic earth 

pressure. Fig. 3.4 illustrates the sensitivity of the Mononobe­

Okabe equation to changes in the various input parameters. Based 

on the observation that the inclination of the lines in Fig. 3.4 

are all approximately at the same slope (of about 3/4) for a 

relatively wide range of NH, $, and 6, Seed and Whitman (1970) 

proposed a useful approximate equation for KAE: 

( 3. 3) 

where KA is the static earth pressure coefficient, determined 

using appropriate values of $, ~' i, and 6. 
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The location of the total thrust PAE is indeterminate from 

the Mononobe-Okabe analysis. Usually, it is recommended that the 

resultant force be located above the lower third point of the 

wall. Seed and Whitman (1970) suggest that the dynamic component 

of PAE be placed at the upper third point, with the net result 

being that the combined dynamic and static thrust PAE would be 

located at or near mid-height of the wall. 

3.2.2 Validity of Mononobe-Okobe Equation 

The Mononobe-Okobe equation is nothing more than Coulomb's 

equation for active earth pressure, modified to incorporate a 

horizontal inertia body force as well as a vertical gravitational 

body force. Indeed, as discussed previously, Equation 3.2 may be 

derived simply by starting from Coulomb's equation and tilting the 

wall and backfill until the resultant of all body forces is 

vertical (e.g. see Antia, 1982). 

Equation 2.1 is subject to all of the same limitations as the 

static Coulomb equation. Failure lines through the backfill are 

assumed to be straight, which is an approximation but a good one. 

Most important is the requirement that there be sufficient strain 

along the assumed failure line to mobilize the full shearing 

resistance of the soil in the active sense. That is to say, there 

must indeed be active conditions. If the full shearing resistance 

of the backfill is realized throughout the failure wedge, and if .......... 

the horizontal inertia body force is constant within this wedge, 

then the static plus dynamic stress between backfill and wall must 

be distributed linearly with depth. In many cases, these may be 
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questionable assumptions, the deviation from which would lead to 

quite different stress patterns. 

Other dynamic earth pressure equations have been suggested, 

usually derived on the assumption that the backfill is linearly 

elastic with no limitation upon the shear stresses that can occur. 

A summary of these various solutions is presented by Nadim (1982). 

Not surprisingly, such equations often predict much larger dynamic 

thrusts, and a different distribution of lateral stress with 

depth, than an analysis based upon Coulomb's assumptions. 

As described in Chapter 2, various experiments have been 

performed using shaking tables with the purpose of checking upon 

the validity of the Mononabe-Okabe equation. In general, the 

conclusion has been that the observed total dynamic thrusts agree 

reasonably well with those predicted by the theory. However, many 

of these tests have not satisfied conditions that permit sliding 

to occur along a failure plane through the backfill. In addition, 

the dynamic thrust varies during a cycle of loading, and it is not 

clear which observed value should be compared to the Mononobe­

Okabe value. 

Hence it is not surprising that there are experiments showing 

disagreement with theory, because of experimental conditions that 

do not simulate the behavior of gravity retaining walls. On the 

other hand, at least some of the reported experimental 

confirmation of the Mononobe-Okabe Equation may be only 

fortuitious. 
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3.3 DISCUSSION OF THE SEISMIC COEFFICIENT METHOD 

3.3.1 Format of Typical Seismic Coefficients 

The use of a static equivalent earthquake coefficient • 1s a 

reasonable approach for the design of gravity retaining walls, 

provided that neither the backfill nor the foundation soils 

beneath the wall experiences a dramatic loss of strength (i.e., 

liquefaction) during earthquake shaking. A key element in this 

approach is the proper selection of the seismic coefficient to use 

in the Mononobe-Okabe Equation. 

The seismic coefficient method is used for the design of most 

civil engineering projects. Building codes and other design 

manuals provide recommended values for this coefficient, which is 

primarily dependent on the geographical location of the project 

with respect to regions as defined by seismic zoning maps. In 

most codes, the coefficient is modified by factors that are 

dependent on: 

• The type of foundation soil profile at the project site 

• The type of the structure (e.g. buildings vs. bridges) 

• The natural period of the structure 

• The importance of the structure (e.g. hospitals vs . 

warehouses) 

The last of these above factors, often referred to as the 

''importance factor'', is an attempt at incorporating a subjective 

risk/benefit element into the seismic coefficient. 

The various maps and recommendations that have been developed 

are strictly for the horizontal seismic coefficients. Although 

the general Mononobe-Okabe equation can accommodate both v e rtical 



30 

and horizontal accelerations, the present lack of recommendations 

for the vertical components of acceleration prevents considering 

this factor in conventional design. Also, the vertical component 

of earthquake motion is generally not considered to be of as much 

significance as the horizontal component. 

3.3.2 Comparison of Two Seismic Coefficient Maps 

Two examples of seismic coefficient maps of the United States 

are shown in Figures 3.5 and 3.6. Figure 3.5 is the • • 
SelSmlC 

coefficient zoning map currently used by the u.s. Army Corps of 

Engineers- USACE (1983), and Fig. 3.6 is from the tentative 

building code proposed by the Applied Technology Council 

(ATC-3-06, 1978). Similar maps for the United States are 

published in the Uniform Building Code (UBC) and in the ANSI 

regulations. 

Comparison of the two maps in Figures 3.5 and 3 . 6 indicate 

apparent differences in the delimiting of seismic zones and the 

magnitudes of seismic coefficients. The ATC maps show coeffi-

cients that are double the values shown on the USACE map. 

However, the USACE coefficients are intended to be applied 

directly, while the ATC coefficients should be modified using 

various factors as previously described. For free-standing 

gravity retaining walls, the current ATC recommendation (Mayes and 

Sharpe, 1981) is to use NH = 1/2 N0 , where N0 is the value of the 

seismic coefficient shown on Fig. 3.6. Thus in the final 

comparison, the two maps do not conflict as significantly as at 

first glance. Nevertheless, differences do exist and it should be 
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noted that for walls which are restrained from horizontal 

movement, NH = 1.5 N0 is recommended by the ATC code. 

3.3.3 Judgement in Formulation and Use 

The recommended seismic coefficients in the various codes and 

manuals are derived partly from theory and partly from experience 

data during actual earthquakes. Considerable judgement is 

necessary to formulate the zoning maps and to determine suitable 

values of seismic coefficients. Thus it is not surprising that 

the differences in various codes and manuals should occur, and 

also that updating of the values of the seismic coefficients occur 

from time to time. 

It is also important to note that the intended use of the 

various recommendations may significantly affect seismic 

coefficient values. For example, the USACE maps were originally 

formulated primarily for use in designing earth dams, which make 

up a significant part of the USACE's constructed projects. Thus, 

applying the USACE coefficients to other structures should be done 

cautiously. In Japan, a similar situation exists with seismic 

coefficients and maps differing for port and harbour structures, 

roadways, buildings, etc. (JSCE, 1977). 

3.3.4 Seismic Coefficients and Safety Factors 

Seismic coefficients typically have lower values than the 

peak ground accelerations that have occurred during earthquakes. 

In designing buildings, it is expected that the peak accelerations 

(due to amplification of ground motion in the structure) could be 
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much higher than the seismic coefficient. Thus, it is recognized 

that buildings designed using these recommended coefficients can 

be expected to yield, should a major earthquake occur. However, 

these designs are such that the yielding should not cause unaccep­

table damage or danger of injuries and fatalities. 

The implication for gravity retaining walls designed using a 

seismic coefficient method is that slip of the of the wall will 

likely occur during major earthquakes. This is especially true 

in light of the fact that relatively low factors of safety are 

usually recommended in conjunction with seismic design. The 

design manual used by the Naval Facilities Engineering Command 

(NAVFAC, 1982) DM-7.2 currently allows a factor of safety between 

1.1 and 1.2 for seismic analysis, and for quay walls in Japan the 

recommended factor of safety against sliding is 1.0 (JSCE, 1977). 

Although the USACE does not have specific factor of safety guide­

lines for retaining walls (USACE, 19 65) , it is inferred from the 

guidelines for darns (USACE, 1970) that a factor of safety of 1.0 

would be acceptable in earthquake design. 

An alternative to designing retaining walls using the seismic 

coefficient would be to instead use the peak ground acceleration 

expected for a future earthquake. However, this practice is 

considered to be generally uneconomical if the inertia force of 

the wall is considered in the design. It has also been suggested 

that the horizontal earth pressure PAE be evaluated using the peak 

ground acceleration and that the inertia of the wall be ignored. 

However, this is an illogical procedure and cannot consistently 

lead to sound designs. 



35 

3.3.5 CONCLUSION ON SEISMIC COEFFICIENTS 

The conclusion that is arrived at from the above discussion 

is that there are rational ways to select and use the conventional 

seismic coefficient in design. However, the emphasis of design 

should not concentrate on the evaluation of equilibrium of forces, 

but rather on the evaluation of the retaining wall slip that 

should be allowed to occur during a major earthquake. In a recent 

document issued by the USACE, it is stated that: 

" ••. the seismic coefficient method, often 
referred to as the pseudo-static method, is no 
longer regarded as being appropriate for 
analysis of embankment or foundation response 
in seismic loading. Therefore its use for this 
purpose should be discontinued." 

(USACE, 1983) 

The above statement should equally apply to gravity retaining 

walls. 
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4- RICHARDS-ELMS METHOD 

4.1 GENERAL 

Recognizing the shortcomings of the conventional approach for 

seismic design of gravity retaining walls, Richards and Elms 

(1979) developed a design philosophy based on the concept of an 

allowable permanent displacement. In the end, the design of a 

wall is still accomplished using an equivalent static seismic 

coefficient, but with a more rational basis for the selection of 

this coefficient. 

The key to the Richards-Elms approach is the method of 

calculating the amount of residual wall movement. The approach is 

similar to the method suggested by Newmark (1965) to evaluate the 

amount of slip occurring in dams and embankments during earth­

quakes. The Newmak sliding block model is discussed in the next 

section, which is also intended to introduce notation and to set 

the stage for discussions of more complex models for evaluating 

retaining wall displacements. 

4.2 NEWMARK'S SLIDING BLOCK MODEL 

Consider the rigid block shown in Fig. 4.1 with weight Wand 

mass M = W/g, where g is the gravitational constant. It is 

assumed that the coefficient of friction between the block and the 

plane is ~ = tan~ b. Suppose that a rectangular earthquake 

impulse (solid lines) shown in Fig. 4.2(a) is applied to the 

plane. The magnitude of the plane's acceleration a is equal to 

Ag. Suppose also, that the maximum acceleration which can be 
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transmitted to the block through friction forces is aT = Ng where 

the subscript 'T' denotes the transmittable horizontal or limiting 

acceleration. Then the consequent acceleration experienced by the 

block is shown by the dashed lines in Fig. 4.2(a). 

The resulting velocity profile as a function of time can be 

deduced as shown in Fig. 4.2(b). The plane's velocity increases 

linearly at a slope Ag and levels off at time t
0

, the end of the 

rectangular input pulse. However, the block continues to 

accelerate until its velocity catches up to the velocity of the 

plane (at time t ) and this limits the time interval of the 
m 

acceleration impulse experienced by the block. The resulting 

relative displacement between the block and the plane is simply 

the shaded area shown in Fig. 4.2(b), i.e. the difference in the 

integrals of plane and block velocities over time. 

The basic concepts described above can be applied to more 

complex earthquake acceleration time histories, using a relatively 

simple computer program. An additional feature that must be 

included is the non-symmetric resistance of friction forces, • 1.e., 

slip occurs only in one direction. This is consistent with the 

physical behavior of retaining walls in that passive pressures are 

generally more than sufficient to resist wall movements into the 

backfill during earthquake shaking. 

An example of the type of results obtained by Newmark (1965) 

and later expanded by Franklin and Chang (1977) is shown in Fig. 

4.3. This figure is a plot of standardized residual block 

displacements dR versus the ratio of transmittable block 

acceleration to maximum ground acceleration aT/a = N/A. The data 



40 

I SAN FERNANDO. CALIFORNIA EARTHQUAKE. 219fl l 

500 M = 6.5 - I EPICENTRAL DISTANCE= 22.4 TO 185 Km 1 • 
I 34 SOIL SITES 

SCALED TO A = O.Sa, V = 30 lN./SEC 

47 HORIZONTAL COMPONENTS 

• 
lttEAN VALUE 

z - 100 • ... 
z 
w 
~ 
w 
u 
c( 
.J 50 
ll. 
Ill 

0 . 
)( 
c( 

~ 

0 
w 
N 

0 
0: 
~ 
0 
z 
<( ... 
Ill 10 

5 

0 .01 

FIG. 4. 3 

• 

• 
• 

NONSYMMETRICAL RESISTANCE 

0 .05 0 .10 

• • • 

• • • 

• • •• •• 

• 

N Transmittable Block Acceleration 
A Maximum Ground Accelera tion 

EXAMPLE OF RESULTS USING NEWMARK SLIDING BLOCK 
MODEL (AFTER FRANKLIN AND CHANG, 1977). 



41 

shown were obtained using several strong motion records from the 

San Fernando earthquake. Note that there is considerable scatter 

in the calculated displacement for each factor of N/A, as a result 

of differing characteristics of the various earthquake records. 

The data in Fig. 4.3 were plotted using a ''st~ndardized'' 

displacement scale, obtained by scaling the earthquake inputs to a 

maximum acceleration Ag = O.Sg and a maximum velocity V = 30 

in/sec. These same data can be replotted using a normalized 

dimensionless displacement scale by dividing the calculated 

displacements by v2;Ag. Figure 4.4 shows such a plot with the 

ranges of normalized displacements from all earthquakes used by 

Franklin and Chang in their analyses. Also shown are several 

expressions suggested by Newmark giving conservative estimates for 

the residual displacements, each most applicable for a different 

range of N/A. Note that while these expressions are not true 

upper bounds, they do form nearly an upper envelope for most of 

the computed points. 

To illustrate the implications of these results, the quantity 

v2/Ag typically ranges from 1 in. (for moderate earthquake with a 

peak acceleration of 0.2g) to 4 in. (for a major earthquake with a 

peak acceleration of 0.6g). In many problems of interest the 

value N/A ranges from 0.3 to 0.7. At N/A = 0.3, the normalized 

residual displacement falls in the range from 0.4 to 10.0 so that 

displacements during a moderate earthquake would be from 0.4 to 10 

inches, while those in a major shaking would range from 1.6 in. to 

40 in. At N/A = 0.7, the upper envelope value of normalized 

displacement is 0.35, so that for minor and major earthquakes, the 
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corresponding displacements would be 0.35 • 1n. and 1.4 in. 

Based on these results, Richards and Elms proposed an 

alternate and very convenient equation for calculating the block 

displacements dR in the medium to low range of N/A (the range of 

interest in design) as: 

- 0.087 ( 4 • 1 ) 

where N and A are previously defined and V is the maximum ground 

velocity. This equation is also plotted in Fig. 4.4 for 

comparison with the data and with Newmark's curves. 

4.3 EVALUATING RETAINING WALL DISPLACEMENTS 

Although Eqn. 4.1 is based on the results of a sliding block 

model originally intended for use in predicting movements of dams 

and embankments, it can be easily applied to predict retaining 

wall movements. The only difference in application arises from a 

slightly more complicated evaluation of the limiting acceleration 

aT = Ng. For a block on a horizontal plane, N is simply equal to 

tan~b· However, additional vertical and horizontal earth pressure 

forces, respectively denoted as (PAE)V = PAE sin (6 + ~) and 

(PAE)H = cos(o + ~) and shown in Fig. 4.5, must be considered in 

the equilibrium equations for the retaining wall. 

Summing forces in the horizontal direction, using the free 

body diagram in Fig. 4.5(b) and imposing the requirements of 

equilibrium: 
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Making the appropriate substitutions, we obtain 

Solving for aT: 

or 

or 
w 

w 

(4.2a) 

(4.2c) 

( 4. 3 ) 

( 4 • 4 ) 

Richards and Elms recommend using the Mononobe-Okabe equation 

(Eqn. 3.2) for evaluating PAE' and hence the above equation 

cannot, in general, be solved explicitly since PAE is a non-linear 

function of aT (or N). Iterative methods or an approximate 

graphical procedure as illustrated in Example 4.1 can be used to 

solve the equation. If the Seed-Whitman approximation for PAE 

(Eqn. 3.3) is used and if 6 + ~ = 0, then a simple explicit 

expression for N can be obtained: 
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( 4. 5) 

Once aT = Ng is obtained by solving Eqn. 4.4 or by using the 

approximate solution of Eqn. 4.5, it is a simple matter to use 

Eqn. 4.1 to estimate the retaining wall displacement. This 

computation is illustrated in Example 4.2. 

4.4 RICHARDS-ELMS DESIGN PROCEDURE 

The design of a gravity retaining wall essentially requires 

calculating the weight of the wall ww' given an imposed limit for 

allowable displacements. This is the inverse problem of solving 

for displacements discussed in the previous section. The 

procedure proposed by Richards and Elms is as follows: 

1. Decide upon an acceptable maximum displacement dR. 

2. Calculate N using Eqn. 4.1 in the form: 

v2 
N - 0.087 Ag 

1/4 

A 
( 4 • 6 ) 

3. Use the Mononobe-Okabe equation (Eqn. 3.2b) to calculate 

PAE. In doing so, the appropriate values of ~, $r o, a nd 

i s hou l d be us e d. 

4. Calculate the required weight of the wall using Eqn. 4.4 

in the form: 
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( 4. 7) 

5. Apply a factor of safety of 1.5 to the wall weight 

w • 
w 

A design problem, using the above procedure, is illustrated in 

Example 4.3. 

4.5 COMMENTS ON THE RICHARDS-ELMS METHOD 

The Richards-Elms procedure is rational and simple to apply. 

It is, in effect, a counterpart of a procedure used for buildings 

(Newmark and Hall, 1982) where the ratio of design seismic 

coefficient is chosen on the basis of the ductility ratio (of 

expected strain to yield strain) that a structure possesses before 

there is extreme structural damage or danger of collapse. Its 

major disadvantages are that it does not consider certain 

kinematic restrictions upon retaining wall behavior, the 

deformability of the backfill or possible tilting, and the 

statistical variability of earthquake ground motions. In a 

fashion, these factors have been taken into account in the factor 

of safety of 1.5 on the wall weight, which is somewhat 

conservative compared to usual values of recommended safety 

factors ranging from 1.0 to 1.2, as discussed in Section 3.3. 

However, it is not clear that there is a rational basis for the 

suggested safety factor of 1.5 on wall weight. 
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The remainder of this report will consider some of the 

deficiencies in the Richards-Elms procedure, and will suggest 

improvements and corrections, while retaining the essential 

simplicity and soundness of the basic approach. 
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EXAMPLE 4.1 

Given: Retaining wall and backfill with properties shown 
in Figure E4.1. 

Find: The maximum transmittable acceleration N, using the 
Richards-Elms method. 

Solution: The weight of wall Ww is calculated to be 32.81 K/ft. 
From Eq. 3.2a, pAE= (1/2)(0.120) (25) 2KAE = 37 . 5KAE K/ft. 
Assuming values of N, values for ~ and KAE are 
calculated from Eqs. 3.1 and 3.2b. A new value of 
N is then computed from Eq. 4.4. Results of these 
computations appear in Table E4.1 and are graphed 
in Fig. E4.2. The answer is given by the intersection 
of a curve through the computed points and a line 
through the origin at 45°. 

----i~~~ ~ 2. 5 I 
Bockfi II Slope i = 0 

H = 25' 

<1 

. • <J 

-c3.- .· 

• • .:1 • 
.q • • • A . . " 

4! • 
~ • I • 

. . , 4 .. A . 
. . 4 . . . . 

. . .q . 
<1 • • d 4 . . 

·. 4 . # 

• 

. Yc ~ 150 ~~~ 
. 'A.· A: ~ .. <i. 

4 .... ~· . . 4 . • 
. · ""· . • A· . 

p 

cpb = 300 

I~ 15' •I 

~8=0 

Back fi II Properties 

cp = 30° 

c = 0 

y = 120 PCF 

FIG. E4.1 



50 
EXAMPLE 4.1 (continued) 

ASSUMED 
N 

0.05 

0.10 

0.15 

0.20 

0.3 

z 0.2 
0 
LLJ .... 
=> 
Q.. 
:E 
8 0.1 

Table E4.1 

11.31° 

SOLUTION 

N = 0.112 

0.364 

0.397 

0.433 

0.473 

Data from 
Calculations 
Table E4.1 

o~~----~------~--------
0 0.1 0.2 0.3 

ASSUMED N 

FIGURE E4. 2 

COMPUTED 
N 

0.161 

0.123 

0.082 

0.036 

For comparison, N is also computed using Eq. 4.5, yielding 

N = 0.106 



EXAMPLE 4.2 

Given: 

Find: 
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The wall in Example 4.1. 

The permanent displacement caused 
characterized by A = 0.3 g's and 
using the Richards-Elms approach. 

by an earthquake 
V = 15 in/ s, 

Solution: From Eq. 4.1: 

EXAMPLE 4.3 

Given: 

Find: 

Solution: 

15 2 

- 0 · 087 0.3(386) [
0 .112 ) - 4 

0.3 

- 0.087 (1 .94 ) (51.48) 

- 8.7 • ln. 

The backfill and frictional resistance properties 
in Example 4.1. 

For a wall 25 feet high, the required weight of wall 
if an earthquake with A= 0.3 g's and V = 15 in/s 
is to cause a permanent displacement of 1 inch, ac­
cording to the Richards-Elms approach. 

Step 1 - d = 1 inch R 

Step 2 - From Eq. 4.6, N - 0.192 

Step 3 Eq. 3.1 • 
1JJ 10.89° - glves -

- Eq. 3.2b yields KAE - 0.467 

- Eq. 3.2a • glves PAE - 17.51 K/ft. 

Step 4 - From Eq. 4. 7, w -w 45.44 K/ft. 

Steo 5 - Applying a safety factor of 1.5 to computed - w • w· 

Required weight of wall - 68.2 K/ft. 
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5- KINEMATIC CONSTRAINTS UPON MOTION OF BACKFILL 

5.1 THE TWO BLOCK MODEL 

In the Richards-Elms model, the retaining wall is modelled as 

a single sliding block on a plane, when in fact the actual 

behavior is much more complex. A more realistic model is the 

two-block model developed by Zarrabi (1979), which is shown 

schematically in Fig. 5.1. In this model the wall is represented 

as a block on a horizontal plane, and the wedge of soil (behind 

the wall) that ''fails'' during sliding is represented by another 

rigid block on an inclined plane. 

The kinematic constraints on the two-block model are that 

during sliding, contact force and acceleration continuity must be 

maintained between the two blocks themselves, and between each of 

the blocks and their respective sliding planes. This gives rise 

to three equations of acceleration continuity that must be 

satisfied simultaneously with the equations of equilibrium. 

The most significant constraint in terms of the mechanics of 

the problem is that of maintaining contact between the sliding 

soil wedge and the inclined plane. For outward movement of the 

wall to occur, there must be a simultaneous outward and downward 

movement of the soil wedge. Thus, even when there is no vertical 

ground acceleration, the backfill wedge would still experience 

vertical accelerations. 
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5.2 COMPARISON WITH SINGLE-BLOCK MODEL 

Vertical accelerations in the backfill wedge affect the 

active earth pressure PAE between the wall and the soil. This is 

reflected by the ~ term and the factor (1-NV) in the Mononobe 

Equation (Eqn. 3.2). It can be shown that for continuity of 

acceleration normal to the failure plane at any instant in time, 

the following equation must hold: 

NV ( t ) - AV ( t ) + [AH ( t ) - NH ( t )"] tan [ 8 ( t ) ] (5.1-a) 

or 

NH ( t ) - AH ( t ) + [AV ( t ) - NV ( t ) ] cot [ 8 ( t ) ] (5.2-b) 

where AH(t) is the horizontal ground acceleration coefficient. 

Av(t) is the vertical ground acceleration coefficient. 

NH(t) is the transmittable horizontal acceleration 
coefficient of the wall and soil wedge. 

Nv(t) is the transmittable vertical acceleration coefficient 
of the soil wedge. 

e(t) is the angle of inclination of the failure plane with 
respect to horizontal (see Figure 5.1). 

The notation (t) indicates the above quantities to be variable 

with time. Thus, the transmittable acceleration at any instant in 

time is dependent upon the ground acceleration at the same time. 

This is in sharp contrast to the single-block model proposed by 

Richards and Elms where the transmittable acceleration is constant 

with time. 

A schematic comparison of the sliding processes of the 

Zarrabi (two-block) and Richards-Elms (single-block) models is 

shown in Fig. 5.2. In the two-block model there is a threshold. 
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acceleration NT required to initiate slip. Provided that 

comparable assumptions are made concerning the properties of the 

backfill, the value of NT is exactly the same as the value of N 

used for the Richards-Elms procedure. However, after initiation 

of slip, the limiting acceleration NH at any time during a cycle 

of slip can be greater or less than NTg. 

As a result, the active thrust PAE is also changing during 

sliding. An illustration of how this physically occurs is shown 

in Fig. 5.3 for the case where there is no vertical ground 

acceleration (Av = 0). When the ground acceleration AHg exceeds 

the transmittable acceleration NHg [Fig. 5.3(a)], the vertical 

backfill wedge acceleration Nvg is in the downward direction. 

Hence, the inertia force is in the opposite upward direction, 

effectively causing a decrease in the weight of the soil and a 

subsequent decrease in PAE. The reverse occurs during the later 

stages of slip when AHg < NHg as shown in Fig. 5.3(b) 

The equations applicable to the evaluation of residual slip 

in the two-block model was developed by Zarrabi (1979). The 

solution procedure for these equations is fairly complicated in 

that during slip, the value of NH must be evaluated at every 

time-step. Also, since e is a function of NH and NV, the solution 

for NH must be obtained iteratively. Wong (1982) subsequently 

developed a more efficient scheme, in which part of the solution 

to the governing equations is precomputed and stored in computer 

memory, thus requiring fewer iterations. Alternatively, it might 

be assumed that e remains fixed in which case the Mononabe-Okabe 

equation no longer applies and the basic equations for dynamic 
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equilibrium and continuity are solved simultaneously at each time 

step. 

There is one othe r feature of Zarrabi's two-block model that 

des e r ves mention at this point. This is the implicit non-

symmetrical resistance of two-block model, so that unlike the 

Richards-Elms/ Newrnark model, no explicit assumptions regarding the 

non-symmetrical nature of the sliding block resistance are 

necessary. 

5.3 NUMERICAL RESULTS 

The net result of the kinematic constraints in the two-block 

model is that the calculated residual displacements are smaller 

than those using the single-block model. This is illustrated in 

Fig. 5.4, which shows the ratio R
21 1 

plotted against N/ A (for the 

single-block model) or NT/A (for the two-block model), where R
211 

is defined as: 

Residual displacement of two-block model 
Residual displacement of single-block model 

Note also that the values of A, N and NT' as used here, are not 

functions of time, but are constants depending on the earthquake 

record or the wall/backfill properties. 

The results shown in Fig. 5.4 are based on limited results 

using the average values of residual displacement calculated using 

four earthquakes (Antia, 1982). The unit weight of the soil, the 

wall height and the height of the wall are properties that can be 

collectively described by the value of NT. However, the soil and 
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backfill properties cannot be as easily incorporated in a single 

parameter,and the results shown in Fig. 5.4 are only for a typical 

case which might be encountered in practice (~ = ~b = 30°; 6 = i = 

~ = 0) • 

It is seen from Fig. 5.4 that the differences between the two 

models (smallest R
211

) are greatest for small values of N/A and/or 

for small values of A. An explanation for this trend is that as 

either N or A increases, the angle of the failure plane 9(t) 

becomes generally smaller (flatter). Hence, N (t) which is v 

directly related to tan [9(t)] becomes smaller (Eqn. 5.1-a), so 

that the vertical acceleration and its effects are reduced. In 

the limit, as A or N becomes large (roughly corresponding to ~ 

becoming large), the angle 8 (t) would be nearly zero (horizontal), 

and hence no vertical backfill motions would result from purely 

horizontal ground motions. 

The reason for the ratio R
211 

being consistently less than 

one is not completely clear at the present. It would be not 

unreasonable to envision that although NH(t) and hence PAE vary 

with time during slip, that on the average, the results of the 

two-block model should be same as the single-block model. 

Intuitively, however, the mere fact of adding "constraints" to a 

model implies a restriction of otherwise freer motions. Another 

intuitive notion, from a work-energy viewpoint, is that the 

two-block model has more energy-dissipating mechanisms than the 

single-block model. Whereas in the single-block model, the 

earthquake energy causing motion can only be dissipated through 

friction forces at the base of the wall, the two-block model has 
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at least an additional frictional energy dissipation surface 

through the failure plane in the backfill. Though these 

explanations are intuitively plausible, they would need to be 

justified rigorously by further research. 

Another important observation from the results shown in Fig. 

5.4 is that it is not possible to normalize the residual 

displacements of the two-block model by dividing by v2jAg as was 

the case for the single-block model. If it were possible, then 

" 
~/(V 2/AG) 

( 5 • 3 ) 
dR/(V /Ag) 

should only be a function of N/A or NT/A. Since it is known that 

dR/(V2jAg) is only a function of N/A (see Section 2.4), but that 

" 
R

211 
depends on A, it can only be concluded that dR/(V2/Ag) is not 

solely a function of N/A, and hence cannot be normalized. 

However, as a practical matter in design considerations, the 

results of Fig. 5.4 can be replotted as shown in Fig. 5.5, where 

the horizontal axis has values of N or NT instead of N/A or NT/A. 

This scheme condenses the values of R211 to a narrower band of 

data, minimizing the influence of A. Wong (1982) has suggested 

that R
211 

can be approximated for design purposes as solely a 

function of N. 

5.4 COMPARISON WITH EXPERIMENTAL RESULTS 

Jacobsen (1980) performed a detailed comparison of the 

Richards- Elms single-block and Zarrabi two-block models with 
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experimental results obtained by Lai (1979). These experiments 

were previously described in Chapter 2. 

A typical comparison of theory and experiment is shown in 

Fig. 5.6. As can be seen, the Zarrabi two-block model is a better 

simulation of the time histories of acceleration, velocity, and 

relative displacement. Clearly, the limiting acceleration is not 

constant as predicted by the single block model. Also noted by 

Jacobsen was the fact that the two-block model predictions are in 

better agreement during the beginning of the shaking as compared 

to the latter part of the shaking. It is conjectured that this is 

in part due to the physical constraint that the toe of the soil 

block has to undergo some plastic deformation in order to slide 

with the wall. The rigid two-block model inherently assumed this 

effect to be negligible. 

An important point with regard to the comparisons made by 

Jacobsen, is that the calculations he performed should be 

recognized as "Class C" predictions, i.e. predictions after the 

fact. In particular, Jacobsen used the angle of inclination a of 

the failure plane obtained from the experimental results as input 

to the computuer simulation models. As opposed to Zarrabi's 

procedure where a varied with acceleration, Jacobsen chose instead 

to use a fixed a (measured in the model) and found that this gave 

better agreement with the experimental results. 
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5.5 SUMMARY 

The use of a single-block model analogy by Richards and Elms 

(1979) tends to overestimate the residual slip of a retaining wall 

due to earthquake shaking. Zarrabi's model, using the concept of 

two interacting blocks, provides a better estimate of the actual 

slip, as confirmed by model tests on a shaking table. 

An important issue mentioned briefly in this chapter involves 

whether it is valid to assume a failure plane inclination e which 

varies with the instantaneous ground acceleration. This and other 

issues regarding how changes in other parameters (~, ~b' i, ~ and 

o) affect the results, are treated in Chapter 8. 
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6- RANDOM NATURE OF GROUND MOTIONS 

6.1 INTRODUCTION 

This is the first of three chapters dealing with uncertainty 

in the prediction of the residual displacement for a gravity 

retaining wall. As discussed in the introduction, such uncer­

tainty arises because of differences in the details of ground 

motions, because of doubts as to the actual resistance of a wall 

to sliding, and because of errors in the models used to predict 

residual displacement for a given ground motion and given 

resistance parameters. 

This chapter deals with the consequences of the essentially 

random nature of ground motions. As discussed in connection with 

Fig. 4.3, different ground motions each normalized to the same 

peak acceleration and velocity can produce quite different amounts 

of sliding for the same N/A. These differences are associated 

with differing frequency contents, differing distributions of 

peaks and differing directions of shaking. Because the prediction 

procedure ultimately recommended in this report uses the simple 

sliding block model, these various effects are studied using that 

model. Thus the results potentially apply to all problems for 

which the sliding block model provides a reasonable prediction of 

permanent displacement or deformation including certain earth 

slope movements in earthquakes as well as retaining walls. 

The analysis here uses results from a study of the mean and 

distribution of sliding caused by a suite of normalized ground 

motion records (Wong, 1982). This study utilized a relatively 

small set of records - 14 in number and listed in Appendix A -
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characterized by having peak accelerations greater than 0.15 g 

resulting from earthquakes with magnitudes between 6.3 and 7.7. 

{Actually, all but 2 records are for magnitudes between 6.3 and 

6.7). The restriction on peak acceleration was imposed so that 

all records would be typical of those which might cause signifi­

cant displacement of actual retaining walls, and distortion would 

not be introduced by scaling of weak motions. The limitation upon 

magnitude was used to narrow the range of durations of earthquake 

shaking, which roughly correlates with magnitude. Ideally a 

similar study should be performed using other sets of records 

corresponding to smaller and larger magnitudes, but as yet this 

has not been done. 

Analysis of scatter in sliding arising from differences in 

ground motions has been divided into three parts. First there are 

the differences in sliding associated with the several components 

of motion at one location during one earthquake. Second there 

are the differences from site to site and earthquake to earth­

quake. Finally there is the effect of the vertical component of 

ground motion. In the end, the influences of these three effects 

will be lumped together. However, considering them separately 

will provide an understanding of the relative importance of the 

several effects. 

6.2 SCALING OF RECORDS 

A typical ground motion record has two horizontal components. 

As a matter of course, the peak accelerations (and velocities) are 

different for the two components. Moreover, the peak accelera-
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tions are different in the positive and negative sense of each 

component. 

An important implication is that the permanent slip 

experienced by a retaining wall during an earthquake will depend 

upon the orientation of the wall. For example, the four retaining 

walls shown in Fig. 6.1 would be expected to experience differing 

amounts of permanent displacement during any one earthquake. 

Indeed, some walls might have permanent displacement while the 

others would not yield at all. This is an important aspect of 

uncertainty in the prediction of the motion which may be 

experienced by any particular wall. 

In previous work, it has been usual practice to normalize a 

component of a record to the maximum acceleration and velocity in 

that component. However, this procedure tends to obscure the 

orientation effect just described. In the study by Wong, one 

acceleration - the largest absolute acceleration from either of 

the components - was used to normalize both components. This was 

done because the earthquake motion recorded at a site is always 

characterized by this largest absolute acceleration, and this 

number would always be used when judging whether or not a wall (or 

any other structure) located at the site lived up to expectations. 

The choice of a velocity to characterize the ground motions 

at a site is less obvious. For this study, use has been made of 

the largest absolute velocity in the component containing the 

largest peak acceleration. This choice is consistent with past 

practice and should lead to the least confusion concerning 

interpretation of results. 
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6.3 ORIENTATION EFFECTS 

For a complete analysis of this effect, it would be desirable 

to compute, from the two observed components of each record, the 

time histories of motions in many directions. However, only the 

two recorded components have been used in this study to evaluate 

four possible permanent displacements. 

Four values of permanent slip dRe were computed from each of 

the 14 records for values of N/A from 0.2 to 0.7, with no 

normalization of the records and ignoring vertical accelerations. 

For each of the records, an average dRo was determined (used for 

the analysis in Section 6.4), plus four values of the ratio E 
0 

Thus for each N/A, 56 values of E were obtained. The 
0 

mean of E is, by definition, unity. The coefficients of 
0 

variation are listed on the first line of Table 6.1. 

N/A 

It may be seen that the scatter in the ratio E 
0 

• Increases as 

• Increases. This occurs because, at the larger N/A, one or 

more component-directions may not cause any permanent slip. For 

example, at N/A = 0.7 the 1940 El Centro record causes no slip in 

the east-west direction, and very little for a wall oriented so 

that it can slip to the south. Overall, of the 56 computed slips, 

17 are zero for N/A = 0.7, eight are zero for N/A = 0.6, and 2 are 

zero for N/A = 0.5. Numerous other values are so small as to be 

essentially zero. 

Because of the tendency for an increasing number of zero 

values as N/A • Increases, the distribution of E changes as N/A 
0 

changes. For N/A = 0.1, the distribution was found to be 

approximately normal. For N/A = 0.7, it is more nearly 
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Table 6.1 

COEFFICIENTS OF VARIATION ARISING FROM 
UNCERTAIN ASPECTS OF GROUND MOTION 

N/A 

0.1 0.2 0.3 0.4 0.5 

0 .32 0.42 0.51 0.64 0.86 

0.53 0.54 0.58 0.58 0.56 

l l <0.05 0.05 0.07 

<0 .05 0.07 0.13 

<0.05 <o .o5 0.05 0.10 0.18 

1 1 0.06 0.12 0.25 

0.07 0.15 0.33 

0.08 0.19 0.42 

0.6 0.7 

1.12 1.30 

0.50 0.41 

0.15 0.12 

0.22 0.27 

0.30 0.37 

0.37 0.57 

0.44 0.66 

0.51 0.73 



72 

exponential with a spike at the origin. For N/A of 0.4 and 0.5, 

it is somewhat similar to a log-normal distribution. 

All of these results were computed using only the horizontal 

components of the recorded ground motions. 

6.4 SCATTER AMONG DIFFERENT SITES AND EVENTS 

-The next step was to examine the record means dR
0

• For each 

selected N/A, each of these fourteen values was first normalized 

to a common peak acceleration and peak velocity using V~Ag 

scaling. (As previously discussed, A is the largest absolute 

acceleration from both components of a record, and v is the peak 

absolute velocity from the component containing that accelera-

t ion.) Then the 14 normalized values of dRo were averaged to 

obtain the overall mean displacement dRe; that is: 

( 6. 1) 

The scatter of the record means about the overall means was also 

analyzed. 

The overall mean displacements, in normalized form, are 

plotted as a function of N/A in Fig. 6.2. As a result of the 

scaling scheme used in Wong's analysis, these results fall below 

the average curve from Fig. 4.3. A simple expression which 

provides an approximate fit to the mean slips is: 

-9.4N/A e ( 6. 2) 
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The goodness of fit is shown in Fig. 6.3; for N/A between 0.1 and 

0.7, the value predicted by this equation is within 10% of the 

computed dRe (within 5% for N/A > 0.4). This expression does not, 

as it ideally should, go to zero as N/A approaches unity although 

it predicts insignificant values in that range. 

The scatter of the record means dRo is indicated by the 

coefficients of variation in the second line of Table 6.1, which 

are statistics for the random variable Fs - dR
0
/dRe· For inter­

mediate values of N/A, the uncertainty from record to record is 

about the same as for differently oriented walls during any one 

shaking. At larger N/A, the orientation effect has much greater 

uncertainty. 

Again, all these results were developed using only the 

horizontal components of recorded ground motions. 

6.5 EFFECT OF VERTICAL ACCELERATIONS 

Downward acceleration of the plane supporting a block will 

decrease the normal force at the interface, thus decreasing the 

transmittable acceleration and increasing the tendency to slip. 

Conversely, upward acceleration increases resistance to slip. In 

a ground motion with many peaks of acceleration causing slip, the 

effects of the vertical component of ground motion may be expected 

to cancel. Hence the vertical component of ground motion has 

generally been ignored when computing sliding block displacements. 

The actual effect of vertical ground accelerations has been 

studied using the suite of 14 earthquake records described above. 

For each computation, the vertical component of acceleration was 
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scaled in the same ratio as the horizontal component. The 

influence of the vertical accelerations is indicated by the ratio 

Ev = dRv/dRe where dRv is the slip computed when vertical 

accelerations are considered. The ratio E was found to depend 
v 

upon the strength of the input acceleration (the coefficient A) as 

well as upon N/A. For each pair of values for A and N/A, up to 56 

values of Ev were computed (less those cases where dRe = 0 and 

cases where dRe is so small that division by it would give a value 

of E which might be much in error). Average values are plotted 
v 

in Fig. 6.4, and coefficients of variation are listed in the lower 

portion of Table 6.1. 

Figure 6.4 indicates that, on the average, incorporating 

vertical ground accelerations causes greater residual displace-

ments. This can be understood by considering a hypothetical case 

in which upward and downward accelerations both reach peak values 

of 1.0g. When the peak downward acceleration occurs, resistance 

to slip disappears entirely, whereas at the peak upward 

acceleration the resistance is merely double that for zero 

vertical acceleration. Clearly, the potential effect of downward 

acceleration on slip is greater than the influence of upward 

acceleration. 

The coefficient of variation for the function E is small v 

except when both A and N/A are large. As would be expected, with 

large N/A there are fewer intervals during which slip occurs, and 

hence the sense of the vertical acceleration in these moments is 

quite important. The influence of vertical accelerations would 
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appear even greater if cases in which dRe - 0 but dRv # 0 were 

included. 

Wong suggested an equation for the average effect of vertical 

accelerations: 

E - 1.015- 0.2N/A + 0.72(N/A) 2 
v ( 6. 3) 

which is valid for 0.2 <A~ 0.7 and 0.1 < N/A< 0.7. "Average" in 

this sense implies averaging over a range of values of A as well 

as over a set of computed slips. 

6.6 COMBINED UNCERTAINTY 

One way to estimate the overall uncertainty arising from the 

combined effect of orientation of the wall, site-to-site and 

event-to-event differences, and vertical ground accelerations is 

to combine the coeffici e nts of variation in Table 6.1. We woul0. 

estimate the slip of a block as: 

- E E E dR o s v e 
( 6. 4) 

where dRe is a deterministic function of N/A (as given in Eq. 6.2) 

and E , E , E are random variables which depend upon A and N/A. 
0 s v 

If we further assume that E , F. and F. are independent, then the 
0 s v 

coefficient of variation VR of dRv is: 

v2 
- < 1 + v2 

) ( 1 + v2 
) < 1 + v2 

> -1 R 0 S V 
( 6. 5) 
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where V
0

, Vs and V are the coefficients of variation of E , E 
v 0 s 

and Ev respectively. The resulting values of VR are tabulated in 

Table 6.2. As would be expected from comparison of the individual 

V , V and V , vertical ground accelerations contribute relatively 
0 s v 

little to the overall uncertainty except at large values of N/A. 

Even here the predominant uncertainty comes from the unknown 

orientation of a wall relative to the principal axes of the ground 

motion. 

Alternatively, values of VR may be determined directly from 

the 56 computed values of residual slip for each A and N/A. These 

results are given in Table 6.3. Comparing Tables 6.2 and 6.3, it 

is seen that the directly-evaluated VR (Table 6.3) are always less 

than those (Table 6.2) computed by assuming that the three effects 

discussed in Sections 6.3, 6.4, and 6.5 are independent. Clearly 

some degree of correlation actually exists among these effects. 

From the results at small N/A, it may be deduced that the 

orientation and site-to-site effects are correlated to a slight 

degree. At large N/A the VR do not increase significantly as A 

becomes larger, implying that the effect of vertical ground 

acceleration is strongly correlated to one or both of the other 

two effects. This latter conclusion seems reasonable: vertical 

accelerations are important only when there are a very few spikes 

of horizontal acceleration that cause slip, and having only a few 

such spikes can also lead to a strong orientation effect. 

For design considerations only the results in Table 6.3 are 

of interest. However, having looked at the various effects 
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Table 6 . 2 

OVERALL COEFFICIENT OF VARIATION 
ASSOCIATED WITH UNCERTAIN NATURE 

OF GROUND MOTION, BY COMBINING 
UNCERTAINTIES IN CONTRIBUTING EFFECTS 

N/ A 

0.1 0.2 0 . 3 0.4 0 . 5 

0.64 0 . 72 0 . 83 0.94 1 . 1 4 

0.6 4 0 . 72 0.83 0 . 94 1 .15 

0 . 6 4 0 . 72 0 . 83 0 . 95 1. 17 

0.6 4 0 . 72 0.83 0 . 95 1 . 19 

0.64 0 . 72 0 . 83 0.96 1 . 24 

0.6 4 0.72 0 . 83 0.98 1.30 

0 . 6 0.7 

1 . 37 1 . 48 

1 . 40 1 . 54 

1.44 1.60 

1. 48 1 . 78 

1 . 54 1 . 87 

1 . 60 1.95 



A 

0.2 

0 . 3 

0 .4 

0 . 5 

0.6 

0 . 7 

81 

Table 6 . 3 

OVERALL COEFFICIENT OF VARIATION 
ASSOCIATED WITH UNCERTAIN NATURE 

OF GROUND MOTIONS, FROM STATISTICS 
OF COMPUTED RESIDUAL DISPLACEMENTS 

N/A 

0.1 0 . 2 0.3 0 . 4 0 . 5 

0 . 63 0 . 68 0 . 78 0.88 1 . 02 

0 . 63 0 . 68 0.78 0.88 1.02 

0 . 63 0.68 0 . 78 0.88 1 . 02 

0 . 63 0 . 68 0.78 0.88 1.01 

0 . 63 0 . 68 0 . 78 0.88 1. 01 

0 . 63 0.68 0.78 0 . 88 1.01 

0 . 6 0.7 

1.17 1.39 

1.17 1 . 40 

1 . 17 1.41 

1.16 1.42 

1.16 1.43 

1 . 16 1.43 
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separately has been of considerable value in understanding the 

importance of the several contributions to overall uncertainty. 

6.7 PREDICTING RESIDUAL DISPLACEMENTS 

If the effects of vertical ground acceleration are ignored, 

Eq. 6.2 provides a good prediction for the average residual 

displacement for a given A, V and N/A. There is a small "fitting 

error" and there is still some statistical uncertainty in the 

determination of the actual mean displacement owing to the limited 

size of the suite of earthquakes used in the calculation. 

However, these uncertainties are small compared to the scatter in 

residual displacement resulting from the random nature of ground 

motions. When vertical accelerations are introduced,Eq. 6.2 may 

be modified to: 

- E dR v e (6.6) 

- - . where E is given by Eq. 6.3. As discussed in Section 6.5, E 1s v 

actually also a function of A, but the error introduced by using 

Eq. 6.3 is small compared to the scatter associated with 

orientation and event-to-event effects. 

Table 6.3 provides estimates of the coefficient of variation 

of the residual displacements. If the distribution function for 

the displacements is known or assumed, Eq. 6.6 plus Table 6.3 

provide a basis for estimating probability that various levels of 

ground motion might be exceeded. Since to some degree the 

uncertainty in dRv arises from a multiplication of the three 
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effects discussed in preceeding sections, it seems reasonable to 

assume a log-normal distribution function. Figure 6.5 compares 

cumulative distribution functions derived as suggested here with 

those developed from the actual computed residual displacements. 

In general the agreement is reasonable. In particular, it would 

appear that a satisfactory estimate can be obtained for the 

displacement which will not be exceeded with 95% probability. 

Assume that the actual residual displacement can be written 

as: 

( 6. 7) 

where Q is a log-normally distributed random variable with mean of 

unity and coefficient of variation v
0 

= VR. 

deviation for lnQ are: 

I 
lnQ 

rnlnQ- ln(E(Q]) - ~ Var[lnQ] 

- - 1 2 
2 °lnQ 

1 2 - - 2 ln(l+VQ ) 

The mean and standard 

( 6. 8) 

(6.9) 

The value of lnQ which will not be exceeded with 95% probabality 

is then: 
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lnQ 95 - mlnQ + 1.649 lnQ 

1 - - - ln 
2 

2 
(1+ VQ ) 

= e 
; ln (1+ V~) + 1.645-/ln(l + V~) 

(6 .10) 

(6.11) 

(6 .12) 

Values of o 95 are given in Table 6.4, for typical values of VQ. 

The interpretation of these results is as follows. Suppose that 

the allowable residual displacement is dL. Then, in order for 

there to be 95% probability that dL will not be exceeded during an 

earthquake with given peak acceleration and peak velocity, then 

the expected (average) residual displacement for such an earth-

quake should be dL/o 95 • This assumes that other parameters of a 

problem, such as the resistance of a block or wall to the 

initiation of sliding, are known with certainty. The effects of 

uncertainty in these parameters as discussed in the next chapter. 

6.8 APPLICATION TO RETAINING WALLS 

As discussed in Chapter 5, for a given A, V and N the 
A 

residual displacement of a retaining wall, dR, is not equal to the 

residual displacement of a sliding block. Thus Equation 6.2 does 

not apply exactly for the mean residual slip of retaining walls. 

However, calculations by Wong (1982) have shown that the 
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coefficients of variation for dRe are very nearly equal to those 

for dRe' for each A and N. Hence Equation 6.11 and the results in 

Table 6.4 apply to retaining walls as well as sliding blocks. 

6.9 IMPROVEMENTS TO PREDICTIONS 

The procedure outlined here for predicting the average dis-

placement of a sliding block • lS, of course, only as good as the 

suite of earthquakes used to develop the correlations and as the 

assumption that A and V are the best measures of intensity of 

shaking. It will certainly be desirable to refine and improve 

upon Equation 6.2 by using a larger suite of earthquake motions. 

Another improvement will be to use several such suites, each for a 

limited range of magnitudes (and perhaps epicentral distances) so 

as to reflect the influence of the duration of motion. It may 

also be that there are parameters other than A and V which are 

better indicators of the amount of residual displacement than can 

occur; for example, magnitude and epicentral distance. Explana-

tory studies into these questions are ongoing at MIT under the 

direction of Prof. Daniele Veneziano. Finally, as noted in 

Section 6.3, a more thorough treatment of the orientation effect 

would be desirable. 
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7- UNCERTAINTY IN RESISTANCE PARAMETERS 

7.1 INTRODUCTION 

The analysis in Chapter 6 has assumed that the mean displace-

-
ment dRe is a known function of the properties of the wall and 

backfill. -Actually, dRe is itself uncertain - partly because of 

uncertainty in these properties and partly because of uncertainty 

in the model being used to compute displacement for given 

properties and given ground motion input. This chapter deals with 

the effect of uncertainties in the wall/backfill properties. 

These properties include the weight of the wall; the unit 

weight of the wall; the friction angles at the base of the wall, 

within the backfill and at the wall-backfill interface; and the 

geometry of the problem. While all of these properties are 

uncertain to some degree, the most important uncertainties are 

those associated with the friction angles. The influence of 

uncertainties in the other properties generally is insignificant, 

and will be ignored in this analysis. That is to say, these other 

properties will be considered as deterministic. 

Computation of the uncertainty in permanent displacement 

involves: (a) evaluation of uncertainty in the friction angles, 

and then (b) propagation of these uncertainties through the 

analysis connecting the friction angles to permanent displacement. 

The latter step is described in sections 7.3 and 7.4, beginning 

with the case of a sliding block on a horizontal plane. 
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7.2 UNCERTAINTY IN FRICTION ANGLES 

The friction angles selected for analysis of a particular 

retaining wall seldom are based upon values measured using the 

actual soils at that wall, but rather are estimated based upon 

past experience with similar soils. Moreover, the actual friction 

angles may change as sliding progresses. The uncertainty in 

movement associated with this latter consideration should most 

properly be treated as part of the model error discussed in 

Chapter 8, but for purposes of this report it is considered as 

resulting from uncertainty in the evaluation of the friction 

angles. 

When friction angles of a granular soil are measured, 

starting from a specified initial density, scatter is relatively 

small. It might reasonably be characterized by a standard 

deviation a~ of 1 or 2 degrees. However, because the backfill 

s ometime s is poorly compacted and its actual density unknown, the 

possible variation about the actual mean value must be greater. 

Because backfill does tend to be loose, there is relatively little 

decrease in friction angle past the peak value as straining 

continues. Furthermore, ~ for backfill is almost always selected 

conservatively, and it is rather unlikely that the minimum value 

can be more than several degrees less than the angle typically 

used for design. (It is the possibility that the actual ~ may be 

less than the value assumed for design that is of primary concern 

to us). All in all, it seems reasonable to use a~= 2 degrees or 

possibly 3 degrees. 
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These same arguments also app l y to the friction angle $b at 

the base of the wall. Because foundation soils tend to be b e tter 

compacted, $b usually is greater than $. By the same token, 

decrease in $b with continued sliding is likely to be more 

significant. However, once again the values nominally used for 

calculations are likely less than the actual mean. Again it s eems 

reasonable to use a standard deviation of 2 or 3 degrees. 

Engineers tend to feel quite uncertain as to the cho ice of a 

suitable value of wall friction angle &. It is not that the 

actual peak interface friction angle is in great doubt, but rather 

there is uncertainty as to how much frictional resistance is 

mobilized at a wall before static failure occurs. In the seismic 

problem where slip is actually expected, this type of uncertainty 

should not be so important. Nonetheless, it is considered that a 

larger standard deviation should be considered in the case of wall 

f 
. . 0 

r1ct1on; say a0 = 5 • 

For the calculations in the following sections, it is 

necessary to pay careful attention to the units for the standard 

deviations of friction angles, and this is best handled by 

re-expressing the foregoing results in radians. Appropriate 

values are summarized in table 7.1. 

7.3 BLOCK ON HORIZONTAL PLANE 

When uncertainty in resistance is considered, the term dRv in 

Equation 6.7 becomes a function of the random variable N; that is, 

this term is itself a random variable. The variance of dRv may be 

found by: 
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Table 7.1 

ESTIMATED STANDARD DEVIATIONS 
FOR FRICTION ANGLES 

Location a in radians 

Backfill 0 . 035 to 0 . 052 

Base 0 . 035 to 0 . 052 

T.Va 1 1 0 . 035 to 0 . 087 
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2 

var[dRv ] - Var[N] ( 7. 1) 

Alternatively, but less precisely, we may rewr~te Equation 6.6 as: 

( 7. 2) 

where now aRv is a deterministic function computed using average 

values for the friction angles involved in the problem at hand and 

R~ is a random variable with mean unity reflecting uncertainty in 

the friction angles. The variance of R~ is given by Equation 7.1. 

Computations show that ~aRv/~N is closely approximated by E • 

~dRe/~N. Hence the variance of R~ may be expressed as: 

- 2 a 
- Ev • [ ~N 

- [-9 • 4 o ] 2 Var [N] A Rv 

(7.3) 

Taking the square root to obtain the standard deviation of R~ and 

dividing by ~Rv' the coefficient of variation of R~ becomes: 

( 7. 4) 
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Note that VR$ is inversely related to the ground acceleration 

coefficient A. This means that, since it is ratio N/A that 

determines the amount of slip, a given uncertainty in N is much 

more important when A is small than when A is large. 

For a sliding block of known weight on a horizontal plane, 

the transmittable acceleration N is determined entirely by the 

friction angle between the block and the supporting plane: 

N - tan$ (7.5) 

The variance of N is then found by: 

Var[N] 4 
sec ~ Vari ~ J (7.6) 

and the standard deviation aN • lS: 

(7.7) 

3
no o 

Typical values for $ range from ~ to 35 • Using the values for 

a$ from Table 7.1, the range for aN is 0.05 to 0.08. 

Combining Eqs. 7.4 and 7.7 leads to the results in Table 7.2. 

Note that some of the values of VR$ - those for the smaller A -

are quite large, much larger than the coefficients of variation 

discussed in Chapter 6. Thus it is evident that uncertainty in 

resistance parameters can be a very important consideration. 
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Table 7.2 

COEFFICIENT OF VARIATION OF 
RESISTANCE TERM 

A ON = 0.05 

0.2 2.35 3 .76 

0.3 1.57 2.51 

0.4 1.18 1.88 

0.5 0.94 1.50 

0.6 0.78 1.25 

0.7 0.67 1.07 
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7.4 RETAINING WALLS 

For retaining walls one proceeds in a generally similar 

fashion. In this case, an exact solution would require 

-derivatives for the product dR • R
211

• Values of the partial 

derivative have not been evaluated, although approximate results 

by Wong (1982) indicate that the value obtained for a sliding 

block are a good approximation for the retaining wall case. That 

is to say, Equation (7.3) may still be used. Hence interest then 

f ocuses upon evaluation o f Var[N] for retaining walls. 

The variance of N depends upon uncertainty in the three 

angles ~, ~b and o. If these angles are assumed independent of 

each other, then var[N] may be evaluated by: 

Var[N] 
() N 2 

- (a<j)) Var[ ¢ ] + Var[ ¢b ] + (~} 
2 

var[ o ] ao 

The derivatives are obtained from Equation 4.4, which may be 

rewritten as: 

(cos(~+o)-sin(~+o)tan~b]PAE 

w 
w 

Since PAE is a function of N as well as of ~ and o, implicit 

differentiation must be used. Wong (1982) carried out the 

( 7 • 8) 

( 7. 9) 

necessary steps, and the resulting equations are reproduced in 

Table 7.3. 

Numerical evaluations of these equations have been performed 

for various combinations of values of the three angles and of N. 
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Table 7.3 

EQUATIONS FOR PARTIAL DERIVATIONS OF 
N WITH RESPECT TO ¢ , ¢bAND o . 

sec
2

¢b 

G 

1 
G 

[ cot ( B+o ) - N J 
L(cot( B+o )-tan¢b) (tan¢b-N) 

aN 1 acs - G 
cot(¢+ o )-Jtan( ~+ B+ o ) 

1 + J 

tan( B+ o )+tan¢b 
+ 

l-tan(B+o)tan¢b 

G -

+ 

J -

1 
tan¢b-N 

/cos(i- B )cos( ~+ B+ o ) 
sin( ¢+ 8 )sin( ¢ - ~ -i) 



96 

(All have involved ~ = i = 0.) One special case of some interest 

is that when ~b = ~ and 6 = 0. Then equation 7.8 may be rewritten 

as: 

Var[N] - Var[<f>] (7.10) 

The term in brackets is nearly constant for the several combina­

tions investigated, at a value of about 0.85 radians- 2 • Thus: 

(7 .11) 

That is to say, the uncertainty in N is actually somewhat less 

than that in each of the two friction angles. This reduction 

occurs because, assuming independence, it is relatively unlikely 

that both friction angles will be simultaneously larger (or 

smaller) than mean values. If there is some actual dependence 

between the values taken on by these angles, then the ratio oN/ a~ 

would be increased to some degree. 

When wall friction is present, as indeed it must be, the 

situation is more complicated. Results from some typical calcula-

0 
tions are presented in Table 7.4, for the case a~ = o~b = 2 , o6 -

0 d . 5 an ~ = 1 = 0. It may be seen that oN varies with the 

combination of values used for the three angles and N, and is 

greatest when N is smallest. Somewhat greater ~alues of oN may be 

found when other combinations of parameters are used. Further-

more, depending among the three friction angles (especially 
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Table 7.4 

STANDARD DEVIATION FOR RESISTANCE 
FACTOR N FOR GRAVITY WALLS WITH 

WALL FRICTION , ASSUMING 0~ = o~b = 2° 
AND a - so'+' '+' 8 -

N 

0.05 

0.1 

0.2 

0.3 

0 . 05 

0 . 1 

0 .2 

0.3 

0 . 05 

0 . 1 

0 . 2 

0.3 

8=0 

0 . 032 

0.031 

0.032 

0 . 033 

0 . 034 

0 . 033 

0 . 033 

0.033 

0.033 

0.033 

0 .0 33 

0.033 

0.043 

0 . 041 

0.038 

0 .0 36 

0 . 051 

0 . 048 

0 . 044 

0.041 

0.049 

0 . 047 

0.044 

0.042 

0.049 

0 . 047 

0 . 043 

0.039 

0 . 061 

0.058 

0 . 052 

0 . 047 

0.059 

0.057 

0 .0 52 

0.048 
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between ~ and 6) will cause the oN to • Increase. It was judged 

that an average of the numbers in the final column of Table 7.4 

would be most representative of the uncertainty in N, and such 

average values are plotted in Fig. 7.1 as a function of N. 

Values of oN may be entered into Equation 7.4, and Table 7.2 

is still at least approximately valid. Once again the conclusion 

is that the overall effect of uncertainty in the friction angles 

is very significant. 
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8- MODEL ERRORS AND UNCERTAINTIES 

This chapter discusses several ways in which the two block 

model of Chapter 5 is still imperfect, but where knowledge is 

inadequate to permit use of an improved model. These aspects 

include the proper choice of a failure plane, the effect of 

deformations within the backfill before sliding begins, and 

tilting of walls. In addition, there are errors because one may 

choose to use simpler approximate results in lieu of expending 

considerable effort in using the best methods of analysis that are 

available. 

8.1 FAILURE PLANE INCLINATION 

In Zarrabi's (1979) two-block model, it was assumed that the 

inclination of the failure plane in the backfill varies with the 

instantaneous ground acceleration. This is a natural assumption 

that arises from the formulation and application of the Mononobe­

Okabe Equation. However, as described in Chapter 2, the model 

tests performed by Murphy (1960) and Lai (1979) indicate that it 

may be more reasonable to assume that the failure plane inclina­

tion remains constant during slip. Jacobsen's (1980) comparisons 

of Lai's (1979) model test results with calculations using the 

two-block model concur with this reasoning, in that the agreement 

is better between theory and experiment, when a fixed angle of 

inclination e is assumed. Thus, it would be reasonable to use a 

fixed angle e in the calculation of residual displacements. 
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Physically, once a failure plane develops in the backfill, 

the plane may become slightly weaker than the surrounding soil and 

it would be the preferred plane of failure at subsequent stages of 

movement. Thus, the initial failure plane that develops should 

logically be used in the analysis. Thus the critical fai l ure 

plane angle of inclination e T which would occur during earth­

quake motions is only dependent on the wall weight and the 

properties of the foundation and backfill soils. Nadim (1982) 

gave equations that determine the angle of inclination of this 

plane explicitly as: 

where 

and 

a = -1 tan (B/A) 

-1 - cos (-C.cosa/A) 

sin($+0-i)cos($b-$) 

- cos(i)cos(6+$b)Fww 

B - 2cos(i)sin($b-$)sin($+6) 

C - sin($b+6+i) - cos(i)cos(6+$b)/Fww 

F ww 

w w 

l/2yH 2 
wall weight factor 

(8.1) 

A comparison of the theoretical equation give by Nadim (1982) 

and the results from Lai's (1979) experiments is shown in Fig. 

8.1. Both theory and experiment show a general downward trend for 

e with increasing wall weight factor Fww· This downward trend is 

explained physically by the fact that as the wall becomes heavier 
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(increasing F ) , a larger inertia force from the backfill is ww 

required to initiate slip. Thus a larger mass of backfill soil 

must be mobilized as reflected by a decrease in e. 

The experimental results for e shown in Fig. 8.1 are consis-

tently higher than the theoretical threshold eT, calculated based 

on measurements of ~, ~b and 6 evaluated by Lai (1979) and 

Jacobsen (1980). This may be attributed to frictional effects 

between the model and the glass sides of the model container, 

which would tend to effectively increase~. There is also a range 

of possible interpretation of the failure angle e due to the fact 

that the failure surface is actually a zone rather than a thin 

line of failure. Furthermore, there is a slight curvature to this 

failure zone, deviating from ideal linear conditions. 

The numerical differences that arise in the calculated 

residual displacement between assuming a constant or variable 

plane of failure are illustrated in Fig. 8.2. The results shown 

are obtained from calculations performed separately by Nadim 

(1982) and Wong (1982) using three earthquake records and a 

constant value of N = 0.112. The Ratio R
9 

is defined as: 

Residual displacement using fixed 9 
Re - Residual displacement using variable e 

(8.2) 

The value of Re is generally less than or equal to one, with 

those values greater than one thought to be the result of 

numerical round-off errors. There is clearly a trend toward 

greater discrepancies for increasing accelerations, given a fixed 

value of N, but further generalizations of trends are difficult 
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because of lack of data. However, • 1n terms of practical signifi-

cance, for the ranges of N and A commonly encountered, whether one 

uses a fixed or variable e may not be important. This is 

especially true in light of the uncertanties in evaluating e (as 

shown in Fig. 8.1) and the even larger uncertainties in the 

earthquake ground motion characteristics. 

8.2 ELASTIC BACKFILL EFFECTS 

The sliding block model developed by Zarrabi (1978) assume 

the blocks representing the retaining wall and the soil backfill 

wedge to be perfectly rigid. This is actually a fairly good 

assumption, particularly for walls with relatively low heights, 

where the effects of wall and backfill flexibility are essentially 

negligible. However, for high walls, the rigidity assumptions may 

lead to severe underestimation of the residual slip. The effects 

of assuming the wall and backfill to be elastic, and hence 

flexible, has been studied by Nadim (1982) using the finite 

element idealizations as described in Chapter 2. These result 

have also been reported in a paper by Nadim and Whitman (1983). 

The basic effect on an elastic backfill is the resulting 

amplification of ground motion, similar to the phenomenon which is 

expected to occur in earth dams (see Seed and Martin, 1966 and 

Makdisi and Seed, 1979). The amplification phenomenon is schema-

tically illustrated in Fig. 8.3 and compared to the rigid block 

case, without amplification. 

Firstly, amplification of the ground motion occurs in the 

backfill outside of the soil failure wedge, and effectively 
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increases the ground accceleration coefficient A. Assuming that 

the transmittable acceleration Ng is approximately the same 

regardless of the flexibility assumption, the effective N/A ratio 

would be lower for the flexible backfill than for the rigid back-

fill case. Consequently, considering the results from rigid block 

models, larger residual displacements would be expected. Also, 

there is additional amplification of the transmittable accelera-

tion coefficient, such that larger earth pressures would be 

expected to develop, if envisioned in the context of seismic 

coefficients. 

Obviously, the preceeding statements are only intuitive 

arguments for explaining how ground motion amplification affects 

residual displacements. It should be recognized that the concepts 

of rigid block models, including strict quantifications of N, A, 

the ratio N/A, and notions of normalizing displacement using v2;Ag 

are no longer valid in view of the non-uniform distribution of 

these quantities in an elastic finite element model. However, the 

corresponding rigid block model quantities can be calculated and 

can serve as useful references for comparison of results. 

Numerical results from the elastic finite element model 

results as compared with those from the rigid two-block model 

(assuming constant e) are in Fig. 8.4. Computations are shown for 

three earthquake records and two different values of N/A. The 

format of comparison is analogous to the frequency response cure 

for a single degree-of-freedom (SDOF) vibrating mass. The ratio 

R , a residual displacement amplification factor, is defined as: 
E 
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dR using elastic finite elements 

dR using rigid 2-block model 

The variables fE-Q and TE-Q are respectively the dominant 

frequencies and period of the earthquake excitation, and fBF and 

TBF refer to the first fundamental frequency and period of the 

backfill. 

From Fig. 8.4, it is clear that much larger displacements 

than predicted by the rigid-block model can occur if the 

elasticity of the backfill is considered, as in the finite element 

model. The ratio RE can become very large (on the order of 10) as 

the ratio of the frequencies fE-Q/fBF approaches 1.0, which is 

analogous to a resonance condition for a SDOF vibrating system. 

Since the fundamental frequency of the backfill can be 

approximated as 

c s 
4H 

where C is the shear wave velocity of the soil and H is the 
s 

(8.4) 

height of the wall. This implies a direct correlation between the 

frequency ratio and the height of the wall. Thus the amplifica-

tion problem is more pronounced for higher walls. 

It should be noted the finite element results obtained for 

excitation frequencies near the resonance condition are conserva-

tive because of the boundary conditions that are imposed in the 
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idealization of the problem. In all of these cases, it was 

assumed that there is a rigid boundary beneath the backfill at the 

same level as the base of the wall. This means that seismic wave 

motions reflect back into the backfill from this boundary. 

However, in most real problems this boundary is not rigid, and a 

portion of the ~aves radiate away from the region of excitation at 

this boundary (radiation damping). Because of this effect, the 

actual amplification of ground motion through the backfill is 

probably not as large as one predicts from the finite element 

analysis with a rigid boundary at the level of the base of the 

wall, especially near resonance conditions. 

Another trend shown in Fig. 8.4 is that the amplification of 

residual displacements is more significant for high values of N/A. 

If N/A = 1 and the rigid block model were correct, there would be 

no slip. However, because of amplification through the backfill 

the acceleration in the upper portions of the backfill would 

actually exceed N, and hence slip would occur. Thus for N/A equal 

to and slightly greater than unity, the ratio RE is infinite. As 

previously noted, however, the usual range of practical values of 

N/A is from about 0.3 to 0.7. 

The incorporation of preceeding observations into a practical 

design criteria can be done in several ways. Nadim (1982) and 

Nadim and Whitman (1983) have proposed modifying the values of A 

and V to reflect the amplification of ground motion, and using 

these amplified values of A and V as input into a block model 

analysis, such as the Richards-Elms Equation (F.qn. 4.1). An 

alternative method that is perhaps simpler and more direct is 
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depicted by the dashed "proposed design lines" shown in Fig. 8.4. 

The factor RE obtained from these lines can be justifiably used as 

relatively conservative amplification factors to be applied to 

simpler sliding block analysis, in the same vein as previously 

suggested. 

It should be noted that the fundamental frequency f for 
· BF 

backfills will typically range from 5 Hz to 25 Hz. Dominant 

frequencies of ground motions fE-Q range generally from 2 Hz to 5 

Hz. Thus, the most typical range of the frequency ratio fE-Q/fBF 

is 0.2 to 0.6. 

8.3 TILTING 

Observations in the field following earthquakes suggests that 

permanent displacement of gravity retaining walls usually involves 

tilting. This important aspect of behavior has received very 

little attention from a theoretical standpoint, and hence is still 

poorly understood. There have been model tests in which a wall is 

tilted while it and the backfill are subjected to earthquake like 

motions (Sherif, et al. 1981). These tests have confirmed the 

influence of tilting upon the development of active conditions 

behind a wall. However, they give no direct evidence as to the 

amount of tilting that might develop in a free-standing wall. 

A preliminary study of this problem by Nadim (1980) used the 

conceptual model shown in Figure 8.5. The failing wedge of soil 

is subdivided into thin slices which may slide over each other 

once frictional resistance on the interslice failure surface is 

reached. Except for such sliding, the backfill is rigid, while the 
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wall may slide and/or rotate about its base. The horizontal 

acceleration of each slice is just equal to the horizontal 

acceleration of the wall at the point where the slice meets the 

wall. Each slice also accelerates vertically, as necessary to 

maintain contact between the slices. With these various 

* assumptions, it is possible to develop an equation giving the 

distribution of stresses between the wall and backfill in terms of 

the horizontal acceleration of the wall at its base (which may 

differ from the acceleration of the underlying ground) and the 

rotational acceleration of the wall. This equation is then used 

together with equations for the dynamic equilibrium of the wall 

(as in Chapter 5) to compute the motions of the wall. 

One result of this analysis - a rather surprising result at 

first sight - is that the resultant of the dynamic stresses 

between backfill and wall sometimes lies below the lower third 

point. This happens whenever the tilt of the wall away from the 

backfill is accelerating while the horizontal acceleration of the 

ground is towards the backfill (which is just the situation of 

greatest concern to us). At such times (see figure 8.5b), the 

absolute acceleration at the top of the wall is less than the 

absolute acceleration at the base of the wall. With our 

assumptions, this means that the uppermost slice through the 

backfill has a smaller acceleration than the slices below it. 

Hence the horizontal stresses between soil and wall increases with 

* It turns out that the thickness of the individual slices can in 
the limit be set to zero, so that a continuous equation is 
obtained. 
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depth more rapidly than linearly. At other times when the 

rotational acceleration of the wall reverses, the opposite is true 

and then the resultant horizontal force lies above the lower third 

point. 

Once revealed by this simple conceptual model, these results 

are quite obvious. The analysis demonstrates clearly that 

conventional wisdom concerning the location of the resultant, 

which was derived for the case of a wall that does not tilt, may 

be quite misleading as regards the response of a wall which is 

free to tilt. 

Nadim used this model to study the relative importance of 

sliding and tilting. Moment resistance at the base of the wall 

was assumed to be rigid-plastic in character, and it was further 

asumed that the axis of tilting was at a fixed location. A 

threshold transmittable acceleration, NR' is reached when the base 

moment required for dynamic equilibrium just equals the maximum 

moment. (The dynamic stress from the backfill is assumed to 

increase linearly with depth in this calculation.) Any tendency 

for the thrust from the backfill to increase further is resisted 

by rotational inertia of the wall. The principal conclusions from 

Nadim's study were: 

* 

* 

If NR > N, then only sliding will occur. That is, having 

resistance to sliding which is less than the resistance to 

tilting protects the wall against tilting. 

If NR < 0.85N, then only tilting - and no sliding -

occurs. In this case, the permanent displacement at the 
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top of the wall was found to be about 1 1/2 times the 

movement predicted using a sliding block with N set equal 

to NR. Thus there's some reason to think that a sliding 

block model maybe useful in estimating permanent 

displacement even though tilting is the predominant mode 

of displacement. 

These conclusions must, of course, be treated with great caution. 

Unlike the case of sliding, significant tilting may occur 

before the maximum resistance against overturning moment is 

reached. There has been no adequate study of this aspect of the 

problem. Some results obtained using the finite element model of 

Figure 2.5 have confirmed that the resultant thrust from the 

backfill can lie below the lower third point at various times 

during a cycle of shaking. It does seem clear that any tendency 

for a wall to tilt will relieve the overturning moment acting upon 

the wall. 

All in all, there is reason to believe that the sliding block 

model proposed by Richards and Elms is a reasonable model for 

predicting the permanent movement of actual gravity walls, 

provided they have been designed using a typically conservative 

safety factor against overturning by static loads. 

8.4 APPROXIMATIONS TO 2-BLOCK ANALYSIS 

If one knows the inclination of the failure plane through the 

backfill, or if one is willing to accept the assumption that this 

inclination varies continuously during shaking, the effect of 

kinematic constraints can be taken into account as discussed in 
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Chapter 5. However, the required analysis is at least moderately 

complex, and hence it generally is desirable to accept approxi-

mations in order to achieve simplicity. 

Wong (1982) has suggested an equation for the factor R
211

• 

0.7 + 1.2N(l-N); N ( 0.5 

(8.fi>) 

1 N > 0.5 

This equation describes an average curve through the several 

curves in Figure 5.5. Each of those curves is itself drawn 

through a scattering of points calculated using different ground 

motions. However, the scatter in these points is quite small. 

The approximation in Eq. 8.5 lies in ignoring the effect of A • 

Wong computed his results for the case ~ 
• = 1 = 0 and for 

specific valus of $ and $~· Antia (1982) examined the effect of 

varying these parameters upon the ratio R
211 

of permanent 

displacements computed by the two- and one-block models. His 

results are illustrated by the following tabulation (for A = 0.2, 

N = 0.4 and Taft earthquake record): 

Ratio of R
211 

• 
l 

0 0 0 0.731 

7.5° 0 0 0.767 

0 0 0.828 

0 0 0.764 

7.5° 0.917 
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In all cases investigated, the effect is to decrease the 

difference between the residual displacements computed using the 

two models. Wong reached similar conclusions. Note that each 

case in the tabulation above corresponds to a different weight of 

wall, so as to hold N constant. 

These results, plus those discussed in Section 8.1, emphasize 

the complexity of the so-called ''2-block'' effect. There is no 

doubt that the effect is real and that it acts to reduce the 

actual permanent sliding compared to that predicted using the 

Richard-Elms simple sliding block model. The problem is in 

predicting this reduction accurately by any simple calculation. 

Having the inclination of the failure plane fixed tends to make 

the reduction greater than suggested by Eq. 8. 5 . As the results 

in Figure 5.6 show, this reduction can be very large indeed. On 

the other hand, Antia's results show that this equation may not 

always be conservative. 

Taking all these factors into consideration, it is reasonable 

to use a mean value of 0.65 for the factor R
211

, and to represent 

the uncertainty in this factor by a standard deviation of 0.2. 
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, 
9- IMPROVED APPROACHES TO DESIGN 

9.1 REVIEW OF OBJECTIVES 

As discussed in Chapter 1, the general objective of this 

study has been to quantify the uncertainties invovled in using a 

displacement-limiting approach to the design of gravity 

retaining walls for seismic loadings. The specific goal has 

been to select, with greater confidence, a suitable safety 

factor for use with the Richards-Elms approach or, if possible, 

to develop an improved design methodology. In so doing, the 

desire to maintain the essential simplicity of the Richards-Elms 

approach has been an overriding consideration. 

The various aspects of the problem have now been examined, 

to the extent that knowledge permits. The next step is to 

synthesize them into a unified approach to design. 

9.2 EQUATION FOR PREDICTING MOTIONS 

At the heart of any displacement-limiting approach to 

design is an equation for predicting displacements in terms of 

the specified ground motions and the physical parameters 

characterizing a gravity retaining wall and its backfill. To 

achieve the objectives of this study, such an equation must be 

probabilistic in nature. That is to say it is necesary to 

quantify the probability that various amounts of permanent dis­

placement will be exceeded. 

Equation 1.1 was suggested at the outset of this study for 

this purpose. In it, the permanent displacement of a retaining 
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wall is predicted by the product of five terms: 
..... 
dR : The permanent displacement of a one-way sliding 

v 
block with maximum transmittable acceleration Ng, 

averaged over all earthquake ground motions 

characterized by peak acceleration Ag and peak 

velocity V. 

R2/l : A deterministic factor accounting for the effect of 

a kinematic constraint ignored when using a sliding 

block to represent a retaining wall and its back-

fill. 

Q : A random variable with mean of unity, describing the 

variation of permanent displacement aroused by 

different earthquake motions all having the same Ag 

and v. 

R~ : A random variable with mean of unity, describing the 

effect of random uncertainties in the resistance 

parameters for the wall and backfill. 

M : A model error term, random in nature, which accounts 

for as yet poorly understood aspects of the 

problem. 

The first four of these factors have been studied in 

considerable detail: R2/l in Chapter 5, dR and Q in Chapter 6 

and R~ in Chapter 7. Methods for accounting for these several 

aspects of the problem have been developed in some detail. 

However, several of these methods are rather complicated. 
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The effect of vertical ground accelerations enters into the 

expression for dR, and this causes the factors A and N to enter 

into computations in a complex fashion. Complicated calcula-

tions are necessary to arrive at exact values for the ratio 

R2/l' and this ratio is influenced by A and N in a non-simple 

way. Similarly, it is not an easy matter to evaluate the effect 

of deformable backfill, even though guidelines for this purpose 

have been suggested in Chapter 7. 

In order to retain simplicity, and keeping in mind the 

still imperfect state of our knowledge, Equation 1.1 has been 

simplified to: 

37V 2 -9.4N/A 
- Ag e 

( 9. 1) 

The first term is Equation 6.2 for the mean displacement of a 

sliding block with no vertical ground accelerations. The errors 

caused by ignoring vertical accelerations, and those introduced 

by omitting the factor R2/l' are lumped into the model error 

term M. N is the expected (in the average sense) threshold 

transmittable acceleration coefficient for the wall/backfill, 

evaluated using average values for the various friction angles. 

Q, R2/l and M are all random variables, Q and R having means of 

unity. Based in part upon available numerical results (see 

Chapter 6) and in part upon the form of Equation 9.1 (i.e. it is 

a product of random variables) it is assumed that dR is 

lognormally distributed. 
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Using results from the theory of probability and assuming 

that Q, R$ and M are also independent, it is now possible to 

write expressions for the mean and stantard deviation of dRw: 

_ 37V e-9.4N/A M 
Ag 

where M is the mean value of M~ and * 

0 2 + 02 + 02 
N lnM lnQ 

( 9 • 2) 

( 9. 3) 

Actually, Equation 9.3 gives the standard deviation for lndRw 

rather than for dRw directly. crlnM and crlnQ are the standard 

deviations for lnM and lnQ, respectively. 

Information concerning the parameters in Equations 9.2 and 

9.3 has been summarized in Table 9.1. Coefficients of variation 

for Q are found in Table 6.3~ since the mean of Q is unity, the 

standard deviation equals the coefficient of variation. 

computed by: 

( 9. 4 ) 

Estimates for aN were discussed in Chapter 7. 

The model error term M is a composite of several factors, 

as indicated in Table 9.1. Figure 6.4 has been used to estimate 

----------------------* In a more proper derivation, Equation 9.1 should have been 
written as: 

37V 2 N 
1n dRw = ln( Ag ) - 9.4 A+ log Q + log M 

where N is a random variable. The first term in Equation 9.3 
is then obtained by employing: 

fa (lnd )1 2 

--~--R_w Var[N] -
L aN 
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Table 9.1 

SUMMARY OF PARAMETERS IN EQUATION 9.1 
FOR PREDICTION OF PERMANENT DISPLACEMENTS 

Factor 

Ground motion factor Q 

Resistance factor N 

MODEL ERROR 

Vertical acceleration 

Ignoring R
211 

Deform. backfill 

Tilting 

Combined model error 

Mean 

1 

N 

1.2 

0.65 

3 

1.5 

3.5 

Standard 
Deviation 

0.6 -1.4 

0.04-0.065 

0.2 

0.2 

2 

0.75 

3.6 

Log normal 
Standard 
Deviation 

0.58-1.05 

-

0.2 

0.3 

0.6 

0.5 

0.84 
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the mean and standard deviation of the error introduced by 

failing to take the effect of vertical accelerations into 

account directly. The discussion in Section 8.4 has provided 

the basis for estimating the effect of not accounting directly 

for the ratio R2/l· Similarly, rather than introducing a 

correction for the effect of deformable backfill as a function 

of period ratio and N/A, a mean correction and a measure of 

scatter have been estimated from Figure 8.4. The possible 

effects of tilting have been discussed in Section 8.3. In 

arriving at these various values, attention has been focussed 

upon the range of A and N/A of greatest interest: A = 0.3 to 

0.4 and N/A = 0.3 to 0.7. 

Given the means and standard deviations for the several 

effects that enter into the model error term, the parameters for 

this term may be calculated. The mean of M is just the product 

of the means. The standard deviation is computed using: 

cr 2 - L l n (V. 2 + 1 ) ln M . 1 
l 

(9.5) 

where Vi is the coefficient of variation for the ith factor in 

M. Applying these approaches to the values listed in Table 9.1 

under the heading of model error leads to the results M = 3.5 

and olnM = 0.84. VM, and thence crM, can be found using Equation 

9.4 (with Q replaced by M), leading to VM = 1.03 and crM = MVM = 

3.6. 

Table 9.2 presents results for the standard deviation of 

lndR' calculated using Equation 9.3 together with values of 

olnQ based on Table 6.3, values for M and olnM from Table 9 .1 
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Table 9.2 

a FOR GRAVITY RETAINING WALLS 
lndR 

N/A 

0.1 0./. 0.3 0.4 0.~ 0.6 0.7 

VQ 0.63 0.68 0.78 0.88 1.02 1.17 1.41 

2 
a lnQ 0.33 0.38 0.48 0.57 0.71 0.86 1.10 

2 2 
a lnQ + cr lnM 1.04 1.09 1.19 1.28 1.42 1.57 1.81 

0.2 2.9 2.9 2.8 2.8 2.8 2.8 2.8 

0.3 2.1 2.0 2.0 2.0 2.0 2.0 2.0 

0.4 1.7 1.6 1.6 1.6 1.7 1.7 1.7 
A 

0.5 1.5 1.4 1.5 1.5 1.5 1.5 1.6 

0.6 1.3 1.3 1.3 1.3 1.4 1.4 1.5 

0.7 1.3 1.3 1.3 1.3 1.3 1.4 1.4 
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and values of oN interpolated from Fig. 7.1. For the smaller 

values of A, the first term in Equation 9.3 is quite dominant ; 

that is to say, uncertainty in the resistance factor N is the 

controlling factor. At the larger A, all terms in Equation 9.3 

are more-or-less of equal importance. The result is that olndR 

is substantially independent of N/A, but depends strongly on A. 

9.3 APPROACH TO DESIGN USING SAFETY FACTOR AGAINST DISPLACEMENT 

Taking logarithms on both sides of Equation 9.2 and 

rearranging the resulting equation gives: 

N 
A 

1 
1n 9 .4 (9.6) 

Equation 9.6 may be solved to find the value of N required if 

the mean residual displacement is to be equal to or less than a 

given dR, when A and V are specified. According to the argument 

in section 9.2, M should be taken as 3.5. 

If an engineer could accept having the average residual 

displacement of many walls be just equal to, or less than, a 

specified permissible displacement dL, then dR in Equation 9.6 

may be replaced by dL. The value of N found from this e q uation 

would, together with average values for soil weights and 

friction angles, be used to calculate the req uired weight of 

wall from (see Eq. 4.7). 

w w 

[cos( 8+o ) - sin( 8+ o )tan~b]PAE 

tan ~b-N 

No safety factor would need to be applied to this weight of 

wall. 

( 9 .7) 



126 

However, the discussion in this and previous chapters has 

emphasized that often the residual displacement will be much 

larger than the mean value. The engineer may wish to use a 

safety factor so as to reduce the likelihood that the actual 

displacement wil exceed dt· One way to do this is to apply a 

safety factor F to dt, such that: 

dL 
F = 

Then Equation 9.6 becomes 

N 1 1n 37MFV 2 1 
f A - 9. 4 AgdL 1 

(9.8) 

(9.9) 

This equation would be used as before to calculate N and thence 

wall weight from Equation 9.7. No additional safety factor 

would be applied to Ww. 

In the absence of extensive tests or field observations to 

use as a basis for selecting the safety factor F, theory of 

probability may be used to guide the choice of a suitable value. 

The engineer must first decide upon an acceptable risk for 

having dt exceeded. Let us denote by P the desired probability 

of not exceeding dt. Since we have already concluded that dRw 

is (approximately) lognormally distributed, probability theory 

gives the following expression for F (see Eq. 6.11): 

F - exp [-~a 2 
lnd + DP a J 

Rw lndRw 

(9.10) 

where Dp is a factor dependent upon P, as listed in Table 9.3. 

The information in Tables 9.2 and 9.3 may then be combined to 

produce a table giving F as a function of P and A. (Note, in 

Table 9.2, that alndR is virtually independent of N/A~ an 



127 

Table 9.3 

FACTOR D FOR VARIOUS 
PROBABILITIESPOF NON-EXCEEDANCE 

Probability of 
Non-Exceedence 

P-% 

50 

75 

85 

90 

95 

Factor DP 

in Eo. 9.12 .. 

0 

0.675 

1.037 

1.286 

1.645 
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average value has been used for each A.) The results are given 

in Table 9.4. 

Several somewhat surprising aspects of this table may be 

noted. First, for P = 50% all of the safety factors are less 

than unity. This result actually reflects a well-known fact 

concerning lognormal distributions: the median (point for which 

half of values are smaller and half are larger) is always less 

than the mean. For the olnd of interest, this situation is 
Rw 

almost always true for P = 75%. 

Second, for P = 95% the safety factor first increases 

somewhat as olnd 
Rw 

• 1ncreases (A decreases) and then decreases 

again for large values of olndRw· The trend for F to decrease 

with increasing olnd is evident for all other values of P. 
Rw 

Thus, once olnd has increased past a certain point (which 
Rw 

depends upon P), further increase causes the point for P percent 

non-exceedence to move back toward (and even past) the mean! 

The physical situation that accounts for this behavior may be 

explained as follows. It has been noted that uncertainty in N 

contributes very strongly to uncertainty in dR, especially with 

smaller A. An N smaller than the mean will contribute an 

enormous number of cases with small displacements, while an N 

larger than the mean implies that a few cases with very large 

displacement are possible. The net effect is actually a 

decrease in the value exceeded (100-P) percent of the time. 
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0 . 2 

0 . 3 

0 .4 

0 . 5 

0 . 6 

0 . 7 
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Table 9 . 4 

SAFETY FACTORS REQUIRED FOR 
VARIOUS PROBABILITIES OF NON-EXCEEDANCE, 

AS A FUNCTION OF PEAK GROUND 
ACCELERATION 

Probability of 
non- e xceedance - % 

0 lndR -w 50 75 85 90 

2 . 83 0 . 018 0 . 12 0 . 34 0 . 69 

2.01 0 . 13 0 . 52 1 . 07 1 . 4 4 

1 . 66 0 . 25 0 . 77 1 . 41 2 . 13 

1 . 50 0 . 32 0 . 89 1 . 54 2 . 23 

1 . 36 0.40 0 . 99 1 . 63 2 . 28 

1 . 33 0.41 1.01 1 . 64 2 . 28 

95 

1 . 92 

3.62 

3 . 87 

3 . 83 

3 . 72 

3.68 
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9.3.1 Choice of Safety Factor 

There is no standard to guide the choice of a suitable 

value for P. In the case of buildings, the probability of not 

failing during a major earthquake, as implied by good modern 

building codes, apparently is l ess than 1% (corresponding to 

P = 99 %). A somewhat lower probability of nonfailure seems 

appropriate for gravity retaining walls: say P = 95% or even 

P = 90 %. It should also be noted that P = 95% is about as far as 

the information concerning the distribution of dR may 

comfortably be pushed. This is certainly the upper limit (perhaps 

even beyond the limit) of confidence in the statistical analysis 

of computed displacements in Chapter 6. 

Referring to Table 9.4, with P = 95% the safety factor F 

should be about 3.6 to 3.9, except for the smallest ground 

accelerations where a smaller value is justified. However, 

design of gravity walls is little affected when expected ground 

accelerations are this small. In the interests of simplicity 

a single factor of 3.8 might be used at all levels of ground 

acceleration. Similarly, use of a safety factor of 2.4 seems 

reasonable if a somewhat less conservative design corresponding 

to P = 90% is desired. 

Recognizing that one characterization of the distribution 

of dR is uncertain at such higher levels of non-exceedence, one 

should not attempt to be too precise in the choice of safety 

factors. Hence values of F = 4 (conservative) or F = 2.5 (less 

conservative) are recommended. 
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9.3.2 Examples 

Using M = 3.5, Equation 9.11 now becomes: 

[0.66 + 1 
1n v2 J 

9.4 AgdL 
A F .... 4 (9.lla) 

.... 

N .... 

(o.61 + 
1 1n v2 ] 

9.4 AgdL 
A F .... 2.5 (9.llb) 

The factor 37, M and F have all been combined in the first terms 

of these equations. 

To illustrate the use of Equation 9.13, let us return to 

Example 4.3, which is reworked in Example 9.1 using the results 

developed in this chapter. Note that Eqs. 3.1 and 3.2 are used 

with Nv = 0~ the possible effects of Nv * 0 have been accounted 

for by the analysis in this chapter. The wall weights computed 

using both values of the safety factor are larger than that 

determined in Example 4.3 before any safety factor was applied. 

However, in the current example no additional safety factor need 

be applied to the computed weight, and hence the design is more 

economical. 

9.4 RELIABILITY IMPLICIT IN OTHER DESIGN APPROACHES 

The results developed in Section 9.2 may be used to 

estimate the probability that walls designed by a conventional 

approach, or using the Richards-Elms method, will experience 

more than a given value of movement. The methodology is as 

follows: 

1. The wall weight required by the approach, including any 

safety factor, is calculated. 
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2. The corresponding value of N is computed, using one of 

the techniques discussed in Section 4.3. 

3. The value of dR is computed, using Eq. 9.2 and the 

parameters appropriate for the earthquake of concern. 

4. The factor F is calculated for the selected threshold 

permanent displacement. 

5. The factor Dp is calculated by inverting Eq. 9.12. 

The appropriate value of ~lnd is selected from Table 
Rw 

9.2 

6. The probability of exceedance corresponding to Dp is 

looked up in a standard normal cumulative probability 

table. 

9.4.1 Conventional Design 

While there are many different ''conventional" ways 

to select a seismic coefficient for the design of gravity 

retaining walls (se Chapter 3),for purposes of illustration this 

coefficient will be taken as one-half of the peak acceleration 

in the earthquake used to define the • • Se1Sm1C threat. Example 

9.2 outlines a sample calculation of the probabilities that 

various levels of displacement will be exceeded, for a specific 

case. Note that the wall is "designed" for an earthquake with a 

peak acceleration of 0.3g, using a seismic coefficient N -

(l/2)(0.3) = 0.15. Because of the safety factor applied to the 

calculated wall weight, the actual threshold acceleration 
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coefficient for this wall is N = 0.71. The actual earthquake is 

assumed to have the same peak acceleration as the "design 

earthquake (i.e. a= 0.3), together with a peak velocity v- 15 

in/s. Note that the results are independent of the actual 

height of the wall and of the actual weight of the backfill. 

Table 9.5 summarizes results for walls designed in this way 

using several different safety factors nad several different 

design (and actual) earthquakes. Similar results were obtained 

using other combinations for ~' ~b and 6 . (Changing these 

parameters changes the wall weight, but has little effect upon 

theN for a wall just meeting the design criteria.) For a 

moderate seismic environment (A= 0.2), a conventional design 

will have reasonably low probabilities of excessive displace-

ments. However, in a severe seismic environment the probability 

of excessive movements is much larger, at least for safety 

factors of 1.0 to 1.2. 

In computing these results, it has been assumed that 

average values of ~' ~b and 6 are used for design of a wall. If 

conservatively low values are used in design, the probability of 

excessive movements will be less than suggested by these 

calculations. 

9.4.2 Design Following Richards-Elms 

With the Richards-Elms method, the required weight 

of wall depends upon the allowable displacement dL as well as 

upon the seismic environment. A number of calculations have 

been made, using various combinations of ~' ~b and 6 , various 
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Table 9.5 

PROBABILITY THAT MOVEMENT OF WALLS 
~viLL EXCEED VARIOUS LIMITING VALUES. 
WALLS ARE DESIGNED FOR STATIC SEISMIC 

COEFFICIENT OF 1/2 OF PEAK ACCELERATION 
WITH ¢ = ¢b = 30° and 8 = 20° 

CHARACTERISTICS 
FACTOR ON 

dL OF E.~RTHQUAKE 
WALL WGT. 

SEISMIC 
inches 

A = 0.2 A= 0.3 A = 0. 5 
CASE V=lO in/s V=lS in/s V=25 in/s 

1 10 % 28% 56% 

1.0 2 7 % 18% 38% 

4 4 % 10% 22% 

1 5% 18% 47% 

1.1 2 3% 10% 30% 

4 2% 5% 16% 

1 2% 12 % 40% 

1.2 2 2% 6% 23% 

4 1% 3% 12% 
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seismic environments, several different dt ranging from 1 to 4 

inches, and several values of safety factor applied to the 

calculated wall weight. The results of these calculations may 

be summarized as follows: 

Safety factor applied 
calculated wall weight 

1.0 

1.1 

1.2 

Probability that dt used 
for design will be exceeded 
if design earthquake occurs 

< 5% 

If 5% probability-of-exceedence is taken as a target, these 

results justify the use of a safety factor of 1.1 or 1.2 on wall 

weight in conjunction with the Richards-Elms procedure. 

9.5 GENERAL DISCUSSION 

The methodology developed in this report has focussed 

primarily upon predicting the probability that a retaining wall 

will experience various amounts of permanent displacement 

during an earthquake. Quantifying uncertainty requires good 

knowledge of the several aspects of a problem and adequate 

statistics for the pertinent parameters. Obviously there is yet 

not enough such information to do with great confidence. None-

theless, the estimates developed in this report using the best 

available information appear to provide good guidance for 

purposes of design. The methodology itself should remain useful 

as additional data are developed, and may be applied to other 

types of problems for which a sliding block analysis is appli-

cable. 
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There is one aspect of the probabilistic analysis which is 

incomplete. Eq. 6.2 for predicting permanent displacement of a 

sliding block was developed using data from earthquakes with 

magnitudes from 6 to 7. Presumably larger earthquakes, • caus1ng 

ground motions of greater duration, would result in greater 

displacements for the same A and v. It would be desirable 

to repeat the analysis leading to Eq. 6.2 using ground motions 

from larger earthquakes. 

In the years since Newmark's paper suggesting the use of 

sliding block analysis, there have been numerous efforts to 

apply the method to predicting permanent displacements of earth 

structures as the result of earthquakes. Newmark originally 

suggested use of the method in connection with slopes, and the 

bulk of the applications have, in fact, been to slopes. As a 

conceptual aid to understanding the evolution of permanent 

deformations and in the development of general guidelines, the 

sliding block has indeed been very valuable. However, in the 

case of earth dams it appears that a significant amount of 

permanent displacement may result from distortions distributed 

throughout the dam, before a definite failure surface develops. 

Thus the quantitative use of the sliding block analysis as a 

tool for predicting the permanent deformation of earth dams may 

be limited. 

Sliding block analysis has always seemed more suitable for 

the analysis of gravity retaining walls, since it usua lly takes 

very litle outward motion to develop a failure condition within 

the backfill. That is to say, the observable permanent 



1 37 

displacement of such a wall actually results from the type of 

deformation pattern envisioned by a sliding block type of 

analysis. Even here, however, there are problems, such as the 

apparent importance of "elastic'' deformations of the backfill, 

as discussed in Section 8.3. Indeed, when it becomes necesary 

to use a multiplicative correction factor of 3.5 (primarily to 

account for elastic backfill effects and tiltng), one must think 

that the usefulness of the sliding block method is being pushed 

to its limit. 

Clearly more research is required concerning the importance 

of tilting and of the ''elastic" deformability of backfill. It 

will be very important to conduct experiments in which these 

effects are properly simulated. Having reasonably correct 

stress-strain behavior in the soil used for these experiments 

will be critical. Thus model tests should be carried out on a 

centrifuge rather than in normal gravity. 

Two other matters not dealt with in this report deserve 

mention. One is the effect of passive resistance at the toe of 

a wall. In principle this resistance might be incorporated into 

the analysis as an additional term in Eq. 4.2a. However, it is 

well known that some displacement must occur before full passive 

resistance is developed, and such a situation cannot be modelled 

well by a rigid-plastic model. Great care should be used in 

applying the methodology of this report if passive toe resis­

tance is a significant part of the total resistance to sliding. 

The other effect is the influence of pore water within the 

backfill. Pore water of course can influence resistance to 
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shearing through the backfill. In addition, pore water may 

exert a dynamic force on a wall more or less independently of 

the mineral skeleton. These are matters for future research. 
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EXAMPLE 9.1 

Given: The requirements in Example 4.3. 

Find: Appropriate weight of wall using approach of 
Chapter 9. 

Solution: W will be computed for two values of F. 
w 

N/A 

N 

w w 

F - 2.5 

0.68 

0.20 

0.473 

17.7 k/ft 

46.9 k/ft 

F - 4 

0.73 

0.22 

0.491 

18.4 k/ft 

51.5 k/ft 

Eq. 9. 13 

Eq. 3.1 

Eq. 3. 2b 

Eq. 3 .2a 

Eq. 9. 7 

These weights may be used directly to proportion 
the wall: no additional safety factor is required. 
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EXAMPLE 9.2 

Given: A wall designed for A= 0 . 3 and safety factor of 1.1 
on wall weight for seismic case , using ¢ = ¢b = 30° 

Find : 

and 8 = 20°. The height is H and the unit weight is y . 

Probability that permanent displacement will exceed 
1 , 2 or 4 inches , during earthquake with A= 0.3 and 
V = 15 inches/sec . 

Solution: The first step • to design the wall. lS 

From Eq . 3 . 2b , with N - 1 A - 0.15; KAE - 0 .407 
2 

From Eq. 9. 7 : w 0.707 1 2 - 2 yH w 

Applying the safety factor : Ww - (1 . 1) (0 . 707)~ yH 2 

1 2 - 0 . 778 2 yH 

Using Eq . 4.4 iteratively the actual N for this wall is 0.171. 

For the actual earthquake , Eq . 9 . 2 gives dRw =1 . 19 inches . 

The f ollowing table g ives results for various dL . From 
Table 9 . 2 , the appropriate value o f o lndRwfor A= 0.3 is 
2 . 0 . 

P[dR <d ] w L 

P[dR >(j ] w L 

0 .84 1.68 

1.09 1 . 26 

0 . 82 0 . 90 

0.18 0 . 10 

3.36 

1 . 61 

0.95 

0 . 05 

Eq . 9.12 

Standard 
Probability 
Table 
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10- CONCLUSIONS AND OPPORTUNITIES 

10.1 CONCLUSIONS 

The conclusions from this study may be summarized by the 

following statements: 

1. The design of gravity retaining walls against the 

effects of earthquakes logically should be based upon a 

displacement-limiting approach. 

2. Use of a sliding block analysis is appropriate (but 

marginally so!) for a gravity wall. 

3. The basic sliding block model must be modified to 

account for: 

* 

* 

* 

The actual interaction between two sliding blocks, one 
representing the wall and the other the failing wedge 
of backfill. This effect is reasonably well 
understood. 

The effect of the deformability of the backfill prior 
to failure. This aspect of the problem is now partly 
understood. 

Tilting of the wall. This effect is as yet poorly 
understood. 

4. The choice of a safety factor for use in the design of 

a wall for the seismic loading case should be based upon the 

probability that a limiting permanent displacement will be 

exceeded. It is necessary to consider: 

* Variability of ground motions 

* Uncertainty in resistance parameters 

* Approximations ("errors'') in the model used as 
a basis for computation. 

An analysis has been made of these considerations, using the 

currently best available data and information. A new equation (9.1 } 
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for predicting the displacement of a sliding block has been 

developed, and suitable safety factors have been suggested. 

5. Based upon this analysis, it is possible to assess the 

reliability of previously proposed methods for designing gravity 

retaining walls. 

* 

* 

* 

Use of a seismic coefficient corresponding to one-half 
of the peak acceleration for the design earthquake, 
together with safety factors on wall weight in the 
range of 1.0 to 1.2, gives satisfactory designs for a 
moderate seismic environment (probability of excessive 
displacement less than 10% for peak accelerations less 
than 0. 2 g) . 

In a severe seismic environment (peak acceleration of 
0.5 g of more), there is generally an unacceptable risk 
(probability greater than 20%) that walls designed by 
the seismic coefficient approach will experience perma-
nent deformations in excess of one or two inches. 

For walls designed by the Richards-Elms approach, with 
a safety factor of 1.1 to 1.2 on wall weight, there is 
at least 95% probability that the limiting displacement 
will not be exceeded. 

10.2 OPPORTUNITIES 

Even though design of gravity retaining walls is not one 

of the really major problems in earthquake engineering, the 

entire class of problems involving prediction of permanent 

displacements presents one of today's major challenges. Overall 

there is considerable value to be derived from further work upon 

and understanding of one of the simpler cases within this class 

of problems. The opportunities for further work upon the 

gravity retaining wall problem fall in three categories. 

1. There is need for further theoretical analysis, to 

study the effect of deformability of the backfill upon both 

sliding and tilting. A reasonably satisfactory finite element 

model is now available for study of sliding~ it should be used 
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to study the influence of varying the several paramete rs. 

Further improvement of the model likely will be necesary f or 

study of tilting ; for this case it seems essential at least t o 

have multiple parallel failure planes through the backfill. 

Modelling the resistance of the soil beneath the wall to tilting 

is a very poorly understood problem. 

2. Valuable results can come from model tests of gravity 

walls carried out on a centrifuge. It is essential that the wall 

be free-standing ; i.e. free to move relative to the soil as it 

will. A program of tests involving sliding has been underway at 

Cambridge University in England, but results are not yet 

available. Additional tests to explore the complex tilting 

problem should be even more valuable. 

3. The analysis of uncertainty should be extended. A 

primary need is to bring the influence of the magnitude of the 

earthquake into the equation for predicting the displacement of 

a sliding block. 
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LIST OF SYMBOLS 

Maximum horizontal ground acceleration coefficient of 
an earthquake record (max. acceleration is Ag). 

Horizontal ground acceleration coefficient; varies with 
time. 

Vertical ground acceleration coefficient. 

Ground acceleration. 

Transmittable (or threshold, or limiting) accelerations. 

Shear wave velocity. 

Standard normal deviate (i.e., number of standard devi­
tions from the mean) corresponding to the probability 
P of non-exceedance of a given parameter (e.g. residual 
wall displacement). 

Allowable residual displacement 

Residual displacement calculated using the rigid single 
block model. Also, the residual displacement calcu­
lated using the Richards-Elms equation or one of 
Newmark's equations. 

Predicted residual displacement for 2-block model. 

Residual displacement of a rigid single-block 
model~ when no vertical component of an earthquake 
record is taken into account. 

Average of dRe over a number of records. 

Average residual displacement of a rigid single-block 
model; averaged over 4 orientation directions as shown 
in Fig. 6.1 for a single earthquake record. 

Residual displacement of a sliding rigid single-block 
model, when vertical component of an earthquake record 
is taken into account. 

Average of dRv over a number of records. 

Residual displacement of a retaining wall. 

Expected value of dRw· 



E[] 

Ev 

g 
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1 

H 

M 

M 

m 
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The expected value operator, with the quantity inside 
the brackets being the operand~ equivalent to 
calculating the mean of the operand. 

Correction factor to block model slip calculations, to 
account independently for wall orientations. A random 
variable. 

Correction factor to block model slip calculations, to 
account independently for earthquake record 
variability. A random variable. 

Correction factor to block model slip calculations, to 
account independently for vertical earthquake motions. 
A random variable. 

Average value of Ev at a given N/A. 

Wall weight factor, a non-dimensional indicator of wall 
weight. 

Central frequency of earthquake. 

Natural frequency of backfill. 

Constant of gravitational acceleration. 

Angle of inclination of the backfill with respect to 
horizontal. 

Coefficient of active earth pressure (static). 

Coefficient of active earth pressure due to earthquake 
(includes static and dynamic effects). 

Coefficient of earth pressure at-rest. 

Height of the wall. 

Correction factor, accounting for 
errors of the single block model. 
sliding block. 

various modelling 
Also, mass of a 

Expected value of correction factor M. 

Mass of the backfill soil. 

Mass of the wall. 

Mean of a quantity the particular quantity would be 
indicated by a subscript to m, e.g. mQ, mN, etc. 
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Maximum transmittable horizontal ground acceleration 
coefficient7 also seismic coefficient depending on the 
context. 

Expected value of N. 

Transmittable horizontal ground acceleration coeffi­
cient, variable with time. Also, the seismic 
coefficient depending on the context. 

Seismic coefficient number from Fig. 3.6. 

Threshold transmittable acceleration coefficient for 
rotational mode of failure. 

Transmittable vertical acceleration coefficient 
variable with time. 

Threshold transmittable acceleration coefficient. 

Probability7 probability of non-exceedance. 

Total active thrust due to dynamic plus static earth 
pressure. 

(PAE)a= Horizontal component of PAE· 

(PAE)v= Vertical component of PAE• 

Q 

Re 

v 

Correction factor, accounting for random nature of 
earthquake shaking. 

Residual displacement amplification factor, accounting 
for effects of elastic backfill. 

Correction factor, ratio of 2-block to 1-block model 
displacement. 

Correction factor, accounting for uncertainties in 
parameters characterizing backfill, wall, and 
foundation soil. 

Ratio of residual displacements of 2-block models using 
fixed 9 vs. variable 9 in analysis. 

Natural period of backfill. 

Central period of earthquake. 

Time. 

Maximum ground velocity of an earthquake record. 

Coefficient of variation of E0 • 
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Combined coefficient of variation of E0 , E5 , and Ev 
assuming E0 , Es, and Ev independent. 

Coefficient of variation of R,. 

Coefficient of variation of E5 • 

Coefficient of variation of Ev. 

Var[] .... The variance operator, with the quantity inside the 
brackets being the operand; equivalent to a 2 • 

w 

y 

6 

~b 

Weight of a sliding block. 

= Angle of inclination of the back of a retaining wall 
with respect to vertical. 

Unit weight of soil. 

Unit weight of concrete. 

Friction angle between the back of the wall and the 
backfill soil. 

Friction angle of soil backfill. 

Friction angle between the base of the wall and the 
foundation soil. 

.... Coefficient of friction. 

.... .... Unit mass of concrete • 

Unit mass of the backfill soil. 

a .... Standard deviation of a quantity; the particular 

9 

quantity would be indicated by a subscript to a, e.g. 
a0 , aN, etc. 

Angle of inclination of failure plane with respect to 
horizontal. 

Threshold angle of inclination of failure plane with 
respect to horizontal. 

.... Equivalent angle of tilt to transform a dynamic 
analysis into a pseudo-static analysis. 
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CATALOGUE OF STRONG- MOTION EARTHQUAKES CHOSEN FOR 

STATISTICAL SLIDING BLOCK ANALYSES 



APPENDIX A 

CATALOGUE OF STRONG MOTION EARTHQUAKES CHOSEN FOR STATISTICAL 
SLIDING BLOCK ANALYSES 

------------------------------------------------------------------------------
No. Earthquakes File No. Date M I 

------------------------------------------------------------------------------
l 
2 
3 
4 
5 
6 
7 

8 

9 
10 
1 1 

12 
13 
14 

El Centro Earthquake, Imperial Valley 
Kern County Earthquake, Taft Lincoln School 
Eureka Earthquake, Eureka Federal Building 
Eureka Earthquake, Ferndale City Hall 
Long Beach Earthquake, Vernon CMD Building 
Lower California Earthquake, Imperial Valley 
Western Washington Earthquake at 

Olympia, Washington, Highway Test Lab. 
Puget Sound, Washington Earthquake at 

Olympia, Washington, Highway Test Lab. 
San Fernando Earthquake at 

8244, Orion Blvd., 1st floor 
Old Ridge Route, Castaic 
Griffith Park Observatory 

Imperial Valley Earthquake 
Station 7 
Station 10 
Bonds Corner 

A001 
A004 
A008 
A009 
802 1 
B02 4 

B02 9 

B032 

C04 8 
D0 56 
0198 

5/18/40 
7/21/52 

12/21/54 
12/21/54 

3 I 1 o /3 3 
12/30/34 

4/13/49 

4/29/65 

2/ 9/71 

10/15/79 

6.7 
7. 7 
6.5 
6.5 
6.3 
6.5 

7 • 1 

6.5 

6.6 

6.4 

8 
7 
7 
7 
6 
6 

8 

7 

7 

-
----------------------------------------------------------------------- -------

* M stands for Magnitude 
I stands for Intensity 
File No. refers to CIT files 
Computed results are filed a~ number e d 

1--' 
lJl 
N 




