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PREFACE 

This report was written by Dr. Stanley M. Miller for the U. S . Army Engi
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is presently a professor in the Department of Geology at Washington State Uni
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Army, under the Civil Works Investigational Studies (CWIS), Rock Research 

Program (Work Unit 31755) on "Probabilistic Methods in Engineering Geology." 

OCE technical monitor was Mr. Paul R. Fisher. At WES, the work was under 

the management of the Earthquake Engineering and Geophysics Division (EEGD), 

Geotechnical Laboratory (GL). The GL technical monitor was Ms. Mary Ellen 

Hynes-Griffin, EEGD. Dr. Arley G. Franklin was Chief , EEGD , and Dr. William 

F. Marcuson III was Chief, GL, during the preparation of this report. 

Portions of this report represent partial results of Ph.D. research con

ducted by the author in 1981 and 1982 at the University of Wyoming and funded 

by Climax Molybdenum Company, a subsidiary of AMAX, Inc., of Golden, Colo. 

COL Tilford C. Creel, CE, was Commander and Director of WES during the 

preparation of this report. Mr. Fred R. Brown was Technical Director. 
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PROBABILISTIC ROCK SLOPE ENGINEERING 

PART I: INTRODUCTION 

1. The engineering design of slopes cut in dis continuous rock requ1res 

information about geologic structures because slope failures commonly occur 

along structural discontinuities. For this reason, rock slope engineering 

demands a different approach than the engineering of soil or soft-rock slopes 

in which failures follow circular-type surfaces of minimum strength through the 

material substance. Intensely fractured or highly weathered rock materials 

usually are also included in the soil slope category. 

Factors Influencing Rock Slope Stability 

2. Slope stability in rock masses is primarily governed by the geomet

r1c characteristics and the shear strengths of geologic discontinuities and by 

the local stress field. Important geometric characteristics are the orienta

tion (dip and dip direction), spacing, length or extent, and waviness (differ

ence between average dip and minimum dip). The shear strength along a discon

tinuity depends on its physical character, which includes its thickness, type 

of filling material, type of wall rock, and surface roughness due to asperi

ties. The stress field acting in a slope is controlled by the unit weight of 

the rock, ground-water pressures, and possibly tectonic stresses and other 

stresses due to the local geologic history. 

3. Natural variabilities in these rock mass properties and measurement 

uncertainties associated with their estimation imply the probabilistic nature 

of the input parameters needed for rock slope engineering. A deterministic 

slope design based on the average values of input parameters does not take 

into account statistical variabilities and may provide misleading results. In 

fact, some deterministic geotechnical analyses can lead to a supposedly con

servative design that actually has a substantial probability of failure (Hoeg 

and Murarka 1974). 

4. A probabilistic slope stability analysis can only be conducted if 

the input parameters are considered as random variables and have been statis

tically quantified and described. This descriptive process relies on the col

lection and analysis of field data, the results of laboratory and field tests, 
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and on geologic and engineering judgment. Probability distributions of frac 

ture* characteristics can be estimated from field mapping data usually ob

tained by either surface fracture mapping or oriented core logging or both. 

Shear strengths along fractures can be estimated by statistically analyzing the 

results of laboratory direct shear tests of rock specimens that contain natural 

fractures. Laboratory tests can also be used to estimate the unit weight of 

the rock. Ground-water pressures acting in the slope are usually predicted by 

hydrologic field tests and measurements. If a slope design project warrants 

the additional effort and expense, then a field rock mechanics study can be 

conducted to measure local tectonic and residual stresses or an earthquake 

study used to evaluate potential site displacements and accelerations. 

The Emergence of Probabilistic Slope Engineering 

5 . Probabilistic methods in rock slope engineering have been developed 

during the last 15 years or so and have their roots and support in the mining 

industry. Current econom1c evaluations of open pit mines are often based on 

the application of sophisticated statistical or simulation methods that re

quire input from probabilistic slope stability analyses (Kim and Wolff 1978). 

Such analyses are essential because slope angles have a significant economic 

impact on any open pit mining operation. 

6. Economic simulation of an open pit m1ne requ1res that the probabili

ties of failure be specified for var1ous slope heights and angles in all sec

tors of the pit. These probability values are calculated or estimated by 

analyzing all potential failure modes at several incremental slope heights and 

angles. Then, for each pit sector the results are compiled in a table, usu

ally called the probability of failure schedule, for that sector. A set of 

these schedules is needed for a cost-benefit analysis in which the mine life 

1s simulated at incremental time periods. 

7. During the simulation, a slope failure 1s considered to occur if a 

generated, uniform random number is less than the probability of failure value 

for the specified slope geometry. Cost of the failure is estimated from mine 

-k The term "fracture" will be used interchangeably with the term "discontinu
ity" because the most common geologic discontinuities in rock are fractures, 
which are either joints (along which there has been no displacement) or 
faults (along which there has been displacement). 
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planning and operational forecasts. An accounting is made for all m1n1ng 

costs and benefits incurred during each time period and the overall results 

compiled at the end of the simulated mine life. By conducting the simulation 

for several overall pit slope angles, a plot relating slope angle and net 

profit can be constructed and then used to select the economically optimum 

slope angle. Results from such a study provide valuable information for 

corporate decision makers, particularly in the case of economically marginal 

mineral deposits. 

8. Probabilistic slope engineering methods are also applicable to civil 

works projects, such as the design of road cuts or other man-made slopes in 

fractured rock masses. However, the usage of probabilistic tools by civil 

engineers has been hampered by differences 1n design philosophy, the maJor 

contrast being that risk levels acceptable for mining projects are not accept

able for most civil projects. Mining ventures can usually tolerate higher 

risks because of relatively short mine lives , the desire to maximize profit, 

and the implementation of slope monitoring programs to provide safe working 

conditions. Regardless of the differences between mining and civi l design 

approaches, the basic statistical, geological, and engineering tools are the 

same for quantifying probabilities of slope failure. Such quantification is 

becoming more and more relevant for civil works projects with the major bene

fit being a realistic treatment and incorporation of natural variabilities and 

measurement uncertainties. 

Overview of Probabilistic Slope Engineering Procedures 

9. Any rock slope engineering project should begin with a thorough 

evaluation of r egional and local geology. After major rock unit s and struc

tural features have been identified, spot mapping techniques are used in the 

study area to collect detailed information about fracture characteristics and 

about other structural features if they are present. The sampled fracture 

orientations obtained at each mapping site can then be displayed on lower

hemisphere Schmidt plots. Visual comparisons or statistical evaluations of 

the plots allow for the identification of structural domain boundaries. A 

structural domain represents an area characterized by a distinct rock unit or 

by a distinct pattern of fracture orientations. 

10. Potential orientations of the slope cut and the locations of 
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structural domains are used together to select design sectors, 

has a distinct slope face strike in a given structural domain. 

each of which 

Kinematically 

viable slope failure modes are then identified in each sector by evaluating 

how the fracture orientations mapped in the particular structural domain inter

act with the slope face orientation. Lower-hemisphere Schmidt plots that dis

play poles to fractures are usually considered essential in this process of 

predicting potential failure modes (Hoek and Bray 1977). 

11. Fracture sets that cause potential failure modes are often called 

design sets because they tend to be critical to the slope design. The orig

inal fracture mapping data are used to construct histograms and to estimate 

the probability distributions of pertinent characteristics in the design sets. 

Typically, the dip and dip direction in a design set are normally distributed 

and the spacing, length, and waviness are exponentially distributed. 

12. Shear strengths along fractures in the design sets can be estimated 

by laboratory direct shear tests of rock specimens that contain natural fra c

tures . Each specimen should be oriented in situ and so marked prior to re

moval from the outcrop or drill core; this allows for the testing shear direc

tion to coincide with the natural down-dip direction of the fracture. Test 

results are presented as a plot of shear strength as a function of normal 

stress. Least-squares regression procedures are then applied to the data to 

estimate the mean and variance of the shear strength at any given normal 

stress. 

13. Laboratory tests of rock samples are commonly used to mea sure the 

rock unit weight, which tends to be normally distributed. Hydrologic field 

tests (such as pump tests and drawdown tests) are used to estimate permeabili

ties, and measurements of water levels in drill holes provide a means of esti

mating ground- water levels in the study area. Procedures for converting this 

hydrologic information to a probability distribution of water pressures in the 

slope are somewhat limited at the present time and usually rely on simulation 

methods (Miller 1982a). 

14. After all of the above input parameters have been statistically 

described, probabilistic stability analyses can be conducted for the failure 

modes identified in each design sector. The probability of sliding for any 

common failure mode can be estimated by either of two methods. Monte Carlo 

simulation relies on repeated sampling of input values from the g1ven prob

ability distributions to calculate a number of possible safety factors. The 
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probability of sliding is defined as the area under the safety factor distri

bution where values are less than one or as the simple percentage of simulated 

safety factors that are less than one. The other method consists of directly 

determining the safety factor distribution by convolution of the probability 

distributions of the proper input variables. 

15. The probability of failure for a g1ven failure mode equals the 

product of the following: probability of sliding, probability of daylighting 

(i.e., sliding path dips flatter than the slope face), and probability that 

the sliding surface is long enough to allow failure. The latter two probabil

ities are usually calculated directly by using the respective dip and length 

distributions and the proposed slope geometry. 

16 . Applications of finite element and finite difference methods to 

rock slope stability analyses have not been especially effective or successful 

to date, mainly due to the inhomogeneous nature of discontinuous rock and the 

difficulty in incorporating the statistical variability of fracture proper

ties. The methods can be useful when simplifying assumptions are made and 

when the specific locations and properties of potential failure surfaces are 

known, but even then the associated conputational costs are usually too great 

to justify the final results. 
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PART II: MAPPING AND DISPLAY OF FRACTURE DATA 

17. Dominant geologic structures such as maJor faults and lithologic 

contacts are usually considered individually in rock slope engineering proJ 

ects because they occur in definable locations and are continuous over dis 

tances comparable to the size of the study area. In contrast, structures such 

as fractures and foliations have high frequencies of occurrence and are dis 

continuous over the study area. They are too numerous to be mapped i ndivi

dually and, therefore, should be considered in a statistical manner . 

Rationale of Fracture Mapping 

18. Geometric characteristics of fractures, including orientation , 

spacing, length, and waviness, are random variables that can be modeled by 

statistical distributions estimated from mapping data (Call, Savely, and 

Nicholas 1976). Necessary fracture data can be collected by surface mapping 

techniques (Piteau 1970, Call 1972, and McMahon 1974) and by oriented- core 

logging . To map in detail every exposed fracture within a given area 1s 1m

practical, if not impossible. Therefore, spot mapping is relied upon to p ro 

vide a sample or samples of the fracture population from which distributions 

of the fracture properties can be estimated. 

19. After a geologic mapping and evaluation program has been completed 

for the study area, a geologic map s hould be constructed to emphasize t he rock 

units present, their contacts, and any maJor structures t hat may affect t he 

stability of the proposed slope . This map, 1n conj unction with field knowl

edge of the area, provides the major basis for designing a fracture mappi ng 

program. At least one or two mapping sites are desired within each antici 

pated structural domain, and these sites should be located so as to he l p de 

lineate a nd further define the domains. Careful thought and pl anning of t he 

mapp1ng program cannot be overemphasized, because much time and money has been 

wasted by field sampling that has not been properly p l anned and direct ed . 

20. If possible, the mapping samples should be random and rep resenta

tive so as not to make the population estimates biased or unrealistically 

weighted. Such samples are often difficult to obtain in the study area be

cause surface outcrop exposures are usually limited and biased toward t he more 

competent rock materials . This sampling problem can be offset somewhat by 
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mapp1ng man-made cuts along construction or development roads and by oriented

core logging of drill holes, even though such sites may be located for pur

poses other than for fracture mapping and may have physical access limita

tions. Therefore, the slope engineer must remember that the interpretive step 

in estimating population parameters from sample data should be guided by 

subject-matter knowledge, experience, and judgment (see Whitten 1966). 

Examples of Mapping Techniques 

21. Many fracture mapping techni ques are currently 1n use for collect-

1ng fracture data pertinent to rock engineering projects. The selection of 

mapping methods and styles primarily depends on the mapper's personal prefer

ence, the site geology, the size of the project, the availability of mappable 

exposures, and the time and manpower allocated for the mapping task. However, 

most mapping schemes are variations of three fundamental techniques, fracture

set mapping (or cell mapping), detail-line mapping, and oriented-core logging. 

Examples of these techniques that have been used extensively in rock engineer

ing practice during recent years are described below. Suggested mapping forms 

(e.g., field data sheets) that allow for rapid computer processing are also 

presented, but it should be remembered that variations or modifications may be 

required for individual mapp1ng programs. 

Fracture-set mapp1ng 

22. Fracture-set mapping, which is also known as cell mapping, 1s a 

systematic method for gathering information about fracture sets and for help

ing to delineate structural domains. This mapping method is particularly val

uable in situations where fracture data must be collected over a large area in 

a short time period. It also provides information useful for evaluating vari

ations in fracture patterns over the study area. 

23. Natural outcrops and man-made exposures are located and identified 

as potential mapping sites. Long or extensive rock exposures are divided into 

mapp1ng cells of a regular, manageable size, usually about 8 to 12 m in length. 

In each mapp1ng cell the dominant four or five fracture sets are recognized by 

locating groups of two or more approximately parallel fractures. Exception

ally large single joints and faults are also located, which will be mapped as 

individuals. Measurements of geometric characteristics and other information 

are then recorded for each fracture set or maJor structure in the cell . 
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24. An example of a field data sheet for recording fracture - set mapp1ng 

data is shown i n Figure 1. Required basic information includes the project 

PAGE __ OF __ 
DATA SHEET FOR STRUCTURE MAPPING BY ____ _ 

IDEN T NO I I I I I I I I I LOCATION DATE 

COOROINATES ROCK TYPE STRUCTURE GEOMETRY THICK- FILLING CL 
NORTH EAST A B TYPE STK DIP MO LENGTH SPACING 

Tl T2 R NESS( ) N w NO. DIST . NO. 

-1- - . - -
--t- . 

1- ~-r-- - -
- - . 

- . 

r-- i-

. . 

. 
. ' 

. 

. r-- 1- 1- t - r-- . . 

1- -
1-1-

. . . -

- r--

-
. 

ROCK TYPE ABBREVIATIONS STRUCTURE TYPE ABBREVIATIONS FILLING ABBREVIATI ONS N NONE 

1 ~-J SINGLE JOINT 
FT FAULT 
Cl. CONTACT 

TERMINATIONS WAT ER D=DRY W=WET F= FLOWING S=SOUIRTING 
H > 20° R IN ROCK R =ROUGHNESS S R 
L <20° N NONE MO= MIN IMUM DIP 

E EN ECHELON 

Figure 1 . 
(from the 

Example of data recording sheet for fracture-set mapping 
Rock Mechanics Division of Pincock, Allen, Holt, Inc ., 

Tucson, Ariz.) 

l ocation, mapper's name, date, and an identification number for the particular 

area being mapped. At a g1ven mapping cell, or site, the following informa 

tion is recorded on the illus tra ted data sheet for each fracture set or ma jor 

s tructur e: 

a. Coordinates. The approximate map coordinates of the cell are 
recorded after being determined by map inspection, compass and 
pace techniques, or surveying. These coordinates are repeated 
for each fracture set or major structure observed in the map
ping cell. 
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b. Rock type. The rock type (or types) in which the mapping is 
being conducted is recorded using a three-letter alpha code. 

c. Structure type. A two-letter alpha code is used to identify 
the type of structural feature being described. The most com
mon code is "JS" for joint set. 

d. Structure orientation. The overall average dip and azimuth 
strike of the fracture set are recorded using a right-hand con
vention whereby the dip direction is 90 deg clockwise from the 
strike direction; this defines the orientation by a two-number 
designation. 

e. Minimum dip (MD). The dip of the flattest fracture in the set 
is noted. For a single major structure the minimum dip is the 
dip of the flattest portion of its surface. 

f. Length. The maximum traceable distance of the longest fracture 
in the set (or of the single major structure) is recorded; this 
length is often limited by outcrop dimensions. 

&· Spacing. The number of fractures in the set and the distance 
between the outer two, as measured normal to the fractures, are 
recorded to provide data for calculating the mean fracture 
spacing. These measurements are not applicable to single major 
structures . 

h. Terminations, roughness, thickness, filling, - and water (W). 
These data are recorded only for individual major structures. 
Descriptions of these measurements or observations are given 
later in this Part. 

25 . In a study area with accessible rock exposures an experienced map

per can typically map a dozen or more ce lls per day. If possible, at least 

five or s1x cells should be mapped in each rock unit or suspected structural 

domain . In remote areas with little or no construction and development the 

mapp1ng program should attempt to include most outcrops large enough to be 

mapped. By comparing fracture-set data (especially the orientations) from 

different mapp1ng cells the boundaries of structural domains may be better 

defined. Another major benefit derived from a thorough fracture-set mapp1ng 

program is that specific sites for collecting more detailed fracture informa 

tion can be identified. 

Detail-line mapp1ng 

26. Detail-line mapping 1s a systematic spot sampling technique for ob

taining detailed information about the geometric characteristics of fractures 

and other geologic structural features. A measuring tape is stretched across 

the outcrop or exposure to be mapped. Using the tape as a reference line, a 

mapping zone (e.g., sampling area) 1s defined that extends 1 m above and 1 m 

below the line. The length of the mapping zone, or window, is determined by 
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the complexity of the structural pattern and, accordingly, this length serves 

as a measure of fracture intensity. All structural features that occur at 

least partially 10 the zone are mapped, though a minimum length cutoff of 

10 em is typically enforced. That is , features with trace lengths less than 

this cutoff are not mapped. Experience has shown that a minimum of approxi

mately 150 fracture observations per line is desirable for statistical evalua 

tions (Call, Savely, and Nicholas 1976 ). 

27. An example of a field data sheet f or recording detail-line mapp1ng 

data is shown i n Figure 2. Basi c information recorded for each mapping site 

includes the line identification number, l oca tion, date, mapper's name, bear

ing and plunge of the measuring tape, and attitude (orientation) of the rock 

exposure . 

DATA SHEET FOR DETAIL-LINE MAPP I NG PAGE_ OF 

6EAR I NG ~"L N(,E 

I I I B I I 
STI'?IKE ')IP 

I I I I! I I LINE NO. I I I I I I I I I ELEV ·---

ev ____ _ 

LOCATio-1 ____ O.ATE _ ___ _ 
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. - - - - - 1·-~ . 

. - -
• - - ·- - .. 

. - . -- - 1- -

.. --· - 1- 1-
. 
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. - --

- -1- f- - ~ - :- - ·I-
. . - - ~ 

. . -
. ·- 1-

. -
. . . - 1- -
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. - - 1--
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. 

. 
·- 1- t-

. -
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Figure 2. 
(from the 

Example of data recording sheet for detail-line mapping 
Rock Mechanics Division of Pincock, Allen, and Holt, Inc., 

Tucson, Ariz.) 
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28. For each discontinuity occurring within the mapping zone the fol

lowing information is recorded on the illustrated data sheet: 

l 

a. Distance. This is the distance along the measuring tape where 
the fracture or its projection intersects the tape. For any 
fracture parallel to the tape the distance at the middle of the 
fracture trace is recorded. 

b. Rock type. The rock type (or types) in which the fracture 
occurs is recorded by using a three-letter alpha code. 

c. Structure type. A two-letter alpha code is used to identify 
the type of discontinuity being described. 

d. Structure orientation. Average dip and azimuth strike of the 
fracture are recorded using a right-hand convention whereby the 
dip direction is 90 deg clockwise from the strike direction; 
this defines the fracture orientation by a two-number 
designation. 

e. Minimum dip (MD). Dip on the flattest portion of the fracture 
surface is recorded to compare with the average dip . Their 
difference serves as a quantitative measure of the fracture . wav1ness. 

f. Parallel (P). A fracture parallel to the measuring tape is so 
designated by a letter "P" in this column. 

&· Length. Fracture length is the maximum traceable distance ob
served, which often extends beyond the mapping zone and is 
limited by outcrop dimensions. Lengths should be measured with 
a hand-held tape, but longer fracture lengths (greater than 
approximately 10 ~t) may have to be estimated. 

h. Overlap. Overlap is the distance one fracture extends over the 
next fracture of the same set. For field mapping the measure
ment is usually made along the trace length of each fracture 
and equals the distance from the bottom termination to the 
mapping tape (Figure 3). If the fracture terminates below the 
tape, a minus di stance is recorded. The true overlap can then 
be calculated later from the field measurements. Overlap 1s 
not applicable for fractures parallel to the tape. 

----------------------------Crest 

+ Distance 
.· 

1 
+Distance 

i 
Distance 

- Distance 

Figure 3. Illustration of field measurements for fracture overlap 
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1. Terminations. The manner in which a fracture terminates is 
described by a single alpha letter according to five designa
tions: in rock, none, en echelon, high angle against another 
fracture, and low angle against another fracture (Figure 4). 

T1 high angle> 20° 
T 

2 
l o ·.v an g l e < 2 0 o 

T1 in rock 
T 2 in rock 

en echelon 

Figure 4. Various types of fracture terminations 

l · Roughness. Roughness occurs on a scale of centimeters and is a 
qualitative rating (smooth, rough, or medium) of small irregu
larities on the fracture surface. A numeric rating can also be 
used, such as that suggested by the International Society for 
Rock Mechanics (1977). 

k. Thickness . A thickness is recorded if separation occurs along 
the fracture. 

l. Filling. Filling material (or materials) 1n the fracture open
ing is noted if present. 

m. Water (W). The nature of water occurrence in the fracture (dry, 
wet, flowing, or squirting) is recorded using a single alpha 
letter. 

29. For a typical mapp1ng program 1n an area with accessible rock expo

sures a team of two experienced mappers working together (one taking measure

ments, the other recording data) can usually map two or three detail lines per 

day. If possible, at least one complete line should be mapped in each struc

tural domain pre liminarily identified from available geologic information. 

Detail-line mapping cannot be feasibly used to cover as large an area as that 

covered by fracture-set mapping, but does provide a comprehensive base of de

tailed information that should be considered critical for statistical evalua

tions of fracture properties. 

Oriented-core logging 

30. Subsurface fracture data can be obtained by oriented-core logging 

which provides a detailed record of fractures that intercept a diamond drill 
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hole. This type of data is similar to that of a very strict detail-line sur

vey 1n which only those fractures intersecting the line are mapped. 

31. Various devices and systems are currently available for orienting 

structural features in core holes. The most popular and reliable of these are 

the Christiansen-Hugel system, the Craelius core orientor, and an eccentri

cally weighted clay-imprint orientor. The latter two devices can only be used 

in inclined drill holes. The clay-imprint orientor as described by Call, 

Savely, and Pakalnis (1982) is by far the simplest, fastest, and least expen

sive device for orienting drill core. Its usage has a small effect on regular 

drilling rates and costs, usually causing only a 10 to 20 percent decrease in 

rates and a corresponding increase in costs. 

32. An example of a field data sheet for recording oriented- core data 

from inclined drill holes is shown in Figure 5. Orientations of fractures in 

t he drill core are measured relative to the core axis and to a reference line 

that has been scribed or drawn along the top edge of the core by the orienting 

device. These field measurements are made with a specially designed gon1ome

ter and later converted to true dip directions and dips by using vector mathe

matics and the drill-hole orientation. 

33. For each fracture intercepted by the drill hole the following i n

formation is recorded on the illustrated data sheet: 

a. 

b. 

c . 

d. 

e. 

f. 

h. 

Depth from start. The distance from the top of the drill run 
to the fracture occurrence is recorded. If 3-m drill runs are 
made, this distance will always be less than 3 m. 

Rock type. The rock type (or types) in which the fracture 
occurs is recorded by using a three-letter alpha code. 

Structure type. A two-letter alpha code is used to identify 
the type of discontinuity being described. 

Top/bottom (T/B). A "B" is recorded if the goniometer measure
ment is taken from the bottom end of a core stick; a "T" is 
used if taken from the top end of a core stick. 

Circumference angle. This is the azimuth measurement of the 
dip direction of the fracture relative to the reference line. 

Angle to core axis. This is the angle measurement of the com
plement of the dip angle relative to the core axis. 

From - to. Distances (depths) from the drill-hole collar to 
the top ("from") and bottom ("to") of the core run are recorded. 

Roughness, thickness, and filling. Descriptions of these mea
surements or observations are given elsewhere in this Part . 

34. Oriented- core data are appropriately used to supplement surface 

15 



J DENT NO. II I I I I I I I DATA SHEET FOR ORIENTED CORE 
PAGE __ OF __ 

HOLE NO.--- LOCATJON ------ --IMPRINT AT _____ DATE----- BY---
COLLAR ELEV INCLINATION BEARING • DIM-I • 

DEPTH ROCK STRUCTURE ANGLE TH I CKI~ESS FILLING (FHT) (FHT) Cm\1·\EtHS FR0/1 (FT) TO 
CIRCUM CORE 

START M TYPE T ANGLE AXIS R (~~) N I 2 TYPE :Ia (DIP DIR I (DIP) FROM TO 

.. - - 1-
_. -

.... - - • 

• - - . • -
J - 1- - _._ 

r--

- - ... • • • 
• • 

...... - - • 

... - - - • .. .. 
f-- - .... . • -

• • .. 
• - - - • -

- - ... - • -• - -
- - - - 1- • - - .. • 

- - ... - - • ._ • .. . -
• - - • _._ • 

-" - - - - - • 

...L • • ~ -
-" - - - . • -
.... • 

-• -· - - - . • . • 

- - a -
- - ..& - - • • 

• • • 

ROCK TYPE ABBREVIATIOtiS SrRUCTURE TYPE ABBREVIATIONS FILLING ABBREVIATIONS N NONE 

Figure 5. 
(from the 

S.J SlilGLE JOINT 
FT FALJLT 
Cl CONTACT 

R-ROlJGIINESS S~R 
T7B - IIEASURHIENT AT TOP OR BOTTOM OF CORE 
s-ommtiOLE 

Example of data recording sheet for oriented-core logging 
Rock Mechanics Division of Pincock, Allen, and Holt, Inc., 

Tucson, Ariz.) 

mapp1ng data because fracture lengths cannot be measured 1n drill core. An
other po i nt to r emember when analyzing core data is that measured fracture 

orientations tend to be more dispersed than those obtained from surface map

ping because the core diameter limits the fracture area that can be observed 

and very little averaging s ubsequently occurs during the measurement process 

when compared to that for a fracture mapped in a s urface exposure. Perhaps 

the greatest benefi t of oriented-core logging is a resulti ng data base that 

allows for determining the s ubsurface extent of fracture sets and structural 

doma ins t hat are observed on the surface. 
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Display of Fracture Orientation Data 

35. Before a suite of mapped fracture data can be statistically ana

lyzed their orientations must first be displayed so that fracture sets and 

structural domains can be determined. The orientations are plotted on lower

hemisphere projections that display poles to fractures. Schmidt equal-area 

projections are commonly used because pole densities can be readily calculated 

and then contoured to help enhance fracture patterns (Figure 6). The blind 

zone shown in Figure 6 corresponds to the orientation of the mapped outcrop 

where fractures that parallel the outcrop are overlooked or sampled to a 

lesser degree than those with strikes mores perpendicular to the outcrop 

(Terzaghi 1965). 

36. Schmidt plots derived from various mapping techniques are used in 

conjunction with knowledge of the local geology to help delineate structural 

domains in the study area. Fracture data are then combined within each domain 

and fracture sets critical to the slope design are identified. Geometric 

characteristics of the fracture sets can then be studied by generating histo

grams or cumulative distribution plots, from which probability density func 

tions can be estimated for the characteristics. These estimated functions are 

required for probabilistic evaluations and analyses of rock slope stability . 
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Figure 6. Lower-hemisphere Schmidt plots of mapped fracture 
orientations obtained from a detail-line site 
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PART III: STATISTICAL ANALYSIS OF FRACTURE DATA 

37. Mapped fracture orientations displayed on Schmidt plots provide the 

foundation for analyzing fracture data for probabilistic slope engineering. 

Plots obtained from various mapping sites are used to help delineate struc

tural domains and to identify and describe fracture sets within each domain. 

After sorting the data according to sets, the fracture properties for each set 

are analyzed to obtain estimates of their probability distributions and spa

tial correlations. 

Delineation of Structural Domains 

38. The delineation of structural domains is essential to rock eng1-

neering studies because geologic and hydrologic properties vary from one 

domain to another. Obvious domain boundaries correspond to lithologic con

tacts caused by fault displacement, intrusion, or depositional environment. 

However, structural domain boundaries are not restricted only to lithologic 

contacts, but may also occur within the same rock unit. These less obvious 

boundaries often can be determined by visually comparing Schmidt plots that 

display fracture orientations from various mapping sites. 

39. Preferred fracture orientations appear as clusters of poles on a 

Schmidt plot. Each cluster represents a fracture set, and the spatial rela

tionships of clusters on the plot allow for meaningful visual comparisons with 

other plots. In the evaluation of two or more plots geologic experience and 

judgment provide the basis for determining whether the plots are alike and, 

thus, represent samples from the same structural domain. 

40. If fracture orientations appear dispersed and random on the plots 

with no obvious clustering, then visual comparisons are not appropriate, and 

quantitative, statistical methods are needed to evaluate the plots and provide 

guidance in locating structural domain boundaries. A chi-squared testing pro

cedure has been adapted to the comparison of Schmidt plots and provides a way 

to evaluate one's confidence in claiming that two or more plots were obtained 

from the same structural domain (Miller, 1983). The procedure is based on the 

analysis of a contingency table that contains frequencies of fracture poles 

that occur in corresponding patches on the Schmidt plots being compared 

(Figure 7). 
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Figure 7. Arrangement of contingency table for 
comparing Schmidt plots 

41. In the contingency table, samples from r structural populations 

(domains ) are listed down the rows 10 terms of the Schmidt plots. Each sample 

is classifi ed into c categories , or patches. The frequency of observed 

f l . h ll (.th 1 . th h) . d db f racture po es 1n t e 1J ce 1 p ot, J pate 1s enote y .. . 1J 
test the null hypothesis that the plots represent samples from like popula -

tions , the following statistic is calculated: 

where 

r = 
c = 

f .. --
lJ 

e .. --
1J 

') 

X"' -

total number of Schmidt 

total number of patches 

2 (f .. -e .. ) 
1J 1J 

plots 

in each 

e .. 
1J 

plot 

observed frequency of fracture poles 10 

expected f requency of fracture poles 
. 1n 

the 1J cell 

the 1J cell 

The expected frequency 1n the 1J cell 1s calculated as follows: 

e. . -
lJ 

R . C. 
1 J 

N 
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where 

R. 
1 

C. 
J 
N 

.... total observed frequency .... 

.... total observed frequency .... 

.... total number of fracture .... 

of poles 10 the .th 
1 row 

of poles . 
the .th 

column 1n J 

observations 1n all plots 

42. If the null hypothesis is true, then the above statistic 1s chi

squared distributed with (r-l)(c-1) degrees of freedom (provided each fracture 

is sampled independently of other fractures), and its value does not exceed 

that of a chi-squared variate evaluated at a specified significance level ~ 

The value of a 1s actually equivalent to the area under a chi-squared distri

bution to the right of its associated x2 value. The usual test procedure 

consists of selecting an ~ value and then calculating the value of x2 from 

the contingency table. The null hypothesis 1s rejected if this calculated 

value exceeds the known tabulated value of x2 with (r-1)(c-1) degrees of 

freedom for the specified a . 

43. However, rather than selecting a particular significance level for 

compar1ng Schmidt plots, it is often desirable from a geologic standpoint to 

use the calculated x2 
value from the contingency table to compute its corre

sponding right-tailed area a . This computed a value is not really a level 

of significance but serves as a measure of one's confidence in accepting the 

null hypothesis, providing a quantitative and standardized measure of compari

son among different contingency table analyses of Schmidt plots. A numerical 

procedure for estimating the right-tailed area under a chi-squared distribu

tion with more than 30 deg of freedom is g1ven by Zelen and Severo (1965). 

44. In summary, contingency table analysis is a useful tool for com

paring Schmidt plots and evaluating the similarity of sampled structural popu

lations. The method is intended for plots that display dispersed fracture 

orientations where the lack of well defined clusters makes visual comparisons 

difficult and often useless. The necessary statistical calculations can be 

easily programmed on a desk-top computer, thus providing for a rapid way to 

compare Schmidt plots obtained from various mapping sites. Such comparisons 

are important for helping to predict the locations of structural domain 

boundaries. 

Combining Fracture Data from Different Mapping Sources 

45. In fracture mapp1ng programs for many slope design projects various 
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mapping techniques are employed at different sites. After structural domains 

have been delineated in the study area, these mapped fracture data can be com

bined by domain to provide a foundation for the statistical analysis of frac

ture set properties in each domain. 

46. One of the first steps in combining fracture data is the delinea

tion of fracture sets on each of the Schmidt plots. If fracturing is complex 

within a structural domain and preferred orientations are not readily seen 1n 

the plots, the density of fracture poles in small counting areas can be con

toured to assist in the visual identification of fracture sets. Statistical 

methods are also available to help analyze and distinguish clusters of orien

tations on a given plot (Shanley and Mahtab 1976, and Mahtab and Yegulalp 

1982). However, objective statistical analyses are strictly numerical and do 

not include engineering judgment that can often make identifying fracture sets 

from careful observations of rock exposures possible. An experienced inves

tigator who has mapped the fractures in an outcrop and has knowledge of slope 

design procedures and requirements can apply geologic information practically 

impossible for a statistical analysis to include. Therefore, statistical 

methods are tools that should guide rather than control in the delineation of 

fracture sets. 

47. Because mapp1ng methods and outcrop orientations often vary from 

one mapping site to another, observations of individual sets are analyzed 

separately to evaluate their characteristics. For instance, measured spacings 

1n a g1ven fracture set as mapped by detail -line techniques are corrected to 

true spacings by using the mean orientation of the set and the orie11tation of 

the mapping line. This correction is different for each observation of the 

set (denoted as a subset) and for each mapping line. 

48. The mean vector of a mapped fracture subset 1s not only useful for 

the spac1ng correction but also can be used to explicitly describe the mean 

orientation of the subset and to aid in combining numerous fracture data ob

tained from different sites within a structural domain. This vector repre

sents the average direction of normals to fracture planes in the given subset 

and, if plotted as a pole, indicates the "center" of the Schmidt cluster that 

represents the observed fracture set . The normalized mean vector of a given 

fracture set is calculated by using the following expression: 
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where 

v .... .... 

-m 
1 

N N N 
2 + 2 + I I y. I 1 i=1 i=1 i=1 

V - mean vector of fracture set -m 

N 
I 

i=l 

N 
I 

2 i=t 

N r . =1 

N - total number of fractures in the set 

X. 
1 

y. 
1 

z. 1 

x., y z -direction cosines of a normal to the ith fracture 
1 i' i 

49. The plane orientation perpendicular to the mean vector is often 

(3) 

truncated to serve as an abbreviated identifier for the fracture set . For 1n

stance, a mean-vector plane with a dip direction of 162 deg and a dip of 47 deg 

would be labeled as 16.4. All the set mean vectors from different mapping 

sites within a given structural domain can then be plotted on a single lower

hemisphere projection to aid in the grouping of fracture subsets (Figure 8). 

50. Fracture set properties are combined directly if the same mapping 

technique was used for each subset in a given group. Thus, all the observa

tions are pooled and treated as independent samples for calculating means and 

standard deviations and for estimating probability distributions. However, if 

different mapping methods were used, then weighted means are calculated ac

cording to the number of fracture observations in each subset and probability 

distributions are inferred from experience with other similar type data. 

Selected fracture set properties taken from the data represented by Figure 8 

are briefly summarized in Table 1. 

Probability Distributions of Fracture Set Properties 

51. The combined fracture data for a given structural domain constitute 

samples of the fracture set properties in that domain. These sample data can 

be used to construct histograms or cumulative frequency plots for pertinent 

properties in each fracture set. These plots are then used to help determine 

the probability distributions that best describe the mapped fracture proper

ties. Statistical "goodness of fit" tests can also be used in this evaluation 

process. 
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Figure 8. Mean vector plot showing the grouping of fracture 
subsets for a specified structural domain 

Table 1 

Partial Listing of Fracture Set Properties for t he Structural 

Domain Represented by Figure 8 

Dip Direc-
No. of tionz deg Dipz deg Length Spacing 

Observat i ons Mean S.D.* Mean S.D. Meanz ft Mean, ft 

23 5.7 9.7 42.6 8.2 2.5 0.8 
39 12.0 10.2 66.9 12.4 2.4 0.5 
56 50.9 9.7 82.6 10.2 3.2 0.9 

149 88.2 12.9 74.9 9.9 4.0 1.1 
30 122.9 10.8 67.3 11.6 3 .1 1.0 
36 171.5 9 . 8 62.3 7.2 2.7 0.9 
25 261.0 8.4 61.3 15.0 4.7 0.9 
22 288.5 11.3 86.9 8.4 2.2 1.4 

134 291.3 9.8 52.2 12.5 3.3 1.6 
23 328.5 12.4 51.7 12.6 2.1 0.7 

* S.D. - Standard deviation. 

24 

E 

Waviness 
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52. Distributions of dip and dip direction are usually best approx1-

mated by normal distributions (Figure 9), although some fracture sets may have 

orientation data that are nearly uniformly distributed. Distributions of set 

spacing, length, and waviness are typically approximated by exponential dis

tributions (Robertson 1970; Call, Savely, and Nicholas 1976; and Cruden 1977) 

as shown by the examples in Figure 10. However, some investigators report 

that trace lengths within a fracture set may be distributed in a lognormal 

fashion (McMahon 1974, Bridges 1976, and Baecher et al. 1978). 

53. Statistical treatment of mapping bias and the censoring of fracture 

length traces have been discus sed by Baecher (1980) and Laslett (1982). Such 

methods are used to adjust the distributions of mapped fracture lengths to 

provide improved estimates of the true length distributions. 

54. Probability distributional forms other than those indicated above 

may occasionally be used to best describe the distributions of mapped fracture 

set properties. Regardless of which particular form may be used, the basic 

requirements are that it be a valid probability density function that can be 

explicitly expressed and that it be amenable to subsequent slope stability 

analyses. 

Spatial Correlations of Fracture Set Properties 

55. A fracture property within a g1ven set tends to be spatially corre

lated, and geostatistical methods can be used to determine the nature and ex

tent of the correlation (Miller 1979, and La Pointe 1980). In classical sta

tistics the samples collected to describe an unknown population are assumed to 

be spatially independent (that is, knowing the value of one sample does not 

provide any information about adjacent samples) . In contrast, geostatistics 

is based on the assumption that adjoining samples are spatially correlated and 

that the nature of the correlation can be statistically and analytically ex

pressed in a function called the variogram function (Matheron 1963). 

56 . In the analysis of fracture set properties weak second- order sta 

tionarity is assumed and estimates of the variogram functions are computed 

along the mean vector line of each fracture set (Miller 1979). A given varia

gram function is estimated from sample data along a line according to: 
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Examples of exponential distributions of fracture 
spac1ng, and wavi ness (from Call, Savely, and 

Nicholas 19 76) 

y(h ) - 1 
2N 

N 

r 
i=1 

N - total numbe r of sample values 

Z (x . ) - sample value at location X. -1 1 

Z(x. + h) - s ample value at location X . + -1 1 
h 

(4) 

The estimated function , y(h) 
' 

1S expressed 1n a graph with h plotted as 

the independent variable. For fracture set data the distance h can either 

be measured in terms of actual distance or in terms of fracture number. At 

least 30 samples should be used in estimating the function in most cases. 

57. Examples of variograms and theoretical variogram models are shown 

1n Figure 11. For the spherical model the value of y(h) at the point where 

the curve reaches a plateau is called the sill value and the corresponding 

value of h is called the range. The sill value equals the variance of all 
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Figure 11. Examples of var1ograms and theoretical models 

sample values used in calculating the var1ogram. The range can be considered 

in the traditional geologic concept of range of influence (that is, any two sam

ples spaced further apart than this distance are not spatially correlated). 

Thus, the variogram represents a measurement of correlation as distance be

tween samples increases. The value of y(h) at h equal to zero 1s known as 

the nugget value. Ideally, the nugget should be zero because any two samples 

from the same point should have equal values. However, a nugget practically 

always occurs in variograms of geologic data and may indicate highly erratic 

sample values spaced at close distances or may reflect errors or uncertainties 

1n sample collection and evaluation. 

58. Typical variograms for fracture set properties are illustrated 1n 

Figure 12. For most fracture sets the spherical model is appropriate for 

describing the spatial relationships of a specified fracture property. If 
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periodicity is indicated, then a modified hole-effect model can be used (Miller 

1979). 
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PART IV: ROCK STRENGTH ANALYSIS 

59. Comprehensive rock slope engineering projects include laboratory 

testing of rock specimens to provide estimates of the rock substance strength 

and the shear strength along natural geologic discontinuities. Tests for 

evaluating substance strength usually include unconfined (uniaxial) compres

sion, triaxial compression, and disc tension tests. The measurement of rock 

densities is also considered part of most rock substance testing programs. 

Shear strengths along discontinuities are usually evaluated by direct shear 

testing of specimens that have been collected and trimmed so as to contain a 

natural fracture or other structural feature. Typically, at least four to six 

specimens of each rock type in the study area are desired for each kind of 

laboratory test. 

Compression Testing 

60. In an unconfined compress1on test a trimmed spec1men of drill core 

is loaded axially until it fails. The core specimen should have a length-to

width ratio of 2.0 to 2.5 and should have flat, smooth, and parallel ends cut 

perpendi cularly to the core axis. Electrical resistance strain gauges can be 

attached to the specimen to monitor the longitudinal and lateral strains dur

ing the loading process (Figure 13). As the load increases, signals from the 

gauges are amplified and, ideally, should be plotted continuously by a graph 

recorder. 

61. The unconfined compress1ve strength is calculated by dividing the 

failure load by the cross-sectional area of the spec1men. The elastic moduli 

are calculated using the graphs produced by the strain gauge output. Young's 

modulus, E , is the ratio of axial stress to longitudinal (axial) strain. 

Poisson's ratio, v , is the ratio of lateral strain to longitudinal strain. 

62. A triaxial compression test is similar to an unconfined test ex

cept the rock specimen is laterally confined, usually by a stress applied by 

hydraulic pressure. The specimen is sheathed 1n an impermeable membrane and 

placed 1n a hydraulic cell. By raising the cell pressure to a predetermined 

stress level, the specimen is subjected to a constant overall confinement. An 

axial load is applied by a ram and is increased until the specimen fails. 

Several tested specimens of the same rock type provide values of failure and 
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Figure 13. Loading diagram and strain graph for unconfined 
compression test 

confining stress that can be analyzed in a Mohr-Coulomb criterion to provide 

the rock substance shear strength parameters of cohesion and coefficient of 

friction (for example, see Goodman 1980). 

Brazilian Disc Tension Testing 

63. Brazilian disc tension testing is convenient for estimating rock 

substance tensile strength. The testing procedure consists of diametrically 

loading a disc of drill core until it fails. The diametric load, P , effec

tively induces a tensile stress, a
3 

, perpendicular to the loading direction 

(Figure 14). The load at failure, Pf , is noted when the rock disc shows 

visible s1gns of cracking and an inability to carry load. The tensile strength 

of the specimen, T , is calculated by the following equation: 

T - (5) 
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There 

pf - diametric load at failure -

d - disc diameter -
h - disc thickness -

by Brazilian testing are assigned to 

t he rock substance unless the specimen fails along an apparent surface of 

Nea knes s. One major advantage is that it is much easier to prepare and load 

spec1mens for this type of test than to arrange the precise alignment and end 

preparation required for a direct tensile test. 

64. Tensile strengths estimated 

Rock Substance Classification and Rock Quality Designation 

65. Major rock types within a study area can be classified according to 

an accepted engineering scheme (Deere 1968) based on results of uniaxial com

pression tests (see example in Figure 15). This classification scheme is use

ful for comparing and characterizing different rock substances. 

66. Rock quality designation (RQD) measurements of drill core provide 

another means of comparing different rock types. RQD is an indirect measure 

of fracture frequency and is evaluated by determining the percent recovery of 

core in lengths greater than twice its diameter (Goodman 1980). As an example, 

for NX core the RQD is calculated by summing the lengths of all core pieces 

longer than 10 em and dividing that sum by the total length of the respective 

drilling interval (usually 3m). 
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67. Rock substance strength influences core breakage, and thus, affects 

RQD measurements. A low RQD value indicates either closely spaced fractures, 

low rock strength, or both. A high RQD value indicates either widely spaced 

fractures, high rock strength, or both. 

Direct Shear Testing 

68. The estimation of shear strengths along geologic discontinuities 

that form potential failure surfaces is essentia l in the engineering analysis 

of rock slope stability. Shear strengths are usually evaluated in the labora

tory by direct shear testing of oriented rock specimens collected at the proj

ect site. A probabilistic stability analysis requires that the measurement 

uncertainty and natural variability of shear strength be quantified for each 
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rock type or discontinuity type. In a typical laboratory exerc1se the test 

results from four to six sheared specimens of the same type are statistically 

combined. More specimens may be desired if the discontinuity type is especi

ally variable or if the benefits of a more extensive testing program warrant 

the additional time and expense. 

69. Direct shear tests should be conducted so as to provide conditions 

that reflect as closely as possible the actual field conditions. The shearing 

direction along the discontinuity in each specimen can be fixed to coincide 

with the predicted in-situ sliding direction if the specimen is oriented and 

so marked prior to its removal from the rock exposure or outcrop. Regardless 

of whether the specimen is a clean joint in hard rock or a block of fault 

gouge, it should not be disturbed more than necessary during extrication from 

the outcrop and during packaging and shipping. If the natural fracture of 

interest separates a sample block into two pieces, they should be securely 

wrapped or taped to assure minimal movement along the fracture. Drill core 

specimens can also be used in direct shear testing of natural discontinuities. 

Each laboratory specimen is tested wet or dry according to expected field con

ditions. Shearing rates and other aspects of testing should be based on ap

propriate guidelines, such as those suggested by the International Society for 

Rock Mechanics (1974) and the Rock Testing Handbook - Test Standards (U. S. 

Army Engineer Waterways Experiment Station 1980). 

70. The typical laboratory direct shear test 1s performed on two blocks 

of rock separated by a discontinuity. Irregularly shaped blocks are trimmed 

and then cast in quick-set cement in a mold properly sized for the shear box 

on the shearing machine. A load is applied to the blocks perpendicular to the 

fracture, and the shear load required to displace the blocks relative to each 

other is monitored (Figure 16). Fault gouge or soft rock specimens are tested 

in a similar fashion, but a single block of material is sheared through its 

intact substance. 

71. Slope stability analyses often rely on residual shear strengths es

timated from laboratory tests because experience has shown that these strengths 

generally provide good approximations of those expected in the field.* The 

* Personal communication, J.P. Savely, Inspiration Consolidated Copper Co., 
Inspiration, Ariz., 1980. 

Personal communication, R. D. Call, Pincock, Allen, and Holt, Inc., Tucson, 
Ariz., 1979. 

34 



NORMAL LOAD 

DISPLACEMENT~ I-

SHEAR LOAD ¢:!> 
_., 

I 

/ 

J 

~ 
',/,/ \ I 

/ 

,..... 
(f) 

Q. 
..-i 
..:.: 
'-' 

0 
< 
0 
...J 

a: 
< w 
% 
Cl) 

I -
t 

./ ) -
- J \ '\ 

/ """ 
\ ) 

~ / 

../ 

"' 

.,/ 

r 
I ...-A--, SHEAR 

........,_.., LOAD 

~TYPICALLY tO TO 30 CM~ 
a. Loading diagram for direct shear test 

RES I DUAL SHEAR 
{STRENGTH ATTAINED 

"5 

"4 

"3 

"2 

n, 

DISPLACEMENT (em) 

b. Laboratory test curves for five normal loads 

Figure 16. Direct shear loading diagram and 
laboratory curves 

residual shear strength of a discontinuity is attained when an increase in 

shear displacement is not accompanied by an increase in shear load. The dis

placement at each residual point is then used to calculate the corresponding 

contact area in shear. This area is divided into the appropriate normal and 

shear loads to obtain normal and shear stresses for each residual point. 

Statistical Analysis of Shear Strength 

72. Results from the direct shear testing of a given specimen are dis

played as a graph with normal stress plotted as the independent variable and 

shear strength plotted as the dependent variable. Several different least

squares regression models can be applied to these test data, the most common 

probably being a linear model . However, certainly not all direct shear data 
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can be adequately described by a linear model. A more general shear strength 

model (a modified power curve) was proposed by Jaeger (1971) and can be ex

pressed in the following form: 

where 

b y - ax + c 

y - predicted shear strength for a g1ven x 

a, b, c = best estimators of regression parameters 

x = applied normal stress 

(6) 

This nonlinear model readily degenerates to a linear form if b equals 1 or 

to a power curve if c equals zero. 

Regression analysis 
for a single specimen 

73. If a random error term is included, then the above general shear 

strength model can be considered as a nonlinear regression model. This re

gression model could be fit to the di rect shear data from a single test speci

men by making a logarithmic transformation to a linear system and then apply-

1ng linear regression methods. However, this procedure minimizes the mean 

squared error of the estimate for the logarithms of the data values, not for 

the data values themselves. 

74 . A numerical approximation method can be used to obtain a modified 

power curve fit that directly minimizes the mean squared error of the estimate 

of the dependent variable (shear strength) for a particular test specimen. 

This expected squared error of the estimate is given by: 

where 
2 

s --e 
N --

yn --
X -

n 

2 
s 

e 
1 

N - 3 

N 

I 
n=l 

b ax 
n 

expected squared error of the estimate 

total number of data points 

shear strength of the nth data point 

normal stress of the nth data point 

- c) 
2 

After expanding the square and implementing some algebra, Equation 7 can be 

rewritten in the following form: 
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2 75. To determine the regression parameters that minimize s the par-
e 

tial derivatives with respect to a , b , and c are set equal to zero. 

Then, an iterative calculation procedure based on Newton's method of approxi

mation is used to solve for parameter b (Miller 1982c). This estimated 

value of b is used to calculate estimates of parameters a and c 

these calculations can be easily programmed on any desktop computer. 

All of 

76. Consequently, for the particular test specimen under study the 

least-squares estimate of the mean shear strength curve can be defined us1ng 

the calculated regression parameters in Equation 6. The squared error of the 

estimate is calculated using Equation 7. Figure 17 illustrates the nonlinear, 

least-squares regression curve that describes the mean shear strength of a 

typical direct shear specimen. 
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17. Nonlinear regression curve describing the shear 
strength of a natural joint in oil shale 

Weighted regression analysis 
for a group of like specimens 

77. A probabilistic slope stability analysis cannot be based on there

sults of a single direct shear test. Commonly, four or more specimens that 
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contain a given type of discontinuity are tested to provide a data set suit

able for estimating the shear strength along that particular type of geologic 

discontinuity. Strength estimates obtained from these similar specimens 

should be statistically combined to determine the distribution of shear 

strengths for that particular group or population. In essence, several re

gression curves must be combined to produce a regression curve representative 

of the population. Curves from some of the specimens provide better estimates 

of the population curve than others. Therefore, a weighted regression scheme 

1s desirable for combining the curves. 

78. A modified power curve regress1on model can be linearized by ap

proximating the power term with a Maclaurin series (Draper and Smith 1981). 

An iterative calculation procedure is then used to solve for the three regres

sion parameters. The nonlinear regression model can be expressed in the fol

lowing form: 

where 

y - ax 
b 

0 

y - predicted shear strength 

+ c + £ 

a, b~ c =best estimators of regression parameters 

x = applied normal stress 

b 
0 

- estimate of parameter 

£ - random error 

b 

(9) 

By approximating the term with a Maclaurin series, the regress1on 

model can be linearized to the following form: 

b 
y - ax 

0 + a(b -
b 

b )x 
0 

0 

+ 

Qn x + 
a(b - b ) 2 

0 

2 
bo 2 

x [Qn (x)] 

a(b - b )3 
0 

3! 
3 

x b ( £n x) + ... + c + E 
0 

(10) 

79. Experience has shown that the use of only the first two terms in 

the ser1es expansion provides good estimates of the regression parameters; 

whereas, the use of additional terms often produces a curve with unreasonable 

fluctuations and overall poor estimation of y (Miller 1982c). For combining 

38 



be the number of specimens and I . 
J 

the test results of like spec1mens, 

be the number of data points for the 

let J 
. th 
J spec1men. Then, a suitable approx-

imation of Equation 10 can be written in the following matrix notation: 

Y. - X . ~ + f.. (11) -
J J J 

where 

b b 
0 0 

.Q.n(x1j) 1 y1j x1j xlj 

b b 
y2j 0 0 

.Q.n(x2j) 1 x2j x2j 
Y. - • - X. J - • • • -

J • 
• • • 

• 
• • • 

Yr . J b b J 0 x1~J .Q.n(xl .J) 1 xl.J 
J J J 

f, 1j 

~1 a f,2j 

~ - ~2 - a(b b ) f.. - • - - -
0 J 

~3 c • 

• 

c.I.J 
J 

80. To incorporate the weighting of individual direct shear specimens, 

a weighted least-squares criterion is applied whereby the solution vector of 

estimated regression parameters 1s given as: 

where 

J 
X'WX - L 

j=1 
X'.W.X. 

J J J 

~ = (X'WX)- 1 (X'WY) (12) 
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J 
X'WY - L 

j=1 
X~W.Y. 

J J J 

81. Diagonal elements 1n a g1ven matrix can be arbitrarily as-W. 
J 

signed, but are usually set equal to the inverse of the standard error from 

h . f h .th . t e regress1on o t e J spec1men (se_ ) , the a s sumption being that greater 
J 

confidence can be placed in the reliability of a regression curve with a 

smaller standard error. The weight matrix for the J
.th . h d. . spec1men as 1mens1ons 

I . 
J 

by I . 
J 

W. -
J 

and 1s typically given as: 

W. 0 0 
J 

0 w. 0 
J 

0 0 w. 
J 

0 0 0 

0 

0 

0 

• 
• 

• 

w. 
J 

1/s 
e. 

J 

0 

0 

0 

0 

1/s 
e . 

J 
0 

0 

0 

0 

1/s 
e. 

J 
• 

• 

0 
• 

0 

0 

0 

1/s 
e. 

J 

(13) 

82 . Equation 12 can be solved provided that the X'WX matrix has an 

1nverse. The numbers of data points can even vary from one spec1men to an

other, because the X'WX matrix will always be dimensioned 3 by 3 and the 

X'WY matrix will always be dimensioned 3 by 1. 

83. Iterative calculations to determine the solution vector begin with 

the application of Newton's app roximation method to a set of interpolated data 

points. (This set usually consists of 30 to 50 points.) Each of these points 

has a normal stress value x between zero and the maximum normal stress used 
0 

in testing. Ea ch has a shear strength value equal to the mean of the values 

predicted at x 
0 

by the regression curves of t he individual specimens. The 

results of Newton's approximation provide i nitial 

c . The initial estimate of b is assigned to 

matrices are formed a ccording to the expressions 

tion 11. The matri ces are formed according W. 
J 

vector ~ 1s obtained using Equation 12. 

estimates of a , b , and 

b , and the X. and Y. 
0 J J 

given directly after Equa-

to Equation 13. The solution 

84. A new estimate of b is determi ned by the following expression: 
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b 
0 

( 14) 

This new estimate is assigned to b
0 

and the above procedures repeated until 

the difference between b and b is negligible, such as less than 0.0001. 
0 

Parameters a and c for the group regression curve are respectively equal .... .... 

to ~ 1 and ~3 as predicted by the last iteration. Typically, less than 

eight iterations are required to produce the final estimates of a , b , and 

c for the regression curve that describes the expected shear strength of the 

specified discontinuity type. The estimated shear strength, y , that corre
o 

sponds to a given normal stress, x , is then defined by the following equation: 
0 

b - ax + c 
0 

(15) 

85. A statistical description for the expe cted shear strength at any 

given normal stress must also include the variance and the probability density 

function. An assumption of normality for the random errors, and thus for the 

expected shear strengths, is not acceptable because it would allow negative 

values of shear strength at small normal stress values. Consequently, at low 

normal stresses the probability density of shear strength is expected to favor 

a gamma or lognormal type of distribution. A gamma probability density func

tion has been used by Miller (1982c) because it allows only positive shear 

strengths and because it closely approximates a normal density when the coef

ficient of variation is less than one-tenth (0.10). 

86. The variance of the expected shear strength at any g1ven normal 

stress , x , can also be directly calculated as part of the weighted, nonlinear 
0 

regression analysis for a group of like specimens. The following relationship, 

which is partially based on the weight matrix defined in Equation 13, has been 

developed to determine this var1ance (Miller 1982c): 

where 

J 
X'WX - L 

j=1 

Var(y"' ) - x' (X'WX)- 1X'X(X'WX)- 1x 
o -o -o 

(16) 

X'.W.X. 
J J J 
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X -o 
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1 

87. Figure 18 is an example graph of a weighted, nonl i near regression 

curve that statistically desc r ibes the shear strength of a group of four di 

rect s hear specimens of the same type. The dashed curves represent a one

standard- deviation belt about the mean curve. This type of regression anal

ysis provides the necessary shear strength information for a probabilistic 

slope stability analysis. Regardless of which type of probability density 

func t ion is used to describe the shear strength, its parameters are defined by 
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the mean and variance of the shear strength at any specified normal stress . 

Therefore, once a normal stress has been calculated in a stability analysis, 

the probability distribution of the corresponding shear strength can be read

ily determined . 

Summary 

88. Representative rock strength parameters can be obtained by labora

tory tests that estimate rock substance strength and discontinuity shear 

strength. Some of the parameters are required input for rock slope stability 

analyses, while others are important for the comparison and classification of 

rock types within a study area and among different study areas. 

89. Results of a rock strength testing program can be succinctly sum

marized by rock type to help 1n subsequent engineering evaluations and analy

ses. An example of a tabulated rock strength summary for the quartz latite 

porphyry (QLP) shown in Figure 15 1s given below in Table 2. 

Table 2 

Example Rock* Strength Summary for QLP 

Unconfined compressive 
strength, psi''dr 

Triaxial compressive results: 
Cohesion, psi 
Coefficient of Friction 

Brazilian tensile strength, 
ps1 

Density, pcft 
RQD, percent 
Clean joint shear strength: 

(regression model: 

t = 1.696a0 · 836 
+ 0.24) 

t, psi for a- 10 psi 
a - 50 psi 
a - 200 psi 
a - 400 psi 

No. 

4 

4 
4 
6 

12 
37 

5 

Rock Substance Classification: 

.Mean 

13,554 

1,003 
1.122 
1,568 

171.6 
82.3 

11.9 
44.8 

142.5 
254.2 

Standard 
Derivation Minimum 

2,110 

401 

7.9 
9.2 

1.7 
2. 1 
6.4 

14.2 

11,120 

1,157 

163.7 
54.3 

Maximum 

16,982 

2,035 

181.8 
99.5 

--

Medium to high compress1ve strength with a 
medium modulus ratio. 

** To convert pounds per square inch (psi) to pascals, multiply by 6894.747. 
t To convert pounds per cubic foot (pcf) to kilograms per cubic metre, mul

tiply by 16.01846. 
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PART V: PROBABILISTIC STABILITY ANALYSES FOR COMMON FAILURE MODES 

90. For any slope cut in a discontinuous rock mass characterized by 

multiple fracture orientations, predicting the exact failure geometry is ex

ceedingly difficult, if not impossible. Therefore, simplified instability 

models and statistical estimates of fracture properties and shear strengths 

are used to provide probabilistic estimates of slope stability. The insta

bility models are considered as potential failure modes and are studied with 

either two-dimensional or three-dimensional analyses. 

Identification of Failure Modes 

91. Typical rock slope failure modes are illustrated in Figure 19. A 

brief discussion of each failure mode is given below. 

92. The plane shear mode is characterized by a potential failure mass 

capable of sliding along a geologic discontinuity that strikes parallel or 

nearly parallel to the slope face and dips flatter than the slope face angle. 

In a two-dimensional plane shear analysis the potential sliding mass 1s as

sumed to be laterally unconstrained. This is also known as the "side-release" 

assumption. 

93. In many rock slopes a single discontinuity often lacks the required 

continuous length for failure; whereas, a more complex failure path comprised 

of multiple fractures is likely to provide the continuous path needed for slid-

1ng. From a two-dimensional standpoint the most likely situation in practice 

1s that two fracture sets form a stepped geometry. Both sets strike parallel 

or nearly parallel to the strike of the slope, and sliding occurs on the flat 

ter dipping set with either separation along the steeper dipping set or tensile 

failure of intact rock bridges that connect the sliding surfaces of the flat

ter dipping fractures. 

94. The simple wedge geometry is formed by two geologic structures that 

strike across the slope crest and intersect within the slope to form a tetra

hedral rock prism. Sliding will occur along the line of intersection, which 

implies that for a wedge to be kinematically viable its intersection line must 

be daylighted by the slope face. Three-dimensional vectorial methods are 

available for analyzing the stability of simple, rigid-block wedges (Wittke 

1965, and Goodman and Taylor 1967) and are preferred over stereographic 
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a. Plane shear b. Step path 

c. Step wedge d. Simple wedge 

' ' 
I \ 

e. Toppling f . General surface 

Figure 19. Typical failure modes for rock slopes 

' ' 

projection methods for purposes of computer compatibility and calculation 

efficiency . 

95. The step-wedge failure mode is similar to the simple wedge, except 

the structures that intersect to form the geometry of the step wedge are not 

single planar structures. Rather, it is assumed that combinations of different 
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fracture sets (step paths ) form a highly irregular intersection. Because 

there is currently no rigorous stability ana lysis for step wedges a simplis

tic, conservative approach is used whereby the sliding probabilities of the 

individual step paths contained in t he wedge are evaluated and then combined 

to predict t he probability of sliding for the s tep wedge. 

96. Toppling failure usually occurs where well developed discontinui

ties strike parallel or nearly parallel to the slope face and dip steeply into 

the slope. Instability involves the rotation of columns or blocks of rock 

about some fixed base (basal plane). Recently developed stability analyses 

for the toppling mode are presented by Hoek and Bray (1977) and Brown (1982). 

97. When a unique structure (such as a maJOr fault or contact) or a 

combination of definable structures occurs within a rock slope, then a general 

(or arbitrary) failure surface can be predicted and ana lyzed. Several two

dimensional stability analyses are available for general surfaces including 

the Morgenstern-Price and the Spencer methods. 

98. Prior to excavating a slope, kinematically viable failure modes can 

be identified by evaluating how mapped fracture orientations interact with the 

proposed slope face orientation. Lower-hemi sphere Schmidt plots are essential 

for this evaluation process. For example, consider t he mean vector plot of 

Figure 8 in conjunction with a proposed slope face having a dip direction of 

330 deg. The resulting potential failure modes that should be analyzed are 

summarized in Table 3. 

Failure Mode 

Plane shear 

Step path 

Simple wedge 

Step wedge 

Toppling 

Table 3 

Potential Failure Modes Identified for a Slope with 

Dip Direction 330 deg Cut in the Structural Domain 

Represented by Figure 8 

Responsible Fracture Sets 

30.2, 32 .5 

30.2/32.5, 30.2/14.8, 32.5/14.8 

0.4/29.5, 0.4/28.8, 0.4/26.5, 1.6/29.5, 
1.6/28 .8 

0.4/1.6 with 29.5/28.8 

14.8 
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Estimating the Probability of Sliding 

99. For a specified slope geometry and failure mode the probability of 

sliding can be estimated using basic equilibrium considerations and the proba

bility distributions of pertinent input parameters. A popular index for eval

uating stability of a potential failure mass is the factor of safety, which is 

the ratio of total force that resists sliding to total force that induces slid

ing (Hoek and Bray 1977). A condition of limiting equilibrium is represented 

by a safety factor of 1.0 (resisting force equal to sliding force). If one or 

more of the parameters used to determine the safety factor can be considered 

random variables, then the safety factor must also be considered a random 

variable. Its probability distribution can be estimated by Monte Carlo simu

lation or by numerical convolution performed by discrete Fourier analysis. 

Monte Carlo simulation 

100. Monte Carlo simulation is a procedure to combine probability distri

butions of random variables to predict the distribution of a new random vari

able, where the new variable is a function of the other variables. The phi

losophy and practice of Monte Carlo methods are discussed by Newendorp (1975). 

101. To estimate the probability of sliding for a particular failure 

mode, a distribution of safety factors 1s simulated by repeatedly sampling 

values of the input variables and calculating a safety factor. Each of the 

calculated safety factors is one possible realization (or outcome) of the 

probabilistic model that describes the sliding potential of the failure mass. 

After a sufficient number of iterations (usually from several hundred to over 

a thousand) have been completed, a distribution of safety factors is obtained. 

Because a safety factor less than 1 represents instability, the ratio of the 

number of safety factors less than 1 to the total number calculated provides 

an estimate of the probability of sliding. For example, 220 out of 1000 cal

culated safety factors are less than 1.0; thus, the probability of sliding is 

0.22, or 22 percent. When the simulated safety factor distribution approx1-

mates a known probability density function, then the probability of sliding 

equals the area under the function where values of the safety factor are less 

than 1. 

102. Any failure mode with a sliding potential that can be expressed in 

terms of a safety factor equation can be analyzed by Monte Carlo simulation. 

Plane-shear, step-path, and simple-wedge failure modes are in this category. 
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One example of a probabilistic plane shear analysis based on Monte Carlo tech

niques is given by Marek and Savely (1978). In add i tion, fairly complex 

"slice-analysis" methods such as the modified Bishop's method for rotational 

shear and Spencer's method for general surfaces can be fitted with Monte Carlo 

"overlays" that allow for repeated sampl i ngs and calculations that yield a 

distribution of possible safety factors. 

103. A given Monte Carlo simulation provides only one realization of 

the true probability distribution of the safety factor. Another simulation, 

identical except for the random starting seed, will produce a slightly (or 

sometimes drastically) different realization. Consequently, a large number of 

iterations (a thousand or more) may often be required to provide consistent, 

stable results and a reasonable estimate of the probability of sliding. These 

large simulations require considerable computer time, making the associated 

costs objectionable and sometimes prohibitive. Fewer iterations are therefore 

used, resulting in a poorer estimate of t he probability of sliding. 

Convolution by Fourier analysis 

104. Fourier analysis provides a viable alternative to Monte Carlo S1m

ulation for predicting the probability distribution of the safety factor. The 

probability density function (pdf) for the s um of two or more independent den

sity functions can be expressed as the convolution of the functions with each 

other (Feller 1966). This implies that the sum of independent probability 

densities can be determined by taking the product of t heir Fourier transforms. 

An example of applying this principle in an engineering analysis is presented 

by Borgman (1977). 

105. An efficient method for estimating the true pdf of the safety fac

tor can be based on discrete Fourier procedures, which take advantage of the 

computational speed of the fast Fourier transform (FFT) algorithm. The only 

requirement is that the safety factor be expressed as the sum of independent 

random variables. Consider the plane s hear fai lure mode shown in Figure 20. 

A two-dimensional stability analysis that includes the effect of waviness of 

the s l iding surface can be based on the following safety factor equations: 

s -

tL + W cos a tan R s -
W sin a 

21 S1n 0 

h2 sin (o -
(t) + cot a tan R 

a) 'i 
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where 

s --
L --
w --
Cf --

R --
0 --

h --

t --

sliding surface 

Figure 20. Rock slope with typical 
shear failure mode 

safety factor 

length of sliding surface 

weight of potential failure mass 

average dip of sliding surface 

estimated waviness of the sliding surface 

average dip of slope face 

height of potential failure mass 

plane-

estimated shear strength along sliding surface (depends on the 
calculated effective normal stress which includes pore-water 
pressure) 

y = estimated rock density 

106. For a specified slope geometry and sliding surface all the param

eters are assumed constant except for the shear strength, waviness, and rock 

density, which are random variables with probability densities approximated by 

either l aboratory testing data or fracture mapping data. The shear strength 

pdf is g1ven by the weighted, nonlinear regression analysis of direct shear 

test results and is assumed to be a gamma pdf. The waviness is commonly as

sumed to be exponentially distributed and is estimated from fracture mapping 

data. The rock density is estimated from laboratory tests and is usually con

sidered to be normally distributed. Often the rock density can be assumed con

stant because it has such a small coefficient of variation, typically less than 

0.08. This coefficient equals the standard deviation divided by the mean. 

107. Equat1on 18 can be expressed in the form: 

S - AU + BV (19) 
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where A and B are constants comprised of the fixed input parameters. The 

new random variable U equals t/y , and V equals tan R . The probability 

densities of U and V can be derived and then digitized for use ln a con

volution process based on the FFT (Miller 1982b). The pdf of the safety fac

tor is then estimated by taking the reverse transform (F-) of the product of 

the Fourier transforms (F+) of the two input pdf's. This procedure can be 

mathematically expressed in the following form: 

(20) 

where 

U* - random variable equal to AU -
v~·- - random variable equal to BV " -

fu;•/ u;\-) - pdf of - random variable u..l-" 

fv;·,(v,.,) - pdf of - random variable v~·-" 

108. The probability of sliding . then lS obtained uslng numerical inte

gration to calculate the area under the safety factor pdf where the safety 

factor has values less than 1 . 

109. The convolution method based on the FFT offers an improvement over 

Monte Carlo simulation . Most importantly, Fourier procedures provide the ex

plicit safety factor pdf rather than a simulated realization of the pdf as 

produced by Monte Carlo techniques that are often prone to computational in

stability and excessive computer time. Preliminary comparative studies have 

shown that FFT convolution uses at least one-third to one-fifth the computer 

time required by Monte Carlo simulation using a moderate number of iterations 

(Miller 1982b). 

110. Fourier procedures have also been developed for the step-path and 

simple -wedge failure modes (Miller 1982c). In the step path analysis the fol

lowing three random variables must be combined: the shear strength, the wavi

ness of the master (flatter) joint set, and the tensile strength of the rock 

bridges (estimated from Brazilian disc tension tests). Waviness lS neglected 

in the wedge analysis, and the two random variables to be combined are the 

estimated shear strengths of the right and left planes. As with the plane

shear mode, pore-water pressure is included in these analyses via the effec

tive normal stress that determines shear strength. 

111. For all three failure modes the discrete safety factor pdf lS 
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closely related to the input pdf of the shear strength. If the shear strength 

is assumed to be gamma distributed, then the resulting safety factor pdf ap

proximates a gamma pdf. Figure 21 illustrates the comparison between a true 

gamma pdf and a safety factor pdf generated by the Fourier analysis of a plane

shear failure mode. The resemblance between the two tends to deteriorate as 

the mean waviness angle increases. 

1.4 

estimated p.d. f. 
1.2 by Fourier analysis 

1.0 "'· • I. 185 

«T
2a • 0.102 true Qamma p.d.f. with • 

08 
P5 • 0 .328 

- a • 13.74 
• -Ul 13. 0.086 - 06 

0.4 

0 .2 

oL-~~~~~~~~~~~~~~~~~~~_;~~~--~ 
0 0 .2 04 0.6 0 .8 1.0 12 1.4 1.6 1.8 2 .0 2 .2 2 .4 

SAFETY FACTOR, S 

Figure 21. Comparison of a true gamma pdf with a plane-shear safety 
factor pdf obtained by Fourier analysis (with h - 15 m, a = 35 deg, 

o = 65 deg, dry slope) 

Estimating the Probability of Stability 

112. Stability of a given plane-shear failure mode is a function not 

only of its sliding potential but also of the length of the sliding surface. 

To be of sufficient length for failure the sliding surface must extend contin

uously or nearly continuously from its daylighting point on the slope face to 

the upper surface (crest) of the slope. 

113. Stability of a potential plane-shear failure mass is realized in 

one of two ways: 
a . The plane-shear structure is not long enough to allow failure. 

b. The plane-shear structure 1s long enough, but sliding does not 
occur. 
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If structure length and sliding are assumed independent, then the probability 

of stability is given by: 

where 

P(stability) - P(structure not long enough) 

+ P(structure long enough 

and no sliding occurs) 

PS = probability of plane-shear sliding 

(21) 

P1 = probability that the structure is the required length or longer 

114. The P
1 

value is obtained from the length cumulative distribution 

function estimated for the plane-shear fracture set from mapping data. For 

example, if fracture lengths are exponentially distributed, then P
1 

by: 

1s g1ven 

where 

L - structure length sufficient to allow failure 
r 

~L - mean fracture length for the plane-shear fracture set 

(22) 

115. Likewise, stability of a potential wedge failure mass is realized 

1n one of two ways: 

a. The wedge intersection 1s not long enough to allow failure. 

b. The wedge intersection is long enough, but sliding does not 
occur. 

If intersection length and sliding are assumed independent, then the probabil

ity of wedge sliding is given by: 

P(stability) - P(intersection not long enough) 

+ P(intersection long enough 

and no sliding occurs) 
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where 

P8 - probability of wedge sliding 

PL* - probability that the wedge intersection is the required length or 
longer 

116. The P1* value is the joint probability that both structures com-

prising the wedge are long enough to allow failure (that is P = P · 
' L* L 

PL ). left 
right · 

117. The failure path for a g1ven s tep path mode is continuous or 

nearly continuous, so its probability of sufficient length is equal to 1. 

Consequently, step-path stability is directly related to the estimated proba 

bility of sliding and is given by: 

where P
8 

118 . 

P(stability) = 1 - P8 
(24) 

1s the probability of s tep-path sliding. 

In summary, the probability of stability can be estimated for a 

given plane- shear, wedge or step-path failure mode once its probability of 

sliding has been calculated. Except for step paths, the probability of suffi

cient length (to allow failure) is also a factor in determining the probabil

ity of stability. This length probability is calculated by using the length 

cumulative distribution function of the fracture set (or sets) responsible for 

the failure mode. 
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PART VI: PROBABILISTIC SLOPE DESIGN PROCEDURES 

119. The probabilistic design of a slope cut in fractured rock should 

include the variabilities in fracture set properties and the occurrences of 

multiple sliding surfaces for all failure modes present. Fracture sets that 

comprise the failure modes can be simulated using the statistical and spatial 

properties estimated from fracture mapping data. The probability of stability 

can then be calculated for each potential failure geometry formed by the simu

lated fracture sets. The individual probability values are then combined to 

predict the stability of the rock slope and provide useful design parameters. 

Simulation of Spatially Correlated Fracture Set Properties 

120. Procedures for simulating fracture set properties by Monte Carlo 

methods are based on random sampling of the probability distributions esti

mated for the properties (Marek and Savely 1978, and Call and Nicholas 1978). 

These methods are incapable of incorporating known spatial correlations and 

often requ1re excessive amounts of computer time. 

121. Spectral analysis procedures that take advantage of the computa

tional speed of the FFT algorithm can be used to efficiently simulate spatially 

correlated fracture set properties. A series of simulated values generated in 

this way will have the desired mean, variance, and variogram function. Spa 

t i al correlation is incorporated via the digitized covar1ance function, which 

is derived from the estimated variogram function according to the following 

relationship (Journel 1974): 

where 

C(h) - a2 
- y(h) 

C(h) - value of covariance function at lag h 

h - lag, or separation distance, between sample locations 
2 a - variance of data 

- Value of variogram function at lag h 

(25) 

y(h) 

122. The so-called spectral density of a random process is the Fourier 

transform of the covariance function (Jenkins and Watts 1968, and Borgman 

1973a). In discrete form the spectral density is defined as follows: 
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where 

s 
m 

N-1 
= Llli L 

n=O 
C e-i27tmn/N 

n (26) 

s 
m 

th d. l - m 1screte va ue of the spectral density 
&-

N -

c -
n 

123. 

digitization interval for the c 
n 

values 

number of digitized values of the covariance function 
th d. . . d 1 n 1g1t1ze va ue of the covariance function 

Because a covariance function is real-valued and symmetric about 

zero, its corresponding spectral density is real-valued and symmetric about 

zero (Borgman 1973a). A digital estimate of the spectral density can be read

ily obtained by applying the FFT to the digitized covariance function. For 

covariance functions of fracture set properties referenced to fracture se

quence numb er, the digitization interval , ~h , is equal to 1. The correspond

ing length of record, or period, T , of the digitized covariance function is 

given by: 

T - NLlli = N (27) 

The corresponding frequency increment, ~f , of the discrete spectral density 

is given by: 

~f - 1/T - 1/N (28) 

124. Fourier transformation causes correlated, stationary data in the 

space domain to be traded for uncorrelated, nonstationary Fourier coefficients 

in the frequency domain (Taheri 1980). However, the variance of each coeffi

cient is defined by the spectral density obtained by transforming the covari

ance function estimated from the actual data. Therefore, the essence of simu

lating spatially correlated properties by spectral procedures is actually a 

frequency-domain simulation of uncorrelated Fourier coefficients that are as

signed proper variance according to the estimated spectral density. The coef

ficients are then reverse Fourier transformed to provide a simulated series of 

fracture data values that have the desired spatial covariance. 

125. The first step in simulating N uncorrelated Fourier coefficients 

1s to generate a series of N independent, psuedo-random, normally distributed 
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numbers with mean zero and variance 1 (Borgman 1982). Then, the real and 

imaginary parts of the Fourier coefficients, A , for m = 0,1,2 ... N/2 m 
assigned the proper var1ances, which are given below (Borgman 1973b): 

If Am = Urn - iVm, then: 

Var(U ) -
m 

Var(V ) -
m 

TS , if m = 0 or m -
m 

TS /2 , otherwise m 

N/2 

0 , if m = 0 or m - N/2 

TS /2 , otherwise m 

Therefore, the simulated Fourier coefficients are g1ven by: 

are 

(29) 

(30) 

(31) 

(32) 

where and are two of the previously simulated independent, normal 

(0,1) numbers. Values of the remaining coefficients, those for m between 

N/2 and N , are a s signed according to the following conjugate symmetries 

(Borgman 1973b): 

u - u -m N-m 

v - -v (33) -m N-m 

vo - VN/2 = 0 -

126. The ser1es of simulated Fourier coefficients lS then reverse trans-

formed by FFT to produce a spatially correlated series of normally distributed 

data values with mean zero and variance equal to the variance of the original 

data. To complete the simulation of normally distributed fracture set proper

ties the mean of the original data is added to each value of the mean-zero 
. ser1es. 

127. Spectral analysis procedures for simulating spatially correlated 
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exponential values are also needed because some fracture set properties tend 

to be exponentially distributed. The simulation procedures can take advantage 

of the statistical property that an exponential pdf is equivalent to a chi

squared pdf with two degrees of freedom. 

128. If X and Y are independent, normally distributed (0, a
2

) random 

variables, then the sum of their squares gives a chi-squared variable Z 

(multiplied by cr2) with two degrees of freedom; that is, Z is exponentially 

distributed and is expressed as: 

The mean and variance of z can be derived in terms of the variance 

X or of Y (Miller 1982c) and are, respectively, given as: 

Var(Z) - 4cr4 

2 a 

(34) 

of 

(35) 

(36) 

These results show that the variance equals the mean squared, an expected re

lationship because Z is exponentially distributed. 

129. Also, the covariance function of the random process responsible 

for the distribution of Z can be expressed as follows: 

(37) 

where 
c

2
(h) - value of the covariance function for Z at lag h 

C(h) - value of the covariance function for X or Y at lag h 

The covariance function for the exponential Z 1s known because it is directly 

related to the variogram function estimated from the actual exponential frac

ture set data. The covariance function for either X or Y is obtained 

using a modified version of Equation 37: 

(38) 
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From Equation 35 the variance of either X or Y can be obtained as follows 

by using the calculated mean of the exponential fracture set property : 

2 
a = ~212 (39) 

130. The spectral-type simulation of N exponential Z values begins 

by generating two sets of N independent, psuedo-random normal (0,1) numbers. 

Using the procedures discussed earlier, N values of spatially correlated X 

values and N values of spatially correlated Y values are simulated where 

X and Y are normal and independent; and both have mean zero, variance given 

by Equation 39, and covariance function given by Equation 38. The desired N 

values of Z are then determined as follows: 

Z. -X~ + Y~ 
1 1 1 

where 1 ranges from 1 to N . The simulated exponential Z values will 

have the correct mean and spatial covariance. 

(40) 

131. Example simulation results for normally and exponentially distrib

uted fracture set properties are illustrated in Figure 22. 

Probabilistic Slope Analysis for Multiple Failures 

132. Occurrences of multiple sliding surfaces can be incorporated into 

a hybrid slope stability analysis that combines probability theory and simula

tion. It relies on fracture set simulations (as discussed in the previous 

section) to generate potential failure modes 1n the slope and then on proba

bility calculations to predict slope stability. Probabilities of stability 

for back-failure cells on the upper surface of the slope are calculated and a 

graph constructed to illustrate the relationships between slope face angles 

and the probabilities of retaining various amounts of the slope crest. 

133. Slope stability is critically dependent on fracture lengths. For 

plane shear and wedge failure modes fracture lengths required for failure are 

shorter near the crest edge, thus making failures much more likely to occur 

near the crest edge. Even shorter step paths near the crest edge are more 

likely (than longer step paths) to fail because they have lesser amounts of 

intact rock bridges than do longer step paths. 
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Figure 22 . Results of example simulations of 256 
spatially correlated fracture set properties 

(Miller 1982c) 

134. A typical plane shear fracture set 1n a slope is illustrated 1n 

Figure 23a. Back-failure distance is defined as the horizontal distance from 

the original edge of the slope crest back to the point where a given struc

ture intersects the crest, or upper surface, of the slope . By simulating 

realizations of slopes that contain the plane-shear fracture set, the proba

bility of stability for any given back-failure cel l can be determined. Let 
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a. Plane-shear failure modes 

bock- failure 

2/('~4 

b. Step-path failure modes 

Figure 23. Multiple sliding surface in a rock 
slope and associated back-failure cells 
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.th l . l . s. - 1 s ope s1mu at1on 
1 

NT - total number of slope simulations 

N - number of slope simulations that have one or more fractures in the 
given back-failure cell 

J. - number of fractures in the g1ven back-failure cell for the ith 
1 slope simulation 

Ps . - probability of sliding along fracture J 
p J -

L . 
probability of fracture . 

J being long enough to allow failure 
J 

Then, the probability of stability in the specified back-failure cell 1s 

g1ven by: 

P(stab. 1n cell) P(stab. I s. with J. fractures in cell) 
1 1 

• P(s. with J. fractures 10 cell) 
1 1 

NT 

r( stab . P(stab . 1n cell) - I: I s. with no fractures in cell) -
i=l 

1 

· P(s. with no fractures in cell) 
1 

+ P(stab. I s. with one or more fractures 
in cell) 

1 

fractures in cell)] · P(s. with one or more 
1 

N - N 
N 

+ ~ (~) L P(stab. cell) 1.0 
T P(stab. I s. with 1fi --

NT NT 1 
i=l one or more frac-

tures in cell) 

N 
J. 

N - N 
1 

+ _!_ I [P( s tab. of P(stab. cell ) 
T n 1n --

NT NT 
i=l j=l I si)J fracture j 

N - N N 
J. 

+ _!_ 
1 [c1 P(stab. 

. cell) 
T L n - p ) I s. 1n --

NT NT L. 1 
J i=l j=l 

+ PL. (1 - p ) si] s. 
J J 
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135. The probability of retaining a specified crest width is the joint 

probability that stability occurs in each back-failure cell contained in that 

width. This joint probability is mathematically expressed as fo l lows : 

P(stab. of crest width with N 
c 

N c 
cells) - n P(stab. 1n cell i) 

i=1 
(43) 

136. The probabilistic slope analysis begins by generating required 

spatially correlated properties (spacing, dip, and waviness) for the plane

shear fracture set (fractures are simulated up the slope face). Probabilities 

of length and sliding are computed respectively for each daylighted fracture 

and its associated failure mass. Probabilities of stability are then calcu

lated and the slope simulation repeated. After the desired number of simula

tions (usually 4 to 8) have been completed, the crest width reliabilities can 

be calculated by Equations 41 and 43. The entire process is then repeated for 

several different slope face angles (and slope heights, if desired). 

137 . A slope stability graph that displays the results of a probabi l is 

tic plane shear analysis is shown in Figure 24. The information on such a 

graph can be combined with similar information for other failure modes present 

1n the slope to provide useful criteria for designing the slope . 

138. Step-path failure modes typically have lower probabilities of sta

bility than plane shears of similar scale because step paths have continuous 

lengths except for intact rock bridges. A probabilistic analysis for mul t iple 

step paths in a slope (illustrated in Figure 23b) provides the same type of 

output as that for plane shears. The step-path analysis begins by genera t i ng 

potential step- path geometries according to a procedure from Call and Nicholas 

(1978) that has been modified to use spectral analysis procedures instead of 

Monte Carlo techniques for simulating fracture set properties . The probabil 

ity of sliding is calculated for each daylighted step path. The probability 

of sufficient length equals 1. Probabilities of stability are then calcu

lated and the slope simulation repeated. After the desired number of simula

tions (usually 6 to 12) have been completed, the crest width reliabilities can 

be calculated by Equations 41 and 43 with j being a counter for step paths 

instead of plane-shear fractures. The entire process is then repeated for 

several different slope face angles to produce information for a graph similar 

to that shown in Figure 24. 
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Figure 24 . Example slope stability graph for plane
shear failure mode (slope height is 15 m) 

139. The three-d i mensional character of wedge-failure modes requires 

that a standard length along the slope face be specified to define an area of 

probability accumulations. An arbitrary, but rational, decision is to set 

this length equal to the anticipated slope height, forming square "units" that 

can be analyzed along the slope face. Figure 25 illustrates the concept of 

slope units and back-failure cells for analyzing wedges in a rock slope. 

140. Properties of the two fracture sets (spacing, dip direction, and 

dip) that comprise potential wedges are simulated along one or more simula

tion lines in a given slope face unit . The probability of stability 1s com

puted for each kinematically viable wedge formed by the intersection of any 

two fractures, 

for the jth 

one from each set. The probability of sufficient length, P1 _ , 

wedge is the joint probability that both fractures comprising J 

the wedge have sufficient length to allow failure. Probabilities of stabil

ity are then calculated and the slope simulation repeated. After several 
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Figure 25. Multiple simulated wedge intersections and 
back-failure cells in a slope unit (Miller 1982c) 

simulations are completed, the crest width reliabilities can be calculated by 

Equations 41 and 43, with J being a counter for wedges instead of plane-shear 

fractures. After analyzing slopes with various face angles, a stability graph 

for wedges can be produced similar to that shown in Figure 24. 

141. The probabilistic results shown on the stability graphs for the 

different types of failure modes present in the slope are combined to produce 

a complete overall stability graph for the slope being studied. The probabil

ity of retaining a specified crest width (crest beyond a given back-failure 

distance) is the joint probability that the width will be retained for all 

failure modes present. Thus, the probability values from graphs for the dif

ferent failure modes are multiplied together to produce the probability values 

for the overall stability graph. An example of such a graph, which includes 
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results from plane-shear, step-path, and wedge analyses, is shown in Figure 26. 

The predominant influence on instability for this particular slope is due to 

the step-path modes that are present. 
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Figure 26. Example slope stability graph for 
combined results of plane-shear, step-path, 
and wedge analyses (from Miller 1982c) (Slope 

height is 15 m) 

Useful Design Criteria 

142. A physical interpretation of the probability of retaining the 

slope crest beyond a specified back-failure distance can be illustrated by the 

following example. Consider a 0.60 probability of retaining the slope crest 

beyond a back-failure distance of 8 m. This inplies that 60 percent of the 

length (or of the square slope units if wedge failure modes are present) along 

the slope strike is expected to have a stable slope crest after 8 m from the 

original crest has been lost to failures. The remaining 40 percent of the 

65 



slope length is expected to have an unstable slope crest beyond the 8-m back

failure distance. That 1s, 40 percent of the slope length will have failures 

that break back farther than 8 m. 

143. Probability information from a slope stability graph like that 

shown in Figure 26 can be used to determine slope design parameters. If the 

slope under consideration is actually a bench on a large, high slope (such as 

that found in most open pit mines), then probabilistic bench stability parame

ters are determined to help design the overall large slope (Miller 1982c). 

For slopes cut along transportation routes or construction sites the important 

design considerations may well be the amount of slope crest expected to be 

lost and the material volume of potential failure masses. 

144. The probability of retaining the entire slope crest equals the 

probability value at a back-failure distance of zero. This value is usually 

quite small, or even zero, because many failures occur near the crest edge. 

The value is essentially an estimate of the probability of stability for the 

total slope height. 

145 . Often, a more useful parameter is the median back-failure dis

tance, or the distance beyond which half of the slope length will be stable 

and the other half will be unstable. This distance can be considered the best 

estimate of the expected back-failure distance because half of the slope 

length is expected to have failures breaking back that far. The predicted 

median back-failure distance is obtained from the stability graph and is equal 

to the distance beyond which there is a 0.50 probability of retaining the 

slope crest. 

146. The probability of having a certain volume of failure material can 

also be estimated from a slope stability graph that incorporates back-failure 

distances. The most direct estimation procedure involves determining the 

expected relationship between failure volume and back-failure distance. For 

plane-shear modes the failure volume (per unit slope length) associated with a 

given back-failure distance can be calculated using that distance along with 

the slope angle and the mean dip of the plane-shear fracture set. The same is 

true for step-path modes except the mean step-path angle is used instead of 

the mean dip. The failure volumes of wedges can be roughly estimated in the 

same way us1ng the mean plunge of intersections, or it can be more precisely 

determined by averaging the volumes of simulated wedges that break back to a 

given back-failure distance. Failure volumes in a slope will be controlled 
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predominantly by the failure mode having the longest sliding surfaces, which 

usually will be the step path if it is present. 

147. These types of stability are useful for designing rock slopes that 

contain many potential sliding surfaces. They serve as the primary design 

criteria unless large, definable structures such as faults, contacts, or major 

joints form potential slope failure modes. Estimated probabilities of sliding 

for these major failure modes (if they are present) should be included in the 

design process and will even serve as the critical design criteria if their 

values are reasonably large. 
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PART VII: SUMMARY EVALUATION OF PROBABILISTIC SLOPE DESIGN 

148. Although the probabilistic design of rock slopes is a relatively 

new area of research and development, its usefulness and importance has been 

demonstrated in practical engineering studies for open pit mines. Probabilis

tic slope stability information is often desired because it is essential for 

mining cost-benefit analyses used to select economically optimum slope angles. 

149. Probabilistic slope engineering can also be applied to civil works 

projects such as road/railway cuts, spillway cuts, and abutment excavations to 

quantify variables and uncertainties and to evaluate instability risks. Such 

"risks" can be presented in a probabilistic slope stability graph that yields 

design criteria which contain and provide more information about the stability 

conditions of a slope than deterministically calculated safety factors. 

Data Requirements for Probabilistic Analysis 

150. The engineering design of rock slopes requ1res information about 

the geometric properties and shear strengths of geologic structures because 

slope failures commonly occur along structural discontinuities. Necessary 

fracture data used to estimate geometric properties of fracture sets can be 

collected by surface mapping techniques or by oriented-core logging. Mapped 

fracture orientations obtained from various sites in the project area can be 

displayed on lower-hemisphere Schmidt plots and used to help delineate struc

tural domains. As mentioned in Part II, at least one or two mapping sites 

are desired within each anticipated domain as identified from geologic infor

mation available prior to fracture mapping. Four or five sites per domain may 

be needed if fracturing is complex. Fracture data for geometric properties, 

such as dip, dip direction, spac1ng, length, and waviness, can then be com

bined for each fracture set within each domain. 

151. Those fracture sets critical to the slope design (those that form 

potential failure modes) are identified by considering how the set orienta

tions in a given domain interact with the proposed slope orientation. Sta

tistical distributions of geometric properties of the critical sets can then 

be estimated from the combined fracture data. Spatial correlations can also 

be estimated by calculating a variogram for each property in a given set. 

Probabilistic slope stability analyses require such estimations, and to make 
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them it is usually desirable for the set to contain at least 25 to 30 fracture 

observations that were obtained from the same mapping site. This suggests 

that fracture mapping and data evaluation ideally should be interactive to 

help ensure a sufficient but economical sample of fracture properties. 

152. Predictions of the shear strengths along potential failure sur

faces are commonly based on the results of laboratory direct shear tests of 

natural discontinuities contained in rock specimens collected at the site. At 

least four (preferably six) tests should be conducted for each rock type or 

fracture identified in the study area. Additional specimens may be desired if 

the fracture type is especially variable or if the benefits of a better 

strength estimate warrant the additional time and expense. Results from the 

tests can be analyzed using statistical regression procedures to combine re

sults for similar spec1mens and provide a statistical estimate of shear 

strength for each distinctive rock type or fra cture type. 

153. Laboratory tests of rock samples are also used to measure the unit 

weight (density) of each rock type in the study area. Again, approximately 

six samples of each rock type are considered minimal for estimating the sta

tistical properties of rock density. This parameter is usually found to be 

normally distributed. 

154. Ground water 1n a rock slope induces pore pressures on potential 

sliding surfa ces. In most cases the pore pressure is directly related to the 

piezometric surface in the slope, and thus, the water levels in open drill 

holes should be monitored. Rock mass permeabilities may also be needed for 

predicting the drawdown curve to the slope face. They can be estimated by 

field tests, such as pump tests and head tests. 

155. Procedures for converting this hydrologic information to a proba

bility distribution of pore pressures are limited at the current time. Monte 

Carlo simulation can provide a set of possible drawdown curves based on data 

histograms of water levels, permeability, and porosity (Miller 1982a). When 

data are limited, engineering judgment can guide in the prediction of mean 

values, and by assuming a normal distribution, standard deviations can also be 

estimated by selecting a range about the mean in which over 99 percent of pos

sible values would occur (the difference between the mean and one end of this 

range equals three standard deviations). 
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Example Comparison between Probabilistic and 
Deterministic Results 

156. To illustrate some of the advantages of probabilistic methods over 

deterministic methods an example is presented where the stability of a poten

tial plane shear failure mass is evaluated both ways. The sliding surface 

(with a dip of 35 deg) is assumed to be continuous so that the probability of 

sufficient length equals 1. Consequently, the probability of failure is the 

same as the probability of sliding. The slope is dry with a face angle of 
i 

65 deg, and the failure mass is 15 m high. 

157. Results of a probabilistic stability analysis are shown in Fig

ure 21. The calculated probability of failure is 0.328 with the safety fac

tor, a random variable, having a mean of 1.185. The probability density func

tion of the safety factor indicates that possible values could easily range 

from 0.5 to 2.0. 

158. A deterministic stability analysis for the same potential failure 

mass and conditions can be used to calculate a safety factor using the follow

ing parameter means: 

rock density, 3 y ~ 2.70 t/m ~ 

wav1ness, R ~ 3.6 deg ---

shear strength, t ~ 0.88387a0 · 93424 + 0.00 ~ 

The following values are obtained during the calculation process: 

length of sliding surface, L ~ 26.15 m ~ 

weight of sliding mass, w --- 229.17 t ---

normal stress on sliding surface, a = 7.179 t/m
2 

2 
shear strength of sliding surface, t ~ 5.574 t/m ---

The resulting value of the calculated safety factor is 1.199. It does not in

clude or reflect variabilities in parameter values and it does not indicate 

how much the safety factor could vary. 

159. Typically, a safety of 1.2 to 1.5 is used for design purposes for 

open pit mine slopes (Hoek and Bray 1977). If such were the case for the 

above example, the slope very well could be considered safe when, in fact, it 
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has an estimated probability of failure nearly equal to 0.33. This comparison 

helps to illustrate the importance of including parameter variabilities when 

estimating or predicting slope stability. 

Conclusions 

160. In addition to including parameter variabilities, a probabilistic 

slope analysis also provides a way to include the effects of multiple occur

rences of the same failure mode, which are predicted by simulating spatially 

correlated properties of the fracture set or sets responsible for that partic

ular failure mode. Different failure modes in the same slope can also be 

analyzed and the results combined into a probabilistic estimate of overall 

slope stability. This estimate, as displayed in a probabilistic slope sta

bility graph, provides guidelines and design criteria that often prove more 

useful than a deterministically calculated safety factor. For instance, 

probabilistic estimates can be made of the amount of slope crest expected to 

be lost (by failures) and, thus, of the volumes of potential failure masses. 

161. The purpose of a probabilistic analysis of rock slope stability is 

to provide an estimate of slope stability based on a realistic treatment and 

incorporation of natural variabilities, measurement uncertainties, and multi

ple potential failure paths. If slope stability is anticipated to be criti

cally dependent on one or several large definable structures, then the effects 

of numerous smaller structures are greatly minimized and the design process is 

simplified. In such a case, the probability (probabilities) of stability of 

the major failure mode(s) will be the principal factor in designing the slope. 

The probability value acceptable for design will vary from project to project 

depending on the "cost" of a slope failure (in terms of dollars, time, loss of 

life or property, sociological impacts, or other intangibles). Appropriate 

procedures should be developed for assigning values to slope failure "costs" 

and subsequently setting acceptable design criteria for probabilities of sta

bility. Thus, additional research and field verification are required for 

evaluating the effectiveness of probabilistic slope engineering methods and 

for building a design rationale around them. 
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APPENDIX A: SOURCES OF COMPUTER SOFTWARE 

1. Some sources for computer software applicable to probabilistic data 

analyses and stability analyses for rock slope engineering are listed below. 

The list should be considered incomplete and some materials may be proprietary. 

Appendices A-D given in 
Miller (1982c) 

Call & Nicholas, Inc. 
6420 E. Broadway, Suite AlOO 
Tucson, AZ 85710 
attn: R. D. Call 

Dept. of Civil Engineering 
Massachusetts Institute of 

Technology 
Cambridge, MA 02139 
attn: G. B. Baecher 

GEOMIN Computer Services 
708 Kapilano 100 
West Vancouver, B. C. V7T 1A2 
(also, Piteau & Associates, 

same address) 

Golder Associates 
10628 N.E. 38th Place 
Kirkland, WA 98033 
attn: D. Pentz 

Al 

Pincock, Allen, and Holt, Inc. 
1750 E. Benson Highway 
Tucson, AZ 84714 
attn: J. M. Marek 

Steffen Robertson and Kirsten 
1281 W. Georgia St., Suite 500 
Vancouver, B. C. V6E 3J7 
attn: A. M. Robertson 




